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Abstract

Knowledge conflict often occurs in retrieval-001
augmented generation (RAG) systems, where002
retrieved documents may be inconsistent with003
each other or contradict the model’s parametric004
knowledge. Existing benchmarks for knowl-005
edge conflict detection have notable limitations,006
including a narrow focus on the question an-007
swering (QA) setup, heavy reliance on entity008
substitution techniques, and a limited range009
of conflict types. To address these gaps, we010
propose a knowledge graph (KG)-based data011
construction framework for knowledge conflict012
detection, ensuring greater diversity, complex-013
ity, and interpretability by leveraging the ex-014
plicit relational structure of KGs. Experimental015
results on the new benchmark provide intrigu-016
ing insights into the inner workings of LLMs017
in relation to knowledge conflict. They show018
that both open-source and proprietary LLMs019
struggle with conflict detection, particularly in020
multi-hop reasoning, and often fail to pinpoint021
the exact source of contradictions. These find-022
ings highlight the need for more robust bench-023
marks and improved methodologies for enhanc-024
ing LLM reliability in conflict-aware reasoning.025

1 Introduction026

Retrieval-augmented generation (RAG) has be-027

come the de facto standard technique for enhancing028

the performance of large language models (LLMs),029

particularly in terms of updating their outdated030

knowledge and adapting to specialized domains031

(Lewis et al., 2020). While effective, its heavy032

reliance on the quality of retrieval always poses033

inherent risks. For instance, knowledge obtained034

from external sources may conflict with a model’s035

parametric knowledge or even exhibit inconsisten-036

cies within the retrieved documents themselves.037

Knowledge conflict is a recent research topic038

that covers issues related to the aforementioned039

cases and has been gaining consistent attention in040

the field (Xu et al., 2024). An ideal LLM-based041
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Figure 1: Example of a knowledge graph-based multi-
hop conflict in our benchmark, showing LLMs struggle
to detect such cases requiring multi-hop reasoning.

system is expected to be robust in managing these 042

challenges, generating reliable responses regard- 043

less of contradictory facts in its supporting data. 044

However, its implementation is largely hindered by 045

the difficulty of detecting whether disagreements 046

exist across different knowledge sources and, if so, 047

precisely where they occur. 048

Numerous benchmarks have been introduced to 049

evaluate the performance of LLMs in knowledge 050

conflict detection (Hsu et al., 2021; Li et al., 2024; 051

Jiayang et al., 2024; Hou et al., 2024). Nonetheless, 052

we emphasize that existing research on this subject 053

has notable limitations. Firstly, previous studies 054

have primarily focused on the question answering 055

(QA) task, with conflicts occurring only between 056

multiple answer candidates for a given question 057

(Chen et al., 2022; Xie et al., 2024; Marjanovic 058

et al., 2024). Secondly, prior research used overly 059

simplistic techniques—e.g., entity substitution— 060

for dataset construction (Longpre et al., 2021; Chen 061

et al., 2022), which are insufficient to capture the 062

complex nature of knowledge conflicts. Thirdly, 063

while a few studies attempt to categorize conflict 064

types—such as explicit versus implicit (Hou et al., 065

2024) and static, temporal, and disputable (Mar- 066

janovic et al., 2024)—there remains a lack of sys- 067
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tematic analysis based on the classification of con-068

