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OPTIMAL CONTROL MEETS FLOW MATCHING:
A PRINCIPLED ROUTE TO MULTI-SUBJECT FIDELITY

Anonymous authors
Paper under double-blind review

Base Models Base Models + FOCUS (Ours)

Figure 1: Optimal control makes flow matching models reliable on multi-subject prompts.
Using FOCUS at test time or via fine-tuning yields faithful multi-subject compositions with correct
attributes, minimal leakage, and no omissions, while preserving base style.

ABSTRACT

Text-to-image (T2I) models excel on single-entity prompts but struggle with
multi-subject descriptions, often showing attribute leakage, identity entanglement,
and subject omissions. We introduce the first theoretical framework with a princi-
pled, optimizable objective for steering sampling dynamics toward multi-subject
fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC),
we formulate subject disentanglement as control over a trained FM sampler. This
yields two architecture-agnostic algorithms: (i) a training-free test-time controller
that perturbs the base velocity with a single-pass update, and (ii) Adjoint Match-
ing, a lightweight fine-tuning rule that regresses a control network to a backward
adjoint signal while preserving base-model capabilities. The same formulation
unifies prior attention heuristics, extends to diffusion models via a flow–diffusion
correspondence, and provides the first fine-tuning route explicitly designed for
multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Dif-
fusion XL, both algorithms consistently improve multi-subject alignment while
maintaining base-model style. Test-time control runs efficiently on commodity
GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen
ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Sub-
jects), which achieves state-of-the-art multi-subject fidelity across models.
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1 INTRODUCTION

Text-to-image (T2I) generators have made substantial progress in visual fidelity and prompt ad-
herence, yet they remain brittle on multi-subject prompts. Typical failure modes include attribute
leakage (an attribute intended for one subject propagates to others), identity entanglement (multiple
subjects merged into a hybrid), and subject omission (Chefer et al., 2023; Liu et al., 2022; Bar-Tal
et al., 2023; Dahary et al., 2024). These limitations hinder downstream applications such as story il-
lustration, multi-panel composition, and scientific communication, where preserving subject identity
and attribute binding is essential.

A unifying theoretical perspective on modern T2I generators is flow matching (FM), which param-
eterizes generation as a time-dependent flow from a base distribution to the data distribution via
a learned vector field (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023). This frame-
work encompasses both rectified-flow (RF) models used in recent large-scale systems such as Stable
Diffusion 3.5 (Esser et al., 2024), FLUX (Labs et al., 2025), and earlier denoising-diffusion archi-
tectures such as Stable Diffusion 1.5 (Rombach et al., 2022), Stable Diffusion XL (Podell et al.,
2024), enabling statements that transfer across architectures and training choices. We leverage this
common ground to analyze—and improve—multi-subject fidelity in FM models.

Prior work has attempted to mitigate entanglement through test-time heuristics that reshape cross-
attention (Meral et al., 2024) or adjust guidance (Feng et al., 2023), including token amplification
(Chefer et al., 2023), constraint-based binding (Li et al., 2023b), and structure-aware attention edit-
ing (Hertz et al., 2023; Dahary et al., 2024). While effective in specific settings, these methods are
heuristic and lack a unifying optimization objective, making it unclear when and why they succeed.
Furthermore, most were developed for Stable Diffusion 1.x backbones, and their portability to RF
and modern FM models remains limited.

In this work, we show that multi-subject disentanglement can be formulated as a stochastic optimal
control (SOC) problem for trained FM-based samplers. Concretely, augmenting the base dynam-
ics with a small control that balances proximity to the original generator against a differentiable
disentanglement objective yields a principled formulation and two complementary algorithms:

(i) Test-time controller. A lightweight single-pass controller derived from the optimality con-
ditions of the SOC objective that steers sampling toward disentangled renderings without re-
training. The formulation accepts any differentiable cost, thereby providing a principled path
to adapt existing heuristics to modern FM models.

(ii) Fine-tuning via Adjoint Matching. A stable, low-cost update rule based on Adjoint Matching
(Domingo-Enrich et al., 2025) that regresses a control network onto a backward adjoint signal
under a memoryless noise schedule, directly minimizing the disentanglement objective while
preserving the base model’s style and support.

Empirically, our methods improve multi-subject fidelity across both modern FM models (Stable Dif-
fusion 3.5, FLUX) and earlier diffusion backbones (Stable Diffusion XL). The test-time controller
provides consistent gains with negligible overhead, while fine-tuning further reduces entanglement
without degrading style or generalization beyond the training prompts. Building on these insights,
we introduce FOCUS (Flow Optimal Control for Unentangled Subjects), which consolidates our
framework into a practical algorithm and achieves the strongest results in our experiments. To foster
transparency and reproducibility, we will release code, the curated dataset, and checkpoints of the
best-performing fine-tuned models.

2 PRELIMINARIES

Flow Matching (FM) (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023) trains a
time–dependent vector field vθ : Rd × [0, 1] → Rd that transports a base distribution π0 (e.g.,
N (0, I)) to a target distribution (e.g. Pdata), without simulating a forward noising process during
training. Given a reference path X = (Xt)t∈[0,1] with X0 ∼ π0 and X1 ∼ π1, FM regresses the
conditional velocity

ut(Xt | X0, X1) :=
d

dt
Xt (1)
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so that vθ(x, t) matches its conditional expectation E[ut | Xt = x] (Lipman et al., 2023).

Reference paths. A standard choice is the linear (Gaussian) interpolant

Xt = βtX0 + αtX1, α0 = 0, β0 = 1, α1 = 1, β1 = 0, (2)

where (αt, βt)t∈[0,1] is a differentiable scheduler with αt strictly increasing, and βt strictly decreas-
ing. The pathwise derivative is then ut(Xt | X0, X1) = β̇tX0 + α̇tX1.1. A widely used instance
is rectified flow (RF) with αt = t and βt = 1− t (Liu et al., 2023).

Training objective. FM is trained with the conditional flow matching loss (Lipman et al., 2023)

LCFM(θ) = Et∼U [0,1]EX0∼π0

X1∼π1

[∥∥vθ(Xt, t)− ut(Xt | X0, X1)
∥∥2
2

]
, (3)

which regresses the pathwise velocity toward its conditional mean at uniformly sampled times.

Sampling. After training, sample X0 ∼ π0 and evolve the learned flow by solving the ODE

dXt = vθ(Xt, t) dt, (4)

which produces a path (Xt)t∈[0,1] whose marginals match those of the reference path (Xt)t∈[0,1]

under standard existence–uniqueness conditions; in particular X1 ∼ π1 Lipman et al. (2023). More
generally, FM admits a stochastic formulation (Domingo-Enrich et al., 2025) in which the drift is
augmented by a arbitrary schedule-dependent correction with diffusion coefficient σ(t) ≥ 0:

dXt =

vθ(Xt, t) +
σ(t)2

2βt

(
α̇t

αt
βt − β̇t

)(vθ(Xt, t)−
α̇t

αt
Xt

)
︸ ︷︷ ︸

:=b(Xt,t)

dt+ σ(t) dBt, (5)

where (Bt)t≥0 is standard Brownian motion in Rd. We will refer to b(Xt, t) as the (base) drift.
Setting σ ≡ 0 recovers the deterministic ODE.

