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Abstract
In contemporary radiotherapy planning (RTP), a
key module leaf sequencing is predominantly ad-
dressed by optimization-based approaches. In
this paper, we propose a novel deep reinforce-
ment learning (DRL) model termed as Reinforced
Leaf Sequencer (RLS) in a multi-agent framework
for leaf sequencing. The RLS model offers im-
provements to time-consuming iterative optimiza-
tion steps via large-scale training and can control
movement patterns through the design of reward
mechanisms. We have conducted experiments
on four datasets with four metrics and compared
our model with a leading optimization sequencer.
Our findings reveal that the proposed RLS model
can achieve reduced fluence reconstruction errors,
and potential faster convergence when integrated
in an optimization planner. Additionally, RLS
has shown promising results in a full artificial in-
telligence RTP pipeline. We hope this pioneer
multi-agent RL leaf sequencer can foster future
research on machine learning for RTP.

1. Introduction
Radiotherapy (RT) stands as an essential cornerstone in the
realm of cancer treatment, recommended for approximately
half of cancer patients (Huynh et al., 2020). Despite tech-
nological advances, a substantial part of RT still depends
on labor-intensive and time-consuming planning pipelines
from a diverse healthcare team (Elmore et al., 2019).

Radiotherapy Planning (RTP), originates from 1890s, refers
to the process to plan the appropriate external beam RT treat-
ment for patients with cancer. Modern RTP involves tailor-
ing personalized treatment plans to effectively target tumors
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Figure 1. Illustration of a typical RTP process. Three common
components are shown in the orange boxes. We focus on leaf
sequencing in this work. The term “optimization” in this paper
refers to a series of methods that are not machine learning.

through Planning Target Volume (PTV) while safeguarding
healthy tissues, as indicated by Organs at Risk (OARs). In
practical RT, the RTP should also consider that the plan
can be delivered in a reasonable time. Current RTPs are
dominant by optimization pipelines in practical platforms
such as Varian (Varian, 2023b) and Elekta (Elekta, 2023).
Though different treatment types are existing, e.g., intensity-
modulated radiation therapy (IMRT) (Mundt & Roeske,
2005) and volumetric-modulated arc therapy (VMAT) (Otto,
2008), their optimization pipelines share similar key compo-
nents: dose objectives definition, optimal fluence prediction,
and leaf sequencing to get feasible machine parameters, as
shown in Figure 11. Optimal fluence prediction estimates
a 2D intensity map of the radiation beam for each beam
angle allowing for customizable dose delivery to meet the
objectives, however, the practicality of the fluence may be
limited as it could potentially violate certain physical rules
necessary for achievability. Leaf sequencing is to approx-
imate optimal fluences with feasible machine movements.
Depending on the implementation details of algorithms, the
fluence map optimization and leaf sequencing can be per-
formed sequentially and iteratively.

To learn knowledge from large-scale existing plans, deep su-
pervised learning has been widely applied to dose objectives
definition and optimal fluence prediction modules (details
in Section 2). Leaf sequencing is relatively challenging

1In-depth RTP introduction (background, terms, visuals, etc.)
is in Appendix A. Some leaf sequencing optimizations for VMAT
skip fluence prediction. Here we mainly discuss the branch with
fluence prediction in the pipeline, such as RapidArcTM (Varian).
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with supervised learning because its output space is large
in the serial nature, especially for VMAT. For example, a
typical HD-120 VMAT plan with 178 control points (CPs)
(Bergman et al., 2014) has over 20K degrees of serial actions
from leaf positions and monitor units.

Apart from being unable to leverage learning from exist-
ing data, the absence of a differentiable leaf sequencing
module poses a challenge for training the overall end-to-
end planning pipeline. In the spirit of recent success in
decision-making tasks, we propose a new deep reinforce-
ment learning (DRL) model, termed as Reinforced Leaf
Sequencer (RLS), for a learning-based leaf sequencing. Our
major contributions can be summarized as below:

• To our best knowledge, we are the first to successfully
formulate leaf sequencing problems in practical radio-
therapy scenarios with a deep multi-agent RL model.

• We propose five reward components to reasonably
guide the movement of leaves and monitor units. The
move pattern is controllable by tuning the weight of
rewards, which enables human preferences in the loop.

• Compare to vanilla RL or optimization methods, RLS
abandons iterative processing and only executes once
for each CP for accelerated inference.

• Experiments conducted on four datasets across two can-
cer sites, RLS achieved 1) better or close performances
compared to a leading optimization sequencer in a
VMAT optimization platform (i.e., PORIx mentioned
later); 2) effective prediction in a full-AI pipeline.

2. Related Work
Leaf Sequencing in RTP Optimization. RTP is mainly
solved by optimization-based methods currently in both
IMRT and VMAT (Xia & Verhey, 1998; Shepard et al.,
2002; Earl et al., 2003; Ripsman et al., 2022; Carrasqueira
et al., 2023; Fallahi et al., 2022; Jhanwar et al., 2023; Cedric
& Tang, 2011). There are different pipelines of RTP opti-
mization, one major branch (as in Figure 1), such as Cao
et al. (2006); Shepard et al. (2007); Wang et al. (2008);
Bedford (2009), is including the leaf sequencing to con-
vert the optimized beam intensities into deliverable multi-
leaf collimator (MLC) segments to form arc(s) or fields by
starting from fluence maps. RapidArcTM from Varian is a
representative commercial example in this branch which
initially adopted the algorithm in Otto (2008) and continu-
ally upgraded in subsequent years. RapidArc has directly
promoted the large-scale clinical implementation of VMAT
(Cedric & Tang, 2011; Infusino, 2015). Compared to ma-
chine learning, disadvantages of optimization algorithms
include time-consuming iterative execution and the lack of
leveraging knowledge from large-scale training data.

AI for RTP. Recently, researchers aim to translate artifi-
cial intelligence (AI) to RTP to achieve fast and high-quality
planning (Huynh et al., 2020; Luchini et al., 2022) to replace
one or more components of an optimization pipeline. To
replace conventional point-based objectives, RapidPlanTM

introduce dose-volume histograms (DVHs) proposal as line-
objectives (Fogliata et al., 2019; Varian, 2023a). Dose pre-
diction from patient data (e.g., CT and contouring) with deep
learning may serve as 3D objectives (Barragán-Montero
et al., 2019; Kearney et al., 2020; Wang et al., 2022; Gao
et al., 2023; Feng et al., 2023; Jiao et al., 2023; Gronberg
et al., 2023). Following dose prediction, deep learning meth-
ods are used to replace fluence map optimization (Romeijn
et al., 2003; 2004) to predict 2D fluence maps for each beam
angle by feeding projections from predicted 3D dose (Wang
et al., 2020; 2021; Ma et al., 2020; Yuan et al., 2022).

Deep RL and Multi-Agent. Deep RL has made remark-
able progress in sequential decision-making tasks, includ-
ing strategy games (Mnih et al., 2013; Silver et al., 2016),
robotic control (Mnih et al., 2015; Schulman et al., 2017),
autonomous driving (Kiran et al., 2021), and landmark de-
tection (Ghesu et al., 2017). Many of these applications
involve multiple agents, necessitating a systematic approach
to modeling as multi-agent RL (MARL) (Zhang et al., 2021).
Compared to value-based RLs (Mnih et al., 2015; Coulom,
2006), policy-based methods directly explore the policy
space, with better convergence guarantees (Konda & Tsit-
siklis, 1999; Yang et al., 2018; Wang et al., 2019; Zhang
et al., 2021). Actor-critic algorithms in policy-based branch,
such as PPO (Schulman et al., 2017) and SAC (Haarnoja
et al., 2018), have achieved state-of-the-art performance in
many applications. PPO showed surprising effectiveness in
cooperative multi-agent games (Yu et al., 2022).

RL has been applied to RTP tasks. Hrinivich & Lee (2020);
Ganeshan (2021) explored DQN for planning, however,
these studies lie in single-leaf-pair simulations. A concur-
rent work (Hrinivich et al., 2024) extended Hrinivich & Lee
(2020) to enable VMAT in a 3D beam context. Differently,
we target modularizing RTP pipeline to be more flexible;
making leaf sequencing can leverage advances of other AI
models (e.g., dose/fluence predictions) and enabling integra-
tion within optimization loops. To the best of our knowledge,
the proposed RLS is the first MARL-based leaf sequencer in
practical RTP scenarios (i.e., outputs include leaf positions
at each leaf pair and monitor unit for each control point).

3. Problem Formulation and Intuition
This paper focuses on leaf sequencing, the final module
in RTP as in Figure 1, to achieve deliverable outcomes—a
domain scarcely explored within advanced MARL.

