
Preservation of the Global Knowledge by
Not-True Distillation in Federated Learning

Gihun Lee*, Minchan Jeong*, Yongjin Shin, Sangmin Bae, Se-Young Yun
KAIST

{opcrisis, mcjeong, yj.shin, bsmn0223, yunseyoung}@kaist.ac.kr

Abstract

In federated learning, a strong global model is collaboratively learned by aggre-
gating clients’ locally trained models. Although this precludes the need to access
clients’ data directly, the global model’s convergence often suffers from data hetero-
geneity. This study starts from an analogy to continual learning and suggests that
forgetting could be the bottleneck of federated learning. We observe that the global
model forgets the knowledge from previous rounds, and the local training induces
forgetting the knowledge outside of the local distribution. Based on our findings,
we hypothesize that tackling down forgetting will relieve the data heterogeneity
problem. To this end, we propose a novel and effective algorithm, Federated
Not-True Distillation (FedNTD), which preserves the global perspective on locally
available data only for the not-true classes. In the experiments, FedNTD shows
state-of-the-art performance on various setups without compromising data privacy
or incurring additional communication costs1.

1 Introduction
At present, massive data is being collected from edge devices such as mobile phones, vehicles, and
facilities. As the data may be distributed on numerous devices, decentralized training is often required
to train deep network models. Federated learning [23, 24] is a distributed learning paradigm that
enables the learning of a global model while preserving clients’ data privacy. In federated learning,
clients independently train local models using their private data, and the server aggregates them into
a single global model. In this process, most of the computation is performed by client devices, while
the global server only aggregates the model parameters and distributes them to clients [2, 50].

Most federated learning algorithms are based on FedAvg [37], which aggregates the locally trained
model parameters by weighted averaging proportional to the amount of local data that each client
had. While various federated learning algorithms have been proposed thus far, they each conduct
parameter averaging in a certain manner [1, 9, 20, 30, 47, 52]. Although this aggregation scheme
empirically works well and provides a conceptually ideal framework when all client devices are
active and i.i.d. distributed (a.k.a. LocalSGD), the data heterogeneity problem [31, 56] is a notorious
challenge for federated learning applications and prevents their widespread applicability [19, 29].

As the clients generate their own data, the data is not identically distributed. More precisely, the local
data across clients are drawn from heterogeneous underlying distributions; thereby, locally available
data fail to represent the overall global distribution, which is referred to as data heterogeneity. Despite
its inevitable occurrence in many real-world scenarios, data heterogeneity not only makes theoretical
analysis difficult [31, 56] but also degrades many federated learning algorithms’ performances
[18, 27]. By resolving the data heterogeneity problem, learning becomes more robust against partial
participation [31, 37], and the communication cost is also reduced by faster convergence [46, 52].

* Equal contribution.
1https://github.com/Lee-Gihun/FedNTD
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(a) Continual Learning (b) Federated Learning (FedAvg) (c) Federated Learning (FedNTD)

Figure 1: An overview of forgetting in learning scenarios. As catastrophic forgetting in (a) Continual Learning,
(b) Federated Learning also experiences forgetting. However, (c) FedNTD prevents forgetting by preserving
global knowledge during local training.

Interestingly, continual learning [42, 45] faces a similar challenge. In continual learning, a learner
model is continuously updated on a sequence of tasks, with an objective to perform well on whole
tasks. Unfortunately, owing to the heterogeneous data distribution of each task, learning on the task
sequence often results in catastrophic forgetting [36, 40], whereby fitting on a new task interferes
with the parameters important for previous tasks. As a consequence, the model parameters drift away
from the area where the previous knowledge is desirably preserved (Figure 1a).

Our first conjecture is such forgetting also exists in federated learning. While the server aggregates
local models, the distribution where they are trained may be largely different from those of previous
rounds. As a result, the global model faces the distributional shifts at each round, which may cause
the forgetting as in continual learning (Figure 1b). To empirically verify this analogy, we examine the
global model’s prediction consistency. More specifically, we measure its class-wise accuracy while
the communication rounds proceed.

The observations verify our conjecture: the global model’s prediction is highly inconsistent across
communication rounds, significantly reducing the performance of predicting some classes that the
previous model originally predicted well. We dig deeper to analyze how averaging the locally updated
parameters induces such forgetting and confirm that it occurs in local training: the global knowledge,
corresponding to the region outside of local distribution, is prone to be forgotten. As merely averaging
the local models cannot recover it, the global model struggles to preserve previous knowledge.

