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Abstract

Knowledge conflict often occurs in retrieval-
augmented generation (RAG) systems, where
retrieved documents may be inconsistent with
each other or contradict the model’s parametric
knowledge. Existing benchmarks for knowl-
edge conflict detection have notable limitations,
including a narrow focus on the question an-
swering (QA) setup, heavy reliance on entity
substitution techniques, and a limited range
of conflict types. To address these gaps, we
propose a knowledge graph (KG)-based data
construction framework for knowledge conflict
detection, ensuring greater diversity, complex-
ity, and interpretability by leveraging the ex-
plicit relational structure of KGs. Experimental
results on the new benchmark provide intrigu-
ing insights into the inner workings of LLMs
in relation to knowledge conflict. They show
that both open-source and proprietary LLMs
struggle with conflict detection, particularly in
multi-hop reasoning, and often fail to pinpoint
the exact source of contradictions. These find-
ings highlight the need for more robust bench-
marks and improved methodologies for enhanc-
ing LLM reliability in conflict-aware reasoning.

1 Introduction

Retrieval-augmented generation (RAG) has be-
come the de facto standard technique for enhancing
the performance of large language models (LLMs),
particularly in terms of updating their outdated
knowledge and adapting to specialized domains
(Lewis et al., 2020). While effective, its heavy
reliance on the quality of retrieval always poses
inherent risks. For instance, knowledge obtained
from external sources may conflict with a model’s
parametric knowledge or even exhibit inconsisten-
cies within the retrieved documents themselves.
Knowledge conflict is a recent research topic
that covers issues related to the aforementioned
cases and has been gaining consistent attention in
the field (Xu et al., 2024). An ideal LLM-based
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system is expected to be robust in managing these
challenges, generating reliable responses regard-
less of contradictory facts in its supporting data.
However, its implementation is largely hindered by
the difficulty of detecting whether disagreements
exist across different knowledge sources and, if so,
precisely where they occur.

Numerous benchmarks have been introduced to
evaluate the performance of LLMs in knowledge
conflict detection (Hsu et al., 2021; Li et al., 2024,
Jiayang et al., 2024; Hou et al., 2024). Nonetheless,
we emphasize that existing research on this subject
has notable limitations. Firstly, previous studies
have primarily focused on the question answering
(QA) task, with conflicts occurring only between
multiple answer candidates for a given question
(Chen et al., 2022; Xie et al., 2024; Marjanovic
et al., 2024). Secondly, prior research used overly
simplistic techniques—e.g., entity substitution—
for dataset construction (Longpre et al., 2021; Chen
et al., 2022), which are insufficient to capture the
complex nature of knowledge conflicts. Thirdly,
while a few studies attempt to categorize conflict
types—such as explicit versus implicit (Hou et al.,
2024) and static, temporal, and disputable (Mar-
janovic et al., 2024)—there remains a lack of sys-



tematic analysis based on the classification of con-
flict types. Finally, with the rapid progress in the re-
lease of new, powerful LLMs, current benchmarks
have become too straightforward to challenge so-
phisticated models—e.g., as we demonstrate in
Section 5, GPT-40-mini (OpenAl, 2024a) achieves
over 80% accuracy on such datasets (Jiayang et al.,
2024; Hou et al., 2024).

To alleviate these issues, in this work, we pro-
pose a framework for automatically constructing
a benchmark for knowledge conflict detection,
grounded in knowledge graphs (KGs). Specif-
ically, our approach extracts subgraphs from a
knowledge graph, each serving as the foundation
of a knowledge chunk. Next, each subgraph is
perturbed to generate variations, where modified
nodes and edges in the perturbed graph introduce
knowledge conflicts. Finally, both the original and
perturbed graphs are transformed into text passages
using KG-to-text algorithms powered by LLMs.

By its nature, the proposed method has several
advantages. Since KGs provide a robust foundation
for representing the relationships and structure of
knowledge, our approach enables greater diversity,
complexity, and controllability in inducing con-
flicts within documents (see Figure 1 for example).
Furthermore, compared to text-based strategies, our
method enhances the interpretability and structured
analysis of the constructed dataset by visualizing
conflicting entities and relations as graphs.