Connection to denoising diffusion. Classical denoising diffusion models arise as special cases of
FM when their discrete procedures are lifted to continuous time; refer to Appendix C for details.

3 METHODOLOGY

We formulate disentanglement as optimal control over flow-matching dynamics, derive single-pass
test-time and fine-tuned controllers, and introduce a probabilistic attention loss, FOCUS.

3.1 STOCHASTIC OPTIMAL CONTROL

Our goal is to reduce multi-subject entanglement while remaining close to the base model. To this
end, we introduce a small control u : Rd × [0, 1] → Rd into the drift and pose generation as a
quadratic, control-affine SOC problem:

min
u∈U

E
[∫ 1

0

1

2
∥u(Xu

t , t)∥22 + f(Xu
t , t)dt+ g(Xu

1 )

]
, (6)

s.t. dXu
t = (b(Xu

t , t) + σ(t)u(Xu
t , t)) dt+ σ(t)dBt, Xu

0 ∼ π0, (7)

where Xu
t is the latent state, b is the base FM drift, σ(t) ≥ 0 is a scalar diffusion schedule, and

(Bt)t∈[0,1] is Brownian motion. The running cost f : Rd × [0, 1] → R will measure subject entan-
glement (e.g. f ≡ FOCUS), and we set the terminal cost g ≡ 0 in all derivations and experiments.

For control-affine dynamics with ℓ(x, u, t) = 1
2∥u∥

2
2 + f(x, t), the Hamiltonian of the SOC is

H(x, u, a, t) =
1

2
∥u∥22 + f(x, t) + a⊤ (b(x, t) + σ(t)u) , (8)

1Over-dot denotes the time derivative, i.e., ẋt =
d
dt
xt.
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where a(t) ∈ Rd is the co-state (adjoint). Since H is strictly convex in u, the first-order optimality
condition yields

u⋆
t = −σ(t)a(t), (9)

with adjoint dynamics

d

dt
a(t) = −

[
∇Xb(Xu

t , t)
⊤a(t) +∇Xf(Xu

t , t)
]
, a(1) = ∇Xg(Xu

1 ). (10)

3.2 ON-THE-FLY DISENTANGLEMENT (TEST-TIME CONTROL)

At inference, we solve Equation (6) per trajectory with frozen model parameters. The idea is to
compute u⋆

t on-the-fly and steer the sampling process at each timestep t. Directly computing u⋆
t re-

quires the adjoint a(t) in Equation (9), which is defined along the controlled path via Equation (10).
This is impractical because a(t) depends on the terminal condition a(1) = ∇Xg(Xu

1 ), which de-
pends on the endpoint Xu

1 , which in turn depends on the future segment (Xu
τ )τ∈[t,1] ; coupling a

backward solve to the forward pass at every step. To obtain a single-pass controller, we approximate
a(t) locally at the current state. Concretely, we linearize Equation (10) around Xu

t , freeze ∇Xb ≈ 0,
and treat the future state as locally constant:

a(t) ≈
∫ 1

t

∇Xf(Xu
t , τ)dτ ≈ (1− t)∇Xf(Xu

t , t), (11)

where the last step uses a left-Riemann approximation. Substituting into Equation (9) yields the
instantaneous control

u⋆
t ≈ −σ(t)(1− t)∇Xf(Xu

t , t). (12)

The approximation ∇Xb ≈ 0 is common in online control settings (Havens et al., 2025).

Velocity reparameterization (SDE). Let vbase denote the base FM velocity. We adopt the memory-
less diffusion schedule, which makes the stochastic interpolant endpoints independent (X0 ⊥ X1)
and yields a simple drift–velocity identity:

σmem(t) =

√
2βt

(
α̇t

αt
βt − β̇t

)
. (13)

Under this choice, the drift-velocity relation from Equation (5) simplifies to b(Xt, t) = 2vθ(Xt, t)−
α̇t

αt
Xt. Adding +σmem(t)ut to the drift shifts the velocity by + 1

2σmem(t)ut. Therefore the con-
trolled velocity is

v⋆t = vbase(Xt, t) +
σmem(t)

2
u⋆
t ≈ vbase(Xt, t)−

σ2
mem(t)

2
(1− t)∇Xf (Xt, t) , (14)

which can be passed to any SDE solver without modifying the integrator.2

Deterministic alternative (ODE). Many off-the-shelf T2I models are optimized for ODE sampling
(σ ≡ 0). Decoupling σ from the control gives

min
u

E
[∫ 1

0

1

2
∥u(Xt, t)∥22 + f(Xt, t)dt

]
(15)

s.t. dXt = (vbase(Xt, t) + u(Xt, t)) dt, X0 ∼ π0. (16)

The Hamiltonian H = 1
2∥u∥

2 + f + a⊤(vbase + u) yields u⋆
t = −a(t), and with the same local

approximation:

v⋆t = vbase(Xt, t)− a(t) ≈ vbase(Xt, t)− (1− t)∇Xf(Xt, t), (17)

2If desired, the factor 1
2
σmem(t)2 can be absorbed into the weight of f , yielding a schedule-invariant update.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 FINE-TUNING FOR DISENTANGLEMENT

Our goal is to learn a control network uθ that remains close to the base dynamics and generalizes
beyond the specific trajectories used during training.

Adjoint Matching (AM). Directly solving Equation (10) during training is prohibitive because the
adjoint a(t) depends on the controlled path Xu

t . Instead, we use Adjoint Matching (Domingo-Enrich
et al., 2025), regressing uθ to a cheaper lean adjoint ã computed along frozen forward trajectories
(Xt)t∈[0,1] while dropping u-dependent Jacobian terms:

d

dt
ã(t) = −

[
∇Xb(Xt, t)

⊤ã(t) +∇Xf(Xt, t)
]
, ã(1) = ∇Xg(X1). (18)

Memoryless training. To ensure that the learned control generalizes beyond the specific trajectories
used in training, we follow Domingo-Enrich et al. (2025) and train under a memoryless generative
process where X0 ⊥ X1, i.e., p(X0, X1) = p(X0)p(X1). For linear (Gaussian) FM paths with
scheduler (αt, βt)t∈[0,1], the diffusion coefficient σmem from Equation (13) achieves this indepen-
dence and makes the regression target trajectory-stationary.

