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Abstract

Code Language Models are capable of gener-001
ating solutions that are fairly functionally cor-002
rect and efficient. However, previous work has003
focused on improving either functional correct-004
ness or efficiency, usually at the expense of005
the other. To this end, we introduce Code-006
Optimise, a lightweight optimisation for Code007
Language Models that incorporates learning008
signals for correctness (pass, fail) as well as009
code efficiency (fast, slow). During training,010
Code-Optimise dynamically selects solutions011
from our self-generated code preference data012
to reduce overfitting. Code-Optimise achieves013
significant improvements in pass@k while de-014
creasing average runtime by up to 6% for015
cheaper code execution. It also reduces the016
average length of generated solutions by up017
to 23% for HumanEval and up to 48% for018
MBPP for faster response / inference times019
while demonstrating the fastest overall (single)020
solutions (best@k). The data and code will be021
open-sourced at www.open-source.link022

1 Introduction023

Pretraining Code Language Models (CLMs) on024

large code repositories e.g. The Stack (Kocetkov025

et al., 2022; Lozhkov et al., 2024) gradually in-026

creases their understanding of code semantics. This027

enables CLMs to generate functionally correct and028

relatively efficient solutions to programming prob-029

lems (Austin et al., 2021; Chen et al., 2021), among030

many other code related skills (Li et al., 2023). Sub-031

sequent CLM optimisation efforts have focused032

either on advancing code correctness or code ef-033

ficiency, but not both. The most common way to034

improve functional correctness is distilled super-035

vised fine-tuning (Tunstall et al., 2023; Xu et al.,036

2023; Luo et al., 2023; Wei et al., 2023) using train-037

ing data generated by large models such as GPT-4038

(Achiam et al., 2023). However, we aim to avoid039
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Figure 1: Overview of Code-Optimise. (1) Diverse so-
lutions are sampled per problem. (2) A code interpreter
annotates the solutions by functional correctness and
runtime. (3) The CLM is optimised using SFT or DPO.

reliance on proprietary APIs to make our method- 040

ology as self-contained as possible. Additionally, 041

we seek to overcome the limitations of the stan- 042

dard supervised fine-tuning (SFT) loss, which only 043

optimises for ‘positive’ examples with no means 044

to reduce the likelihood of generating undesirable 045
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code (incorrect or slow solutions). This may be ad-046