There are two common approaches for treatment: IMRT
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Figure 2. Control point distribution: Each black dot signifies a
control point. (a) In VMAT, control points can be approximate-
evenly spaced along the designated arc during therapy, and may be
divided into multiple sectors during planning and optimization. (b)
The IMRT plan is comprised of several fields, each encompassing
multiple control points at identical gantry angles.

(Mundt & Roeske, 2005) and VMAT (Otto, 2008) (as in
Figure 2 and more details in Appendix A.1). IMRT employs
multiple beam-angles (i.e., fields) with modulated intensity
using multileaf collimators (MLCs) to create precise dose
profiles. VMAT offers improved delivery efficiency com-
pared to IMRT, using numerous beam directions along arc
trajectory to delivery dose dynamically (Teh et al., 1999;
Teoh et al., 2011; Quan et al., 2012). It is customary for
IMRT to generate a sequence of control points for a spe-
cific beam angle. In VMAT scenarios, various optimization
techniques, including RapidArc, address leaf sequencing
by consolidating control points within a sector during opti-
mization (Unkelbach et al., 2015; Amendola et al., 2013).
Consequently, the leaf sequencing in both VMAT and IMRT
can be viewed as the process of deriving a sequence of con-
trol points, specifying leaf positions and monitor units based
on target fluences, i.e., optimal fluences.

Note that the fluence prediction component’s target fluence
F cannot be directly translated into outcomes for the RT
machine. The leaf sequencer is designed to predict outcomes
that are feasible for the machine. Given X leaf pairs in the
MLC for all K control points contributing to the fluence F
and denote the leaf sequencer as f(·), we have:

(P, M) = f(F ), (1)

where P denotes the leaf positions with a size of K ×X ×2
and M is a K × 1 vector representing monitor unit (MU).

Intuition. We summarize our intuition in Figure 3 and
4. Leaf sequencing can be conceptualized as a sequence
of decision-making tasks. In this sequence, the goal is to
approximate target fluence with a series of control points
(CPs). These decisions involve agents selecting the appropri-
ate leaf movements and MUs for each CP. Figure 3a shows
the multi-leaf openings of one CP. Each leaf pair can filter
X-rays to balance the radiation on PTV and OARs, as in
Figure 3b. By comparing cumulated and target fluences

Cumulated Fluence

Target Fluence

(a) multi-leaf pairs in 2D (c) cumulated vs. target

Cumulated Fluence Cumulated Fluence

Target Fluence

(a) multi-leaf pairs in 2D (b) one-leaf pair in 3D (c) one-leaf pair fluences (e) real fluence

(d) cartoon fluence

X-ray

Cumulated Fluence

(b) one-leaf pair in 3D

X-ray

PTV projection leaf (2D) leaf (3D) fluence intensity in one bixel

(a) multi-leaf pairs (b) one-leaf pair (c) one-leaf pair fluences

Figure 3. (a) shows a 2D illustration of multi-leaf pairs, with the
middle depicting PTV projection. (b) provides a 3D view of a
leaf pair and its connection to cumulated fluences. (c) illustrates
motivations of Reward 1 (green) and Reward 2 (red) by comparing
cumulated and target fluences. Details are in Appendix A.

.... ....
K control points K control points

revisit multiple timesonly once per CP

(a) RLS: finite horizon RL (b) vanilla RL or conventional methods

Figure 4. Using finite horizon RL for accelerated inference. Con-
ventional optimization methods start with an estimate of the
leaf/MU positions and iteratively refine the estimate until con-
verge or the stopping criteria are met. In principle, we can also
apply vanilla RL in an infinite horizon context, and iteratively
refine the estimates. However, to achieve greater efficiency during
inference, we train RLS to execute only once for each CP.

at CPs (as well as other practical regularization), a set of
rewards can guide movements of leaves and MUs, as shown
in Figure 3c and Section 4.

To reduce time complexity, we formulate leaf sequencing
under a finite horizon RL adapted from Pardo et al. (2018),
where agents have to maximize expected return only over
a fixed episode length, as in Figure 4. To cover multiple
leaf pairs and MU prediction, we leverage the multi-agent
framework. Consider practical function of leaf pairs and
MUs, we propose a two-level RL framework as in Figure 5.

4. Methodology: Reinforced Leaf Sequencer
Our framework is shown in Figure 5. The backbone of RLS
is in spirit of PPO (Schulman et al., 2017). We also con-
ducted ablation studies of other actor-critic configurations.

4.1. Key Components of RL

Enviroment. The environment takes the output of agents
(leaf actors and MU actor) and compute the cumulated flu-
ences. Target fluence generation and fluence map com-
putation from leaf sequencing are based on methods in a
planning environment PORIx (details in Appendix B).

Actions. We define the leaf movement creating the fluence
map as a sequence of discrete actions la ∼ N2, −S ≤ la ≤
S. S is the maximum step size of each leaf. The MU action
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Figure 5. Illustration of the proposed RLS. The upper shows the methodology and the lower shows the input/output of RLS. The target
fluence is splitted into X rows, each row is related to one leaf-pair and one leaf actor. x-th leaf actor predicts the positions of Leaf Ax and
Bx. All rows in k-th control point (CP) shares the same monitor unit, which is predicted by MU actor after all leaf positions are obtained.
The state of leaf actor at CPk+1 includes target fluence, cumulated fluence of CP1 ∼ CPk, leaf positions of CPk. The state of MU actor
is similar but replace leaf positions of CPk with that of CPk+1.

ma is continuous in the range of (Rb, Re) where Re can
be the maximum MU allowed by the radiotherapy machine.
In k-th control point CPk, x-th leaf pair has a separate leaf
movement action lax,k, while all leaf pairs of CPk share
the same MU action mak.

State. The state sk of the leaf actors at CPk is based on
following information: target fluence F , cumulated fluence
F̂ k, and leaf positions (Ak, Bk), the step index k, and leaf
position index x. Since MU actor is to predict the optimal
MU, whose state should be updated with new leaf positions
after leaf actors take actions. This is the so-call two-level
actions motivated from clinical practice. For simplicity, we
use (sk, lak) to represent the state for MU actor, as in the
afterwards Eq. 5.

Rewards. Constructing the reward system is pivotal for
framing the leaf sequencing with RL. We define the cumu-
lated fluence F̂ k as the cumulation of fluences of control
points CP1 to CPk, i.e., F̂ k =

∑k
i=1 Mk · F̃ k, where

Mk and F̃ k are MU and unit fluence of CPk respectively.
Considerations for reward design are as follows: 1) Encour-
agement to approach target fluence (Reward 1): Positive
rewards for actions bringing cumulative fluence closer to
the target, seen in the green of Figure 3c. 2) Punishing over-
dosing (Reward 2): Penalties for actions causing cumulative
fluence to exceed target intensity, represented by the red
portion in Figure 3c. 3) Avoiding cross leaves (Reward 3):
Encouraging avoidance of left-right leaf intersection, consid-
ering its impracticality. 4) Leaf/MU changing regularization
between CP s (Reward 4): Regularizing machine movement
between control points, with user-adjustable parameter λ4
in training. 5) Aperture regularization (Reward 5): Regu-

larizing the shape of the aperture formed by (Ak, Bk), with
area and perimeter denoted as area and peri respectively,
which aligns with Younge et al. (2012).

Rewards of k-th CP for x-th leaf pair are defined as below:

Rk
1 =

Y∑
y=1

Mk · F̃ k
x,y · 1(Fx,y − F̂ k−1

x,y > Mk)

Rk
2 = −

Y∑
y=1

1(Fx,y − F̂ k
x,y < Mk)

Rk
3 =1(Bk

x − Ak
x) − 1(Ak

x − Bk
x)

Rk
4 =ΣI∈{A,B,M}(1 − σ(|Ik

x − Ik−1
x |))

Rk
5 =area(Ak, Bk)/peri(Ak, Bk)

(2)

where Y is the second dimension size of fluence F . The
total reward is defined as Rk = λ1 ·Rk

1 +λ2 ·Rk
2 +λ3 ·Rk

3 +
λ4 · Rk

4 + λ5 · Rk
5 . Details with pseudo-code are shown in

Appendix F and math symbol summary is in Appendix A.

4.2. Two-level Multi-agent PPO

The proposed RLS adapts a multi-agent PPO framework. To
accommodate RT characteristics, it incorporates two levels
of actions: leaf movements and MUs prediction. RLS trains
three networks: leaf policy net πθl

shared by all X leaf
agents parameterized by θl, MU policy πθm

for MU agent
parameterized by θm, and critic net Vϕ parameterized by ϕ.