Based on our findings, we hypothesize that mitigating the issue of forgetting can relieve data
heterogeneity (Figure 1c). To this end, we propose a novel algorithm Federated Not-True Distillation
(FedNTD). FedNTD utilizes the global model’s prediction on locally available data, but only for the
not-true classes. We demonstrate the effect of FedNTD on preserving global knowledge outside of
a local distribution and its benefits on federated learning. Experimental results show that FedNTD
achieves state-of-the-art performance in various setups.

To summarize, our contributions as follows:

• We present a systematic study on forgetting in federated learning. The global knowledge
outside of the local distribution is prone to be forgotten and is closely related to the data
heterogeneity issue (Section 2).

• We propose a simple yet effective algorithm, FedNTD, to prevent forgetting. Unlike prior
works, FedNTD neither compromises data privacy nor incurs additional communication
burdens. We validate the efficacy of FedNTD on various setups and show that it consistently
achieves state-of-the-art performance (Section 3, Section 4).

• We analyze how FedNTD benefits federated learning. The knowledge preservation by
FedNTD improves weight alignment and weight divergence after local training (Section 5).

1.1 Preliminaries
Federated Learning We aim to train an image classification model in a federated learning system
that consists of K clients and a central server. Each client k has a local dataset Dk, where the whole
dataset D “

Ť

kPrKs Dk. At each communication round t, the server distributes the current global
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model parameters wpt´1q to sampled local clients Kptq. Starting from wpt´1q, each client k P Kptq

updates the model parameters wptq
k using its local datasets Dk with the following objective:

w
ptq
k “ argmin

w
Epx,yq„Dk rLpw;wpt´1q, x, yqs . (1)

where L is the loss function. At the end of round t, the sampled clients upload the locally updated
parameters back to the server and aggregate by parameter averaging as wptq as follows:

wptq “
ÿ

kPKptq

|Dk|
ř

k1PKptq |Dk1
|
w

ptq
k . (2)

Knowledge Distillation Given a teacher model T and a student model S, knowledge distillation
[17] matches their softened probability qTτ and qSτ using temperature τ . The c-th value of the qτ can
be described as qτ pcq “

exppzc{τq
ř

i exppzi{τq
, where zc is the c-th value of logits vector z and C is the number

of classes. Given a sample x, the student model S is learned by a linear combination of cross-entropy
loss LCE for one-hot label 1y and Kullback-Leibler divergence loss LKL using a hyperparameter β:

L “ p1 ´ βqLCEpq,1yq ` βτ2LKLpqSτ , q
T
τ q (3)

LCEpq,1yq “ ´

C
ÿ

c“1

1ypcq log qpcq, LKLpqSτ , q
T
τ q “ ´

C
ÿ

c“1

qTτ pcq log

«

qSτ pcq

qTτ pcq

ff

(4)

2 Forgetting in Federated Learning
To understand how the non-IID data affects federated learning, we performed an experimental study
on heterogeneous locals. We choose CIFAR-10 [25] and a convolutional neural network with four
layers as in [37]. We split the data to 100 clients using Latent Dirichlet Allocation (LDA), assigning
the partition of class c samples to clients by p „ Dirpαq. The heterogeneity level increases as the
α decreases. We train the model with FedAvg for 200 communication rounds, and 10 randomly
sampled clients are optimized for 5 local epochs at each round. More details are in Appendix B.

2.1 Global Model Prediction Consistency
To confirm our conjecture on forgetting, we first consider how the global model’s prediction varies
as the communication rounds proceed. If the data heterogeneity induces forgetting, the prediction
after update (i.e., parameter averaging) may be less consistent compared to the previous round. To
examine it, we observe the model’s class-wise test accuracy at each round, and measure its similarity
to the previous round. The results are provided in Figure 2a and Figure 2b.

Figure 2: Forgetting analysis on the global server model. (a): Class-wise test accuracy on CIFAR-10 IID and
NIID (α=0.1) cases. (b): Cosine similarity of class-wise accuracy vector w.r.t. previous round global model on
IID and NIID (α “ 0.1) cases. (c): Forgetting F by different heterogeneity levels on CIFAR-10 and CIFAR-100.

As expected, while the server model learned from i.i.d. locals (IID Server) predicts each class evenly
well at each round, prediction is highly inconsistent in the non-i.i.d. case (NIID Server). In the
non-IID case, the test accuracy on some classes which originally predicted well by the previous
global model often drops significantly. This implies that forgetting occurs in federated learning.