dressed by Reinforcement Learning (RL) methods047

(Le et al., 2022; Wang et al., 2022; Gorinski et al.,048

2023), however, RL algorithms are often complex049

and unstable. Beyond code correctness, Shypula050

et al. (2023) have shown that CLMs can optimise051

slow-running code to achieve large efficiency gains,052

however, this comes at a huge cost to functional053

correctness (down by up to ∼30%). Therefore, to054

the best of our knowledge, our work is the first to055

show improvements in code correctness and effi-056

ciency. We propose Code-Optimise, a lightweight057

optimisation for CLMs that incorporates learning058

signals for correctness (pass, fail) and efficiency059

(fast, slow). Code-Optimise, shown in Figure 1, dy-060

namically selects solutions from our self-generated061

code preference data during training to reduce over-062

fitting. The methodology consists of three steps:063

1) Sampling; generate N solutions for each prob-064

lem description, 2) Annotation; automatically label065

each solution with correctness and runtime, 3) Op-066

timisation; train the CLM on the self-generated067

preference data using several lightweight configu-068

rations. The main benefits of Code-Optimise are:069

• Functional correctness of code is significantly070

improved, particularly for smaller CLMs and071

lower pass@k. This is further enhanced with072

our train-time dynamic solution selection.073

• Runtimes are reduced by up to 6% for MBPP074

to decrease costs of code execution. The aver-075

age length of generated code is significantly076

reduced (up to 23% for HumanEval and up to077

48% for MBPP), accelerating inference.078

• The runtimes of single fastest solutions out of079

k generations improve by up to 6% for MBPP080

and up to 5% for HumanEval.081

2 Background082

Self-Optimising Models such as Self-Instruct083

(Wang et al., 2023) and Self-Rewarding Language084

Models (Yuan et al., 2024) share some similarities085

with our methodology as they also generate their086

own training data. However, their application is to087

instruction-tuning, which is easier than functional088

and efficient code generation plus their reliance on089

very large models deviates from our objectives.090

Distilled Supervised Fine-Tuning has been ap-091

plied to code generation to improve (only) func-092

tional correctness e.g. MagiCoder (Wei et al., 2023)093

and WizardCoder (Luo et al., 2023), however, they 094

rely on large proprietary models to provide the 095

training data (Cui et al., 2023; Xu et al., 2023), 096

which is something we aim to avoid. 097

Direct Preference Optimisation RL for CLMs 098

(Le et al., 2022; Wang et al., 2022; Gorinski et al., 099

2023) overcomes the shortcomings of supervised 100

fine-tuning as a negative reward for dysfunctional 101

code can be effectively propagated. However, RL 102

algorithms come with added complexity and in- 103

stability, which we aim to avoid by using Direct 104

Preference Optimisation (DPO). It was recently 105

proposed (Rafailov et al., 2024) as an alternative 106

to Reinforcement Learning from Human Feedback 107

(RLHF) (Touvron et al., 2023) to align LMs with 108

human preferences (Tunstall et al., 2023). The 109

authors claim that DPO is at least as effective as 110

existing methods such as PPO-based RLHF, for 111

preference learning in sentiment modulation, sum- 112

marisation and dialogue. DPO does not require a 113

separate reward model, the CLM is directly opti- 114

mised with a simple classification objective. 115

Code Efficiency Optimisation was recently in- 116

vestigated by Shypula et al. (2023), aiming to trans- 117

form slow-running code into a more efficient ver- 118

sion with the same semantics. CLMs were trained 119

on synthetic data, augmented by GPT-3.5 from a 120

newly introduced dataset. The code efficiency was 121

indicated on a 1-10 scale. At inference, the model 122

is instructed to produce a 10/10 optimisation. How- 123

ever, the greatly reduced runtimes come at a signif- 124

icant cost to functional correctness, reduced by up 125

to 30% in many configurations with the ‘smaller’ 126

CLMs (7B, 13B) losing out more. 127

3 Code-Optimise 128

With our motivations and essential background ex- 129

plained, we can now introduce Code-Optimise, a 130

lightweight optimisation for CLMs aimed at im- 131

proving functional correctness of code as well as 132

reducing its runtime / length. The method consists 133

of the following three steps, shown in Figure 1. 134

3.1 Sampling 135

We assume access to Dseed = {xi, yi, uti}Ni=1, a 136

dataset of problem descriptions xi and the corre- 137

sponding unit tests uti that can be used for sam- 138

pling and testing new solutions from the CLM, 139

denoted CLMbase henceforth. Since fine-tuning 140

the model only on the given solutions yi is not 141
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Model Split Problem Solution
Total Filtered Ratio Total Filtered Ratio CoV

StarCoder-1B
Train 384 183 47.66 38400 15472 40.29 0.011

Validation 90 40 44.44 9000 3533 39.26 0.010

StarCoder-3B
Train 384 211 54.95 38400 17575 45.77 0.007

Validation 90 45 50.00 9000 3926 43.62 0.014

CodeLlama-7B
Train 384 250 65.10 38400 21350 55.60 0.007

Validation 90 55 61.11 9000 4962 55.13 0.008

CodeLlama-13B
Train 384 261 67.97 38400 22182 57.77 0.007

Validation 90 56 62.22 9000 5108 56.76 0.007

Table 1: Statistics of our self-generated data. 1) A Model generates 100 solutions per problem out of Total problems
in each Split. 2) Functional correctness and runtime are annotated. 3) Problems are filtered to retain those with at
least 2 passing and 1 failing solution (Filtered). A low coefficient of variation (CoV ≤ 0.1) across 5 runs indicates
that runtime measurements are stable. Ratio is the percentage of Filtered / Total retained code solutions.