The policy nets are trained to maximize the objective:

L(θ) = LCLIP
sur (θ) + cÊx,k [H(πθl

)] + cÊk [H(πθm
)] , (3)

where H(πθ) is the entropy of the policy distribution, and
c is the entropy coefficient hyperparameter. The clipped
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Algorithm 1 RLS training
Input: X leaf agents with shared policy πθl and an MU agent
with policy πθm

Output: trained leaf policy πθl , MU policy πθm , critic Vϕ

1: Initialize parameters {θl, θm} for policies {πθl , πθm} and
parameters ϕ for critic Vϕ

2: for n = 1 to RL iterations do
3: Initialize data buffer D
4: for i = 1 to batch size do
5: Run policy πθl,old in the environment for X leaf agents
6: Run policy πθm,old in the environment for MU agent
7: Compute the advantages using GAE
8: Adding timestamp data to buffer D
9: end for

10: for e = 1 to update epochs do
11: for i = 1 to batch size do
12: Compute the policy loss based on Eq. 3
13: Compute the value loss based on Eq. 6
14: AdamW update {θl, θm} on {πθl , πθm} like PPO
15: AdamW update ϕ on πθm like PPO
16: end for
17: end for
18: θl,old ← θl

19: θm,old ← θm

20: end for

surrogate objective LCLIP
sur (θ) is given by:

LCLIP
sur (θ) = Êx,k

[
min

(
rx,k(θ)Âx,k, clip (rx,k(θ), 1 ± ϵ) Âx,k

)]
, (4)

where the advantages Âx,k are computed using GAE (Schul-
man et al., 2015) with rewards definition in Section 4.1. The
probability ratio rx,k(θ) for x-th leaf pair of CPk is

rx,k(θ) = πθl
(lax,k|sx,k) · πθm

(mak|sk, lax,k)
πθl,old(lax,k|sx,k) · πθm,old(mak|sk, lax,k) . (5)

The critic net is trained to minimize the loss function (with
clipping following CleanRL (Huang et al., 2022)):

L(ϕ) = Êx,k

[
1
2 (Vϕ(sx,k) − (rx,k + γVϕ(sx,k+1)))2

]
, (6)

The RLS training algorithm is shown in Algo. 1.

4.3. Dealing with Heterogeneous Fluence Patterns

As shown in Figure 6, even if target fluences are from the
same site (e.g., head-and-neck), their pattern can be signif-
icantly different due to patient distinction (e.g., different
size and shape of PTV). To reduce such heterogeneity, we
propose a cropping strategy to normalize the target fluence.

As in Figure 6, we first detect positive values in target flu-
ence with coordination {x̂1, x̂2, ŷ1, ŷ2}, and crop the tar-
get fluence with bounding box {x1 = x̂1, x2 = x̂2, y1 =
ŷ1/2, y2 = (ŷ2 + Y )/2}. In the training, y1 and y2 are
sampled from (0, ŷ1) and (ŷ2, Y ) respectively for data aug-
mentation. P̂ is predicted leaf positions in the output space

RLS agents

 Crop 
   & 
Resize

BBox: Normalized Size:

Map leaf positions to original fluence coordination:

Predicted Leaf Position:

Figure 6. Illustration of dealing with heterogeneous fluences with
proposed cropping strategy. The red box is ROI covers fluence
locations with positive intensity. The RLS agents module only
deal with normalized fluence maps.

of RLS, which is transformed to original fluence coordi-
nation as P obtained by linear interpolation and resize
P = Resize(P̂ · y2−y1

Y + y1, (K, x2 − x1, 2)).

4.4. Dealing with Various Length of Sector

Due to various of machine or optimization settings, the
number of control points in one sector may be different. To
make a single model that can be applied to various lengths,
we provide a novel post-processing strategy: In order to
merge two (for example) control points presented as coor-
dinates pk = pk−1 + dk, and pk+1 = pk + dk+1 (where
pk and dk are the position and predicted position change
associated to CPk); the merged position at CPk is defined
as p̄k = pk+pk+1

2 = pk−1 + dk + dk+1
2 . Thus, RLS can deal

with various number of CPs in a sector with post-processing
and without fundamentally change the RL module.

4.5. Innovation Highlight

In this study, we apply PPO and multi-agent learning prin-
ciples to develop an innovative RL model that incorporates
two-level agents (leaf agents and MU agent) in a finite hori-
zon context, aiming to reduce time complexity. This model
is tailored to address real-world challenges in RL. Our pro-
posed reward mechanism empowers controllable movement
patterns of the leaf sequence, a crucial element in RTP. Our
study demonstrates an inaugural application of deep multi-
agent RL methods of leaf sequencing. This approach has the
potential to partially replace optimization methods in RTP
and facilitate end-to-end learning with other AI modules.

5. Experiment
5.1. Dataset, Pre-processing, and Plan Evaluation

Two sites of RT cancer treatment from four datasets are
included: head-and-neck (HN) and prostate (Pros). The
HN site includes three datasets: 1) the HNd set contains
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493 patients after quality assurance used for training and
test with a train/validation/test split, 2) two external test
sites from TCIA: HNe1 (Bejarano et al., 2018) with 31
patients and HNe2 (Grossberg et al., 2020) with 140 patients
after filtering. The Pros site is from a public dataset with
access permission requirements, including 555 patients after
filtering. Each patient has up to 525 target fluences from
PORIx environment. Details are in Appendix G.

We have three contexts to evaluate the proposed model. 1)
Photon Optimizer Research Inference (PORIx) of a leading
commercial radiotherapy company Varian; 2) end-to-end
full-AI research pipeline for VMAT; and 3) simulation with
IMRT. The PORIx is a leading optimization environment
which provides callbacks of target fluence and leaf position-
s/MUs. It also allows the user to overwrite the output of
the leaf sequencer, which can compare our method with the
leaf sequencer in PORIx from multiple perspectives (see
Appendix B). The leaf sequencing optimization in PORIx,
terms as PORIx for short in some contexts, serves as a
baseline to compare with our RLS.

5.2. Evaluation Metrics

We include three levels of evaluation for leaf sequencing:
(1) Mean of Normalized Square Error (MNSE) to evalu-
ate the fluence reconstruction performance, which is de-
fined as 1

n

∑n
i=1

||F −F̂ ||2
||F ||2

. (2) Iterations Reducing p%
Error (IREp%) to evaluate the optimization convergence
speed of PORIx when its leaf sequencer is using its default
model vs. our RLS. Specifically, two types of IRE are de-
fined: The absolute IREp% (AIREp%) is defined as the
smallest of iteration whose planning cost is smaller than
E1 · (1 − p%), where E1 is the cost after the first itera-
tion in PORIx. The relative IREp% (RIREp%) is defined as
(E1−min(E))·(1−p%)+min(E). The list E is costs from
the planning costs of iterations in PORIx. (3) To evaluate
the reconstruction performance from 3D dose perspective
(3D doses are computed from target vs. predicted fluences),
we use the Dose score and DVH score from the OpenKBP
challenge (Babier et al., 2020).

5.3. Experimental Settings

Our implementation is motivated by CleanRL (Huang et al.,
2022). Our major backbone is based on PPO, which has
shown success in many applications including GPT-4 (Ope-
nAI, 2023). The actions of leaves/MUs follow the physical
regularization in the planning system, and MU actions of
a sector/field are refined with ridge regression. We follow
hyper-parameters related to PPO settings in CleanRL un-
less mentioned. We apply the AdamW optimizer with an
initial learning rate of 1e-4, weight decay 1e-4, and a Co-
sine Annealing scheduler. The reward ratios {λi} are set
to {1, 2, 2, 1, 1} except in ablation studies. The action hy-

HNd HNe1 HNe2 Pros Pros(e)

PORIx .219 .257 .241 .079 .079
ours .149 .165 .146 .042 .043

Table 1. The MNSE (↓) from target fluence and predicted fluence.

HNd HNe1 HNe2 Pros Pros(e)

RIRE97% metric (↓)
PORIx 18.8 26.3 20.6 4.13 4.13

ours 12.6 10.7 14.4 3.85 3.75
AIRE97% metric (↓)

PORIx 27.2 46.8 41.0 4.21 4.21
ours 17.6 27.9 31.6 3.93 3.78

AIRE99% metric (↓)
PORIx 56.7 71.0 62.2 8.65 8.65

ours 50.1 66.3 53.1 7.25 7.05

Table 2. RIRE97%, AIRE97% and AIRE99% of PORIx vs. ours.

perparameters S, Rb, Re are set as 4, 0.5, 2.5, respectively.
More details can be found in Appendix C.