To measure how the forgetting is related to data heterogeneity, we borrow the idea of Backward
Transfer (BwT) [5], a prevalent forgetting measure in continual learning [4, 7, 8, 14], as follows:

F “
1

C

C
ÿ

c“1

max
tPt1,...T ´1u

pAptq
c ´ ApT q

c q (5)
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where Aptq
c is the accuracy on class c at round t. Note that the forgetting measure, F , captures the

averaged gap between peak accuracy and the final accuracy for each class at the end of learning.
The result on the varying heterogeneity levels is plotted in Figure 2c, showing that the global model
suffers from forgetting more severely as the heterogeneity level increases.

2.2 Knowledge Outside of Local Distribution
We take a closer look at local training to investigate why aggregating the local models induces
forgetting. In the continual learning view, a straightforward approach is to observe how fitting on the
new distribution degrades the performance of the old distribution. However, in our problem setting,
the local clients can have any class. Given that only their portions in the local distribution differ
across clients, such strict comparison is intractable. Hence, we formulate in-local distribution ppDq

and its out-local distribution p̃pDq to systematically analyze forgetting in local training.

Figure 3: An example of in-local distribution ppDq and out-local distribution p̃pDq on CIFAR-10 (α “ 0.1).

Definition 1. Consider a local dataset D consists of N data points xi and its label yi in C-class
classification problem. The in-local distribution vector pk “ ppDkq and its out-local distribution
vector p̃k “ p̃pDkq are

p “ rp1 , . . . , pCs, where pc :“
1

N

N
ÿ

i“1

Ipyi “ cq (6)

p̃ “ rp̃1 , . . . , p̃Cs, where p̃c :“
1

C ´ 1
p1 ´ pcq (7)

The underlying idea of out-local distribution p̃pDq is to assign a higher proportion to the classes with
fewer samples in local datasets. Accordingly, it corresponds to the region in the global distribution
where the in-local distribution ppDq cannot represent. Note that if ppDq is uniform, p̃pDq also
collapses to uniform, which aligns well intuitively. An example of label distribution for 10 clients
and their ppDqs and p̃pDqs are provided in Figure 3.

We measure the change of global and local models’ accuracy on ppDq and p̃pDq during each
communication round, as in Figure 4. After local training, the local models are well-fitted towards
ppDq (Figure 4a), and the aggregated global model also performs well on it. On the other hand, the
accuracy on p̃pDq significantly drops, and the global model accuracy on it also degrades (Figure 4b).

Figure 4: Accuracy of global model and sampled local models for ppDq and p̃pDq on CIFAR-10 (α=0.1). The
error bar stands for the standard deviation of the 10 sampled local clients. In (a) and (b), the global model
accuracies for ppDq and p̃pDq is measured on their joint distributions from 10 sampled clients.

To summarize, the knowledge on the out-local distribution p̃pDq is prone to be forgotten in local
training, resulting in the global model’s forgetting. Based on our findings, we hypothesize that
forgetting could be the stumbling block in federated learning.
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2.3 Forgetting and Local Drift
First empirically observed by [56], the deviation of local updates from the desirable global direction
has been widely discussed as a major cause of slow and unstable convergence in heterogeneous
federated learning [21, 30, 31]. Unfortunately, given the difficulty of analyzing such drift, a common
approach is to assume bounded dissimilarity between the local function gradients [20, 31].

One intriguing property of knowledge preservation on out-local distribution is that it corrects the local
gradients towards the global direction. We define the gradient diversity Λ to measure the dissimilarity
of local gradients and state the effect of knowledge preservation as follows:

Definition 2. For the uniformly weighted K clients, the gradient diversity Λ of local functions fk

towards the global function f “ 1
K

řK
k“1 f

k is defined as:

Λ :“
1
K

řK
k“1∥∇fk∥2

∥∇f∥2
(8)

Here, Λ ě 1 measures the alignment of gradient direction of the local function fks w.r.t. the global
function f . Note that the Λ becomes smaller as the directions of local function gradients ∇fks
become similar—e.g., if the magnitudes of the ∥∇fk∥2s are fixed, the smallest Λ is obtained when
the direction of ∇fks are identical. To understand the effect of preserving knowledge on the out-local
distribution p̃pDq, we analyze how the local gradients and their diversity varies by adding gradient
signal on p̃pDq with factor β and obtain the following proposition.

