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Abstract

Large Language Models (LLMs) have emerged as
powerful tools in mathematical theorem proving,
particularly when utilizing formal languages such
as LEAN. A prevalent proof method involves the
LLM prover iteratively constructing the proof tac-
tic by tactic, typically following a best-first search
scheme. However, this method often ignores the
critical preference information inside the exist-
ing tactic trajectories, hindering the search for
deeper proofs. We propose an intuitive yet ef-
fective method, which utilizes a critic model to
capture the preference information and to guide
the search of the prover model at runtime. Given
the prover-critic framework, a large-scale expert
iteration with more than 20,000 CPU days is then
applied to further fine-tune the prover and the
critic. The trained InternLM?2.5-StepProver critic
significantly boosts the performance of the prover
model (59.4% — 65.9%). We also analyze the
impact of the critic on various aspects of the theo-
rem proving process during expert iteration, pro-
viding insights into its effectiveness. The models
and the discovered proofs will be open-sourced.

1. Introduction

Automated theorem proving has been a challenging topic in
artificial intelligence (Pfenning, 2004; Zheng et al., 2021;
Wau et al., 2022; Polu et al., 2022) which requires complex
reasoning and a deep understanding of mathematics. Al-
phaProof' has demonstrated remarkable progress by achiev-
ing silver-medal performance on International Mathemati-
cal Olympiad problems using the LEAN 4 proof assistant,
particularly excelling in number theory and algebra. The
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training regime of AlphaProof, based on the AlphaZero
methodology (Silver et al., 2017), encompasses 100 million
formal mathematics problems—a scale that significantly
surpasses previous efforts (Polu et al., 2022; Lample et al.,
2022; Xin et al., 2024a;b).

Existing open-source methods typically train a language
model on tuples of (proof state, next tactic), followed by
best-first tree search to find proofs (Polu & Sutskever, 2020;
Polu et al., 2022; Lample et al., 2022; Yang et al., 2024; Lin
et al., 2024; Wu et al., 2024). The term “best-first” refers to
relying on internal indicators from the prover model (e.g.,
the log-probability scores of generated tactics) to guide
the search. An observation is that such indicators become
unreliable when searching for deeper proofs, leading to per-
formance degradation. Experimental results from previous
studies (Wu et al., 2024) have shown that even when the
prover model is trained on extensive formal language cor-
pora, the ability to discover deeper proofs remains difficult
to acquire. For example, although Intern. M2-StepProver
achieves 48.8% on miniF2F-test, the longest proof it discov-
ers contains only 8 tactics—a stark contrast to typical tree
searches that require 100 to 1000 steps.

Inspired by recent advances in informal mathematical rea-
soning (Lightman et al., 2023; Xu et al., 2024), our key
insight is that the tree structure constructed during the
search process is naturally suited for process supervision.
The search trajectories inherently provide the data needed
to train the supervision model—which we term the critic
model. Therefore, a prover-critic framework is built in
which the critic model estimates the value” of each state
and decides which states to explore further.

Building on this framework, our work then leverages the
Lean-workbook (Ying et al., 2024a), the largest open-source
problem collection available, to conduct systematic expert
iteration and analyze proving strategies at scale. We ini-
tiate InternLM?2.5-StepProver-critic by collecting roughly
8000 preference pairs from the search trajectories when
InternLM2-StepProver is evaluated on its training sets. We
then perform expert iteration on Lean-workbook. Our ex-
tensive experimentation, consuming over 20,000 CPU days,
yielded several key contributions to the challenge of auto-
mated theorem proving:
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* We present a novel approach that significantly enhances
theorem proving capabilities by utilizing a separate
critic model to guide the search for deeper proofs. Ex-
periments demonstrate that the critic model boosts the
performance of the prover model from 59.4% to 65.6%
on miniF2F (when used without the vanilla best-first
search method) or to 65.9% when combined with it.

* We provide an example of massive expert iteration,
demonstrating the effectiveness of expert iteration on
synthetic datasets. The enlarged Lean-workbook solu-
tion set will be open-sourced.

* We identify a log-linear relationship between the num-
ber of proved problems and both proof length and com-
putational resources, providing valuable insights for
resource allocation in future work.