Training objective. Each iteration proceeds as follows: (i) sample forward trajectories (Xt)t∈[0,1]

under σmem with the current model frozen via Equation (5); (ii) integrate the lean adjoint
(ã(t))t∈[0,1] backward with Equation (18); (iii) regress the control toward the stationary target
−σmem(t)ã(t) by minimizing

LAM(θ) :=
1

2

∫ 1

0

∥uθ(Xt, t) + σmemã(t)∥2dt. (19)

The memoryless schedule is only required during fine-tuning. At inference σ(t) can be set to zero,
allowing to use faster off-the-shelf ODE samplers.

3.4 MEASURING MULTI-SUBJECT ENTANGLEMENT

Dachshund Corgi Image

“A dachshund and a corgi sitting together on a cozy rug”

Figure 2: Extracted cross-attention maps for
both subjects in FLUX.1 [dev].

At each sampling step, T2I backbones compute cross-
attention from image-space queries to text tokens.
Empirically, these token-wise cross-attention maps
correlate with the eventual spatial placement of the
corresponding entities (Hertz et al., 2023; Chefer
et al., 2023). This enables us to diagnose and miti-
gate subject entanglement during generation by mea-
suring spatial interactions among subject-specific at-
tention maps, rather than relying solely on post-hoc
image encoders (see Figure 2).

Most prior work that optimizes multi-subject behavior via cross-attention treats these maps as
generic similarity scores (e.g., maximizing cosine similarity (Meral et al., 2024) or activation dif-
ferences (Chefer et al., 2023)). However, cross-attention arises from a softmax: each map is a
probability distribution over spatial locations. Ignoring this structure discards a principled proba-
bilistic footing and can induce artifacts such as over-concentration. We instead treat attention maps
as distributions and optimize them accordingly.

FOCUS. Let d denote the number of spatial locations and let ∆d−1 be the probability simplex. For
a finite set P = { vp1, . . . ,pn} ⊂ ∆d−1 of distributions, define the Jensen–Shannon divergence

DJS(P ) =
1

n

n∑
i=1

DKL (pi∥m) , m =
1

n

n∑
j=1

pj ,

with DKL(p∥q) =
∑d

i=1 pi log
pi

qi
being the Kullback-Leibler divergence. Since DJS(P ) ∈

[0, logn], we normalize by dividing with logn to obtain D̂JS(P ) ∈ [0, 1], which makes scores
comparable across different set sizes; see Theorem B.1 for a proof of this upper bound.

We introduce FOCUS (Flow Optimal Control for Unentangled Subjects) to encourage, for each
subject, unimodal, spatially localized, and nonoverlapping attention. Let S be the set of subjects in

5
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Base Attend&Excite CONFORM Divide&Bind FOCUS (Ours)

SD
3.

5

“An astronaut, a violin, and a sunflower floating inside a space station”

FL
U

X
.1

“A swan, a goose, and a duck drifting past lily pads”

Figure 3: Qualitative results with test-time control on Stable Diffusion 3.5 and FLUX.1. Each
heuristic is shown at its optimal λ. Additional examples appear in Figures 9 and 10 of the Appendix.

the prompt. For each subject s ∈ S, collect its attention maps at the current step into Ps ⊂ ∆d−1

(e.g., across layers or heads), and define the subject mean ms = 1
|Ps|

∑
p∈Ps

p. Let M = {ms |
s ∈ S} be the set of subject means. Our FOCUS loss combines within-subject agreement and
between-subject separation:

FOCUS(S) =
1

2

(
1

|S|
∑
s∈S

D̂JS(Ps)

)
+

1

2

(
1− D̂JS(M)

)
(20)

The first term penalizes dispersion within each subject’s maps (encouraging consistent binding, and
for multi-encoder models such as SD 3.5, agreement across encoders). The second term rewards
separation among subjects by maximizing divergence between their mean attention distributions.
By construction, focus ∈ [0, 1]: 0 indicates perfect disentanglement (low intra-subject dispersion
and maximal inter-subject separation), while larger values indicate greater entanglement.

4 RELATED WORK

We review approaches to multi-subject T2I generation. We first cover training-free attention-space
interventions that operate at inference time. We then discuss methods that enforce regional/layout
constraints or combine multiple diffusion paths. Finally, we survey training-time objectives that
strengthen subject–attribute binding.

Attention-space interventions (training-free). A large body of work steers pre-trained generators
at inference by manipulating cross-attention. At each sampling step, the model produces attention
weights from spatial queries to text tokens; selecting the column for a token and normalizing over
space yields a token-conditioned spatial map. Methods then assess entanglement (e.g., by measuring
overlap across subjects) and modify attention or latents to promote coverage and separation.

Attend&Excite amplifies token activations to enforce entity coverage and reduce neglect or leakage
(Chefer et al., 2023). Divide&Bind adds an inference-time objective that separately enforces subject
coverage and attribute binding, optimizing latents during sampling (Li et al., 2023b). Structured
Diffusion Guidance injects linguistic structure (e.g., dependency trees) to guide attention manip-
ulation for multi-object composition (Feng et al., 2023). Prompt-to-Prompt locks cross-attention
correspondences to preserve word–subject alignments across edits, often used to maintain multi-
subject layouts (Hertz et al., 2023). CONFORM formulates a contrastive, InfoNCE-style objective
that separate different subjects while pulling subject–attribute pairs together (Meral et al., 2024).

While effective in specific setups, these methods are heuristic and lack a unifying optimization
principle; moreover, many were developed for Stable Diffusion 1.x backbones, limiting portability
to modern flow-matching models. In contrast, our method derives a controller from a single SOC

6
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Base Attend&Excite CONFORM Divide&Bind FOCUS (Ours)

SD
3.

5

“A flamingo, a yoga mat, and a gramophone on a rooftop at sunset”

FL
U

X
.1

“A macaw, a cockatoo, and an Amazon parrot perched on a jungle vine”

Figure 4: Qualitative results after fine-tuning Stable Diffusion 3.5 and FLUX.1. Each heuristic uses
its optimal hyperparameters. Additional examples appear in Figures 11 and 12 of the Appendix.

objective at the FM level, yielding architecture-agnostic updates. We also instantiate our controller
with costs derived from several of the above heuristics to demonstrate principled portability.

Regional/layout composition and multi-path fusion. A complementary direction constrains where
subjects appear. MultiDiffusion fuses multiple diffusion trajectories under shared spatial constraints
(e.g., boxes or masks), enabling faithful multi-subject placement without retraining (Bar-Tal et al.,
2023). Related systems extend this idea to interactive, region-based workflows. GLIGEN aug-
ments a frozen backbone with grounding layers and conditions on bounding boxes or phrases to
place multiple objects precisely (Li et al., 2023a). More recently, Be Decisive leverages the lay-
out implicitly encoded in the initial noise and refines it during denoising, avoiding conflicts with
externally imposed layouts and improving prompt alignment while preserving model priors (Da-
hary et al., 2025). These approaches disentangle primarily via spatial decoupling but often require
user-specified or learned layouts, which increases user effort and restricts spontaneous subject in-
teraction. Our method reduces entanglement without explicit spatial annotations, requiring only the
text prompt (and its subjects).