Proposition 1. Suppose uniformly weighted K clients with in-local distribution pk “ rpk1 , . . . , p
k
Cs. If

we assume the class-wise gradients gc are orthogonal with uniform magnitude, increasing β ď C{2´1
reduces the gradient diversity Λ from the local gradient ∇fk “ ppk ` βp̃kq ¨ g with the ratio:

BΛ

Bβ
ď ´

MK,C,p

p1 ` βq2
. (9)

where β stands for the effect of knowledge preservation on the out-local distribution p̃k. The
MK,C,p ą 0 is a constant term consists of K, C, and ppkqKk“1 ,

The proof is given in Appendix P. Note that here we treat fk as a sum of class-wise losses
ř

c p
k
cLc,

where Lc “ Ex|y“crLpx;wqs is the loss on the specific class c. When β “ 0, there is no regularization
to preserve out-distribution knowledge, so the local model only needs to fit on the in-local distribution
pk. The above proposition suggests that the preserved knowledge on out-local distribution p̃k (i.e.,
as β increases) guides the local gradient directions to be more aligned towards the global gradient,
reducing the gradient diversity Λ. Such forgetting perspective provides the opportunity to handle the
data heterogeneity at the model’s prediction level.

3 FedNTD: Federated Not-True Distillation

Figure 5: An overview of Not-True Distillation.The
true class (Class 3) logits is ignored in the softmax.

In this section, we propose Federated Not-True
Distillation (FedNTD) and its key features. The
core idea of FedNTD is to preserve the global
view only for the not-true classes. More specif-
ically, FedNTD conducts local-side distillation
by the linearly combined loss function L be-
tween the cross-entropy loss LCE and the not-
true distillation loss LNTD:

L “ LCEpql, 1yq ` β ¨ LNTDpq̃lτ , q̃
g
τ q. (10)

Here, the hyperparameter β stands for the strength of knowledge preservation on the out-local
distribution. Then, the not-true distillation loss LNTD is defined as the KL-Divergence loss between
the not-true softmax prediction vector q̃lτ and q̃gτ as follows:

LNTDpq̃lτ , q̃
g
τ q “ ´

C
ÿ

c“1 ,c‰y

q̃gτ pcq log

«

q̃lτ pcq

q̃gτ pcq

ff

, where

$

’

’

’

&

’

’

’

%

q̃lτ pcq “
exp pzlc{τq

řC
c̃‰y

exp pzlc̃{τq

q̃gτ pcq “
exp pzgc {τq

řC
c̃‰y

exp pz
g
c̃ {τq

p@c ‰ yq. (11)
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which take softmax with temperature τ only for the not-true class logits. Figure 5 illustrates how the
not-true distillation works given a sample x. Note that ignoring the true-class logits makes gradient
signal of LNTD to the true-class as 0. The detailed algorithm is provided in Algorithm 1.

Algorithm 1 Federated Not-True Distillation (FedNTD)

Input: total rounds T , local epochs E, dataset D, sampled clients sets Kptq Ă K in round t, learning
rate γ

Initialize wp0q for global server weight
for each communication round t “ 1, ¨ ¨ ¨ , T do

Server samples clients Kptq and broadcasts w̃ptq Ð wptq

for each client k P Kptq in parallel do
for Local Steps e “ 1 ¨ ¨ ¨E do

for Batches j “ 1 ¨ ¨ ¨B do
w̃

ptq

k Ð w̃
ptq

k ´ γ∇wLp w̃
ptq

k ; rDk
sj q Using [Equation 10]

end for
end for

end for
Upload w̃t

k to server
Server Aggregation :wpt`1q

Ð 1

|Kptq|

ř

kPKptq w̃
ptq

k

end for
Server output : wT

We now explain how learning to minimize LNTD preserves global knowledge on out-local distribution
p̃pDq. Suppose there are N number of data points in the local dataset D. The accumulated Kullback-
Leibler divergence loss LKL between ql,iτ , the probability vector for the data xi, and its reference qg,iτ
to be matched for is:

LKL “ ´
1

N

N
ÿ

i“1

C
ÿ

c“1

qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

. (12)

By splitting the summands for the true and not-true classes, the term becomes:

Ltrue
KL “ ´

1

N

N
ÿ

i“1

qg,iτ pyiq log

«

ql,iτ pyiq

qg,iτ pyiq

ff

, Lnot-true
KL “ ´

1

N

N
ÿ

i“1

C
ÿ

c1‰yi

qg,iτ pc1
q log

«

ql,iτ pc1
q

qg,iτ pc1q

ff

. (13)

Proposition 2. Consider the in-local distribution ppDq “ rp1 . . . pCs such that pc “
|Sc|

N and its
out-local distribution p̃pDq “ rp̃1, . . . p̃Cs, where Sc is the set of indices satisfying yi “ c. Then the
Ltrue

KL and Lnot-true
KL each are equivalent to the weighted sum on ppDq and p̃pDq as

Ltrue
KL “

C
ÿ

c“1

pc EiPSc

»

–´qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

fi

fl

(14)

Lnot-true
KL

C ´ 1
“

C
ÿ

c“1

p̃c EiRSc

»

–´qg,iτ pcq log

«

ql,iτ pcq

qg,iτ pcq

ff

fi

fl

With a minor amount of calculation from Equation 13, we derive the above proposition. The derivation
is provided in Appendix Q. The proposition suggests that matching the true-class and the not-true
class logits collapses to the loss on the in-local distribution ppDq and the out-local distribution p̃pDq.