5.4. Main Experimental Results

Planning with PORIx. Table 1 and 2 show the compari-
son between our RLS and leaf sequencing optimization in
PORIx. We achieve the lower MNSE across all compared
contexts, indicating our RLS can reconstruct target fluence
better than PORIx with executable leaf positions and MUs.
The reduced AIRE and RIRE suggest that an optimization
planner, such as PORIx, incorporating our RLS, has the
potential for quicker convergence. Figure 7 and 8 depict
typical outcomes of our RLS and the PORIx optimizer. The
RLS excels in challenging cases, especially in large and
heterogeneous PTV cases of the head-and-neck (first row in
both figures). In easier cases of head-and-neck and prostate
(second and third rows), RLS performs close or slightly
outperforms PORIx optimizer. Notably, easy cases exhibit
better reconstruction and faster convergence, which may not
pose a significant challenge in RTP.

Dose score (↓) DVH score (↓)
MAE MSE MAE MSE

OpenKBP S1 2.4 (1st) 15.5 (1st) 1.5 (1st) 5.9 (1st)
OpenKBP S2 2.6 (2nd) 16.6 (2nd) 1.7 (12nd) 6.8 (10th)
OpenKBP S3 2.7 (4th) 18.1 (5th) 1.5 (2nd) 6.0 (2nd)

Teng et al. (2024) 2.1 - 0.98 -

ours (VMAT, 8 cps) 0.19 0.18 0.88 1.2
ours (IMRT, 32 degree) 0.23 0.28 0.97 1.6

Table 3. Dose and DVH scores when comparing a 3D dose from
prediction and a 3D dose from target. The upper panel is best
performances in the OpenKBP leaderboard (Babier et al., 2020)
and the latest breakthrough; the lower panel is for evaluating leaf
sequencing when target fluence from fluence prediction module.
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(a) target (b) ours (c) PORIx

Page 1

NSE: .06 NSE: .20

NSE: .03 NSE: .01

NSE: .04 NSE: .05

Figure 7. Predicted fluence vs. target fluence. The reconstruction
error is shown right bottom of the predicted fluences. First row:
hard case from HN; second row: easy case from HN; third row:
prostate case. This figure is matched with cases in Figure 8.

Full-AI End-to-end VMAT Planning (Prostate). As in
Figure 1, a typical RTP pipeline can consist of three major
components. Here, we evaluate our RLS in the context of
a full-AI end-to-end framework without optimization itera-
tion. The objective definition is replaced by dose prediction
adapted from Gao et al. (2023), and the fluence prediction is
motivated by Wang et al. (2020) (which was originally for
IMRT field dose, here has been adapted for VMAT). More
details of dose/fluence predictions are in Appendix E.

As in Figure 9 and Table 3, the computed 3D doses from
target fluence (not executable for machine) and predicted
fluence from RLS (executable from machine) are close, both
visually and in terms of Dose/DVH scores. Compared to
dose prediction (a module needed in E2E pipeline) from
OpenKBP challenge (Babier et al., 2020), RLS achieves
better Dose score and DVH score compared to state-of-the-
art models in OpenKBP 2.

Simulation for IMRT. Although RLS was designed for
VMAT contexts, it can be applied to leaf sequencing of
IMRT with a simulation testbed. We group 16 control points
(∼32 degree between two adjacent beam angles) as a sin-
gle field from fluence prediction module of the end-to-end
pipeline in a IMRT-simulation context. As in Table 3 (last
row), our RLS also achieves promising performance.

5.5. Ablation Studies

Backbone. Our major experiments follow the settings of
PPO in CleanRL (Huang et al., 2022), i.e., the networks
of actor and critic are separated. We include the ablation

2It is a compromise to use records of OpenKBP to compare
with our model since our tasks are not the same as in OpenKBP.
See detailed considerations in Appendix E.

Page 1

Restricted © Siemens Medical Solutions USA, Inc., 2022

(a) HN, large PTVs

(b) HN, small PTVs

(c) Pros

Figure 8. Typical cases in different scenarios. The left panel shows
the PTV contours within body mask; right panel shows the main
optimization cost with the number of iterations. Upper: large PTVs
(PTV 54 and PTV 60) in HN, middle: small PTVs in HN (PTV
66), lower: PTV in prostate. The RLS brings clear improvements
for hard cases (e.g., those with large PTVs).
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Figure 9. RT plan from an AI end-to-end preliminary solution.
(a) target is the 3D dose computed from fluences (not machine
executable) of Fluence Prediction module, while (b) prediction is
computed from executable leaf sequencing. The lower part shows
DVHs from target (solid lines) and prediction (dash lines).
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Figure 10. The ablation of different actor-critic structures with
normalized reconstruction errors. share and separate represent the
policy-net and critic-net are shared and separated, respectively.
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Figure 11. Different weights on leaf speed regularization (i.e., Re-
ward 4 in Eq. 2). Four scales of λ4 are compared; Large: 5, middle:
1, small: 0.1, X small: 0.01.

studies of sharing backbone between actor and critic, and
PPG (Cobbe et al., 2021) which separates actor and critic
training into distinct phases. As shown in Figure 10, in
our leaf sequencing context, the shared-network setting is a
little worse than the separate-network under the PPO setting.
Overall, the PPG framework has minor superiority over PPO
backbones. Considering differences are not significant in
these three backbones and for simplicity purposes, we apply
the most widely used PPO (separated) for the majority of
our experiments. We leave careful comparisons of different
backbones in future work.

The Ratio of Reward Components. To better understand
the sensitivity of different reward components, we conduct
the ablation studies with five different ratios of each reward,
as shown in Table 4.

Reward 1 and 2 are the major rewards driving the feasi-
bility of RLS, as depicted in Figure 13c, which are more
sensitive to weights. Reward 3-5 are auxiliary with clinical
or physical considerations, which are less sensitive to the
weight. The default weights achieved a reasonably good
performance, exposing such ablation studies guides users to
choose weights in different scenarios.

Weight 0 0.01 0.1 1 10

λ1 0.300 0.289 0.229 0.149 0.181
λ2 0.574 0.528 0.271 0.151 0.226
λ3 0.155 0.152 0.150 0.149 0.151
λ4 0.148 0.147 0.147 0.149 0.167
λ5 0.150 0.148 0.149 0.149 0.165

Table 4. The reconstruction errors (MNSE) of five weights in dif-
ferent scale for each reward ratio λi (other λj ̸=i) are set to default
ratio. The default ratios are {λ1 : 1, λ2 : 2, λ3 : 2, λ4 : 1, λ5 : 1},
which achieve 0.149 of MNSE.

HNe1 Pros(e)

w/o Crop w Crop w/o Crop w Crop
RIRE97% (↓) 13.2 10.7−19% 6.13 3.85−38%
AIRE97% (↓) 27.3 27.9+2% 6.25 3.93−37%
AIRE99% (↓) 69.4 66.3−4% 9.44 7.25−23%

MNSE (↓) .181 .165−9% .060 .043−28%

Table 5. With vs. without cropping comparison. RLS is trained on
HNd, and externally tested on HNe1 and prostate sites.

Figure 11 shows a detailed ablation study of the leaf change
in adjacent control points (i.e., Rk

4 in Eq. 2). High leaf speed
may increase the instability and violate the max speed of
the RT machine, while low speed may reduce the flexibility
to reconstruct the target fluence. We demonstrate that by
tuning the weight of the reward (i.e., λ4) in training, our
model allows user preference in the balance between leaf
speed and reconstruction performance.

Cropping Strategy. The utilization of the cropping strat-
egy facilitates the normalization of heterogeneous fluence
patterns. A comprehensive comparison, as in Table 5, high-
lights the impact of cropping vs. no cropping and the opti-
mization solution. Significantly, the cropping strategy has
enhanced the performance of leaf sequencing, particularly
evident in external testing across diverse sites, as indicated
by the columns for Pros(e) in Table 5. This scenario involves
training on head-and-neck cancer site and subsequently ex-
ternal testing on prostate cancer site. More experimental
results can be found in Appendix H.

6. Discussion
Conclusion. This paper introduces the Reinforced Leaf Se-
quencer (RLS), a pioneer multi-agent reinforcement learn-
ing approach in practical leaf sequencing for radiotherapy.
RLS can potentially supplant commonly used optimization-
based methods, producing executable plans. Our technical
contribution involves extending multi-agent and Proximal
Policy Optimization (PPO) into a two-level practical leaf
sequencing framework, incorporating novel rewards and
actions. We assess the performance of the proposed RLS
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using four datasets (three from head-and-neck site and one
from prostate site) in three distinct contexts: 1) a practical
radiotherapy environment, 2) a full-AI end-to-end research
pipeline, and 3) IMRT simulation. Notably, our AI model,
even without an iteration loop, exhibits improvements in
terms of reconstruction error and early iteration coverage
rate when compared to optimization methods.