Lastly, we perform an extensive analysis us-
ing Hierarchical Knowledge Conflict (HKC), a
novel dataset for knowledge conflict detection de-
veloped through our framework. This benchmark
features complex and varied conflict patterns, in-
cluding multi-hop conflicts, which are rarely ob-
served in previous benchmarks. Experiments on
HKC reveal several insights into how current LLMs
perceive knowledge conflicts, including: (1) both
open-source and proprietary models remain imper-
fect at detecting conflicts, particularly when multi-
hop reasoning is required; (2) even when models
recognize contradictions, they struggle to pinpoint
the exact position where the conflict occurs.

2 Related Work

Knowledge Conflict Knowledge conflict (KC) is
a common issue in retrieval-augmented generation
(RAG) systems, where retrieved documents may
contain conflicting information or contradict the

model’s parametric knowledge.! To explore this
phenomenon in greater depth, various datasets and
configurations have been introduced.

Most studies focus on QA settings, presenting
contradictory answers or evidence for given ques-
tions (Longpre et al., 2021; Chen et al., 2022; Xie
et al., 2024; Jiayang et al., 2024). Entity-based
methods (Chen et al., 2022) cause knowledge con-
flicts using various entity substitution techniques.
Xie et al. (2024) enhances this by using LLMs to
generate supporting evidence for conflicts.

Document-level conflict evaluates LLMs’ abil-
ity to detect contradictions either across external
documents (Jiayang et al., 2024; Hou et al., 2024;
Marjanovic et al., 2024) or within a single docu-
ment (Li et al., 2024), with the former being similar
to our setting. Jiayang et al. (2024) constructs real-
istic evidence using LLMs, categorizing conflicts
into answer and factoid conflicts. Hou et al. (2024)
classifies conflicts as explicit or implicit based on
Wikipedia’s contradiction tags, while Marjanovic
et al. (2024) distinguishes between static and dy-
namic facts using Wikipedia’s edit logs.

Despite these efforts, we argue that previous
benchmarks are not sufficiently challenging—e.g.,
they do not require multi-hop reasoning. More-
over, evaluations of knowledge conflict detection
mostly focus on whether LLMs can identify con-
flicts rather than pinpointing their exact location.
This work addresses these gaps by introducing a
new dataset and evaluation metrics.

Data Construction with Knowledge Graphs
Knowledge graphs play a crucial role in effectively
solving various tasks—such as fact verification
(Kim et al., 2023), question answering (Chen et al.,
2024), and RAG (Sanmartin, 2024)—by providing
structured knowledge representations.

KGs can also be actively leveraged for dataset
creation. For instance, Meng et al. (2022) intro-
duce COUNTERFACT, a dataset designed to assess
factual modifications in transformer models. In
contrast, this study utilizes KGs for the automatic
construction of knowledge conflict benchmarks, a
novel approach to the best of our knowledge.

3 Hierarchical Knowledge Conflict

Knowledge graphs provide a powerful framework
for structurally representing knowledge through en-

'KC is divided into 3 types based on the source of knowl-
edge (Xu et al., 2024). We focus on inter-context conflicts
arising from contradictions between two external documents.
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Figure 2: An overview of the proposed dataset construction framework.

tities and their relationships. This characteristic
makes KGs particularly well-suited for construct-
ing knowledge conflict datasets. By modifying
nodes and edges within KGs, diverse and complex
conflict patterns can be systematically introduced.

Another advantage of using knowledge graphs
is that, unlike most existing benchmarks derived
from QA datasets, they support broader domain
coverage beyond specific tasks. Furthermore, as
conflicts are not constrained by certain questions,
KG-based conflicts exhibit a wider range of contra-
diction patterns than previous benchmarks.

In this study, we introduce a new benchmark,
Hierarchical Knowledge Conflict (HKC), con-
structed using our KG-based approach. The pro-
cess comprises three steps, as depicted in Figure
2. First, subgraphs are extracted from a KG based
on predefined criteria, acting as conceptual knowl-
edge chunks (Section 3.1). Next, perturbations are
applied to the subgraphs to provoke knowledge con-
flicts (Section 3.2). Finally, both the original and
modified graphs are converted into text passages
using KG-to-text algorithms (Section 3.3).