Training-time objectives for multi-subject fidelity. Some works alter training signals to strengthen
subject–attribute binding. TokenCompose introduces token-level supervision to improve consistency
for prompts with multiple categories and attributes (Wang et al., 2024b). Region-aware objectives
decompose complex prompts into per-region descriptions and enforce alignment, reducing cross-
entity leakage. Such methods typically assume curated supervision and substantial retraining. In
contrast, our fine-tuning objective is lightweight: it adapts pre-trained models via Adjoint Matching
and requires only text prompts, while our test-time controller operates with zero parameter updates.

5 EXPERIMENTS

We evaluate our approach in three stages. We first describe datasets, metrics, models, and baselines.
We then present test-time (on-the-fly) results, followed by fine-tuning results. All experiments ran
on NVIDIA A100/H100 GPUs. While the test-time controller runs on commodity GPUs with as
little as 12 GB VRAM, fine-tuning experiments fit within the VRAM of H100 GPUs.

Base Models. We report results on two open-source flow-matching models: Stable Diffusion 3.5
(SD 3.5) (Esser et al., 2024) and FLUX.1 [dev] (FLUX.1) (Labs et al., 2025).

Dataset. We create a 150-prompt corpus with 2–4 subjects per prompt using GPT-5. Half the
prompts contain similar subjects (e.g., “a black bear and a brown bear[...]”); the rest contain dis-
similar subjects (e.g., “a snowboard, a telescope, and a husky[...]”). For each prompt, we annotate
subject token indices for both CLIP and T5 encoders to extract cross-attention maps for the heuris-
tics. Such per-subject annotations are typically absent from existing corpora.

7
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Table 1: Test-time control results at the optimal λ for each heuristic. We report mean± std over all
prompts and seeds; the top three per metric are highlighted (gold/silver/bronze).

Heuristic CLIP I-T↑ SigLIP-2 I-T↑ BLIP T-T↑ Qwen2 T-T↑ PickScore I-T↑ ImgRew I-T↑ Composite↑
SD

3.
5

Base 0.3474±0.03 0.2309±0.05 0.5731±0.15 0.6402±0.08 22.6940±0.99 1.3175±0.68 0.0000±0.00

Attend&Excite 0.3484±0.03 0.2326±0.05 0.5752±0.15 0.6404±0.08 22.6950±1.01 1.3545±0.66 3.1714±0.53

CONFORM 0.3481±0.03 0.2323±0.05 0.5773±0.15 0.6421±0.08 22.7188±0.99 1.3684±0.64 3.4336±0.45

Divide&Bind 0.3489±0.03 0.2316±0.05 0.5742±0.14 0.6399±0.08 22.6779±1.03 1.3493±0.67 3.9373±0.78

FOCUS (Ours) 0.3483±0.03 0.2344±0.04 0.5751±0.15 0.6385±0.08 22.7499±1.02 1.4003±0.62 4.2865±0.86

FL
U

X
.1

Base 0.3449±0.03 0.2271±0.05 0.5739±0.15 0.6300±0.09 23.4234±1.03 1.2970±0.66 0.0000±0.00

Attend&Excite 0.3430±0.03 0.2242±0.05 0.5716±0.14 0.6304±0.09 23.2549±1.11 1.2494±0.70 1.7595±0.67

CONFORM 0.3436±0.03 0.2252±0.05 0.5726±0.15 0.6321±0.09 23.3574±1.03 1.2461±0.70 1.5114±0.26

Divide&Bind 0.3453±0.03 0.2272±0.05 0.5722±0.15 0.6330±0.08 23.4395±1.02 1.2939±0.67 1.6352±0.44

FOCUS (Ours) 0.3446±0.03 0.2268±0.05 0.5741±0.14 0.6326±0.08 23.4274±1.02 1.2913±0.67 1.9712±0.31

Metrics. To quantify multi-subject fidelity, we follow Yu & Chien (2025) and report two align-
ment groups. For image–text (I–T) alignment we compute CLIP (Radford et al., 2018) and SigLIP-
2 (Tschannen et al., 2025) cosine similarities between image and prompt embeddings. For caption-
based text–text (T–T) faithfulness, we caption each image with BLIP (Li et al., 2022) and Qwen2-
VL (Wang et al., 2024a) and measure semantic similarity to the prompt. We additionally report
preference-trained scores, PickScore (Kirstain et al., 2023) and ImageReward (Xu et al., 2023), as
proxies for human preference.

For model selection, we compute a composite score per hyperparameter combination by macro-
averaging baseline-relative gains across metrics; see Appendix D.2 for the formula. Because we aim
to preserve base style and subject depiction, global alignment scores may shift modestly even when
multi-subject fidelity improves. Unless noted otherwise, we generate five images per prompt (dis-
tinct seeds) per hyperparameter setting, fixing sampler, steps, guidance, and resolution allowing to
make direct comparisons between test-time control and fine-tuning. Full details are in Appendix D.

Baselines and heuristics. To demonstrate portability across FM models and legacy U-Net heuris-
tics, we evaluate Attend&Excite (Chefer et al., 2023), CONFORM (Meral et al., 2024), Divide&Bind
(Li et al., 2023b), and our heuristic FOCUS. Because cost magnitudes differ, we optimize a scaled
running cost λ · f(Xt, t) with λ > 0. The effect of λ at test time is shown in Figure 7.

Human study. Automated metrics struggle to detect attribute leakage reliably (Dahary et al., 2025),
so we conducted a prompt-conditioned, pairwise preference study with 50 participants. In each trial,
participants viewed two images from our evaluation suite alongside the prompt and selected the
image that better matched the prompt, yielding 2,000 pairwise judgments. From these outcomes we
computed Elo ratings (across-method comparability) and win rates (fraction of pairwise wins).

5.1 ON-THE-FLY DISENTANGLEMENT (TEST-TIME CONTROL)

Table 2: Human preference study for test-
time control. Report pairwise win rate and
Elo rating; see appendix E for details.

Heuristic SD3.5 FLUX.1
Win[%] Elo↑ Win[%] Elo↑

Base 45% 1517 46% 1464
Attend&Excite 53% 1500 49% 1526
CONFORM 42% 1373 50% 1498
Divide&Bind 50% 1562 50% 1450
FOCUS (Ours) 58% 1548 54% 1562

We sweep ten λ values per heuristic and select the best
via the composite score defined above. Table 1 report
per-heuristic, per-model results at the optimal λ, qual-
itative examples are shown in Figures 9 and 10, and
Human Study results are summarized in Table 2.