In the loss function of our FedNTD (Equation 10), we attain the new knowledge on the in-local
distribution by following the true-class signals from the labeled data in local datasets using the LCE.
In the meanwhile, we preserve the previous knowledge on the out-local distribution by following
the global model’s perspective, corresponding to the not-true class signals, using the LNTD. Here,
the hyperparameter β controls the trade-off between learning on the new knowledge and preserving
previous knowledge. This resembles to the stability-plasticity dilemma [39] in continual learning,
where the learning methods must balance retaining knowledge from previous tasks while learning
new knowledge for the current task [35].
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Table 1: Accuracy@1 (%) on MNIST [11], CIFAR-10 [25], CIFAR-100 [25], and CINIC-10 [10].
The values in the parenthesis are forgetting measure F . The arrow (Ó, Ò) shows the comparison to the
FedAvg. The standard deviation of each experiment is provided in Appendix F.

NIID Partition Strategy : Sharding

Method MNIST CIFAR-10 CIFAR-100 CINIC-10
s “ 2 s “ 3 s “ 5 s “ 10

FedAvg [37] 78.63p0.20q 40.14p0.59q 51.10p0.46q 57.17p0.37q 64.91p0.26q 25.57p0.49q 39.64p0.59q

FedCurv [43] 78.56p0.21q Ó 44.52p0.53q Ò 49.00p0.47q Ó 54.61p0.39q Ó 62.19p0.27q Ó 22.89p0.49q Ó 40.45p0.57q Ò

FedProx [30] 78.26p0.21q Ó 41.48p0.57q Ò 51.65p0.45q Ò 56.88p0.37q Ó 64.65p0.25q Ó 25.10p0.49q Ó 41.47p0.57q Ò

FedNova [47] 77.04p0.21q Ó 42.62p0.56q Ò 52.03p0.44q Ò 62.14p0.30q Ò 66.97p0.20q Ò 26.96p0.41q Ò 42.55p0.56q Ò

SCAFFOLD [20] 81.05p0.17q Ò 44.60p0.53q Ò 54.26p0.39q Ò 65.74p0.23q Ò 68.97p0.16q Ò 30.82p0.36q Ò 42.66p0.54q Ò

MOON [28] 76.56p0.23q Ó 38.51p0.60q Ó 50.47p0.47q Ó 56.69p0.39q Ó 65.30p0.25q Ò 25.29p0.48q Ó 37.07p0.62q Ó

FedNTD (Ours) 84.44p0.13q Ò 52.61p0.43q Ò 58.18p0.34q Ò 64.93p0.23q Ò 68.56p0.15q Ò 31.69p0.32q Ò 48.07p0.48q Ò

NIID Partition Strategy : LDA

Method MNIST CIFAR-10 CIFAR-100 CINIC-10
α “ 0.05 α “ 0.1 α “ 0.3 α “ 0.5

FedAvg [37] 79.73p0.19q 28.24p0.71q 46.49p0.51q 57.24p0.36q 62.53p0.28q 30.69p0.32q 38.14p0.60q

FedCurv [43] 78.72p0.20q Ó 33.64p0.66q Ò 44.26p0.53q Ó 54.93p0.38q Ó 59.37p0.30q Ó 29.16p0.32q Ó 36.69p0.61q Ó

FedProx [30] 79.25p0.19q Ó 37.19p0.62q Ò 47.65p0.49q Ò 57.35p0.35q Ò 62.39p0.27q Ó 30.60p0.32q Ó 39.47p0.58q Ò

FedNova [47] 60.37p0.38q Ó 10.00 (Failed) Ó 28.06p0.71q Ó 57.44p0.35q Ò 64.65p0.23q Ò 32.15p0.28 Ò 30.44p0.68q Ó

SCAFFOLD [20] 71.57p0.26q Ó 10.00 (Failed) Ó 23.12p0.74q Ó 62.01p0.29q Ò 66.16p0.19q Ò 33.68p0.25q Ò 28.78p0.69q Ó