flict types. Finally, with the rapid progress in the re-069

lease of new, powerful LLMs, current benchmarks070

have become too straightforward to challenge so-071

phisticated models—e.g., as we demonstrate in072

Section 5, GPT-4o-mini (OpenAI, 2024a) achieves073

over 80% accuracy on such datasets (Jiayang et al.,074

2024; Hou et al., 2024).075

To alleviate these issues, in this work, we pro-076

pose a framework for automatically constructing077

a benchmark for knowledge conflict detection,078

grounded in knowledge graphs (KGs). Specif-079

ically, our approach extracts subgraphs from a080

knowledge graph, each serving as the foundation081

of a knowledge chunk. Next, each subgraph is082

perturbed to generate variations, where modified083

nodes and edges in the perturbed graph introduce084

knowledge conflicts. Finally, both the original and085

perturbed graphs are transformed into text passages086

using KG-to-text algorithms powered by LLMs.087

By its nature, the proposed method has several088

advantages. Since KGs provide a robust foundation089

for representing the relationships and structure of090

knowledge, our approach enables greater diversity,091

complexity, and controllability in inducing con-092

flicts within documents (see Figure 1 for example).093

Furthermore, compared to text-based strategies, our094

method enhances the interpretability and structured095

analysis of the constructed dataset by visualizing096

conflicting entities and relations as graphs.097

Lastly, we perform an extensive analysis us-098

ing Hierarchical Knowledge Conflict (HKC), a099

novel dataset for knowledge conflict detection de-100

veloped through our framework. This benchmark101

features complex and varied conflict patterns, in-102

cluding multi-hop conflicts, which are rarely ob-103

served in previous benchmarks. Experiments on104

HKC reveal several insights into how current LLMs105

perceive knowledge conflicts, including: (1) both106

open-source and proprietary models remain imper-107

fect at detecting conflicts, particularly when multi-108

hop reasoning is required; (2) even when models109

recognize contradictions, they struggle to pinpoint110

the exact position where the conflict occurs.111

2 Related Work112

Knowledge Conflict Knowledge conflict (KC) is113

a common issue in retrieval-augmented generation114

(RAG) systems, where retrieved documents may115

contain conflicting information or contradict the116

model’s parametric knowledge.1 To explore this 117

phenomenon in greater depth, various datasets and 118

configurations have been introduced. 119

Most studies focus on QA settings, presenting 120

contradictory answers or evidence for given ques- 121

tions (Longpre et al., 2021; Chen et al., 2022; Xie 122

et al., 2024; Jiayang et al., 2024). Entity-based 123

methods (Chen et al., 2022) cause knowledge con- 124

flicts using various entity substitution techniques. 125

Xie et al. (2024) enhances this by using LLMs to 126

generate supporting evidence for conflicts. 127

Document-level conflict evaluates LLMs’ abil- 128

ity to detect contradictions either across external 129

documents (Jiayang et al., 2024; Hou et al., 2024; 130

Marjanovic et al., 2024) or within a single docu- 131

ment (Li et al., 2024), with the former being similar 132

to our setting. Jiayang et al. (2024) constructs real- 133

istic evidence using LLMs, categorizing conflicts 134

into answer and factoid conflicts. Hou et al. (2024) 135

classifies conflicts as explicit or implicit based on 136

Wikipedia’s contradiction tags, while Marjanovic 137

et al. (2024) distinguishes between static and dy- 138

namic facts using Wikipedia’s edit logs. 139

Despite these efforts, we argue that previous 140

benchmarks are not sufficiently challenging—e.g., 141

they do not require multi-hop reasoning. More- 142

over, evaluations of knowledge conflict detection 143

mostly focus on whether LLMs can identify con- 144

flicts rather than pinpointing their exact location. 145

This work addresses these gaps by introducing a 146

new dataset and evaluation metrics. 147

Data Construction with Knowledge Graphs 148

Knowledge graphs play a crucial role in effectively 149

solving various tasks—such as fact verification 150

(Kim et al., 2023), question answering (Chen et al., 151

2024), and RAG (Sanmartin, 2024)—by providing 152

structured knowledge representations. 153

KGs can also be actively leveraged for dataset 154

creation. For instance, Meng et al. (2022) intro- 155

duce COUNTERFACT, a dataset designed to assess 156

factual modifications in transformer models. In 157

contrast, this study utilizes KGs for the automatic 158

construction of knowledge conflict benchmarks, a 159

novel approach to the best of our knowledge. 160

3 Hierarchical Knowledge Conflict 161

Knowledge graphs provide a powerful framework 162

for structurally representing knowledge through en- 163

1KC is divided into 3 types based on the source of knowl-
edge (Xu et al., 2024). We focus on inter-context conflicts
arising from contradictions between two external documents.
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Figure 2: An overview of the proposed dataset construction framework.