2. Methods

We introduce critic-guided search, a novel framework that
enhances automated theorem proving by incorporating criti-
cal evaluation mechanisms into the proof search process, to
address key limitations of existing best-first search methods
through structured critique generation and expert iteration
(Anthony et al., 2017; Polu et al., 2022). The methodology
consists of two main components: First, we present a critic-
guided search algorithm and compare it with traditional
best-first search approaches (§2.1). Second, we describe our
expert iteration framework that iteratively refines the proof
search strategy through bootstrapping processes.

2.1. Search Methods

Best-First Search. The most widely adopted approach
for evaluating the theorem proving capabilities of language
models M involves employing best-first search algorithms,
as demonstrated in GPT-f (Polu & Sutskever, 2020; Azer-
bayev et al., 2023b). This method maintains a collection of
all unexpanded states s;. At each iteration, the algorithm
selects the optimal state s; for expansion and employs the
language model to generate S candidate tactics ¢; ;...s for
the current state s;. For each valid tactic ¢; ;, a new state is
derived by executing tactic Z; ; on state s;.

J»

Following established conventions (Polu & Sutskever, 2020;
Yang et al., 2024), the state with the highest negative log-
probability is considered optimal. Specifically, we select
the state s* that satisfies:

i1
P arg max ZO —log p(t;ls;)
]:

where S represents the set of all unexpanded states,

(so,to),- -+, (si—1,ti—1) denotes the proof trajectory lead-
ing to state s;, and log p(t;|s;) represents the average log
probability of each generated token conditioned on the state.
The algorithm expands up to [V states, achieving success-
ful proof search upon reaching any proof state with no re-
maining goals. Multiple search attempts (K times) can be
performed to calculate a pass rate pass@QK . However, anal-
ysis of the search trajectories of our models indicates that
the best-first search method exhibits poor performance (as
shown in Fig. 5). Thus, we hypothesize that average log
probabilities may not serve as an effective metric to guide
the heuristic search process.

Critic-Guided Search Recent literature (Lin et al., 2024)
indicates that best-first search (BFS) methods may be sub-
optimal for formal proving. A primary advantage of tree
search strategies, when compared to whole-proof genera-
tion, is their capacity to leverage critical information from
intermediate prover states. However, best-first search algo-
rithms, as they only look at the average log probability of
tactics, often fail to fully capitalize on this advantage, as
shown in Fig 1. Therefore, using best-first-search with log-
probability scores seldom leads to deep proofs and limits
the proving ability of our model, which is consistent with
our experiments (shown in Fig 3). Therefore, we choose to
train a critic model (Lample et al., 2022; Polu et al., 2022)
to better guide our prover model for proof generation.

The critic model (V') uses the proof state (s) as the input and
outputs a scalar (V' (s) € R). Ateach iteration, the algorithm
selects the optimal state s; for expansion by querying the
critic model. Then it employs the prover model to generate
candidate tactics. We train our critic model in a preference
style which is similar to reward model training in RLHF
(Ouyang et al., 2022) instead of binary targets (the state can
be proved or not). Two types of preference pairs are created
in the training process:

 Path Pairs: For a successful proof path from the root
(initial proof state) to no_goals, we hypothesize that
a state close to the target is always better. Thus we
create preference pairs where the positive example
is a child state closer to no_goals and the negative
example is the parent state closer to the initial root state
(i.e. V(st) < V(st4+a)), which implicitly assumes that
any legal tactic on a successful path toward no_goals
yields a positive reward 7. For a path of length n, this
methodology allows us to generate at most (Z) pairs
of positive and negative examples.

e Sibling Pairs: We construct preference pairs con-
sisting of a state on the successful path (positive ex-
ample) and its sibling state (negative example) (i.e.
V (Ssivling) < V(s¢)). Sibling states are defined as
child nodes of the same parent that did not lead to
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Figure 1: Comparison of Best-first Search and Critic-Guided Search methods. Left: Best-first search relies solely on log
probability scores from tactic logits, under-utilizing intermediate state information. Right: Critic-Guided search employs a
critic model to re-rank states, enabling more informed state expansion decisions. Note that a lower log probability score
indicates a higher priority, whereas a higher critique score also signifies increased priority.

no_goals. This design is based on the principle that
the state on the successful path (s;) is preferable to its
sibling state (ssip1ing), Which did not lead to a proof.