effective, we leverage its extensive pretraining to142

generate a multitude of diverse solutions to obtain143

additional training data. We sample 100 solutions144

from CLMbase for each problem description with145

multinomial sampling due to its lower computa-146

tional cost. A temperature of t = 0.6 is applied to147

achieve a balance between functional correctness148

and diversity, resulting in non-uniform runtimes.149

3.2 Annotation150

The solutions are then automatically evaluated for151

functional correctness and runtime. While the for-152

mer can be achieved by simply executing a solution153

with its corresponding unit tests, the latter requires154

additional steps for obtaining stable runtime mea-155

surements, see Algorithm 1. Each solution s is156

executed 50 times to determine its functional cor-157

rectness (passed) and runtime in nanoseconds.158

We obtain µ and σ, then calculate the coefficient of159

variation CoV . A measurement is deemed stable160

and accepted if CoV ≤ 0.1 (usually much lower).161

Otherwise, we repeat the loop up to 1K times. In162

the unlikely scenario that a stable runtime could163

not be obtained, we set passed = False (mark164

solution as failed). In order to further increase the165

reliability of runtime measurements, we execute166

Algorithm 1 five times (each in a separate process)167

and average the results. Once the solutions have168

been labelled, we sort them in ascending order of169

runtime (fast > slow > failed). Lastly, we remove170

problems xi, yi, uti which do not have at least two171

passing and one failed solution to ensure that opti-172

misation can be enhanced with our Dynamic Solu-173

tion Selection (3.4) during training. The statistics174

of the final dataset Dtrain are shown in Table 3.175

Algorithm 1 Timing module algorithm.

1: for s ∈ solutions do
2: CoV ←∞
3: repeat ▷ up to 1K times
4: times← [ ] ▷ initialise empty list
5: for 1, . . . , 50 do
6: runtime, passed← EXEC(s)
7: times.append(runtime)
8: µ, σ ← MEAN(times), STD(times)
9: CoV ← σ/µ

10: until CoV ≤ 0.1
11: if CoV > 0.1 then
12: ▷ stable runtime was not obtained
13: passed← False

3.3 Optimisation 176

In this step, the model is efficiently fine-tuned on 177

Dtrain to bias CLMbase towards generating more 178

functionally correct and runtime-efficient solutions. 179

Although several methods for preference data opti- 180

misation exist (Yuan et al., 2023; Liu et al., 2024; 181

Azar et al., 2023; Ethayarajh et al., 2024; Hong 182

et al., 2024; Zhao et al., 2023), we opt for DPO due 183

to its simplicity and rapid adoption. We also use 184

SFT due to its widespread use in related work. 185

Supervised Fine-Tuning (Equation 1) is com- 186

monly used in previous work, therefore, we also 187

fine-tune CLMbase on Dtrain with SFT. We utilise 188

the TOP-N% of fastest solutions where N ∈ 189

{25, 100}, which means that the diversity of run- 190

times grows as N increases. Henceforth, the mod- 191

els optimised with the top 25% of fastest solutions 192

are denoted as SFT25 and CLMs trained with all 193
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(including the slowest) solutions as SFT100.194