Limitation and Future Work. As an initial endeavor to
address practical leaf sequencing with MARL, our work
has several limitations. First, unlike well-established re-
search domains, our comparative analyses are constrained
by the scarcity of directly relevant literature. Moreover, the
absence of open-source models, often attributable to com-
mercial or confidentiality constraints, further hinders direct
comparisons. Fortunately, the PORIx provides a contem-
porary baseline for evaluation and facilitates meaningful
comparisons. Second, the training of RLS is focused on
leaf sequencing module so that main-loop costs in PORIx
may not be always well-optimized. This limitation is sim-
ilarly present in the end-to-end AI planning pipeline. One
future work is to train different modules end-to-end for
global optimal plan. Third, we currently concentrate solely
on the initial ≤ 100 iterations of PORIx as a preliminary
plan. In clinical practice, the number of iterations can theo-
retically be infinite, and planners can use multi-resolution
planning (as in Eclipse) to fine-tune solutions. We simpli-
fied this process for large-scale automation. One potential
future work could involve initiating the planning process
with deep learning plans, which offer rapid and automated
solutions, followed by a limited number of human/opti-
mization intervention steps. More contexts can be found in
Appendix B. Fourth, we opt for one of the most represen-
tative RL frameworks, specifically PPO, as our backbone.
Its effectiveness has been validated across various RL tasks,
including renowned LLMs (OpenAI, 2023). Although we
perform some ablations on its actor-critic configuration, the
exploration of experimental comparisons among various RL
backbones, such as with model-based RLs (Moerland et al.,
2023), is left for future work.

Outlook. Excitement surrounds the potential of deep learn-
ing to fully or partially replace conventional optimization
in practical RT, despite acknowledged limitations. The pro-
posed RLS stands out for three key reasons: 1) it enables
potential end-to-end learning for the entire planning pipeline
to seek global optimal solutions; 2) unlike the leaf sequencer
method used in iterative optimizers (such as typical VMAT),
there is no need to give as input a “seed sequence” (i.e.,
initial state of leaf positions and MUs) from previous itera-
tion, allowing a more flexible algorithm design; and 3) with
proper learned knowledge, RLS can potentially deliver su-
perior performance than optimization with user-preference.
We are excited about future work when more advanced al-
gorithms and scenarios are applied.

Disclaimer
The information in this paper is based on research results
that are not commercially available. Future commercial
availability cannot be guaranteed.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning for Radiotherapy. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

Acknowledgement
We acknowledge the support of Varian for the research in-
terface of practical planning environment, and its feasibility
to evaluate leaf sequencing performances.

We thank Vivek Singh and Yue Zhang from Digital Technol-
ogy and Innovation, Siemens Healthineers for the helpful
discussions on this study.

We thank all the data contributors to the REQUITE project,
including patients, clinicians and nurses. The core RE-
QUITE consortium consists of David Azria, Erik Briers,
Jenny Chang-Claude, Alison M. Dunning, Rebecca M. El-
liott, Corinne Faivre-Finn, Sara Gutiérrez-Enrı́quez, Kerstie
Johnson, Zoe Lingard, Tiziana Rancati, Tim Rattay, Barry S.
Rosenstein, Dirk De Ruysscher, Petra Seibold, Elena Sperk,
R. Paul Symonds, Hilary Stobart, Christopher Talbot, Ana
Vega, Liv Veldeman, Tim Ward, Adam Webb and Catharine
M.L. West.

References
Amendola, B. E., Amendola, M., Perez, N., Iglesias, A., and

Wu, X. Volumetric-modulated arc therapy with rapidarc:
An evaluation of treatment delivery efficiency. Reports of
practical oncology and radiotherapy, 2013.

Babier, A., Zhang, B., Mahmood, R., Moore, K. L., Purdie,
T. G., McNiven, A. L., and Chan, T. C. Y. OpenKBP: The
open-access knowledge-based planning grand challenge.
Medical Physics, 2020.

Barragán-Montero, A. M., Nguyen, D., Lu, W., Lin, M. H.,
Norouzi-Kandalan, R., Geets, X., Sterpin, E., and Jiang,
S. Three-dimensional dose prediction for lung IMRT
patients with deep neural networks: robust learning from
heterogeneous beam configurations. Medical Physics,
2019.

Bedford, J. L. Treatment planning for volumetric modulated
arc therapy. Medical physics, 2009.

Bejarano, T., Ornelas-Couto, M., and Mihaylov, I. Head-

9



MARL Meets Leaf Sequencing in RT

and-neck squamous cell carcinoma (hnscc) patients with
3d ct taken during pre-treatment, mid-treatment, and post-
treatment dataset. The Cancer Imaging Archive, 2018.

Bergman, A. M., Gete, E., Duzenli, C., and Teke, T. Monte
carlo modeling of hd120 multileaf collimator on varian
truebeam linear accelerator for verification of 6x and 6x
fff vmat sabr treatment plans. Journal of applied clinical
medical physics, 2014.

Cao, D., Earl, M. A., Luan, S., and Shepard, D. M. Continu-
ous intensity map optimization (cimo): a novel approach
to leaf sequencing in step and shoot imrt. Medical physics,
2006.

Carrasqueira, P., Rocha, H., Dias, J., Ventura, T., Ferreira,
B., and Lopes, M. An automated treatment planning
strategy for highly noncoplanar radiotherapy arc trajecto-
ries. International Transactions in Operational Research,
2023.

Cedric, X. Y. and Tang, G. Intensity-modulated arc ther-
apy: principles, technologies and clinical implementation.
Physics in Medicine & Biology, 2011.

Cobbe, K. W., Hilton, J., Klimov, O., and Schulman, J.
Phasic policy gradient. In International Conference on
Machine Learning, 2021.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, 2006.

Earl, M. A., Shepard, D. M., Naqvi, S., Li, X. A., and
Yu, C. X. Inverse planning for intensity-modulated arc
therapy using direct aperture optimization. Physics in
Medicine and Biology, 2003.

Elekta. High-precision treatment planning for radia-
tion therapy, 2023. URL https://www.elekta.
com/products/oncology-informatics/
elekta-one/treatment-applications/
monaco/. Accessed: 2023-10-12.

Elmore, S. N. C., Prajogi, G. B., Rubio, J. A. P., and Zu-
bizarreta, E. The global radiation oncology workforce in
2030: estimating physician training needs and proposing
solutions to scale up capacity in low-and middle-income
countries. Appl Rad Oncol, 2019.

Fallahi, A., Mahnam, M., and Niaki, S. T. A. A discrete
differential evolution with local search particle swarm
optimization to direct angle and aperture optimization in
imrt treatment planning problem. Applied Soft Comput-
ing, 2022.

Feng, Z., Wen, L., Wang, P., Yan, B., Wu, X., Zhou, J., and
Wang, Y. Diffdp: Radiotherapy dose prediction via a

diffusion model. In International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Springer, 2023.

Fogliata, A., Cozzi, L., Reggiori, G., Stravato, A., Lobe-
falo, F., Franzese, C., Franceschini, D., Tomatis, S., and
Scorsetti, M. RapidPlan knowledge based planning: Iter-
ative learning process and model ability to steer planning
strategies. Radiation Oncology, 2019.

Ganeshan, A. R. Reinforcement learning applied to mlc
tracking, 2021.

Gao, R., Lou, B., Xu, Z., Comaniciu, D., and Kamen, A.
Flexible-cm gan: Towards precise 3d dose prediction in
radiotherapy. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2023.

Ghesu, F.-C., Georgescu, B., Zheng, Y., Grbic, S., Maier,
A., Hornegger, J., and Comaniciu, D. Multi-scale deep
reinforcement learning for real-time 3d-landmark detec-
tion in ct scans. IEEE transactions on pattern analysis
and machine intelligence, 2017.

Gronberg, M. P., Jhingran, A., Netherton, T. J., Gay, S. S.,
Cardenas, C. E., Chung, C., Fuentes, D., Fuller, C. D.,
Howell, R. M., Khan, M., et al. Deep learning–based
dose prediction to improve the plan quality of volumetric
modulated arc therapy for gynecologic cancers. Medical
physics, 2023.