2.2. Expert Iteration

Bootstrapping The proposed approach utilizes the
InternLM?2-StepProver(Wu et al., 2024), our latest model
for formal reasoning, as the foundational prover model,
along with an initial dataset. This dataset is aggregated from
four distinct sources: the miniF2F-train split, the mathlib
dataset, the Lean-Workbook, and the Lean-Github dataset.
Collectively, these sources furnish the initial states s, each
representing a theorem to be proven. For the initialization
of the critic model, the prover model is initially tasked with
generating K solution samples (trajectories) per theorem.
Following this, a preference dataset is curated by sampling
preference pairs from successful search trajectories; this
dataset is then used for training the prover model. The
overall iterative procedure is executed multiple times. The
process terminates when the critic-guided search method
achieves performance superior to that of standard (vanilla)
methods on the miniF2F-train benchmark, which serves as
an indicator that the critic model is stabilized.

Expert Iteration on Lean-Workbook With our initial-
ized prover and critic models, we perform expert itera-
tion on the Lean-Workbook dataset. Due to limitations
in auto-formalization accuracy, it is recognized that some
formalized propositions might be incorrect. Therefore, ev-
ery formalized proposition includes its negated version in
the dataset, following the paradigm outlined in (Xin et al.,
2024a). Proofs are searched using best-first and critic-
guided algorithms by generating a tactic as an action (Polu

et al., 2022; Azerbayev et al., 2023b; Wu et al., 2024).

Initially, we conduct a rapid scan of the entire Lean-
workbook-plus dataset using a relatively small search budget
(i.e., a maximum of 10 iterations per problem and a time
limit of 50 seconds). The discovered proofs are added to
the training set, and the solved problems, along with their
negated statements, are removed from the dataset. This
process helps us identify statements that are inherently un-
provable, thereby enhancing the efficiency of the iteration.

This process is then repeated over multiple rounds, gradually
increasing the search budget for subsequent evaluations until
a predefined upper bound (at most 2000 iterations and 3600
seconds per problem) is reached. After each round, we
retrain our prover and critic models using an expanded set
of successful proof trajectories. Since some found proofs
are ill-formed and contain many irrelevant proof steps with
higher CPU consumption, we continue to search for proofs
for these problems, aiming to use shorter and more direct
proofs to improve our models.

After model iterations, we use the critic model to re-estimate
all unproven statements. Next iteration will then focus on
the top 50% of problems that the critic model indicates are
most likely to be solvable.

Prover Model Objective The traditional proofstep ob-
jective, used by GPT-f (Polu & Sutskever, 2020), gener-
ates a PROOFSTEP (a Lean tactic) given a GOAL (cur-
rent Lean tactic state) and the current DECLARATION
(the Lean theorem name to be proved). The ac-
tual prompt used by GPT-f includes an additional dec-
laration field, i.e., DECL <DECLARATION> \nGOAL
<GOAL> \nPROOFSTEP <PROOFSTEP>. However,



InternLM2.5-StepProver: Advancing Automated Theorem Proving via Critic-Guided Search

NAME :

PROOF_BEFORE:

STATE_BEFORE:

square_sub_one_divisible_eight
rw [h, pow_two]

mn : N

h:n=2xm+ 1
F8 | (2 +m+ 1) % (2 m+ 1) -1
TACTIC:

rw [ Nat.mod_add div (2 = m + 1) 8]

Figure 2: An example of the prompt used by the prover
model.

such prompts, though easy to integrate with existing de-
ployment frameworks, lack information regarding the pre-
vious proof contents. Hoping to improve the reasoning
performance in deep search trees, we augment our prompt
template with ongoing proof context. The format of the
prompt is modified to include the previous tactics leading to
the state in a field called PROOF_BEFORE. An example of
the prompt template is shown in Fig.2.