3.1 Subgraph Extraction

As the first step, we distill parts of a large-scale
knowledge graph to build knowledge segments that
serve as targets for inducing knowledge conflicts.
Theoretically, any knowledge graph can be used as
a source of information; in this work, we employ
WikidataSM (Wang et al., 2021). WikidataSM con-
sists of approximately 20 million triplets, covering
various domains and knowledge structures.’

For the diversity and robustness of the final dataset, we
preprocess the KG as follows. Entities hard to be functionally
defined, e.g., emoticons and special symbols (4,000 in total),
are removed. In addition, general concepts and nodes with too
many connections—e.g., ‘human’ and ‘United States’—are

The key stages of subgraph extraction include
seed triplet selection, graph traversal, and enforcing
structural constraints.

Seed Triplet Selection We randomly sample
seed triplets that function as the root for subgraph
construction. Since they define the topic and struc-
ture of subgraphs, we filter relations involved in the
seed triplets to facilitate the generation of hierarchy-
based contradictions. Of the 825 unique relations
in Wikidata5M, we use 24 selected relations.?

Graph Traversal Given the seed triplets, we per-
form graph traversal in the base KG, starting from
the subject entity of each seed. We employ the
Depth-First Search (DFS) algorithm to traverse the
KG, progressively expanding the subgraph. DFS
explores deep structural variations within the KG.

Enforcing Structural Constraints To maintain
a balanced level of complexity and contextual rich-
ness in the extracted subgraphs, we impose the
following constraints during DFS traversal:

* The number of edges in any extracted subgraph
is capped at 15 to preserve computational feasi-
bility and interpretability.

» To prevent excessive connections, we limit the
number of edges per node to 5. This allows sub-
graphs to retain diverse structures without being
dominated by a few highly connected nodes.

* The algorithm’s maximum traversal depth is ran-
domly decided for each traversal, resulting in
subgraphs of diverse diameters and structures.

excluded. The 30 most connected nodes are filtered out.
3See Appendix A.1 for the full list of the used relations.
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Figure 3: Four different types of conflicts in HKC.

3.2 Knowledge Conflict Generation

In this phase, the goal is to perturb and modify
the originally extracted subgraphs to create coun-
terparts that contain information contradicting the
original. To this end, we leverage advanced LLMs
with deep reasoning capabilities, anticipating that
they can generate reasonable and creative candi-
dates that introduce knowledge conflicts within a
given context. Nonetheless, the naive use of such
models does not guarantee success in this task, as
they are inherently imperfect at recognizing knowl-
edge conflicts. We thus propose a method to guide
LLMs in reliably generating contradictory facts.

Category of Conflicts As illustrated in Figure
3, we consider four different types of knowledge
conflicts in dataset generation. These categories
are defined by the number of hops in reasoning
paths involved in conflicts and the total number of
conflicts present in a graph. Single-Hop conflicts
(Figure 3 (a) and (c)) arise when a conflict occurs
within a single triplet, affecting either a node or an
edge. Multi-Hop conflicts (Figure 3 (b) and (d))
display conflicts spanning multiple triplets. Finally,
based on the number of conflicts in a subgraph, they
can be classified as Mono-type (a single conflict)
or Poly-type (two or more conflicts).

Instruction

You will be provided with a triplet set, [Original
Triplet]. Modify it to introduce a multi-hop knowl-
edge conflict with [Original Triplet].

# REQUIREMENTS

- The conflict must contradict the original triplet.

- The conflict must span at least two or more hops
instead of directly contradicting the original triplet.
- The response should include the modified triplet
along with the intermediate steps leading to the
conflict.

- Do not include any explanation.

Here are a example of Multi-Hop Conflict Generation:

Example

[ORIGINAL TRIPLET] (tocantins (state) | divides into
| novo jardim)

[MODIFIED TRIPLET] (tocantins (state) | borders |
mato grosso) (mato grosso | contains | novo jardim)

Figure 4: Prompt for generating multi-hop conflicts.

Single-Hop
Mono  Poly

92 41 59 42 234

Multi-hop

Mono  Poly Total

Table 1: Data statistics for HKC by conflict category.