Grossberg, A., Elhalawani, H., Mohamed, A., Mulder, S.,
Williams, B., White, A., Zafereo, J., Wong, A., Berends,
J., AboHashem, S., Aymard, J., Kanwar, A., Perni, S.,
Rock, C., Chamchod, S., Kantor, M., Browne, T., Hutch-
eson, K., Gunn, G., Frank, S., Rosenthal, D., Garden,
A., and Fuller, C. M.d. anderson cancer center head and
neck quantitative imaging working group. (2020) hnscc
[dataset]. The Cancer Imaging Archive, 2020.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. In Interna-
tional Conference on Machine Learning, 2018.

Hrinivich, W. T. and Lee, J. Artificial intelligence-based
radiotherapy machine parameter optimization using rein-
forcement learning. Medical physics, 2020.

Hrinivich, W. T., Bhattacharya, M., Mekki, L., McNutt, T.,
Jia, X., Li, H., Song, D. Y., and Lee, J. Clinical vmat ma-
chine parameter optimization for localized prostate can-
cer using deep reinforcement learning. Medical physics,
2024.

10

https://www.elekta.com/products/oncology-informatics/elekta-one/treatment-applications/monaco/
https://www.elekta.com/products/oncology-informatics/elekta-one/treatment-applications/monaco/
https://www.elekta.com/products/oncology-informatics/elekta-one/treatment-applications/monaco/
https://www.elekta.com/products/oncology-informatics/elekta-one/treatment-applications/monaco/


MARL Meets Leaf Sequencing in RT

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D.,
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Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and algo-
rithms. Handbook of reinforcement learning and control,
2021.

12

https://cancer.ca/en/treatments/treatment-types/radiation-therapy/external-radiation-therapy
https://cancer.ca/en/treatments/treatment-types/radiation-therapy/external-radiation-therapy
https://cancer.ca/en/treatments/treatment-types/radiation-therapy/external-radiation-therapy
https://www.varian.com/products/radiotherapy/treatment-planning/rapidplan-knowledge-based-planning
https://www.varian.com/products/radiotherapy/treatment-planning/rapidplan-knowledge-based-planning
https://www.varian.com/products/radiotherapy/treatment-planning/rapidplan-knowledge-based-planning
https://www.varian.com/products/radiotherapy/treatment-planning/rapidplan-knowledge-based-planning
https://www.varian.com/products/radiosurgery/treatment-planning
https://www.varian.com/products/radiosurgery/treatment-planning


MARL Meets Leaf Sequencing in RT

Appendix
Appendix A introduces the background of radiotherapy to readers who do not have much background in radiotherapy. We
include cartoon illustrations, explanations of terminologies in Appendix A.1, and a summary of mathematical symbols in
Appendix A.2.

Appendix B provides a more detailed introduction to the planning environment PORIx.

Appendix C includes more hyperparameters compared to the main text.

Appendix D details the network structures of our model.

Appendix E introduces the other modules (except for leaf sequencing) in the full-AI end-to-end planning pipeline, and the
considerations of evaluating leaf sequencing in 3D dose space and comparison with dose prediction metrics (Table 3).

Appendix F includes more details of reward components and their PyTorch style pseudo code.

Appendix G details the datasets.

Appendix H shows multiple examples of the optimization cost curve of PORIx, comparing the proposed RLS, RLS without
cropping, and the optimization sequencer in PORIx.

Appendix I includes additional examples illustrating reconstruction errors.

13



MARL Meets Leaf Sequencing in RT

A. Introduction to Radiotherapy
In this section, we offer a comprehensive overview of radiotherapy concepts relevant to our research. Our aim is to assist
readers in understanding our work from a machine learning standpoint, even if they lack a background in radiotherapy.
Explanations of related terminology and mathematical symbols are summarized in Appendix A.1 and A.2. Cartoon
illustrations of the radiotherapy machine and MLC/fluences are shown in Figure 12 and 13, respectively.
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Gantry

Multileaf collimator

X-ray beam

Patient laydown table

Isocenter (red spot)

Figure 12. Cartoon illustration of a typical radiotherapy machine. The machine figure (except the annotations) is borrowed from (Society,
2024). The multileaf collimator is connected with concept in Figure 13.

Cumulated Fluence

Target Fluence

(a) multi-leaf pairs in 2D (c) cumulated vs. target

Cumulated Fluence Cumulated Fluence

Target Fluence

(a) multi-leaf pairs in 2D (b) one-leaf pair in 3D (c) one-leaf pair fluences (e) real fluence

(d) cartoon fluence

X-ray

Cumulated Fluence

(b) one-leaf pair in 3D

X-ray

PTV projection leaf (2D) leaf (3D) fluence intensity in one bixel

Figure 13. Cartoon illustration of MLC and fluences, an extension figure of Figure 3 in the main text. (a) shows multi-leaf pairs in 2D
representing Multi-leaf Collimator and PTV projections when observed from the direction of radiation source. (b) provides a 3D view of
a leaf pair and its connection to cumulated fluences. (c) illustrates motivations of Reward 1 (green) and Reward 2 (red) by comparing
cumulated and target fluences. (d) shows a cartoon illustration of fluences from multi-leaf pairs, and (e) represents a real fluence map.

A.1. Aberrations, Explanations of Terminologies

Radiotherapy (RT): also known as radiation therapy, it is one of the primary medical treatments that uses high-energy
radiation (such as photons, electrons, or protons) to target and kill cancer cells or shrink tumors. The goal of radiation
therapy is to damage the DNA inside the cancer cells, preventing them from growing and dividing, while minimizing damage
to nearby healthy cells. There are two types of RT: External Beam Radiation Therapy and Internal Radiation Therapy. In
this paper, we mainly focus on photon External Beam Radiation Therapy.

Radiotherapy Planning (RTP): In radiation oncology, radiotherapy planning is a precise process that strategically
administers radiation to treat conditions such as cancer, with the goal of maximizing tumor destruction while minimizing
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damage to adjacent healthy tissues. In photon External Beam Radiation Therapy, the planning task involves optimizing
incoming fields/sectors from different directions.

Volumetric Modulated Arc Therapy (VMAT) and Intensity-Modulated Radiation Therapy (IMRT): VMAT and IMRT
are two major modern radiotherapy treatments, both aiming for precise dose delivery. In some literature, VMAT has been
broadly categorized under IMRT. The illustrations of VMAT and IMRT are summarized in Figure 2. The gantry is static for
IMRT and dynamic for VMAT during X-ray delivery.

Planning Target Volume (PTV): A three-dimensional (3D) volume delineated on specific medical planning images (e.g.,
CT images), outlining the region where the prescribed dose level is targeted to achieve the desired tumor control. The
PTV generally encompasses the visually identified tumor, adjacent healthy tissue at a high risk of harboring proliferative
cancer cells, and geometric margins to accommodate positioning inaccuracies between the planning images and the patient’s
anatomy during treatment.

Organ at Risk (OAR): This term refers to any healthy organ or tissue (such as the heart, lung, eye, bladder, etc.) located
in proximity to the region undergoing radiation treatment, and which could potentially experience adverse effects due to
exposure to radiation.

RT Dose: Also known as 3D Dose or Dose within the context of this paper, it denotes the precise quantity of radiation
administered to a Planning Target Volume (PTV) within a patient’s body throughout a course of radiation treatment. This
measurement represents the absorbed amount of radiation energy by the tissues undergoing treatment. RT Dose is a 3D
matrix that shares the same shape with CT and ROI contours.

Fluence Map: This term refers to a depiction of the intensity of a radiation beam across the treatment field. It is a
two-dimensional (2D) map that visualizes how the radiation dose is distributed across a specific cross-sectional area of the
patient’s body. Fluence maps play a crucial role in contemporary radiation therapy treatment planning and delivery.

Isocenter: The isocenter is determined during the treatment planning process, where medical professionals use imaging
techniques such as CT scans to identify the tumor’s location and define the treatment volume. Once the treatment plan
is established, the linear accelerator or other radiation delivery equipment is adjusted to ensure that the beams intersect
precisely at the isocenter.

Control Point: This term denotes a specific time point in the administration of radiation therapy. The details of a control
point encompass the positions of all leaf pairs and the monitor unit at that specific time point.

Multileaf Collimator (MLC): Positioned in close proximity to the patient’s body and situated in the path of the radiation
beam, the MLC plays a key role in shaping and controlling the radiation beam. Its primary function is to enable precise and
conformal radiation treatment, facilitating highly targeted delivery.

Leaf: The MLC consists of a series of individual “leaves” or “slats” arranged in pairs. These leaves are typically made of
high-density material, such as tungsten, to effectively block the radiation.