3. Experiments and Results

We evaluate our approach on Lean-workbook-plus (Ying
et al., 2024a), one of the largest auto-formalized prob-
lem sets in Lean 4, which provides comprehensive cov-
erage of diverse mathematical reasoning tasks. The
integration of critic mechanisms enables our system
to discover deeper proofs while maintaining computa-
tional efficiency. We trained InternLM?2.5-StepProver and
InternLM?2.5-StepProver-critic on Lean-Workbook with
more than 20000 CPU hours of expert iteration. The mod-
els are then evaluated on miniF2F(Zheng et al., 2021) and
ProofNet(Azerbayev et al., 2023a).

Experimental results show that both critic-guided search
and expert iteration boost the theorem proving capabilities
of the prover model. The critic-guided search techniques
significantly enhance the prover model in its ability to find
deeper proofs. We describe our experiments and findings in
detail below.

3.1. Benchmark Performance of
InternLLM2.5-StepProver

A comprehensive analysis of InternLM?2.5-StepProver is
conducted on several standard formal benchmarks, in com-
parison with our previous model InternLM?2-StepProver,
as well as a number of other frontier language models, to
exhibit the strength of our approach.

The Distribution of Proof Lengths on ProofNet
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Figure 3: Critic-guided search finds more deep proofs com-
pared to best-first-search in ProofNet and miniF2F-test. We
calculate the proof length based on the number of tactics.
Only the shortest 5 proofs are considered for each solved
problem.

miniF2F  We first analyze the performance on the miniF2F
benchmark (Zheng et al., 2021). The original benchmark
was released in Lean 3 and was later ported to an earlier
version of Lean 4. We use the Lean 4 version of miniF2F,
as released by the LeanDojo project (Yang et al., 2024),
with our adaptations to Lean 4.7.0 and corrections of several
formalization mistakes.

The best-first-search approach employs an evaluation set-
ting similar to that of InternLM2-StepProver, where the
model selects states to expand based on the average log-
likelihood of the tactics leading to those states. In contrast,
the critic-guided (CG) search method involves the prover
model selecting states to expand based on InternL.M?2.5-
StepProver-critic that grades each state. The search budget
for both methods can be universally described as P x .S x K,
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Table 1: Compared with other baselines on the miniF2F (Zheng et al., 2021) dataset. BF represents best-first-search and CG

represents critic-guided search.

Method Model size Pass miniF2F-valid ~ miniF2F-test
Whole-Proof Generation Methods
TheoremLlama (Wang et al., 2024b) - cumulative 36.5% 33.6%
DeepSeek-Prover (Xin et al., 2024a) 7B 128 - 46.1%
16 x 4096 - 50.0%
DeepSeek-Prover-V1.5-RL 7B 32 - 50.0%
64 - 50.7%
128 - 51.6%
3200 - 54.9%
4 x 6400 - 58.4%
16 x 6400 - 60.2%
Tree Search Methods
PACT (Han et al., 2021) 837TM 1x 16 x 512 23.9% 24.6%
8 X 16 x 512 29.3% 29.2%
ReProver (Yang et al., 2024) 229M - - 26.5%
Llemma (Azerbayeyv et al., 2023b) 7B 1 x 32 x 100 26.2% 26.2%
Llemma (Azerbayeyv et al., 2023b) 34B 1 x 32 x 100 27.9% 25.8%
Curriculum Learning (Polu et al., 2022) 837 1 x 8 x 512 33.6% 29.6%
8 X 8 x 512 41.2% 34.5%
64 x 8 x 512 47.3% 36.6%
HTPS (Lample et al., 2022) 600M cumulative 58.6% -
64 x 5000 - 41.0%
Lean-STaR (Lin et al., 2024) 7B 64 x 1 x 50 - 46.3%
InternLM2-Math (Ying et al., 2024b) 7B 1 x 32 x 100 29.9% 30.3%
InternL.M2-Math-Plus 7B 1 x 32 x 100 - 43.4%
DeepSeek-Prover-V1.5-RL 7B 1 x 3200 - 55.0%
4 x 6400 - 59.6%
16 x 6400 - 62.7%
32 x 6400 - 63.5%
InternLM2-StepProver (Wu et al., 2024) 7B 1 x 32 x 100 (beam) 59.8% 48.8%
64 x 32 x 100 63.9% 54.5%
InternLM2.5-StepProver-BF 7B 1 x 32 x 600 55.4% 47.3%
4 x 32 x 600 61.3% 52.6%
16 x 32 x 600 63.7% 57.3%
64 x 32 x 600 64.6% 59.2%
256 x 32 x 600 65.1% 59.4%
Internl. M2.5-StepProver-CG 7B 1 x 32 x 600 49.4% 43.0%
4 x 32 x 600 55.9% 56.1%
16 x 32 x 600 64.5% 61.7%
64 x 32 x 600 67.7% 64.3%
256 x 32 x 600 68.4% 65.6%
InternLM2.5-StepProver-BF+CG 7B 2 x 32 x 600 56.0% 50.7%
4 x 32 x 600 61.4% 58.5%
16 x 32 x 600 65.8% 62.5%
64 x 32 x 600 68.0% 63.8%
256 x 32 x 600 69.6 % 65.9%