tities and their relationships. This characteristic164

makes KGs particularly well-suited for construct-165

ing knowledge conflict datasets. By modifying166

nodes and edges within KGs, diverse and complex167

conflict patterns can be systematically introduced.168

Another advantage of using knowledge graphs169

is that, unlike most existing benchmarks derived170

from QA datasets, they support broader domain171

coverage beyond specific tasks. Furthermore, as172

conflicts are not constrained by certain questions,173

KG-based conflicts exhibit a wider range of contra-174

diction patterns than previous benchmarks.175

In this study, we introduce a new benchmark,176

Hierarchical Knowledge Conflict (HKC), con-177

structed using our KG-based approach. The pro-178

cess comprises three steps, as depicted in Figure179

2. First, subgraphs are extracted from a KG based180

on predefined criteria, acting as conceptual knowl-181

edge chunks (Section 3.1). Next, perturbations are182

applied to the subgraphs to provoke knowledge con-183

flicts (Section 3.2). Finally, both the original and184

modified graphs are converted into text passages185

using KG-to-text algorithms (Section 3.3).186

3.1 Subgraph Extraction187

As the first step, we distill parts of a large-scale188

knowledge graph to build knowledge segments that189

serve as targets for inducing knowledge conflicts.190

Theoretically, any knowledge graph can be used as191

a source of information; in this work, we employ192

Wikidata5M (Wang et al., 2021). Wikidata5M con-193

sists of approximately 20 million triplets, covering194

various domains and knowledge structures.2195

2For the diversity and robustness of the final dataset, we
preprocess the KG as follows. Entities hard to be functionally
defined, e.g., emoticons and special symbols (4,000 in total),
are removed. In addition, general concepts and nodes with too
many connections—e.g., ‘human’ and ‘United States’—are

The key stages of subgraph extraction include 196

seed triplet selection, graph traversal, and enforcing 197

structural constraints. 198

Seed Triplet Selection We randomly sample 199

seed triplets that function as the root for subgraph 200

construction. Since they define the topic and struc- 201

ture of subgraphs, we filter relations involved in the 202

seed triplets to facilitate the generation of hierarchy- 203

based contradictions. Of the 825 unique relations 204

in Wikidata5M, we use 24 selected relations.3 205

Graph Traversal Given the seed triplets, we per- 206

form graph traversal in the base KG, starting from 207

the subject entity of each seed. We employ the 208

Depth-First Search (DFS) algorithm to traverse the 209

KG, progressively expanding the subgraph. DFS 210

explores deep structural variations within the KG. 211

Enforcing Structural Constraints To maintain 212

a balanced level of complexity and contextual rich- 213

ness in the extracted subgraphs, we impose the 214

following constraints during DFS traversal: 215

• The number of edges in any extracted subgraph 216

is capped at 15 to preserve computational feasi- 217

bility and interpretability. 218

• To prevent excessive connections, we limit the 219

number of edges per node to 5. This allows sub- 220

graphs to retain diverse structures without being 221

dominated by a few highly connected nodes. 222

• The algorithm’s maximum traversal depth is ran- 223

domly decided for each traversal, resulting in 224

subgraphs of diverse diameters and structures. 225

excluded. The 30 most connected nodes are filtered out.
3See Appendix A.1 for the full list of the used relations.
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Figure 3: Four different types of conflicts in HKC.

3.2 Knowledge Conflict Generation226

In this phase, the goal is to perturb and modify227

the originally extracted subgraphs to create coun-228

terparts that contain information contradicting the229

original. To this end, we leverage advanced LLMs230

with deep reasoning capabilities, anticipating that231

they can generate reasonable and creative candi-232

dates that introduce knowledge conflicts within a233

given context. Nonetheless, the naïve use of such234

models does not guarantee success in this task, as235

they are inherently imperfect at recognizing knowl-236

edge conflicts. We thus propose a method to guide237

LLMs in reliably generating contradictory facts.238

Category of Conflicts As illustrated in Figure239

3, we consider four different types of knowledge240

conflicts in dataset generation. These categories241

are defined by the number of hops in reasoning242

paths involved in conflicts and the total number of243

conflicts present in a graph. Single-Hop conflicts244

(Figure 3 (a) and (c)) arise when a conflict occurs245

within a single triplet, affecting either a node or an246

edge. Multi-Hop conflicts (Figure 3 (b) and (d))247

display conflicts spanning multiple triplets. Finally,248

based on the number of conflicts in a subgraph, they249

can be classified as Mono-type (a single conflict)250

or Poly-type (two or more conflicts).251

Knowledge Conflict Generation Prompt

Instruction

You will be provided with a triplet set, [Original
Triplet]. Modify it to introduce a multi-hop knowl-
edge conflict with [Original Triplet].