MOON [28] 78.95p0.20q Ó 28.35p0.71q Ò 44.77p0.53q Ó 58.38p0.35q Ò 63.10p0.27q Ò 30.64p0.32q Ó 37.92p0.61q Ó

FedNTD (Ours) 81.34p0.17q Ò 40.17p0.58q Ò 54.42p0.42q Ò 62.42p0.29q Ò 66.12p0.19q Ò 32.37p0.26q Ò 46.24p0.50q Ò

4 Experiment

4.1 Experimental Setup
We test our algorithm on MNIST [11], CIFAR-10 [25], CIFAR-100 [25], and CINIC-10 [10]. We
distribute the data to 100 clients and randomly sample clients with a ratio of 0.1. For CINIC-10, we
use 200 clients, with a sampling ratio of 0.05. We use a momentum SGD with an initial learning rate
of 0.1, and the momentum is set as 0.9. The learning rate is decayed with a factor of 0.99 at each
round, and a weight decay of 1e-5 is applied. We adopt two different NIID partition strategies:

• (i) Sharding [37]: sort the data by label and divide the data into same-sized shards, and
control the heterogeneity by s, the number of shards per user. In this strategy only considers
the statistical heterogeneity as the dataset size is identical for each client. We set s as MNIST
(s “ 2), CIFAR-10 (s P t2, 3, 5, 10u), CIFAR-100 (s “ 10), and CINIC-10 (s “ 2).

• (ii) Latent Dirichlet Allocation (LDA) [34, 46]: assigns partition of class c by sampling
pc « Dirpαq. In this strategy, both the distribution and dataset size are different for each
client. We set α as MNIST (α “ 0.1), CIFAR-10 (α P t0.05, 0.1, 0.3, 0.5u), CIFAR-100
(α “ 0.1), and CINIC-10 (α “ 0.1)

More details on model, datasets, hyperparameters, and partition strategies are provided in Appendix B.

4.2 Performance on Data Heterogeneity
We compare our FedNTD with various existing works, with results shown in Table 1. As reported in
[27], even the state-of-the-art methods perform well only in specific setups, and their performance
often deteriorates below FedAvg. However, our FedNTD consistently outperforms the baselines on
all setups, achieving state-of-the-art results in most cases.

For each experiment in Table 1, we also report the forgetting F in the parenthesis along with the
accuracy. Note that the smaller F value indicates the global model less forgets the previous knowledge.
We find that the performance in federated learning is closely related to forgetting, improving as the
forgetting reduces. We believe that the gain from the prior works is actually from the forgetting
prevention in their own ways.
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We emphasize that the prior works to learn from heterogeneous locals often require statefulness (i.e.,
clients should be repeatedly sampled with identification) [28, 47], additional communication cost
[20], or auxiliary data [33]. However, our FedNTD neither compromise any potential privacy issue
nor requires additional communication burden. A brief comparison is provided in Appendix C.

We further conduct experiments on the effect of local epochs, client sampling ratio, and model
architecture is in Appendix G, the advantage of not-true distillation over knowledge distillation in
Appendix H, and the effect of hyperparameters of FedNTD in Appendix K. In the next section, we
analyze how the knowledge preservation of FedNTD benefits on the federated learning.

5 Knowledge preservation of FedNTD

Figure 6: Accuracy on CIFAR-10 (s=2) in Local Training.
The error bars stand for the standard deviation on clients.

In Figure 7, we present the test accuracy
on diverse heterogeneity levels. Although
both FedAvg and FedNTD show little
change in local accuracy on in-local dis-
tribution ppxq, FedNTD significantly im-
proves the local accuracy on out-local dis-
tribution p̃pxq, which implies it prevents
forgetting. Along with it, the test accuracy
of the global model also substantially im-
proves. These gaps are enlarged when the
number of local epochs increases, where
the local models much deviate from the
global model. The accuracy curves during
local training are in Figure 6. It shows
that fitting on the local distribution rapidly
leads to forgetting on out-local distribution, But FedNTD effectively relieves this tendency without
hurting the learning ability towards the in-local distribution.

Figure 7: Learning curves of FedAvg [37] (blue line) and our FedNTD (red line) on CIFAR-10 with
various heterogeneity setups for local epochs E P t1, 10u. (1st and 2nd row) : Local test accuracy on
in-local distribution ppxq and out-local distribution p̃pxq. (3rd row): Global server test accuracy.

Our interest is how the FedNTD’s knowledge preservation on out-local distribution benefits on the
federated learning, despite little change of its performance on in-local distribution. To figure it out,
we analyze the local models in FedNTD after local training, and suggest two main reasons:

• Weight Alignment: How much the semantics of each weight is preserved?
• Weight Divergence: How far the local weights drift from the global model?