LSFT (πθ) = −E(x,y)∼D [log πθ (y | x)] (1)195

Direct Preference Optimisation Aiming to196

avoid the complexity or instability of reinforce-197

ment learning, DPO (Rafailov et al., 2024) aligns a198

model to preference data with a simple classifica-199

tion loss, shown in Equation 3.3.200

LDPO (πθ;πref) = −E(x,yw,yl)∼D201

202 [
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
(2)203

We investigate the effectiveness of the following204

configurations of code preference pairs:205

• Quick versus Slow: Choose quick & slow206

solutions according to the annotated runtime.207

We denote such models as DPOQvS .1208

• Passed versus Failed: Choose passed &209

failed pairs according to the annotated func-210

tional correctness, denoted as DPOPvF .211

• All: Choose all preference pairs from the212

Quick vs. Slow and Passed vs. Failed configu-213

rations. We denote such models as DPOAll.214

3.4 Dynamic Solution Selection215

Training data is typically fixed at the start of train-216

ing and remains static throughout (Tunstall et al.,217

2023; Luo et al., 2023; Xu et al., 2023; Wang et al.,218

2023; Yuan et al., 2024). Our approach takes ad-219

vantage of the multitude of code solutions from220

the sampling step (3.1) to dynamically select pref-221

erence pairs during training. To this end, we ran-222

domly choose a new preference pair (yw, yl) for223

each problem xi from Dtrain at the start of the224

epoch for DPO configurations. For SFT, we ran-225

domly choose any working solution (yw) at the226

start of a new epoch for a comparable configuration.227

This reduces overfitting by presenting prompts with228

multiple code completions. The ablation of this in-229

tervention is presented in Section 5.4. In the main230

result section (5), all model configurations use our231

dynamic solution selection by default.232

1NB: Only correct code can be assigned a runtime thus
functional correctness and code efficiency cannot be separated
as learning signals. Therefore, any DPOQvS configurations
are implicitly optimising CLMbase for correctness as well.

4 Experiments 233

4.1 Datasets 234

MBPP The Mostly Basic Programming Prob- 235

lems introduced by Austin et al. (2021) consists 236

of 974 crowd-sourced Python programming chal- 237

lenges. Each problem comprises a description, an 238

example code solution and a few automated test 239

cases. The dataset contains training, validation and 240

test splits. We utilise the training and validation 241

splits for optimisation, while the test split serves as 242

the in-domain test data distribution. 243

HumanEval (Chen et al., 2021) comprises 164 244

Python programming challenges. The function sig- 245

natures, docstrings, example solutions and several 246

unit tests were handwritten for each problem. We 247

leverage HumanEval as our out-of-domain test set 248

as the descriptions in MBPP do not contain any unit 249

tests and the writing style of HumanEval problems 250

does not follow a consistent format. This helps us 251

evaluate robustness to handwritten prompts. 252

4.2 Implementation Details 253

We use the StarCoder (Li et al., 2023) and CodeL- 254

lama (Rozière et al., 2024) families of models in 255

our experiments. We opt for the pretrained (base) 256

versions with sizes of 1B and 3B for StarCoder 257

and 7B and 13B for CodeLlama, hosted on Hug- 258

gingFace (Wolf et al., 2020) repositories. During 259

training, we fine-tune each model using a total of 260

30 epochs and select the best model based on the 261

lowest validation loss. We use a learning rate of 262

5e−7 with a linear scheduler, a 10% warm-up and 263

a maximum sequence length of 2048 tokens. 264

4.3 Evaluation Metrics 265

Functional Correctness is evaluated by sam- 266

pling 100 solutions per problem via multinomial 267

sampling and a temperature of t = 0.6. Following 268

Chen et al. (2021), we measure functional correct- 269

ness using pass@k, where k ∈ {1, 10, 100}. 270

Code Efficiency improvements are challenging 271

to capture hence we evaluate runtime (median of all 272

working solutions) as well as code length (median 273

number of characters of all working solutions) to 274

show different aspects of Code-Optimise. Since the 275

runtime of a failed program is undefined, for a fair 276

comparison between models, we remove problems 277

for which any model has no working solutions to 278

compare CLMs on the same subset of solved prob- 279
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Figure 2: pass@k scores for MBPP and HumanEval averaged across model sizes for a ‘summary’ view. Models
optimised via DPO consistently show higher functional correctness compared to Base and SFT for all k.
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Figure 3: Median runtime and length of solutions for MBPP and HumanEval, averaged across model sizes for a
‘summary’ view. Values shown are ratios relative to Base, i.e. >1 means slower or longer than Base by x% and
<1 means faster or shorter by x%. The DPO models have a lower runtime compared to Base and SFT models for
in-domain but not out-of-domain problems. A significant reduction in code length is seen across both datasets.