# REQUIREMENTS

- The conflict must contradict the original triplet.
- The conflict must span at least two or more hops
instead of directly contradicting the original triplet.
- The response should include the modified triplet
along with the intermediate steps leading to the
conflict.
- Do not include any explanation.

Here are a example of Multi-Hop Conflict Generation:

Example

[ORIGINAL TRIPLET] (tocantins (state) | divides into
| novo jardim)
[MODIFIED TRIPLET] (tocantins (state) | borders |
mato grosso) (mato grosso | contains | novo jardim)

Figure 4: Prompt for generating multi-hop conflicts.

Single-Hop Multi-hop TotalMono Poly Mono Poly

92 41 59 42 234

Table 1: Data statistics for HKC by conflict category.

Triplet-Level Prompting We use OpenAI’s o3- 252

mini (OpenAI, 2025) to collect conflict candidates. 253

Specifying a subgraph as a set of subject-relation- 254

object triplets, we sample the target triplet for per- 255

turbation.4 We then prompt the LLM to generate 256

new triplet candidates that contradict the original. 257

Still, we found that naïve prompting is insuffi- 258

cient for generating diverse and logically complex 259

conflicts.5 As a solution, we provide an example 260

of real conflicts to encourage the model to consider 261

more than simple entity or relation swaps. The final 262

prompt template used in this process is depicted 263

in Figure 4. Note that it is designed for multi-hop 264

conflicts, and a prompt for single-hop conflicts can 265

be readily derived from it. For Poly-type conflicts, 266

we repeat the entire process with the same graph 267

until the desired number of conflicts is obtained. 268

4Our initial attempts revealed that providing the entire sub-
graph context confuses the model, making the task impossible.
Therefore, we focus on triplet-level operation in this work.

5The model relied on repetitive patterns, struggling to gen-
erate creative conflicts and failing to produce knowledge con-
flicts that truly contradict common sense.
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KG-to-Text Transformation Prompt

Instruction

Your task is to write a brief, fluent, and coherent
single-paragraph in natural language. The text should
be balanced and neutral. Make sure that all the triplets
mentioned in the text can be derived from the input
data, do NOT add any extra information.

Figure 5: Prompt for KG-to-Text transformation.

Manual Review To ensure data quality, we con-269

duct a human review. In-house researchers manu-270

ally reviewed the data instances, removing any of271

poor quality. As a result, HKC comprises a total of272

234 examples, with detailed statistics presented in-273

troduced in Table 1. Compared to existing datasets274

such as ECON and WikiContradict, mentioned in275

Section 4, our dataset contains a reasonable number276

of instances, especially considering the challenge277

of constructing difficult yet natural conflicts.278

3.3 KG-to-Text Transformation279

To represent knowledge conflicts from graphs in280

natural language, we finally apply KG-to-text trans-281

formation. We largely follow the approach outlined282

in Kasner and Dusek (2024), using the prompts283

specified in Figure 5 to guide GPT-4o-mini (Ope-284

nAI, 2024a) in generating coherent textual contexts285

while preserving the meaning of the input subgraph.286

For data quality control, we also perform automatic287

verification using Claude-3.5-Sonnet (Anthropic,288

2024b), with the prompt shown in Figure 12.289

4 Experimental Setups290

We conduct conflict detection experiments using291

the dataset we constructed. The goal of the tested292

models is to detect contradictions, if any, arising293

from discrepancies between two given documents.294

We evaluate various open-source and proprietary295

LLMs for conflict detection without applying any296

task-specific training. Instead, we prompt them to297

recognize potential contradictions. The following298

paragraphs detail the LLMs, datasets, prompting299

strategies, and metrics used in our experiments.300

LLMs We use 5 LLMs: Mixtral-8x7B Instruct301

(team, 2023), Llama 3.1 70B Instruct (Dubey et al.,302

2024), Claude 3 Haiku (Anthropic, 2024a), GPT-303

4o-mini (OpenAI, 2024a), o1 (OpenAI, 2024b).304

Knowledge Conflict Detection Prompt

Instruction

You are given two contexts and your goal is to deter-
mine if there are any conflicts between them. Ignore
what you know and make a judgment.
(1) If no conflicts exist, simply respond with ‘No
conflicts’.
(2) If conflicts exist, count the existing conflicts and
specify each conflict reason briefly, and (3) present
those all conflicting sentence pairs from each context.

Figure 6: Prompt for Knowledge Conflict Detection.