5.1 Weight Alignment
In recent studies, it has been suggested that there is a mismatch of semantic information encoded
in the weight parameters across local models, even for the same coordinates (i.e., same position)
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[46, 53, 54]. As the current aggregation scheme averages weights of the identical coordinates,
matching the semantic alignment across local models plays an important role in global convergence.

To analyze the semantic alignment of each parameter, we identify the individual neuron’s class
preference by which class has the largest activation output on average. We then measure the alignment
for a layer between two different models as the proportion of neurons that the class preference is
matched for each other. The result is provided in Table 2.

While FedAvg and FedNTD show little difference in the IID case, FedNTD significantly enhances
the alignment in the NIID cases. The visualized results are in Appendix M, with more details on how
the alignment is measured. We further analyze the change of feature after local training using a unit
hypersphere in Appendix N and T-SNE in Appendix O.

Table 2: Alignment of last two fc-layers for Distributed Global (DG), 10 Locals (L), and Aggregated Global
(AG) models on CIFAR-10 datasets for IID and NIID (Sharding s “ 2, LDA α “ 0.05) at round 200.

Layer Alignment IID NIID (s “ 2) NIID (α “ 0.05)
FedAvg FedNTD FedAvg FedNTD FedAvg FedNTD

Linear_1
(dim: 512)

W
pt´1q

G vs. W ptq

L 0.679 0.668 0.635 0.703 0.597 0.756
W

pt´1q

G vs. W ptq

G 0.850 0.830 0.787 0.871 0.670 0.856
Linear_1

(dim: 128)
W

pt´1q

G vs. W ptq

L 0.771 0.765 0.488 0.552 0.512 0.730
W

pt´1q

G vs. W ptq

G 0.898 0.906 0.609 0.836 0.586 0.859

5.2 Weight Divergence
The knowledge preservation by FedNTD leads the global model to predict each class more evenly.
Here we describe how the global model with even prediction performance stabilizes the weight
divergence. Consider a model fitted on a specific original distribution, and now it is trained on a new
distribution. Then the weight distance between the original model and fitted model increases as the
distance between the original distribution and new distribution grows.

Figure 8: Distances for weights and distributions on CIFAR10 (s=2). (a), (b): The relationship between two
distances. The opacity is higher for later rounds. (c), (d): The measured distances for 200 rounds.

We argue that if the distance between the global model’s underlying distribution and local distributions
is small, the moved distance between the global model and local models also becomes close. If we
assume the local distributions are generated arbitrarily, the most robust choice for the global model’s
underlying distribution is a uniform distribution. We formally rephrase our argument as the follows:

Proposition 3. Let P : ∆C Ñ Rě0 be the probability measure for the client’s local distribution and
Π be the set of measure in the hypothesis. Assume that the class-wise loss Lcpwq “ Ex|y“crLpx;wqs

is λ-smooth and wc be a optimum of Lc. Then the loss L of the client with distribution p becomes:

Lpwq “
ÿ

c

pcLcpwq ď
ÿ

c

pcLcpwcq `
1

2
λ

ÿ

c

pc∥w ´ wc∥2 . (15)

Then for arbitrary P P Π, the uniform distribution attains the minimax value:

unif.dist P argmin
pP∆C

sup
PPΠ

Ep1„Pr∥wp1 ´ wp∥s , where wp “
ÿ

c

pcwc . (16)

The proof is provided in Appendix S. Although the global model’s underlying distribution is unknown,
the normalized class-wise accuracy vector is a handy approximation for it as: AG “ 1

A ¨ ra1, . . . aCs,
where A is the global model’s test accuracy and ac is its class-wise accuracy on the class c.
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The results in Figure 8 empirically validate our argument. There is a strong correlation between
weight divergence }w ´ wk} (for global model w and client k’s local model wk) and distribution
distance }AG ´ pk} (for client k’s distribution pk). By providing a better starting point for local
training, FedNTD effectively stabilizes the weight divergence.

6 Related Work
Federated Learning (FL) is proposed to update a global model while the local data is kept in
clients’ devices [23, 24]. The standard algorithm is FedAvg [37], which aggregates trained local
models by averaging their parameters. Although its effectiveness has been largely discussed in i.i.d.
settings [44, 48], many algorithms obtain the sub-optimal when the distributed data is heterogeneous
[31, 56]. Until recently, a wide range of variants of FedAvg has been proposed to overcome such
a problem. One line of work focuses on local-side modification by regularizing the deviation of
local models from the global model [1, 20, 30, 47]. Another is the server-side modification, which
improves the efficacy of aggregation of local models in the server [9, 33, 46, 55]. Our work aims to
preserve global knowledge during local training, which belongs to the local-side approach.