Triplet-Level Prompting We use OpenAl’s 03-
mini (OpenAl, 2025) to collect conflict candidates.
Specifying a subgraph as a set of subject-relation-
object triplets, we sample the target triplet for per-
turbation.* We then prompt the LLM to generate
new triplet candidates that contradict the original.
Still, we found that naive prompting is insuffi-
cient for generating diverse and logically complex
conflicts.’ As a solution, we provide an example
of real conflicts to encourage the model to consider
more than simple entity or relation swaps. The final
prompt template used in this process is depicted
in Figure 4. Note that it is designed for multi-hop
conflicts, and a prompt for single-hop conflicts can
be readily derived from it. For Poly-type conflicts,
we repeat the entire process with the same graph
until the desired number of conflicts is obtained.

*Our initial attempts revealed that providing the entire sub-
graph context confuses the model, making the task impossible.
Therefore, we focus on triplet-level operation in this work.

5The model relied on repetitive patterns, struggling to gen-
erate creative conflicts and failing to produce knowledge con-
flicts that truly contradict common sense.



Instruction

Your task is to write a brief, fluent, and coherent
single-paragraph in natural language. The text should
be balanced and neutral. Make sure that all the triplets
mentioned in the text can be derived from the input
data, do NOT add any extra information.

Figure 5: Prompt for KG-to-Text transformation.

Manual Review To ensure data quality, we con-
duct a human review. In-house researchers manu-
ally reviewed the data instances, removing any of
poor quality. As a result, HKC comprises a total of
234 examples, with detailed statistics presented in-
troduced in Table 1. Compared to existing datasets
such as ECON and WikiContradict, mentioned in
Section 4, our dataset contains a reasonable number
of instances, especially considering the challenge
of constructing difficult yet natural conflicts.

3.3 KG-to-Text Transformation

To represent knowledge conflicts from graphs in
natural language, we finally apply KG-to-text trans-
formation. We largely follow the approach outlined
in Kasner and Dusek (2024), using the prompts
specified in Figure 5 to guide GPT-40-mini (Ope-
nAl, 2024a) in generating coherent textual contexts
while preserving the meaning of the input subgraph.
For data quality control, we also perform automatic
verification using Claude-3.5-Sonnet (Anthropic,
2024b), with the prompt shown in Figure 12.

4 Experimental Setups

We conduct conflict detection experiments using
the dataset we constructed. The goal of the tested
models is to detect contradictions, if any, arising
from discrepancies between two given documents.

We evaluate various open-source and proprietary
LLMs for conflict detection without applying any
task-specific training. Instead, we prompt them to
recognize potential contradictions. The following
paragraphs detail the LLMs, datasets, prompting
strategies, and metrics used in our experiments.

LLMs We use 5 LLMs: Mixtral-8x7B Instruct
(team, 2023), Llama 3.1 70B Instruct (Dubey et al.,
2024), Claude 3 Haiku (Anthropic, 2024a), GPT-
4o0-mini (OpenAl, 2024a), ol (OpenAl, 2024b).

Instruction

You are given two contexts and your goal is to deter-
mine if there are any conflicts between them. Ignore
what you know and make a judgment.

(1) If no conflicts exist, simply respond with ‘No
conflicts’.

(2) If conflicts exist, count the existing conflicts and
specify each conflict reason briefly, and (3) present
those all conflicting sentence pairs from each context.

Figure 6: Prompt for Knowledge Conflict Detection.

Datasets Experiments include both existing
benchmarks and our newly introduced dataset, cre-
ating a comprehensive evaluation framework.

* ECON (Jiayang et al., 2024): A dataset cre-
ated by introducing evidence conflicts through
two methods—answer conflicts and factoid con-
flicts—highlighting contradictions in supporting
evidence. It contains 168 data instances.

¢ WikiContradict (Hou et al., 2024): A human-
annotated QA benchmark utilizing Wikipedia’s
contradiction tags to capture real-world knowl-
edge conflicts. It categorizes contradictions into
explicit and implicit types. After deduplication,
it comprises 103 data samples.

* HKC: The dataset proposed in this study is con-
structed based on knowledge graphs (KGs), with
conflicts arising from their structure. It includes
both single- and multi-hop conflicts, making it
more diverse and complex than previous ones.

Prompting Strategy Prior work (Jiayang et al.,
2024; Hou et al., 2024) usually formulates the prob-
lem as a binary classification (yes/no), using simple
prompts for LLMs. In contrast, we adopt a step-
wise prompting strategy (see Figure 6) to explore
the maximum capability of LLMs for this task.

(1) Identification: LLMs are first prompted to rec-
ognize whether a knowledge conflict exists be-
tween the given passages.