lems. Table 2 shows that the intersection increases280

as CLMs get larger and more ‘code-competent’.281

5 Results282

5.1 Functional Correctness283

Figure 2 shows the pass@k scores for MBPP and284

HumanEval, averaged over all model sizes / fami-285

lies for a ‘summary’ view. The individual pass@k286

scores are shown in Figure 4. We observe that mod-287

els optimised via DPO consistently demonstrate288

higher functional correctness relative to the base-289

line (Base) and SFT on both datasets. The effect290

is even larger on in-domain data, particularly with291

lower k. The different DPO configurations per-292

form similarly on MBPP while DPOPvF (passed293

vs. failed) is the best overall configuration for Hu- 294

manEval. The SFT models show a marginal im- 295

provement for k = 1 but no improvement (or a 296

small decrease) at higher k. We therefore conclude 297

that DPO-based optimisation is a more suitable 298

paradigm for our self-generated code preference 299

data as it is better able to leverage the learning sig- 300

nals (fast, slow, passed, failed) compared to SFT. 301

5.2 Code Efficiency 302

The runtimes and lengths of generated programs 303

are plotted in Figure 3 as ratios relative to the base- 304

line (values < 1 mean faster or shorter than base- 305

line, > 1 means slower or longer code). Once 306

again, values are averaged over model sizes / fam- 307

ilies for a high-level overview. Individual model 308
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Figure 4: The pass@1, pass@10 and pass@100 scores for MBPP and HumanEval as the number of parameters
increases. A significant improvement in scores over Base and SFT can be observed for DPO-based models.

Model MBPP HumanEval

StarCoder-1B 40.60% 30.49%
StarCoder-3B 48.40% 46.95%
CodeLlama-7B 55.60% 73.71%
CodeLlama-13B 60.40% 79.27%

Table 2: Intersection of problems between Base, SFT ,
and DPO models with at least one working solution.