All heuristics outperform the base sampler on SD 3.5
and FLUX.1, indicating that the SOC formulation
yields a principled route to port legacy heuristics to
modern FM models. Qualitatively, outputs show higher
multi-subject fidelity: subjects are more often present
and better separated than in the base model. Our human study shows similar trends, with higher
win-rates and Elo ratings. While FOCUS is not best on every metric, it attains the highest compos-
ite score across all heuristics and achieves almost all best scores in our human study.

5.2 FINE-TUNING FOR DISENTANGLEMENT

We insert LoRA layers (Hu et al., 2022) into self-attention blocks and freeze all base parameters. We
use rank r=4 (training < 0.1% of parameters). We sweep λ and other hyperparameters, including

8
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Table 4: Fine-tuning results at the set of hyperparameters for each heuristic. We report mean± std
over all prompts and seeds; the top three per metric are highlighted (gold/silver/bronze).

Heuristic CLIP I-T↑ SigLIP-2 I-T↑ BLIP T-T↑ Qwen2 T-T↑ PickScore I-T↑ ImgRew I-T↑ Composite↑
SD

3.
5

Base 0.3474±0.03 0.2309±0.05 0.5731±0.15 0.6402±0.08 22.6940±0.99 1.3175±0.68 0.0000±0.00

Attend&Excite 0.3469±0.03 0.2281±0.04 0.5747±0.15 0.6425±0.08 22.8429±1.01 1.4460±0.60 5.7181±1.21

CONFORM 0.3478±0.03 0.2294±0.05 0.5646±0.15 0.6393±0.09 22.5962±0.99 1.3782±0.63 3.4583±1.05

Divide&Bind 0.3486±0.03 0.2266±0.05 0.5870±0.14 0.6358±0.08 22.3401±0.99 1.3524±0.68 0.8006±0.69

FOCUS (Ours) 0.3495±0.03 0.2331±0.04 0.5744±0.15 0.6383±0.08 22.6445±0.97 1.4495±0.58 5.9174±1.19

FL
U

X
.1

Base 0.3449±0.03 0.2271±0.05 0.5739±0.15 0.6300±0.09 23.4234±1.03 1.2970±0.66 0.0000±0.00

Attend&Excite 0.3468±0.03 0.2320±0.05 0.5876±0.15 0.6382±0.08 23.3333±1.01 1.3806±0.62 2.3477±0.79

CONFORM 0.3458±0.03 0.2305±0.04 0.5800±0.15 0.6369±0.08 23.3724±1.00 1.3631±0.63 1.9591±0.83

Divide&Bind 0.3445±0.03 0.2296±0.05 0.5705±0.15 0.6246±0.09 23.1909±1.06 1.2269±0.70 0.2002±0.47

FOCUS (Ours) 0.3468±0.03 0.2328±0.05 0.5780±0.15 0.6386±0.08 23.3278±1.01 1.3899±0.61 2.5881±0.79

dataset choice; see Appendix D. With the best settings, fine-tuning takes 17 min on SD 3.5 and 79
min on FLUX.1. Table 4 reports metrics across all heuristics and models; qualitative results appear
in Figures 4, 11 and 12; human preferences are summarized in Table 3.

Table 3: Human preference study for fine-
tuned models. Report pairwise win rate
and Elo rating; see appendix E for details.

Heuristic SD3.5 FLUX.1
Win[%] Elo↑ Win[%] Elo↑

Base 39% 1355 51% 1462
Attend&Excite 56% 1584 50% 1476
CONFORM 49% 1520 50% 1620
Divide&Bind 48% 1436 43% 1442
FOCUS (Ours) 57% 1605 54% 1500

Training data comprise two small subsets of our
evaluation dataset. The first is a single prompt,
“A horse and a bear in a forest,” where SD 3.5
fails reliably (HORSE&BEAR). The second contains
15 prompts with two semantically similar subjects
(TWOOBJECTS). Despite their size, both subsets yield
gains on diverse unseen prompts, including different
subject categories, prompts with more than two sub-
jects, and different subject token positions, suggesting
that our method targets a core failure mode in multi-
subject composition.

Across the board, the fine-tuned models outperform their test-time controlled counterparts. This
matches our theory, since during fine-tuning the adjoint signal is computed explicitly over the full
trajectory, whereas test-time control relies on a single-pass approximation. Between the two training
sets, HORSE&BEAR yields the strongest gains with an 85% relative improvement in the composite
scores in contrast to TWOOBJECTS for SD 3.5 and about 5% for FLUX.1. Across heuristics, FO-
CUS attains the highest composite score, indicating the largest average improvement across metrics.
Consistently, in the human study FOCUS achieves the highest win rates against competing heuris-
tics and among the highest Elo ratings for both models.

5.3 CLASSICAL DENOISING DIFFUSION
SDXL SDXL + FOCUS

Figure 5: Transfer to SDXL.

Although our algorithms are derived for flow matching, Ap-
pendix C establishes a correspondence denoising diffusion. To
test the theory, we apply the test-time controller to Stable Dif-
fusion XL, a U-Net based denoising diffusion model. As shown
in Figure 5, FOCUS improves on the prompt ‘A lion and a
tiger resting side by side[...]” by reducing attribute leakage.

6 DISCUSSION AND FUTURE WORK

We propose a control-theoretic framework for multi-subject fidelity, instantiated either as a single-
pass test-time controller or as a lightweight fine-tuned controller. The formulation accommodates
existing attention-based heuristics, and our FOCUS yields the most consistent gains across settings.
The two realizations offer complementary trade-offs: test-time control applies directly to a frozen
model given subject tokens, at the cost of roughly 2× longer inference, whereas fine-tuning requires
subject tokens only during training and matches the base model’s inference speed during inference.
Finally, the strong generalization of fine-tuning—even from a single prompt—suggests an underly-
ing attention-level failure mode in current T2I models; future work should probe this mechanism
and develop annotation-free proxies and automated subject tokenization.

9
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Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp.
423–439, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-19790-1.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=XVjTT1nw5z.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73aacd8b3b05b4b503d58310b523553c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73aacd8b3b05b4b503d58310b523553c-Paper-Conference.pdf
https://arxiv.org/abs/2506.15742
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
http://proceedings.bmvc2023.org/366/
http://proceedings.bmvc2023.org/366/
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tuna Han Salih Meral, Enis Simsar, Federico Tombari, and Pinar Yanardag. Conform: Contrast is
all you need for high-fidelity text-to-image diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9005–9014, June 2024.

Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 72983–73007. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/e6d58fc68c0f3c36ae6e0e64478a69c0-Paper-Conference.pdf.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic mod-
els. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
8162–8171. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
nichol21a.html.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205, October
2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. arXiv preprint arXiv:1801.06146, 2018. URL
https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
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A USE OF LARGE LANGUAGE MODELS

We used a large language model (OpenAI GPT-5 via ChatGPT) for two purposes: (i) expanding a
small, human-written set of text prompts to create additional prompts for our synthetic dataset, and
(ii) polishing writing (grammar, clarity, and tone). For dataset construction, the model generated
semantically similar prompt variants; all outputs were screened and curated by the authors. For
writing, the authors drafted all sections and used the model only for copy-editing, not for introducing
technical content.

B FOCUS

This appendix details FOCUS, our probabilistic attention heuristic used as a running cost for dis-
entanglement. We emphasize three practical design choices: (i) encoding spatial proximity before
measuring divergence, (ii) aggregating attention maps prior to scoring, and (iii) omitting an explicit
collapse regularizer.

Spatially aware divergence. We promote separation of subjects by maximizing a Jensen–
Shannon divergence (JSD) defined over attention distributions. A naı̈ve computation on flattened
maps discards locality, allowing distant activations to interact as if adjacent. To preserve spatial
structure, we (i) reshape token-embedding maps to the target aspect ratio, (ii) apply a light 2D Gaus-
sian smoothing, and only then (iii) flatten for scoring. This encodes proximity and mitigates grid-like
artifacts during optimization.

Block selection and aggregation. Modern T2I backbones follow Diffusion Transformer designs
(Peebles & Xie, 2023). Rather than computing scores per block and averaging their scores which
can result in conflicting update directions, we first aggregate attention and then score. Concretely,
we average cross-attention maps over all blocks that process text and image tokens separately, pro-
ducing a single map per token and a consistent optimization direction. Blocks that jointly process
text and image tokens are excluded from this aggregation for compatibility.

No explicit collapse regularizer. We experimented with an entropy-based regularizer aimed at
discouraging overly concentrated (collapsed) attention. Let H(p) = −

∑
i pi log pi denote the

Shannon Entropy and Ĥ(p) = H(p)/ log d ∈ [0, 1] its normalized version, where d is the number
of spatial locations. For each subject we form its mixture distribution ms and added

γreg ·
1

|S|
∑
sinS

(
1− Ĥ(m)

)
, (21)

scaling by γreg > 0 to control its effect. In our experiments, small γreg made the term largely inactive,
while larger γreg pushed mass away from the subject rather than stabilizing it, see Figure 6 for an
example. We therefore omit this term in FOCUS and rely on the probabilistic objective described
above.

Base γreg = 0 γreg = 0.01 γreg = 1 γreg = 10

Figure 6: Ablation of regularizer strength γreg for the test-time controller on Stable Diffusion 3.5.

Lemma B.1 (Upper Bound of Jensen–Shannon Divergence). Let P = {p(1), . . . ,p(n)} ⊂ ∆d−1 be
a set of probability distributions. Then, DJS(P ) is upper bounded by logn.
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Proof. Define P as in theorem B.1, then the JSD is defined as follows:

DJS(P ) =
1

n

n∑
k=1

DKL

(
p(k) ∥ m

)
, m =

1

n

n∑
k=1

p(k).

We can upper bound each DKL-term as follows:

DKL(p
(k) ∥ m) =

d∑
i=1

p
(k)
i log

p
(k)
i

mi

=

d∑
i=1

p
(k)
i log

p
(k)
i

1
n

∑n
ℓ=1 p

(ℓ)
i

=

d∑
i=1

p
(k)
i log

(
n · p

(k)
i∑n

ℓ=1 p
(ℓ)
i

)

≤
d∑

i=1

p
(k)
i log n

= logn.

Plugging this bound back into the definition of the JSD, yields the desired results:

1

n

n∑
k=1

DKL

(
p(k) ∥ m

)
≤ 1

n

n∑
k=1

log n = log n

Normalization. Because DJS(P ) ∈ [0, log n], we use the normalized score D̂JS(P ) =
DJS(P )/ logn ∈ [0, 1], which makes values comparable across different set sizes.

C DENOISING DIFFUSION AS FLOW MATCHING

This section makes precise how classical denoising diffusion (score-based) models arise as a special
case of the flow-matching (FM) framework. We first derive the continuous-time SDE limit of the
variance-preserving (VP) family (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021);
after we express reverse-time generation; and finally show an explicit parameterization that uses
a diffusion model as an FM velocity field. Analogous statements hold for VE and EDM variants
(Nichol & Dhariwal, 2021; Karras et al., 2022; 2024).

C.1 VP CHAIN TO SDE

Let X0 ∼ pdata. The standard K-step VP forward noising chain is

Xk =
√
αkXk−1 +

√
1− αkϵk, ϵk ∼ N (0, I), k = 1, . . . ,K, (22)

where αk := 1 − βk ∈ (0, 1) with βk ∈ (0, 1) typically increasing over k (Ho et al., 2020). This
yields the closed-form marginal

Xk | X0 ∼ N
(√

ᾱk X0, (1− ᾱk) I
)
, ᾱk :=

k∏
i=1

αi. (23)

For sufficiently large K, XK is approximately standard normal (Ho et al., 2020).

We lift this formulation to continuous time by defining a uniform grid τk := k/K on [0, 1], so
every increment is ∆τ = 1/K. Define a piecewise-constant rate β(τ) via β(τ) := βk/∆τ for
τ ∈ [τk−1, τk). Then by using the first-order Taylor approximation of

√
1 + x, we can rewrite

16
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√
αk =

√
1− βk ≈ 1− 1

2βk +O(β2
k), and obtain

∆Xk := Xk −Xk−1 (24)

= −1

2
βkXk−1 +

√
βkϵk +O(β2

k) (25)

=

(
−1

2
β(τk−1)Xk−1

)
∆τ +

√
β(τk−1)

√
∆τϵk +O

(
(∆τ)

3
2

)
. (26)

This is the Euler–Maruyama discretizations of the forward/diffusion VP-SDE:

dXτ = −1

2
β(τ)Xτdτ +

√
β(τ)dBτ , τ ∈ [0, 1], (27)

and the discrete chain converges to this SDE as K → ∞. Moreover, the SDE has Gaussian marginals

Xτ | X0 ∼ N
(√

ᾱ(τ)X0, (1− ᾱ(τ)) I
)
, with ᾱ(τ) := exp

(
−
∫ τ

0

β(u)du

)
, (28)

which matches Equation (23) at the grid points if we choose ᾱ(τk) = ᾱk (Song et al., 2021).

C.2 REVERSE-TIME DYNAMICS

We now reverse time to generate from noise to data. Let τ̄ = 1− τ denote the generative time. By
classical time reversal diffusion (Anderson, 1982) the reverse-time process satisfies

dXτ =

(
−1

2
βτXτ − β(τ)∇X log pτ (Xτ )

)
dτ̄ +

√
β(τ)dB̄τ , with dτ̄ = −dτ, (29)

where pτ are the forward-time marginals and ∇X log pτ is the score (Song et al., 2021).