(2) Explanation: If a conflict is detected, LLMs
should explicitly justify why they believe con-
flicts exist, encouraging logical reasoning rather
than relying solely on surface-level knowledge.



Models / Datasets ECON  WikiContradict HKC Models / Datasets ECON  WikiContradict HKC
Mixtral 8x7B 46.43 52.43 15.45 Mixtral 8x7B 60.26 77.78 41.67
Llama 3.1 70B 81.41 78.79 67.98 Llama 3.1 70B 53.54 65.38 29.75
Claude 3.5 Haiku 83.33 61.17 57.08 Claude 3.5 Haiku 74.29 85.71 55.64
GPT-40-mini 88.10 82.52 78.11 GPT-40-mini 68.92 83.53 49.45
ol 74.40 74.76 64.38 ol 87.20 87.01 76.67
Average 74.73 69.93 56.60 Average 68.84 79.88 50.64

Table 2: Results (%) on three KC detection datasets,
measured by Conflict Identification (CI). Lower scores
indicate greater difficulty for models.

(3) Localization: LLMs are instructed to identify
the exact sentences or statements where con-
flicts occur, assessing their ability to pinpoint
the precise source of contradictions.

Metrics To consider the stochasticity of LLMs,
all models perform three separate inference runs.
We rely on two metrics for fine-grained evaluation.
All metrics are averaged over all data instances in
a dataset. Note that these scores are manually com-
puted by participating researchers, as automatic
evaluation methods, such as LLM-as-a-judge, are
not yet reliable enough for this task.

¢ Conflict Identification (CI): If a model fails to
detect a conflict in any of the three attempts, it
receives a score of 0; otherwise, it receives 1.

¢ Conflict Localization (CL): For cases where
LLMs successfully detect a conflict (CI score =
1), we further evaluate their performance in con-
flict localization. LLMs must correctly identify
all conflicting sentences within a given context
to receive a score of 1; otherwise, they receive 0.

S Experimental Results

The main experimental results are presented in Ta-
ble 2 and Table 3. A lower score on a dataset
indicates that LLMs struggle more with it, demon-
strating its higher level of difficulty.

Overall Results LLMs tested on HKC consis-
tently show lower CI and CL scores compared to
those on ECON and WikiContradict, with average
scores decreasing by up to 18% and 30%, respec-
tively. This indicates that models struggle to iden-
tify conflicts in our dataset, and even when they do,
they have difficulty pinpointing the exact portions
where the conflict occurs.

®If it were possible, further investigation of knowledge
conflict detection would be unnecessary.

Table 3: Results (%) on three KC detection datasets,
measured by Conflict Localization (CL). Lower scores
indicate greater difficulty for models.

Conflict Identification (CI) Scores per LLM
From Table 2, we observe that, model-wise, GPT-
4o0-mini achieves the highest performance, while
Mixtral consistently records the lowest. Mixtral’s
lowest score of 15% underscores its significant
weakness in identifying conflicts, a trend also ob-
served in previous studies. Llama exhibits a distinct
trend, particularly with the HKC dataset, failing to
provide an answer in 23.5% of the three inference
attempts and frequently refusing to respond directly
to queries. In contrast, GPT-40-mini demonstrates
strong conflict identification capabilities, achiev-
ing over 74% success on previous KC datasets and
maintaining similar performance on ours, confirm-
ing its effectiveness across all datasets.

Conflict Localization (CL) Scores per LLM  Ta-
ble 3 shows a similar trend to Table 2, with ol
achieving the best performance and Llama the
worst. Although ol does not achieve the high-
est CI scores, once it detects a conflict, it demon-
strates strong stepwise reasoning, effectively spec-
ifying the exact location of the conflict. It also
produces the shortest and most concise responses.
Conversely, Llama generates significantly longer
responses than other models, suggesting it misclas-
sifies non-conflicting sentences as conflicts, result-
ing in a substantial drop in CL.

Performance by Conflict Types Figure 7 shows
the average performance of all LLMs, categorized
by the four conflict types defined in Section 3.2.
Single-hop conflicts are related to entity or relation
substitutions, where models perform relatively well
in both identification and localization. However,
multi-hop conflicts introduce greater complexity,
making contradictions more indirect and resulting
in lower CI and CL scores. Particularly in localiza-
tion, multi-hop conflicts become more challenging
as they span across various locations.