scores are shown in Figures 5 and 6, respectively.309

In early experimentation, we noted that the Base310

models are already capable of generating solu-311

tions with a reasonably fast runtime. However, the312

DPOQvS and DPOAll models manage to further313

decrease the runtime on in-domain data by up to 6%314

although not on the out-of-domain data. The SFT315

models generally increase the runtime across both316

datasets. In terms of average code length, the DPO317

models reduce the output by up to 22% on MBPP318

and up to 9% on HumanEval compared to the base-319

line. On the other hand, CLMs optimised with SFT320

tend to generate significantly longer solutions. This321

is particularly evident with SFT100, which uses all322

code solutions for training, including the slowest,323

which tend to be longer. Causal language mod-324

elling does not appear to be particularly suitable for325

optimising runtime or average length of code with326

self-generated preference data as any inherent bi-327

ases for generating longer code can be exacerbated.328

In summary, Code-Optimise can reduce runtime, 329

which means that the cost of executing the code has 330

decreased while also outputting shorter programs, 331

resulting in faster generation and response times. 332

5.3 Model Scaling 333

Figures 4, 5 and 6 show the evolution of functional 334

correctness, runtimes and lengths of generated so- 335

lutions as the number of trainable parameters is in- 336

creased. Analysing pass@1 in Figure 4, we can see 337

that larger DPO models achieve a more significant 338

improvement over the baseline and SFT, particu- 339

larly for in-domain problems. Somewhat surpris- 340

ingly, functional correctness for HumanEval (out- 341

of-domain) improves at a faster rate than MBPP 342

(up to 7B parameters). In Figure 5, we observe 343

that as the DPOQvS and DPOAll models increase 344

in size, their runtimes relative to the baseline im- 345

prove by a larger margin. The DPOPvF (passed 346

v failed) configurations tend to show worse run- 347

times as this setup only optimises for correctness, 348

likely at the expense of efficiency. There is no clear 349

pattern for SFT models. On HumanEval, all mod- 350

els have a higher runtime than the baseline. From 351

the analysis, it appears that runtime improvements 352

do not generalise well to out-of-domain data with 353

the limited number of prompts we have used for 354

Code-Optimise. However, the effect on length does 355

generalise well, particularly for larger CLMs (see 356

Figure 6). In fact, we find a clear trend for all 357
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Figure 5: Runtimes for MBPP and HumanEval as model size increases. Values shown are ratios relative to Base, i.e.
>1 means slower or longer than Base by x% and <1 means faster or shorter by x%. DPO models show a reduced
runtime on the in-domain but not out-of-domain distribution. SFT models exhibit inconsistent scaling patterns.
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Figure 6: Lengths for MBPP and HumanEval as model sizes increase. Values shown are ratios relative to Base,
i.e. >1 means slower or longer than Base, <1 means faster or shorter. DPO models consistently produce shorter
sequences across both datasets. SFT models generate significantly longer code, particularly the larger CLMs.

DPO models on both datasets showing a reduced358

code length of up to 48% in-domain and up to 23%359

out-of-domain. SFT optimised models, however,360

increase the length in all cases, especially at larger361

model sizes. Same as the runtime behaviour, this is362

akin to exacerbating its own biases towards more363

verbose code as the training data is self-generated.364

5.4 Dynamic Solution Selection365

Our core methodology for creating high-quality366

code preference data enables us to dynamically se-367

lect unique pairs for each prompt at the start of368

a new epoch. Since we train all models for 30369

epochs, CLMs can potentially be exposed to many370

unique combinations of code completions. Figure371

7 shows pass@1 scores for StarCoder-1B improv-372

ing with dynamic code pair selection compared to 373

static pairs randomly assigned at the beginning of 374

training, commonly practiced in related work. The 375

benefits are somewhat more pronounced for DPO, 376

our preferred optimisation method given our code 377

preference data, compared to SFT. However, across 378

pass@k (see Figure 9 in the appendix), all models 379

generally benefit from dynamic solution selection. 380

5.5 Fastest Solutions Analysis 381

Following Shypula et al. (2023), we also show the 382

Best@k metric, which considers only the fastest 383

solution given k samples. We set k = 100 (all 384

generated solutions), which is the basis of all our 385

experiments. In Figure 8, we note that DPO mod- 386

els produce faster solutions not only on in-domain 387
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Figure 7: The pass@1 scores for StarCoder-1B without (Static) and with (Dynamic) solution selection (DSS). DSS
improves performance for all models, especially DPO. Additional pass@k figures (9) can be found in the appendix.