where P represents the number of passes, S the number of
states, and K the maximum number of state expansions,
or search iterations. In our context, we set S = 32 and
K = 600, with the temperature fixed at 7' = 0.7. In a
BF+CG scenario, the computation budgets are equally dis-
tributed. The test results are presented in Tab. 1.

ProofNet The evaluation setting is mainly the same as
miniF2F. Tab. 2 presents the performance of various models
on the ProofNet dataset. The BF+CG strategy equally dis-
tributes search budgets on two methods. As we are not tak-
ing the validation set of ProofNet for expert iteration, only
the pass rate on the whole dataset is reported. InternLM2.5-
StepProver achieved a pass @256 of 27.0% overall.
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Critic-Guided Search Improves Theorem Proving.
From Tab. 1, it is observed that critic-guided search per-
forms significantly better than the best-first method using
the same prover model. The critic-guided method achieves
an accuracy rate of 68.4% on miniF2F-Valid and 65.6% on
miniF2F-Test, which is only slightly lower than the com-
bined methods and substantially higher than the BF method.
These experimental results indicate that the critic model
enhances the inherent proving ability of the prover model,
enabling it to discover deeper proofs. Analysis of the length
distribution of the searched solutions (shown in Fig. 3) fur-
ther validates this observation, as CG methods consistently
discover deeper proofs than BF methods, successfully con-
structing proofs with more than 9 tactics.

Critic-Guided Search Explores a Distinct Proof Space.
Another observation is that the proof distribution discov-
ered by critic-guided (CG) search differs significantly from
that of the best-first (BF) approach. The synergistic ef-
fect of combining the two methods highlights this distinc-
tion. For instance, a hybrid model achieves 69.6% accu-
racy on miniF2F-Valid and 65.9% on miniF2F-Test. On
the ProofNet benchmark, this synergy is even more pro-
nounced: while BF and CG individually solve 22.3% and
23.9% of problems, their combination solves 27.0%. These
results strongly indicate that critic-guided search navigates
the proof space differently, identifying novel solutions that
a scaled-up BF search alone would not discover. How-
ever, with low sampling budgets, CG may overlook simpler
proofs that are trivial for BF. Therefore, a hybrid search was
adopted to leverage the strengths of both methods in our
experiment.

3.2. Results of Expert Iteration

As Tab. 3 shows, a total of 17.0% of the Lean-workbook-
plus problems are proved or disproved, making a noticeable
improvement since the release of Lean-Workbook. These
proved and disproved statements and their corresponding
tactics and states have been released. We also revealed
more facts about the expert iteration process, especially the
efficacy of our CG method.

Scaling CPU/GPU Computation in Expert Iteration.
The search process involves a collaboration of CPU and
GPU resources. Given the fixed amount of active GPUs and
CPUgs, the GPU time consumed is proportional to the total
CPU time (in our case, approximately 1:11). In summary,
approximately 21,364 CPU days are consumed throughout
the entire expert iteration process. However, these search
budgets are not uniformly distributed across all formalized
problems. Easier problems are more likely to be solved in
the early rounds of iteration, thereby ceasing to consume
search resources in later rounds. The search consumption of

each problem is a key indicator of the distribution of prob-
lem difficulty and can provide valuable insights for further
scaling. In our case, we selected the CPU time consumed
per successful proof as an estimate of resource consumption
expectations. Consider the set of problems S = {s;}. For
each problem s;, let P, denote the set of all attempts, and
T, ; represent the time spent on the j-th attempt of problem
s;. Define the indicator function valid(s;, 7), which equals
1 if the j-th attempt on problem s; results in a valid solution,
and 0 otherwise. The CPU time consumed per successful

proof, C,, is given by: C,, = %

Table 4 presents a detailed analysis of computational re-
source consumption. A key observation is that the majority
of CPU resources are expended on problems that are chal-
lenging to prove or disprove. Notably, only about 1.5% of
CPU resources are used to solve 17.0% of the problems,
while the remaining 98.5% of resources yield no successful
outcomes.