Photon Optimizer Research Interface from Varian (PORIx): An optimizer for photon VMAT planning that provides an
interface for the necessary components for RL agent training: the implemented callbacks of the interface allows user to
replace the prediction in the PORIx so the AI model can be evaluated in this environment. More details are in Section B and
Figure 14.

Main Optimization Cost: This term originates from the cost callbacks provided by PORIx, where it represents the
dosimetric cost derived from the intermediate dose and dose objectives for each iteration in the optimization process. In
Figure 8 and 15, the “main optimization cost” serves as the y-axis.
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A.2. Summary of Mathematical Symbols

Different Indices:

k: index of control points, the number of control points of a fluence map is K.

x: index of leaf agents, the number of leaf agents of a fluence map is X .

y: index of the second dimension of fluence maps, the second dimension of fluence map is Y , indicating the range of leaf
positions is [0, Y ].

Fluence Map. The target fluence is denoted as F has the size of X × Y . The part of fluence associated to the x-th leaf pair
is denoted as Fx. The predicted fluence is termed F̂ . The k-th cumulated fluence is termed as F̂ k, which is cumulated from
CP1 to CPk, the unit fluence of CPk is termed as F̃ k, so F̂ k =

∑
Mk · F̃ k. Given K control points for the target fluence,

we have F̂ = F̂ K .

3D Dose. Tn the end-to-end AI pipeline. the reference dose is termed as D, and predicted dose is D̂.

Leaf Pair. Tn a leaf pair, the leaf with smaller index is termed as A and the other is B. The position of x-th leaf pair at k-th
control point is termed as (Ak

x, Bk
x).

Control Point: denoted as CP . A fluence is associated with K control points, and k-th control point is termed as CPk.

Monitor Unit: termed as M . The monitor unit at k-th control point is Mk.

Leaf Policy: termed as πθl
. All leaf pairs share the same leaf policy.

MU Policy: termed as πθm
.

Critic Net: termed as Vϕ.

Reward: the total reward is termed as R, and Reward i is termed as Ri. As the shown in the Eq. 2, the rewards related to
x-th leaf pair is Rk

i .

Environment: is termed as Env, which follows radiotherapy-related computations in PORIx.

Expection: is termed as Ê[·].

Sigmod Function: is termed as σ(·).

Indicator Function. In this paper, 1(·) is defined as

1(0,∞)(x) =
{

1 if x > 0,

0 if x ≤ 0.
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B. Introduction of PORIx
Photon Optimizer Research Interface (PORIx) originates from a prominent commercial company, Varian Medical Systems,
a Siemens Healthineers company. The framework of PORIx3 is depicted in Figure 14. This research interface is adept at
generating radiotherapy (RT) plans through scripting. Callbacks within the interface allow users to substitute predictions,
facilitating the evaluation of AI models within the PORIx environment. It is worth noting that clinical planning is a complex
and often subjective process, involving experts with diverse backgrounds. Various metrics and considerations may be
included for planning optimization, beyond the metrics used in this paper.

In this study, our focus centers on assessing the leaf sequencing functions within the initial 100 iterations. During this phase,
the number of control points in one sector is fixed at either 16 or 10, similar to the VMAT photon optimization in Varian’s
Eclipse. The main focus in this paper is on the first-level resolution of the multi-resolution optimization and no manual
intervention during optimization.

One potential future work could involve initiating the planning process with deep learning plans, which offer rapid and
automated solutions, followed by a limited number of human/optimization intervention steps. This approach may promise a
faster and more efficient path compared to conventional methods that start from scratch, while also leading to safe plans
approved by experts.

Page 1

PORIx python wrapper:

1. VMAT Optimizer,

2. A set of callbacks

Current target 

fluence maps
Current leaf 

positions

Leaf Sequencing Optimizer

Current 

MUs

U
p

d
at

ed
 l

ea
f 

p
o

si
ti

o
n
s/

M
U

s

Executable (.exe) 

for binary data 

creation

CT images (.dcm)

Structures (.dcm)

Parameters (.json):

• Plan objectives,

• Field geometry,

• …

A set of binaries

3D Dose,

DVHs, …

Upon 

convergence

input

output

Figure 14. Illustration of RT planning with PORIx. The input of the planning includes CT, RT structures, and a set of planning parameters.
The PORIx is a python wrapper of VMAT optimizer with a set of callbacks that can provide target fluences, monitor units, and leaf
positions of the iterations. Leaf Sequencing Optimizer is another optimization layer for leaf sequencing only. Our RLS can replace the
Leaf Sequencing Optimizer module to get an AI-integrated solution. Note our RLS do not take MUs/leaf positions from previous iteration
which can work beyond a optimization environment.

We estimate the computational requirements (GPU memory occupation) of RLS and whole planning pipelines, as in Table 6.
The RLS itself is computationally efficient due to the lightweight network structure described in Appendix D, and it does
not pose a bottleneck within end-to-end pipelines.

Model Estimated GPU memory occupation

RLS ∼0.35 GB
AI E2E pipeline (dose/fluence prediction + RLS) ∼2.8 GB
PORIx pipeline ∼3.0 GB

Table 6. Estimated GPU memory occupation when running in different contexts. Disclaimer: The comparison is based on settings in this
study, the number can be varied when the settings are different.

3Our experiments are based on a version of PORIx in 2023. Some features may vary across different versions.
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C. Additional Settings and Hyperparameters

#--------------------------------- General Parameters ---------------------------------#

deep learning platform: PyTorch 1.13

GPU type: NVIDIA RTX A4500

RL iterations: 20000 # similar concept as args.num_iterations in CartPolePPO of CleanRL

Update epochs: 2 # similar concept as args.update_epochs in CartPolePPO of CleanRL

batch_size: 96

#---------------------------------- Parameters for Environment -----------------------#

number of leaf agents: 50

max movement of leaf: 4

number of steps in an episode of training: 16

monitor unit range: 0.5 to 2.5

Reward 1 ratio: 1

Reward 2 ratio: 2

Reward 3 ratio: 2

Reward 4 ratio: 1

Reward 5 ratio: 1

#-------------------------------- Parameters for Loss Functions -----------------------#

discount factor gamma: 0.99

GAE lambda: 0.95

toggles advantages normalization: True

surrogate clipping coefficient: 0.2

clip value loss: True

entropy coefficient: 0.01

maximum norm for the gradient clipping: 0.5

#-------------------------------- Parameters for Optimizer ---------------------------#

learning rate: 1e-4

weigth decay: 1e-4

optimizer: AdamW

optimizer scheduler: CosineAnnealingLR
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D. Details of Network Structures
Leaf Actor:

----------------------------------------------------------------
Layer type Output Shape Param #
================================================================
Input [-1, 205] 0
Linear-1 [-1, 512] 105472
ELU-1 [-1, 512] 0
Linear-2 [-1, 512] 262656
ELU-2 [-1, 512] 0
Linear-3 [-1, 512] 262656
ELU-3 [-1, 512] 0
Linear-4 [-1, 512] 262656
ELU-4 [-1, 512] 0
Linear-5 [-1, 18] 9234
ELU-5 [-1, 18] 0
================================================================
Total params: 902674
Trainable params: 902674
----------------------------------------------------------------

MU Actor:

----------------------------------------------------------------
Layer type Output Shape Param #
================================================================
Input [-1, 205] 0
Linear-1 [-1, 512] 105472
ELU-1 [-1, 512] 0
Linear-2 [-1, 512] 262656
ELU-2 [-1, 512] 0
Linear-3 [-1, 512] 262656
ELU-3 [-1, 512] 0
Linear-4 [-1, 2] 1026
ELU-4 [-1, 2] 0
================================================================
Total params: 631810
Trainable params: 631810
----------------------------------------------------------------

Critic:

----------------------------------------------------------------
Layer type Output Shape Param #
================================================================
Input [-1, 205] 0
Linear-1 [-1, 512] 105472
ELU-1 [-1, 512] 0
Linear-2 [-1, 512] 262656
ELU-2 [-1, 512] 0
Linear-3 [-1, 512] 262656
ELU-3 [-1, 512] 0
Linear-4 [-1, 512] 262656
ELU-4 [-1, 512] 0
Linear-5 [-1, 1] 513
ELU-5 [-1, 1] 0
================================================================
Total params: 893953
Trainable params: 893953
----------------------------------------------------------------

19



MARL Meets Leaf Sequencing in RT

E. The Full-AI End-to-end (E2E) Pipeline
E.1. Introduction of Other Modules

Dose Prediction. Dose prediction with deep learning is a relatively well-studied topic. It can be considered an extension of
planning objectives prediction compared to the dot objectives in conventional optimization or line objectives in RapidPlan.
In most literature, the input of this module includes the CT and masks of PTV/OARs (along with other auxiliary conditions),
and the output is the estimated 3D dose required for cancer treatment.