problems, but also out-of-domain, between 2% and388

5% faster. DPOPvF once again has the higher389

runtime as its objective is to optimise only func-390

tional correctness. SFT models’ fastest solutions391

are generally slower on MBPP and HumanEval.392

6 Conclusions393

Code Language Models have demonstrated a strong394

ability to generate functionally correct and reason-395

ably efficient solutions to programming problems.396

However, for use cases such as CLMs as Program-397

ming Assistants, it is desirable to further increase398

the pass rates, efficiency and brevity of generated399

code without relying on proprietary LLMs. To this400

end, we have introduced Code-Optimise, a compu-401

tationally simple and efficient method for optimis-402

ing CLMs using our self-generated code preference403

data that incorporates learning signals for correct-404

ness and efficiency (fast, slow, pass, fail). Using405

∼200 prompts, our experiments show several ben-406

efits of Code-Optimise: 1) functional correctness407

is significantly improved, particularly for smaller408

models and lower pass@k, 2) dynamic solution409

selection during training provides an additional410

improvement in pass@k by reducing overfitting,411

3) runtimes are reduced by up to 6% for MBPP,412

reducing the costs of code execution, 4) average413

code lengths are significantly shorter, up to 48%414

for MBPP and up to 23% for HumanEval for the415

largest models, which reduces the cost of inference416

hence improving response times, 5) the runtimes417

of the fastest solutions (Best@100) are reduced418

for in-domain and out-of-domain problems. To the419

best of our knowledge, Code-Optimise is the first420

MBPP HumanEval0.5

0.6
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25
100
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Figure 8: The best@100 scores for MBPP and Hu-
manEval, averaged across model sizes. Values shown
are ratios relative to Base, i.e. >1 means slower than
Base, <1 means faster. Considering the fastest solution
for each problem, DPO models show the best runtimes.

method that optimises CLMs for efficiency and cor- 421

rectness. We hope that our insights will stimulate 422

further research in this area. 423

7 Limitations 424

Timing the execution of short programs accurately 425

is challenging and despite our best efforts, the run- 426

time measurements could probably be improved 427

further with additional software engineering. This 428

would also provide a cleaner and more stable learn- 429

ing signal for Code-Optimise, which could poten- 430

tially improve results. While our methodology is 431

highly data-efficient, using only ∼200 open-source 432

prompts for data (self-)generation, obtaining ad- 433

ditional high-quality problems (free from propri- 434

8



etary models and licensing issues) may potentially435

yield better results. Other code-related tasks that436

may be amenable to optimisation for efficient run-437

time/inference could potentially benefit from our438

methodology and as such may be investigated out-439

side of the scope of this paper. While we conducted440

all experiments using Python, we acknowledge441

that less popular/similar programming languages442

should also be investigated in follow-up work.443
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A Further Details622

A.1 Sampling623

Functional correctness of the CLMs during sam-624

pling is tabulated in Table 3.625

A.2 Optimisation626

Model performance of the CLMs on the test sets627

are tabulated in Tables 4, 5, 6, and 7. The CoV is628

shown beside each runtime.629

A.3 Solution Selection630

pass@10 and pass@100 scores for MBPP and Hu-631

manEval of StarCoder-1B by ablating the solution632

selection is shown in Figure 9.633
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Model Split Pass@1 Pass@10 Pass@100

StarCoder-1B
Train 14.00 34.50 55.20

Validation 12.20 31.70 48.90

StarCoder-3B
Train 19.50 44.30 61.70

Validation 19.20 42.50 57.80

CodeLlama-7B
Train 25.80 54.00 70.10

Validation 23.40 50.30 68.90

CodeLlama-13B
Train 28.80 58.20 71.60

Validation 24.60 52.90 66.70

Table 3: Functional correctness of the CLMs during sampling.

Model Pass@1 Pass@10 Pass@100 Time Length

Base 11.80 31.70 49.80 114338 ± 0.021 155
SFT25 17.90 34.40 47.60 104690 ± 0.012 238
SFT100 16.80 34.20 47.00 169536 ± 0.017 252
DPOQvS 17.10 36.10 52.80 109051 ± 0.018 144
DPOPvF 16.90 36.90 54.00 118418 ± 0.019 181
DPOAll 16.90 36.40 53.20 103588 ± 0.021 152

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 12.00 24.30 39.00 150930 ± 0.017 124
SFT25 14.20 24.30 39.00 157975 ± 0.027 180
SFT100 13.90 24.50 40.20 154395 ± 0.020 175
DPOQvS 14.20 27.30 42.10 143259 ± 0.013 125
DPOPvF 14.30 28.10 45.70 147980 ± 0.034 146
DPOAll 13.70 27.10 42.10 232759 ± 0.012 132