Datasets Experiments include both existing 305

benchmarks and our newly introduced dataset, cre- 306

ating a comprehensive evaluation framework. 307

• ECON (Jiayang et al., 2024): A dataset cre- 308

ated by introducing evidence conflicts through 309

two methods—answer conflicts and factoid con- 310

flicts—highlighting contradictions in supporting 311

evidence. It contains 168 data instances. 312

• WikiContradict (Hou et al., 2024): A human- 313

annotated QA benchmark utilizing Wikipedia’s 314

contradiction tags to capture real-world knowl- 315

edge conflicts. It categorizes contradictions into 316

explicit and implicit types. After deduplication, 317

it comprises 103 data samples. 318

• HKC: The dataset proposed in this study is con- 319

structed based on knowledge graphs (KGs), with 320

conflicts arising from their structure. It includes 321

both single- and multi-hop conflicts, making it 322

more diverse and complex than previous ones. 323

Prompting Strategy Prior work (Jiayang et al., 324

2024; Hou et al., 2024) usually formulates the prob- 325

lem as a binary classification (yes/no), using simple 326

prompts for LLMs. In contrast, we adopt a step- 327

wise prompting strategy (see Figure 6) to explore 328

the maximum capability of LLMs for this task. 329

(1) Identification: LLMs are first prompted to rec- 330

ognize whether a knowledge conflict exists be- 331

tween the given passages. 332

(2) Explanation: If a conflict is detected, LLMs 333

should explicitly justify why they believe con- 334

flicts exist, encouraging logical reasoning rather 335

than relying solely on surface-level knowledge. 336
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Models / Datasets ECON WikiContradict HKC

Mixtral 8x7B 46.43 52.43 15.45
Llama 3.1 70B 81.41 78.79 67.98
Claude 3.5 Haiku 83.33 61.17 57.08
GPT-4o-mini 88.10 82.52 78.11
o1 74.40 74.76 64.38

Average 74.73 69.93 56.60

Table 2: Results (%) on three KC detection datasets,
measured by Conflict Identification (CI). Lower scores
indicate greater difficulty for models.

(3) Localization: LLMs are instructed to identify337

the exact sentences or statements where con-338

flicts occur, assessing their ability to pinpoint339

the precise source of contradictions.340

Metrics To consider the stochasticity of LLMs,341

all models perform three separate inference runs.342

We rely on two metrics for fine-grained evaluation.343

All metrics are averaged over all data instances in344

a dataset. Note that these scores are manually com-345

puted by participating researchers, as automatic346

evaluation methods, such as LLM-as-a-judge, are347

not yet reliable enough for this task.6348

• Conflict Identification (CI): If a model fails to349

detect a conflict in any of the three attempts, it350

receives a score of 0; otherwise, it receives 1.351

• Conflict Localization (CL): For cases where352

LLMs successfully detect a conflict (CI score =353

1), we further evaluate their performance in con-354

flict localization. LLMs must correctly identify355

all conflicting sentences within a given context356

to receive a score of 1; otherwise, they receive 0.357

5 Experimental Results358

The main experimental results are presented in Ta-359

ble 2 and Table 3. A lower score on a dataset360

indicates that LLMs struggle more with it, demon-361

strating its higher level of difficulty.362

Overall Results LLMs tested on HKC consis-363

tently show lower CI and CL scores compared to364

those on ECON and WikiContradict, with average365

scores decreasing by up to 18% and 30%, respec-366

tively. This indicates that models struggle to iden-367

tify conflicts in our dataset, and even when they do,368

they have difficulty pinpointing the exact portions369

where the conflict occurs.370

6If it were possible, further investigation of knowledge
conflict detection would be unnecessary.

Models / Datasets ECON WikiContradict HKC

Mixtral 8x7B 60.26 77.78 41.67
Llama 3.1 70B 53.54 65.38 29.75
Claude 3.5 Haiku 74.29 85.71 55.64
GPT-4o-mini 68.92 83.53 49.45
o1 87.20 87.01 76.67

Average 68.84 79.88 50.64

Table 3: Results (%) on three KC detection datasets,
measured by Conflict Localization (CL). Lower scores
indicate greater difficulty for models.