In practice, most diffusion architectures parameterize the model via noise prediction ϵθ (Ho et al.,
2020; Karras et al., 2022; 2024), which is related to the score by:

∇X log pτ (x) = − ϵθ(x, τ)√
1− ᾱ(τ)

. (30)

C.3 TIME CHANGE TO FM

To embed VP diffusion into FM, we reparameterize time so that FM runs from noise to data, setting
t := 1− τ , which yields the following FM schedules:

αFM
t :=

√
ᾱ(1− t), and βFM

t :=
√
1− ᾱ(1− t). (31)

C.4 SCORE RELATIONS

For linear Gaussian reference paths, the score s(x, t) := ∇X log pt(x) and the FM vector field
vθ(x, t) are linked by a schedule-dependent affine map (Lipman et al., 2023; Albergo et al., 2023;
Liu et al., 2023):

s(x, t) =
1

ηt

(
vθ(x, t)− κt x

)
, κt :=

α̇FM
t

αFM
t

, ηt := βFM
t

(
α̇FM
t

αFM
t

βFM
t − β̇FM

t

)
. (32)

Combining the noise–score relation with the time change τ = 1− t gives:

s(x, t) = ∇X log pt(x) = −ϵθ(x, 1− t)

βFM
t

, (33)

since βFM
t =

√
1− ᾱ(1− t). Substituting this into the score–velocity map yields the corresponding

FM velocity prediction induced by an ϵ-parameterized diffusion model:

vθ(x, t) = κtx− ηt
ϵθ(x, 1− t)

βFM
t

. (34)

This identity lets an ϵ-trained diffusion model be used directly as an FM velocity field for the VP-
induced schedules above; plugging vθ into the FM SDE recovers the reverse-time VP sampler (and
setting σ ≡ 0 recovers the probability-flow/DDIM ODE) under the change of variables t = 1− τ .
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D HYPERPARAMETERS

D.1 SAMPLING PARAMETERS

For Stable Diffusion 3.53 and FLUX.1 [dev]4, we follow the official sampling recommendations.
Unless stated otherwise, we use the deterministic Euler scheduler with 28 inference steps for both
models and generate images at 512 × 512 resolution. The classifier-free guidance scale is set to
4.5 for SD3.5 and 3.5 for FLUX. To ensure consistent extraction of cross-attention maps, we cap
the maximum tokenized sequence length at 77 for SD3.5 and 256 for FLUX, and we verify that all
prompts in our dataset fall within these limits. Models are loaded and all computations are performed
in bfloat16 to reduce memory usage.

D.2 METRICS

To summarize each hyperparameter setting with a single scalar, we macro-average the relative im-
provement over the base model across prompts, seeds, and metrics.

Let Xp,s be the image produced by the current setting for prompt p ∈ P and seed s ∈ S, and let
X̂p,s be the corresponding image from the base model. Let M denote the set of evaluation metrics.
Since in our settings all metrics are increasing, the composite score for a hyperparameter setting is
the macro-average

1

|S|
∑
s∈S

1

|P |
∑
p∈P

1

|M |
∑
m∈M

m(Xp,s)−m(X̂p,s)

m(X̂p,s)
, (35)

such that a value larger than 0 indicates an average improvement over the base model, while values
smaller than 0 indicate degradation.

D.3 TEST-TIME CONTROL

In the deterministic (ODE) variant, the single-pass update does not inherit the time–weighting
1
2σ

2
mem(t) that appears in the SDE case. Since σmem(t) is large at early times and decays rapidly

as t → 1, we reintroduce this desirable early–strong / late–weak behavior in the ODE setting by
reweighting the running cost:

f(Xt, t) = λ · σ2
mem(t) ·Heuristic(Xt), (36)

where λ > 0 is the earlier introduced hyperparameter to account for different heuristic magnitudes.
Throughout our test-time control experiments, we use this time-weighted running cost variant and
sweep over λ ∈ {0.1, 0.5, 1, 2, 3, 4, 8, 12, 16, 32}. Values below 0.1 have negligible effect across
heuristics, while values above 32 tend to produce artifacts (over-sharpening, texture noise) or occa-
sional numerical instabilities (NaNs). See Figure 7 for qualitative trends.

Base λ = 0.1 λ = 0.5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 8 λ = 16 λ = 32

Figure 7: Effect of the control parameter λ on test-time control with Stable Diffusion 3.5.

D.4 FINE-TUNING

We initialize the memoryless schedule from each model’s ODE 28-step inference schedule (same
time steps), do not use classifier-free guidance, and for FLUX.1 apply its native guidance scale (not
CFG). Following Appendix D.1, we cap tokenized sequence length for cross-attention extraction to
77 (SD 3.5) and 256 (FLUX.1). Models are loaded in bfloat16; forward/backward passes run in

3https://huggingface.co/stabilityai/stable-diffusion-3.5-medium
4https://huggingface.co/black-forest-labs/FLUX.1-dev
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Figure 8: User interface for the prompt-conditioned, pairwise preference study.

BF16 and the final loss reduction is computed in FP32 to avoid numerical issues. To reduce memory,
at each iteration we subsample 16 of the 28 steps to be used in our loss calculation. We further use
a batch sizes of 5 trajectories for SD 3.5 and 2 trajectories for FLUX.1. We use two small prompt
sets: HORSE&BEAR (single prompt: “A horse and a bear”) and TWOOBJECTS (15 prompts, each
with two semantically similar subjects). Optimization uses AdamW with a weight decay of 0.01
and β0 = 0.95, β1 = 0.999. In addition, we also employ Accelerate to lower peak memory
consumption. Table 5 lists the hyperparameter grids we sweep per heuristic; best settings are bold.

Table 5: Hyperparameter grids for fine-tuning; best settings per row in bold.

Heuristic Lambda λ Learning rate Checkpoint Dataset

SD
3.

5 Attend&Excite {0.1, 1, 10} 5e−5 {100, 150 } HORSE&BEAR
CONFORM {0.1, 1, 10} 5e−5 {100, 150 } HORSE&BEAR
Divide&Bind {0.1, 1, 10} 5e−5 {100, 150 } HORSE&BEAR
FOCUS {0.01, 0.1, 1, 10, 100} {1e−4, 5e−5, 1e−5} {100, 150, 200} {HORSE&BEAR, TWOOBJECT}

FL
U

X
.1 Attend&Excite {0.1, 1, 10} 5e−5 {200, 250 } HORSE&BEAR

CONFORM {0.1, 1, 10} 5e−5 {200, 250 } HORSE&BEAR
Divide&Bind {0.1, 1, 10} 5e−5 {200, 250 } HORSE&BEAR
FOCUS {0.01, 0.1, 1, 10, 100} {1e−4, 5e−5, 1e−5} {200, 250, 300} {HORSE&BEAR, TWOOBJECT}

D.5 ADDITIONAL METRIC: OPEN-VOCABULARY DETECTION

As a complementary metric, we assess subject presence with OWL-V2 open-vocabulary detection
(Minderer et al., 2023). For each prompt, we pass the subject strings as class queries and count an
image as correct if all subjects are detected at least once. We report the fraction of images meeting
this criterion.