Fig 4 provides a more granular analysis of the distribution
of CPU search time for each problem. A number of ob-
servations can be made from the graph. First, the graph
reveals a peak in the near-zero region, suggesting the pres-
ence of numerous trivial problems in the auto-formalized
dataset. Second, a log-linear trend is evident for problems
with CPU search times between approximately 0 and 10,000
seconds. Assuming an equal distribution of problem diffi-
culties, searching for longer proofs becomes exponentially
harder due to the search space explosion problem, which
explains the occurrence of this trend. Unfortunately, the
best-first approach is observed to degrade to a brute-force
approach—discovering fewer proofs with larger search bud-
gets (¢, 10,000 s)—while the critic-guided approach performs
better, discovering more solutions beyond the log-linear
trend.

Scaling Proof Lengths in Expert Iteration. As analyzed
in the previous section, best-first-search (BF) methods suffer
from an explosion of the search space, rendering it inferior
under large sampling budgets. In contrast, critic-guided
(CG) methods are capable of finding longer solutions. The
average length of solutions found by the BF method is
1.66, whereas the same indicator is 4.44 for the CG method,
demonstrating a significant improvement in deeper reason-
ing abilities. The distribution of proofs during our expert
iteration is shown in Fig. 5. To avoid the impact of redundan-
cies, only the shortest proof for each problem is considered
here. A nearly log-linear trend is observed in the distribution
of proof lengths found by best-first search method, while
the critic-guided proof method can find much longer proofs.
However, 83% of the problems in the Lean-workbook re-
main unproven, which can have longer proof lengths and
require much more time to find them based on this estima-
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Table 2: Pass rates on the ProofNet (Azerbayev et al., 2023a) dataset.

ProofNet

Method Pass valid test all
ReProver (Yang et al., 2024) - - - 13.8%
1 x 3200 22.0% 21.5% 21.8%
Deepseck-Prover-V1.5-RL 4% 6400  25.4% 25.3% 25.3%
InternLM2-StepProver 1 x 32 x 100 - - 18.1%
2 x 32 x 600 - - 18.8%
InternL.M2.5-StepProver-BF 32 x 32 x 600 - - 21.1%
128 x 32 x 600 - - 22.3%
2 x 32 x 600 - - 17.4%
InternLM2.5-StepProver-CG 32 x 32 x 600 - - 21.9%
128 x 32 x 600 - - 23.9%
4 x 32 x 600 - - 18.8%
InternLM2.5-StepProver-BF+CG 64 x 32 x 600 - - 23.6%
256 x 32 x 600 - - 27.0%

Table 3: Results on the Lean-workbook-plus (Ying et al., 2024a) dataset.

Lean-workbook-plus

Method Pass Proved Disproved Total
InternLM2-StepProver cumulative 7,909 (9.5%) - 7,909 (9.5%)
InternLM2.5-StepProver cumulative 10,880 (13.1%) 3,195 (3.9%) 14,075 (17.0%)

Table 4: CPU time spent on the Lean-workbook(Ying et al.,
2024a) dataset.