Forgetting View in FL A pioneer work that considers forgetting in FL is FedCurv [43]. It regards
each local client as a task, and [43] regulates the change of local parameters to prevent accuracy
drop on all other clients. However, it needs to compute and communicate parameter-wise importance
across clients, which severely burdens the learning process. On the other hand, we focus on the
class-wise forgetting and suggest that not-true logits from local data contain enough knowledge to
prevent it. A concurrent work of our study is [49], which also reports the forgetting issue in local
clients by empirically showing the increasing loss of previously learned data after the local training.
To prevent forgetting, [49] exploits generated pseudo data. Instead, we focus on the class-wise
forgetting and suggest that not-true logits from local data contain enough knowledge to prevent it.
The continual learning literature is further discussed in Appendix D.

Knowledge Distillation (KD) in FL In FL, a typical approach is using KD to make the global
model learn from the ensemble of local models [9, 26, 33, 57]. By leveraging the unlabeled auxiliary
data, KD effectively tackles the local drifts by enriching the aggregation. However, such carefully
engineered proxy data and may not always be available [30, 55, 58]. Although more recent works
generate pseudo-data to extract knowledge by data-free KD [55, 58], they require additional heavy
computation, and the quality of samples is sensitive to the many hyperparameters involved in the
process. On the other hand, as a simple variant of KD, our proposed method surprisingly performs
well on heterogeneity scenarios without any additional resource requirements.

7 Conclusion
This study begins from an analogy to continual learning and suggests that forgetting could be a
major concern in federated learning. Our observations show that the knowledge outside of local
distribution is prone to be forgotten in local training and is closely related to the unstable global
convergence. To overcome this issue, we propose a simple yet effective algorithm, FedNTD, which
conducts local-side distillation only for the not-true classes to prevent forgetting. FedNTD does not
have any additional requirements, unlike previous approaches. We analyze the effect of FedNTD
from various perspectives and demonstrate its benefits in federated learning.

Broader Impact We believe that Federated Learning is an important learning paradigm that enables
privacy-preserving ML. Our work suggests the forgetting issue and introduces the methods to relive
it without compromising data privacy. The insight behind this work may inspire new researches.
However, the proposed method maintains the knowledge outside of local distribution in the global
model. This implies that if the global model is biased, the trained local model is more prone to have a
similar tendency. This should be considered for ML participators.

Acknowledgments
This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by Korea government (MSIT) [No. 2021-0-00907, Development
of Adaptive and Lightweight Edge-Collaborative Analysis Technology for Enabling Proactively
Immediate Response and Rapid Learning, 90%] and [No. 2019-0-00075, Artificial Intelligence
Graduate School Program (KAIST), 10%].

10



References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N What-

mough, and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv
preprint arXiv:2111.04263, 2021.

[2] Mohammed Aledhari, Rehma Razzak, Reza M Parizi, and Fahad Saeed. Federated learning: A
survey on enabling technologies, protocols, and applications. IEEE Access, 8:140699–140725,
2020.

[3] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 139–154, 2018.

[4] Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio P Calmon, and Taesup Moon. Cpr:
Classifier-projection regularization for continual learning. arXiv preprint arXiv:2006.07326,
2020.

[5] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 532–547, 2018.

[6] Arslan Chaudhry, Albert Gordo, Puneet Kumar Dokania, Philip Torr, and David Lopez-Paz. Us-
ing hindsight to anchor past knowledge in continual learning. arXiv preprint arXiv:2002.08165,
2(7), 2020.

[7] Arslan Chaudhry, Naeemullah Khan, Puneet K Dokania, and Philip HS Torr. Continual learning
in low-rank orthogonal subspaces. arXiv preprint arXiv:2010.11635, 2020.

[8] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[9] Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to
federated learning. arXiv preprint arXiv:2009.01974, 2020.

[10] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not
imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

[11] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[12] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[13] Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. arXiv preprint arXiv:2203.11473, 2022.

[14] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning. In International Conference on Artificial Intelligence and Statistics, pages
3762–3773. PMLR, 2020.

[15] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

[16] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml: A research library and
benchmark for federated machine learning. arXiv preprint arXiv:2007.13518, 2020.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[18] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[19] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[20] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

11



[21] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on
identical and heterogeneous data. In International Conference on Artificial Intelligence and
Statistics, pages 4519–4529. PMLR, 2020.

[22] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.
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