Results for test-time control and fine-tuned models are shown in Tables 6 and 7. Both control
algorithms increase subject presence over the base model. However, OWL-V2 is blind to attribute
leakage and subject numerosity (it does not verify attributes or counts), so we exclude it from the
main evaluation and report it only as a supportive metric here.
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Table 6: OWL-V2 subject presence in per-
centage for test-time control.

Heuristic SD3.5 FLUX
Base 69.33% 66.93%
Attend&Excite 72.13% 66.80%
CONFORM 77.20% 67.87%
Divide&Bind 70.80% 68.53%
FOCUS (Ours) 74.27% 68.27%

Table 7: OWL-V2 subject presence in per-
centage for fine-tuned models.

Heuristic SD3.5 FLUX
Base 69.33% 66.93%
Attend&Excite 80.40% 74.93%
CONFORM 77.73% 72.53%
Divide&Bind 73.33% 63.87%
FOCUS (Ours) 78.53% 74.66%

E HUMAN STUDY

We evaluate whether metric gains translate to human preferences. Fifty participants each completed
40 prompt-conditioned, pairwise trials, resulting in 2,000 total judgments. In every trial, two images
generated from the same prompt were shown side by side with the prompt; participants selected the
image that better matched the prompt. The instruction shown was:

Which image renders all subjects of the prompt correctly? If both do an equivalent
good job, please pick the one you prefer visually.

To ensure sufficient rating density, we fixed the sampling seed to 0, yielding one image per
method–prompt pair (pool of 150 prompts). Trials were balanced across backbone and setting:
SD 3.5 vs. FLUX.1 and test-time control vs. fine-tuning each accounted for one quarter of the com-
parisons per participant. A screenshot of the interface is shown in Figure 8.

E.1 ELO RATING COMPUTATION

We compute Elo ratings from the pairwise outcomes to obtain an across-method ranking, alongside
win rates (fraction of pairwise wins). Elo is initialized at 1500 for all candidates and updated after
each comparison with K=32. For a candidate A with rating RA matched against B with RB , the
expected score is

EA =
1

1 + 10(RB−RA)/400
, (37)

and the update is

R′
A = RA +K(SA − EA) (38)

where SA = 1 for a win, 0 for a loss, and 0.5 for a draw. Higher Elo indicates stronger preference
relative to alternatives. Win rate is reported as the proportion of head-to-head wins.
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F EXTRA SAMPLES

F.1 TEST-TIME CONTROL: STABLE DIFFUSION 3.5

Base Attend&Excite CONFORM Divide &Bind FOCUS (Ours)

“A puffin and a penguin standing on a windswept shoreline”

“A fox, a lantern, and a teapot in a misty forest clearing”

“A jellyfish, a lighthouse, and a pocket watch suspended in seawater”

“A sailboat, a bicycle, and a stack of books beside a canal”

“A bluetit, a croissant, and a porcelain cup on a balcony rail”

“A violin, a raven, and a pocket watch on a stone windowsill”

Figure 9: Stable Diffusion 3.5 samples with test-time control. All evaluated heuristics are shown at
their optimal λ.
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F.2 TEST-TIME CONTROL: FLUX.1 [DEV]

Base Attend&Excite CONFORM Divide &Bind FOCUS (Ours)

“A chameleon, a wristwatch, and a paper crane on a mossy rock”

“A peacock, a fountain pen, and a silk scarf on a marble table”

“A hammerhead shark and a great white shark circling over a coral shelf”

“A windmill, a picnic blanket, and a bicycle with a basket of tulips”

“A quartz crystal, an amethyst, and a citrine displayed on black velvet”

“A chef’s knife, a santoku, and a paring knife laid on a cutting board”

Figure 10: FLUX.1 dev samples with test-time control. All evaluated heuristics are shown at their
optimal λ.
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F.3 FINE-TUNED: STABLE DIFFUSION 3.5

Base Attend&Excite CONFORM Divide &Bind FOCUS (Ours)

“A Siberian Husky, an Alaskan Malamute, and a Samoyed trotting through fresh snow”

“A magician, a white rabbit, and a deck of cards on a velvet stage”

“A horse and a bear in a forest”

“A robin, a bluebird, and a warbler perched on a garden fence at dawn”

“A painter, a foxglove, and an easel by a cliffside path”

“A black cat, an orange cat, and a white cat lounging on a windowsill”

Figure 11: Sample results from Stable Diffusion 3.5 fine-tuned with each heuristic. Prompts were
not seen during training to evaluate generalization. All images are generated with identical settings
(seed, sampler, steps, guidance); each heuristic is shown at its optimal trained λ.
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F.4 FINE-TUNED: FLUX.1 [DEV]

Base Attend&Excite CONFORM Divide &Bind FOCUS (Ours)

“A red fox and an arctic fox sitting side by side in tall grass”

“A mooncake, a teapot, and a jade rabbit under paper lanterns”

“A lighthouse, a cello, and a red scarf beside crashing waves”

“A lynx, a bobcat, and a cougar stepping across a rocky ledge”

“A bluetit, a croissant, and a porcelain cup on a balcony rail”

“A jellyfish, a seashell, and a glass bottle drifting in turquoise water”

Figure 12: Sample results from FLUX.1 [dev] fine-tuned with each heuristic. Prompts were not
seen during training to evaluate generalization. All images are generated with identical settings
(seed, sampler, steps, guidance); each heuristic is shown at its optimal trained λ.

24


	Introduction
	Preliminaries
	Methodology
	Stochastic Optimal Control
	On-the-fly disentanglement (test-time control)
	Fine-tuning for disentanglement
	Measuring multi-subject entanglement

	Related Work
	Experiments
	On-the-fly disentanglement (test-time control)
	Fine-tuning for disentanglement
	Classical denoising diffusion

	Discussion and Future Work
	Use of Large Language Models
	FOCUS
	Denoising Diffusion as Flow Matching
	VP chain to SDE
	Reverse-time dynamics
	Time change to FM
	Score relations

	Hyperparameters
	Sampling Parameters
	Metrics
	Test-Time Control
	Fine-tuning
	Additional Metric: Open-Vocabulary Detection

	Human Study
	Elo Rating Computation

	Extra Samples
	Test-Time Control: Stable Diffusion 3.5
	Test-Time Control: FLUX.1 [dev]
	Fine-tuned: Stable Diffusion 3.5
	Fine-tuned: FLUX.1 [dev]