Meanwhile, a higher number of conflicts indi-
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Figure 7: Average performance analysis of LLMs on
HKC by conflict type. More conflicts aid recognition but
hinder precise localization, with multi-hop cases being
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Figure 8: Comparison of detection performance accord-
ing to the number of conflicts. ECON’s factoid conflicts
include multiple conflicts spanning across sentences.

cates a greater degree of contradiction between the
two contexts, making it easier for models to detect
conflicts. A similar trend was observed in ECON,
where the CI score increased with the number of
conflicts, as shown in Figure 8. Note that ECON’s
factoid conflicts involve multiple conflicts intro-
duced across several sentences. This aligns with
our findings, suggesting that while a higher num-
ber of conflicts facilitates conflict identification, it
also makes precise localization more challenging.
Conversely, when multiple conflicts occur, identify-
ing all specific conflicting sentences becomes more
difficult, leading to a decrease in the CL score.

6 Analysis

Classification of Data Instances from Existing
KC Detection Datasets To analyze knowledge
conflict patterns in previous datasets through our
categorization (e.g., Poly-Multi-Hop), we apply our
proposed conflict typology to existing KC datasets,

ECON
1%

WikiContradict
0%

13%

11%

HKC (Ours)

< .

40%

® Mono-Single-Hop
Mono-Multi-Hop
Poly-Single-Hop 18%
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Figure 9: Proportions of four conflict types across three
KC detection datasets. HKC demonstrates greater diver-
sity and complexity than the other two datasets.

namely ECON and WikiContradict. By represent-
ing these datasets as knowledge graphs, we assess
how their knowledge conflicts align with our clas-
sification scheme.

A challenge in analyzing existing KC datasets is
the absence of a predefined ontology and domain
structure. As a result, traditional ontology-based
knowledge representation methods (van Cauter and
Yakovets, 2024) are difficult to apply. To address
this, we utilize the LangChain (Chase, 2022) frame-
work to construct reliable knowledge graphs in
schema-free environments, ensuring a structured
and interpretable representation of knowledge con-
flicts.

Figure 9 presents the classification results of
ECON and Wikicontradict datasets based on our
typology. The results show that Mono-Single-Hop
conflicts are the most prevalent type, with 78% in
ECON and 76% in Wikicontradict. These types of
conflicts are relatively easier to detect as they typi-
cally involve straightforward contradictions within
a single document.

In contrast, our dataset (HKC) exhibits a much
higher presence of Mono-Multi-Hop (39%) and
Poly-Multi-Hop (18%) conflicts compared to ex-
isting datasets. These results reinforce the claim
that our dataset presents more challenging knowl-
edge conflict cases, demanding more sophisticated
reasoning capabilities from LLMs.

Comparison of Difficult Conflict Types We
compare a challenging subset of an existing KC
dataset with those from our dataset. pecifically, we
analyze implicit conflicts in WikiContradict and
multi-hop conflicts in our dataset. WikiContradict
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Figure 10: Comparison of the difficulty in challenging
subsets of two KC datasets.

includes both explicit and implicit conflicts, with
the latter being more challenging for models.

Figure 10 presents the CI and CL performance
results for different conflict types. The results show
that multi-hop conflicts in our dataset are more
challenging to resolve than WikiContradict’s im-
plicit conflicts. CI performance for our dataset’s
multi-hop conflicts is up to 15% lower, while CL
performance drops by up to 37% compared to Wi-
kiContradict’s implicit conflicts. This highlights
the increased complexity of our dataset, demanding
more advanced conflict resolution abilities.

KG vs. Text-based Dataset Creation We com-
pare the performance of knowledge conflicts gen-
erated using knowledge graphs (KG-based) and
those created based on textual context (text-based).
The goal is to assess which method produces more
diverse and challenging conflicts.

We select Mono-Single-Hop and Poly-Single-
Hop conflict data from HKC to evaluate each
method’s effectiveness in generating different types
of conflicts. For a fair comparison, the text-based
approach uses prompts adapted from the KG-based
method, modified for a purely textual context.