Problem State Number Total CPU days

14,075 (17.0%) 331 (1.5%)
68,200 (83.0%) 21,033 (98.5%)

Proved/Disproved
Remain unproven

tion. We hope that our proposed method can help facilitate
the scaling of formal proof searching beyond the "log-linear’
boundaries.

bl

4. Related Work

Automatic Theorem Proving. Automated theorem prov-
ing does not have a unified approach. A mainstream
paradigm is training a language model on tuples of (proof
state, next tactic), followed by a tree search to find proofs
(Polu & Sutskever, 2020; Polu et al., 2022; Lample et al.,
2022; Yang et al., 2024; Lin et al., 2024; Wu et al., 2024).
Another line of work is training to auto-regressively gener-
ate a whole proof based on a theorem statement from the
model itself (Xin et al., 2024a;b) or translating from human
informal proofs (Jiang et al., 2022; Wu et al., 2022; Wang
et al., 2024b). Regardless of the learning paradigm used,
most methods rely on expert iteration (Anthony et al., 2017)
to improve the model and require the prover model itself
to determine the search direction. In this work, we train

CPU Seconds per Successful Proof

e
9

3 10000 20000 30000 40000

Figure 4: The distribution of CPU search time per successful
proof, which is defined as the total CPU resources spent on
searching the specific problem divided by the number of
independent successful search trials. Only problems solved
are represented in the figure. 83% of the Lean-workbook
problems that remain unproven are not depicted. BF and
CG are analyzed independently.

our prover model to search under the guidance of an exter-
nal critic model. The models are trained with a state-tactic
paradigm via expert iteration on a large-scale LEAN dataset.

Process-supervised Reasoning in Informal Mathematics.
Recently, numerous studies have shown that allowing an
external language model to evaluate the quality of reason-
ing steps can boost performance on tasks such as informal
math (Lightman et al., 2023; Zheng et al., 2025; Uesato
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Figure 5: The distribution of shortest proof length.

et al., 2022). Although this approach has proven effective,
it often requires a significant amount of human-annotated
data or extensive computation (Luo et al., 2024; Wang et al.,
2024a). Furthermore, such methods are restricted to infor-
mal language reasoning tasks. We propose a new scheme
for training a tactic-level critic model that leverages the
correctness signal from the formal system.

5. Conclusion

In this paper, we presented critic-guided search, a novel
approach that significantly enhances the theorem proving
capabilities of prover language models in formal mathemat-
ics by using an external critic model to rerank intermediate
Lean states. Our method begins with training initial critic
models from the trajectories of prior prover models to pre-
dict preference information between Lean states. We further
improved the prover and the critic in tandem using expert
iteration, fine-tuning the models on correct proof trajectories
that the prover model samples and verifies using the Lean
solver. Our contributions include the introduction of the the-
orem proving dataset Lean-Workbook-Plus, demonstrating
that critic-guided search can further improve search depth,
and achieving new results on the miniF2F-test benchmark,
increasing the pass rate from 54.5% to 65.9%.

These advancements not only improve the performance of
automated theorem proving, but also offer concrete guid-
ance for future developments in automated mathematical
reasoning.

Limitations

This work is mainly focused on contest-level math problems
and pays less attention to other automated theorem-proving
scenarios. Besides, we currently do not have a stable metric
to measure critic models, which makes iteration of critic
models difficult.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Training details

Prover Model Our prover model is built upon InternLM-math-plus-7B (Ying et al., 2024b). We used the same training
setting when we performed the expert iteration process: We used a global batch size of 512 and a learning rate of 2 x 1075,
We fine-tuned for 2 epochs to obtain the SFT model. For the learning rate, we used a warm-up in the first 3% steps, followed
by a cosine schedule decaying to zero. The entire expert iteration process generated 2.19 billion tokens of data, with the
final iteration taking approximately 14 hours on 32 A800 GPUs.

Critic Model We initialize the critic model from InternLM2-Chat-1_8b-sft?(Cai et al., 2024) and fine-tune it for one
epoch. We create preference pairs among miniF2F-valid (Zheng et al., 2021), Mathlib (mathlib Community, 2020), and
Lean-Workbook-Plus (Ying et al., 2024a) using best-first-search. The final-round data includes 454K pairs where we have
removed duplicate pairs and reduced the number of pairs containing no_goals to 10% of their original count. We train
critic models with 8 A800 GPUs. We evaluate our critic model using preference pairs generated on the miniF2F-test with
6510 pairs. We use the accuracy metric defined as the proportion of correctly predicted positive and negative pairs. The
model achieved an accuracy of 78.0%, demonstrating its preliminary ability to distinguish between positive and negative
pairs in the proof tree.

B. Case studies

Here we list interesting cases proved by InternLM2.5-StepProver from different datasets.