In this work, the dose prediction module is trained in a conditional GAN framework, inspired by Gao et al. (2023); Kearney
et al. (2020). The adversarial training is to make the predicted 3D dose realistic. In the end-to-end AI pipeline, this dose
prediction module serves as the dose objectives definition as in Figure 1.

Fluence Prediction. After obtaining the 3D dose, we predict this fluence map of each beam angle as a 2D intensity map.
This module is motivated by Wang et al. (2020) and we have made significant changes to extend the fluence map prediction
for VMAT. The fluence prediction module predicts all fluence maps jointly, whose input is projections of the 3D dose map
to the beam’s eye view of gantry angles. In the end-to-end AI pipeline, this dose prediction module serves as the optimal
fluence prediction as in Figure 1. Following a similar setting in PORIx that multiple control points contribute to each fluence,
the resolution of target fluences in the VMAT context is eight control points per fluence except the beginning and ending
fluences is nine control points (as in bottom of Table 3). A full arc has 178 control points in total, which has been divided
into 22 sectors for leaf sequencing.

The primary difference between this full-AI pipeline and frequently used optimization methods lies in its ability to be
executed in a single (or few) iteration(s), thus the former can potentially accelerate the planning process significantly. It
is important to note that this full-AI pipeline is currently in the preliminary stage and may yield lower quality plans than
commercial optimization platforms. Also, some detailed clinical settings may be simplified in this AI pipeline. Despite these
considerations, we see the full-AI pipeline as a valuable testbed, particularly since this study mainly focuses on evaluating
the leaf sequencing module.

E.2. Consideration of Table 3

The rationale behind utilizing the dose prediction record presented in Table 3 is to assess the error scale of our model by
comparing it to an extensively studied task (i.e., dose prediction) in a full-AI end-to-end pipeline. A good match between
the target and prediction indicates promising performance of RLS in this end-to-end pipeline. Notably, there is currently no
established reference in the literature for a direct comparison with our model in such a pipeline. The decision to refer to
the OpenKBP record is based on its status as the most widely recognized open challenge in radiotherapy, with researchers
consistently updating and improving the top-performing models through open-sourced evaluations. We acknowledge those
two (i.e., dose prediction (upper part of Table 3) and evaluation fluence prediction in 3D dose perspective (lower part of
Table 3) 4 are not the same task and show their similarity and differences below:

Similarity: both those two tasks are evaluated by the difference between two 3D dose maps based modules in radiotherapy
plan workflow.

Differences: as mentioned above, the outcome in dose prediction is a 3D estimation of dose distribution, and there is no
guarantee that the machine can achieve the predicted dose. Contrastively, the two doses from the second task are obtained
by the same dose calculation method (i.e., Acuros XB of Eclipse5) and the target/prediction fluences. Fundamentally, this is
for evaluating the performance of leaf sequencing but using an auxiliary way. The predicted dose of this module is machine
executable.

4The number of test patients for end-to-end pipeline is 64 since treatment configurations of some patients are not applicable to
dose/fluence prediction modules.

5https://www.varian.com/products/radiotherapy/treatment-planning/eclipse
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F. Details/Pseudo-Code of Rewards
This section provides supplementary information for rewards in Section 4.1. The trade-off between reconstruction accuracy
and other clinically relevant factors is carefully considered in the design of rewards. Specifically, Reward 1 and 2 are to
guide agents to reconstruct the target fluence, and Reward 3, 4, and 5 take into account various clinical considerations.

Reward 1. As depicted in Figure 13c, the green parts indicate the Reward 1, which pushes the cumulative fluence closer to
target fluence.

Reward 2. As depicted in Figure 13c, the red parts indicate Reward 2, which punishes agents if the intensity of cumulative
fluence exceeds that of target fluence.

Reward 3: avoiding cross leaves. This reward component is to encourage the agent to avoid predictions where left- and
right-leaf positions intersect, which violates the physical laws. In addition to this, the environment enforces that the final
leaf positions do not intersect and do not extend beyond the radiation fields.

Reward 4: smoothness of actions (Leaf/MU change between control-points). Ensuring smooth change in leaf / MU
configuration is necessary as significant or sudden changes in leaf positions may cause machine instability. We demonstrated
that by tuning the weight of the reward (Figure 11), our model allows users to balance between the maximum leaf speed
(machine-dependent parameter) and the reconstruction performance.

Reward 5: aperture shape regularization motivated from Younge et al. (2012). According to Younge et al., volumetric
modulated arc therapy (VMAT) planning often yields small, irregular aperture shapes, leading to dosimetric inaccuracies
during delivery. We included this regularization as R5 = area of aperture / perimeter of aperture following Younge et al.
(2012).

Below shows the Pytorch-style pseudo code of the rewards:

# MU: monitor unit, mask: unit fluence
# y_tail: leaf position of leaf A_x (i.e., the left leaf or the tail leaf)
# y_front: leaf position of leaf B_x (i.e., the right leaf or the front leaf)
rw1 = MU * torch.sum((tar_fluence - cumu_fluence >= MU) * mask, axis = 1)
cumu_fluence += mask * MU
rw2 = - torch.sum((tar_fluence - cumu_fluence < 0) * mask, axis=1)
rw3 = (y_front - y_tail > 0) - (y_front - y_tail < 0)
rw4 = 3 - sigmoid(delta_front) - sigmoid(delta_tail) - sigmoid(delta_MU)
rw5 = Aperture(y_front, y_tail)
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G. Dataset Description
The dataset distribution is described in Table 7. Unlike tasks in other AI fields (e.g., computer vision or natural language
processing tasks are usually easy to get thousands, millions, or even billions of data samples), RT planning data for research
use is relatively limited. Most RTP research related to deep learning typically involves fewer than 500 patients. For example,
the well-studied OpenKBP challenge includes only 340 patients. Our study is conducted on relatively larger-scale data
resources with more patients.

Dataset Name Cancer Site # Patient after filtering train/val/test Availability

HNd head-and-neck 493 370/10/113
Data will not be public available due
to data regularization

HNe1 head-and-neck 31 0/0/31 Public: www.cancerimagingarchive
.net/collection/hnscc-3dct-rt

HNe2 head-and-neck 140 0/0/140 Public: www.cancerimagingarchive
.net/collection/hnscc

Pros Prostate 555 471/10/84 Public with permission required (Seibold
et al., 2019)

Pros(e) the same set as Pros, but test results are reported when model trained by head-and-neck site.

Table 7. The description of datasets used in our experiments. Note that our experiment is conducted at fluence level. Each patient has
up to 525 target fluences (within 100 iterations optimization in PORIx). Compared to original dataset, some patients are filtered due to
missing data, quality issue, and incompatibility with environment/software.

The experiments and evaluations on different datasets/sites/scenarios (e.g., Table 1 and 2) indicate the generalizability of
our model. Furthermore, leaf sequencing is executed at the fluence-level, encompassing a sample size that is hundreds of
times larger than the number of patients. Our model can have a reasonably good performance even when the training size is
smaller, as in Table 8.

Model MNSE (↓)

PORIx 0.219
RLS (trained with 50 patients) 0.158
RLS (trained with 100 patients) 0.152
RLS (trained with 370 patients) 0.149

Table 8. The reconstruction error MNSE of different number of training patients.

H. Supplementary Examples of Cropping Ablations
As shown in Figure 15, the cropping strategy helped the optimization in terms of faster convergence. Overall, our RLS can
achieve smaller error and faster convergence especially in early iterations during the optimization.

I. Additional Examples Illustrating Reconstruction Errors
Continued with Figure 7, we supplement more and detailed illustrations of fluence reconstruction in Figure 16. Figure 16a to
Figure 16h represents examples from eight different patients, where (a) - (f) are head-and-neck cancer cases, and (g) - (h) are
from prostate cancer site. For each case, the five figures represent target fluence, predicted fluence from RLS, difference
between RLS prediction and target, predicted fluence from PORIx, difference between PORIx prediction and target,
from up to down. The reconstruction error is shown at right bottom. RLS achieves smaller error in the majority of cases.
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1Figure 15. Ablation study with vs. without cropping. The main optimization cost is from callback of PORIx planning environment. ours
denotes that our RLS has replaced the leaf sequencing optimizer of PORIx.
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Figure 16. Supplement examples of Figure 7 in the main text. We provide difference maps between predicted and target fluences here.

24