Table 4 presents the CI scores for conflicts gen-
erated by each method. The results show that
KG-based knowledge conflict generation produces
more challenging conflicts than the text-based ap-
proach. Specifically, the KG-based method yields
CI scores that are 11% lower for single-hop con-
flicts and 8% lower for multi-hop conflicts. This
suggests that KG-based conflict generation is more
effective in introducing difficult contradictions.

Effectiveness of Prompts for Conflict Detection
Previous studies (Jiayang et al., 2024; Hou et al.,
2024) on KC detection rely on binary (yes/no)
prompts to determine conflict presence, making

Text-based KG-based

92.73 81.36
78.82 70.65

Mono-Single-Hop
Mono-Multi-Hop

Table 4: Comparison of CI scores between KG-based vs.
context-based construction methods. Lower is better.
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Figure 11: Comparison of the effectiveness of prompts
for knowledge conflict detection, tested on two models.

the detection process overly simplistic. In contrast,
our research employs a multi-step prompt approach
to enhance the accuracy of knowledge conflict de-
tection (refer to Section 4).

To compare the effectiveness of different knowl-
edge conflict detection prompts, we conducted
conflict detection experiments on three datasets:
ECON, Wikicontradict, and HKC. Figure 11
presents the results of these experiments.

The results show that across all datasets and mod-
els, our multi-step prompt outperforms the naive
prompt. Specifically, our prompt achieves a mini-
mum CI performance improvement of 9.5% and a
maximum improvement of 33.56% over the naive
prompt. These findings indicate that a multi-step
approach to conflict detection is more effective,
providing greater accuracy in identifying knowl-
edge conflicts. These improvements highlight the
importance of structuring the conflict detection pro-
cess through detailed, multi-step reasoning rather
than relying on simplistic binary prompts.

7 Conclusion

We propose a KG-based benchmark for knowledge
conflict detection with greater diversity and com-
plexity. Results on this dataset reveal the strengths
and limitations of LLMs in handling knowledge
conflicts. Despite recent progress, LLMs continue
to struggle with conflict detection in complex cases,
e.g., those equiring multi-hop reasoning. As a fu-
ture direction, we aim to develop an optimized
method to help models overcome these limitations.



Limitations

While our proposed dataset and benchmark offer
significant improvements in knowledge conflict de-
tection, several limitations remain. The current
dataset consists of 234 instances, which is relatively
limited, though our framework is designed for scal-
ability, and future work will focus on expanding the
dataset with a more diverse range of conflicts. Ad-
ditionally, our dataset primarily includes conflicts
involving two conflicting knowledge statements,
whereas expanding to multi-source conflicts could
better reflect real-world knowledge inconsisten-
cies. Manual verification is currently required for
conflict generation and evaluation, but automating
this process through advanced LLM-based filtering
or weak supervision methods could enhance effi-
ciency and scalability. Furthermore, our dataset is
generated using Wikidata-based knowledge graphs,
and incorporating other structured sources such as
DBpedia, YAGO, and domain-specific knowledge
graphs could enhance robustness and applicability.
Addressing these limitations in future work will
help enhance the robustness, scalability, and appli-
cability of knowledge conflict detection in large-
scale Al systems.
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A Appendix

A.1 Selected Relation Lists for Subgraph
Extraction

e P22 (father), P25 (mother), P1038 (father-in-
law), P1066 (student of), P183 (endemic to)

¢ P828 (has cause), P463 (member of), P176
(made by), P361 (part of), P3179 (territory
overlaps)

* P551 (lived in), P150 (contains), P807 (sep-
arated from), P2789 (connects with), P740
(originates from)

* P1889 (different from), P179 (part of the se-
ries), P460 (equivalent to), P1382 (overlaps
with)

* P527 (consists of), P1923 (participating team),
P54 (member of team), P1542 (has result),
P355 (subsidiary)

A.2 Prompts for KG-to-Text Verification

Instruction

You are an expert KG-to-text error detection system.
Your task is to understand structured triplet data and
determine whether the given context contains errors
based on the following criteria:

- INCORRECT: The triplet contradicts the context.

- NOT CHECKABLE: The triplet cannot be checked in
the context.

- MISLEADING: The triplet is present but creates a
misleading interpretation in the context.

Your response must be a single categorical value:

- “NO ERROR”: If none of the above errors are
present.
- “YES ERROR”: If any of the above errors are present.

Figure 12: Prompt for KG-to-Text verification.
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