Case: Lean-workbook

Natural Language problem: For natural numbers m and n, if (mn +m +n) mod 6 = 4, then 12 | mn.

theorem lean_workbook_plus_74374 (mn : N) : (m * n +m+n) $6 =4 — 12 | m  n
1= by

simp [Nat.add_mod, Nat.mul_mod, Nat.mod_mod]

rw [ Nat.mod_add_div m 6, < Nat.mod_add_div n 6]

have hy : m % 6 < 6 := Nat.mod_1lt _ (by norm_num)

have hag : n % 6 < 6 := Nat.mod_1lt _ (by norm_num)

interval_cases m % 6 <;> interval_cases n % 6 <;> simp_all (config := {decide :=
true})

all_goals ring_nf; simp [Nat.dvd_iff mod_eqg_zero, Nat.mul_mod, Nat.add_mod,
Nat .mod_mod]

InternLM?2.5-StepProver successfully addresses the problem by imposing constraints on the range of variables and then
solving it directly using enumeration techniques. This example illustrates the distinction between formal and informal
reasoning styles.

https://huggingface.co/internlm/internlm2-chat-1_8b-sft
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Case: miniF2F: mathd_algebra_31

Natural Language problem: If \/x +1/ x4+ x++x+--- =9, find x. Show that it is 72.

theorem mathd_algebra_31 (x : NNReal) (u : N — NNReal) (ho : Vn, u (n + 1) =
NNReal.sgrt (x + u n))
(hy : Filter.Tendsto u Filter.atTop (A4 9)) : 9 = NNReal.sqrt (x + 9) := by
have ha := hi.const_add x
have hs : Filter.Tendsto (fun k => NNReal.sqrt (x + u k)) Filter.atTop (A4
(NNReal.sqgrt (x + 9))) :=
NNReal.continuous_sqgrt.continuousAt.tendsto.comp hs
have hg : (fun k : N => NNReal.sqgrt (x + u k)) = fun k : N =>u (k + 1) := by
ext k
rw [ho]
have hs : Filter.Tendsto (fun k : N => u (k + 1)) Filter.atTop (/4 (NNReal.sqrt
(x +9))) :=
hy > hs
have hg : Filter.Tendsto (fun k => u (k + 1)) Filter.atTop (A4 9) := h;.comp
(Filter.tendsto_add_atTop_nat 1)
exact tendsto_nhds_unique hg hs

This case demonstrates how InternLM?2.5-StepProver solves a problem whose formalized version is significantly harder
than the informal one. The informal solution of this problem is not rigorous, which jumps from the equation

\/ T+ xr+vVr+vVr+--- =9tovxr+9 =9, involving a substitution that is intuitive but risky. The formalized

version of this problem uses series and limitations to redefine the problem. This is a case where formal reasoning detaches
from informal reasoning. In such cases, it is hard to say that the involvement of informal CoT has any benefit to the
problem. InternLM?2.5-StepProver provides a solid proof of the problem without the augmentation of informal information,
successfully solving the problem.

Case: ProofNet: Munkers_31_2

Natural Language problem: Show that if X is normal, every pair of disjoint closed sets has neighborhoods whose
closures are disjoint.

theorem exercise_Munkers_31_2 {X : Typex}

[TopologicalSpace X] [NormalSpace X] {A B : Set X}

(hA : IsClosed A) (hB : IsClosed B) (hAB : Disjoint A B)

3 (UV : Set X), IsOpen U A IsOpen VA A C U A B C V A closure U N closure V = :=

by
obtain (Uo, Vo, hUo, hVo, hAp, hBp, hABo) := normal_separation hA hB hAB
obtain (U, hUi, hUz, hUs) := normal_exists_closure_subset hA hUp hAg
obtain (V, hVi, hVa, hVs) := normal_exists_closure_subset hB hVp hBg
refine (U, V, hUi, hVi, hUz, hvy,?_)

exact (hABg.mono hUsz hVs) .eqg_bot

InternL.M2.5-StepProver has an improved capability of solving undergraduate problems, even though it was not fine-tuned
on such data distributions. InternLM?2.5-StepProver utilizes premises from the Mathlib to construct valid closure subsets,
effectively demonstrating its mathematical reasoning ability.
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