(b) HumanEval

Table 4: Model performance on MBPP and HumanEval of StarCoder-1B.
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Model Pass@1 Pass@10 Pass@100 Time Length

Base 16.90 40.00 55.00 113760 ± 0.016 158
SFT25 23.40 41.80 55.20 115834 ± 0.011 171
SFT100 22.40 41.60 55.20 119675 ± 0.035 198
DPOQvS 23.80 46.10 59.80 112395 ± 0.008 162
DPOPvF 23.90 45.50 60.20 116529 ± 0.017 185
DPOAll 23.40 45.30 60.20 103726 ± 0.012 149

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 17.20 36.80 61.00 143806 ± 0.012 162
SFT25 19.20 38.80 56.10 149743 ± 0.017 172
SFT100 19.40 38.60 56.10 152948 ± 0.022 190
DPOQvS 21.00 42.90 67.70 151401 ± 0.011 170
DPOPvF 21.50 44.30 70.10 153620 ± 0.013 181
DPOAll 20.50 42.30 66.50 147823 ± 0.014 161

(b) HumanEval

Table 5: Model performance on MBPP and HumanEval of StarCoder-3B.

Model Pass@1 Pass@10 Pass@100 Time Length

Base 21.40 48.50 65.20 105313 ± 0.012 196
SFT25 25.40 48.40 62.00 124000 ± 0.058 372
SFT100 24.30 49.10 62.60 110982 ± 0.010 435
DPOQvS 28.60 52.00 66.80 108925 ± 0.013 141
DPOPvF 30.20 52.10 66.20 109783 ± 0.006 129
DPOAll 29.10 52.30 66.60 108992 ± 0.016 129

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 25.10 55.00 79.30 646547 ± 0.004 188
SFT25 26.80 55.00 82.90 509264 ± 0.004 256
SFT100 26.40 54.10 82.30 496296 ± 0.006 304
DPOQvS 28.20 60.30 84.80 562279 ± 0.005 159
DPOPvF 30.10 64.00 86.60 639553 ± 0.003 166
DPOAll 28.70 61.20 85.40 646486 ± 0.002 160

(b) HumanEval

Table 6: Model performance on MBPP and HumanEval of CodeLlama-7B.
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Model Pass@1 Pass@10 Pass@100 Time Length

Base 23.70 52.50 67.60 118418 ± 0.009 223
SFT25 28.80 53.70 66.20 112624 ± 0.006 348
SFT100 26.70 52.80 66.00 126165 ± 0.004 523
DPOQvS 33.50 56.40 70.60 110390 ± 0.008 116
DPOPvF 34.10 55.50 69.00 110427 ± 0.018 126
DPOAll 32.80 56.20 69.20 110679 ± 0.008 122

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 27.80 62.70 87.20 497649 ± 0.015 187
SFT25 30.00 62.70 85.40 560336 ± 0.005 238
SFT100 27.90 61.00 82.90 532856 ± 0.006 375
DPOQvS 32.60 67.40 88.40 513372 ± 0.005 145
DPOPvF 33.20 68.00 88.40 528546 ± 0.008 157
DPOAll 31.90 66.70 86.00 520788 ± 0.003 141

(b) HumanEval

Table 7: Model performance on MBPP and HumanEval of CodeLlama-13B.

14



25 100 QvS PvF All

5

10

15

20

25

30

35

MBPP

25 100 QvS PvF All
0

5

10

15

20

25

HumanEval

Dynamic Static

(a) pass@10

25 100 QvS PvF All

10

20

30

40

50

MBPP

25 100 QvS PvF All
0

10

20

30

40

HumanEval

Dynamic Static

(b) pass@100

Figure 9: The pass@10 and pass@100 scores for MBPP and HumanEval of StarCoder-1B with (Dynamic) and
without (Static) solution selection. Performance improves on both metrics and distributions with DSS.
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