Conflict Identification (CI) Scores per LLM 371

From Table 2, we observe that, model-wise, GPT- 372

4o-mini achieves the highest performance, while 373

Mixtral consistently records the lowest. Mixtral’s 374

lowest score of 15% underscores its significant 375

weakness in identifying conflicts, a trend also ob- 376

served in previous studies. Llama exhibits a distinct 377

trend, particularly with the HKC dataset, failing to 378

provide an answer in 23.5% of the three inference 379

attempts and frequently refusing to respond directly 380

to queries. In contrast, GPT-4o-mini demonstrates 381

strong conflict identification capabilities, achiev- 382

ing over 74% success on previous KC datasets and 383

maintaining similar performance on ours, confirm- 384

ing its effectiveness across all datasets. 385

Conflict Localization (CL) Scores per LLM Ta- 386

ble 3 shows a similar trend to Table 2, with o1 387

achieving the best performance and Llama the 388

worst. Although o1 does not achieve the high- 389

est CI scores, once it detects a conflict, it demon- 390

strates strong stepwise reasoning, effectively spec- 391

ifying the exact location of the conflict. It also 392

produces the shortest and most concise responses. 393

Conversely, Llama generates significantly longer 394

responses than other models, suggesting it misclas- 395

sifies non-conflicting sentences as conflicts, result- 396

ing in a substantial drop in CL. 397

Performance by Conflict Types Figure 7 shows 398

the average performance of all LLMs, categorized 399

by the four conflict types defined in Section 3.2. 400

Single-hop conflicts are related to entity or relation 401

substitutions, where models perform relatively well 402

in both identification and localization. However, 403

multi-hop conflicts introduce greater complexity, 404

making contradictions more indirect and resulting 405

in lower CI and CL scores. Particularly in localiza- 406

tion, multi-hop conflicts become more challenging 407

as they span across various locations. 408

Meanwhile, a higher number of conflicts indi- 409
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Figure 7: Average performance analysis of LLMs on
HKC by conflict type. More conflicts aid recognition but
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Figure 8: Comparison of detection performance accord-
ing to the number of conflicts. ECON’s factoid conflicts
include multiple conflicts spanning across sentences.

cates a greater degree of contradiction between the410

two contexts, making it easier for models to detect411

conflicts. A similar trend was observed in ECON,412

where the CI score increased with the number of413

conflicts, as shown in Figure 8. Note that ECON’s414

factoid conflicts involve multiple conflicts intro-415

duced across several sentences. This aligns with416

our findings, suggesting that while a higher num-417

ber of conflicts facilitates conflict identification, it418

also makes precise localization more challenging.419

Conversely, when multiple conflicts occur, identify-420

ing all specific conflicting sentences becomes more421

difficult, leading to a decrease in the CL score.422

6 Analysis423

Classification of Data Instances from Existing424

KC Detection Datasets To analyze knowledge425

conflict patterns in previous datasets through our426

categorization (e.g., Poly-Multi-Hop), we apply our427

proposed conflict typology to existing KC datasets,428

78%
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25%

40%
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HKC (Ours)

Mono-Single-Hop
Mono-Multi-Hop
Poly-Single-Hop
Poly-Multi-Hop

76%

11%

13%

0%
WikiContradict

Figure 9: Proportions of four conflict types across three
KC detection datasets. HKC demonstrates greater diver-
sity and complexity than the other two datasets.

namely ECON and WikiContradict. By represent- 429

ing these datasets as knowledge graphs, we assess 430

how their knowledge conflicts align with our clas- 431

sification scheme. 432

A challenge in analyzing existing KC datasets is 433

the absence of a predefined ontology and domain 434

structure. As a result, traditional ontology-based 435

knowledge representation methods (van Cauter and 436

Yakovets, 2024) are difficult to apply. To address 437

this, we utilize the LangChain (Chase, 2022) frame- 438

work to construct reliable knowledge graphs in 439

schema-free environments, ensuring a structured 440

and interpretable representation of knowledge con- 441

flicts. 442

Figure 9 presents the classification results of 443

ECON and Wikicontradict datasets based on our 444

typology. The results show that Mono-Single-Hop 445

conflicts are the most prevalent type, with 78% in 446

ECON and 76% in Wikicontradict. These types of 447

conflicts are relatively easier to detect as they typi- 448

cally involve straightforward contradictions within 449

a single document. 450

In contrast, our dataset (HKC) exhibits a much 451

higher presence of Mono-Multi-Hop (39%) and 452

Poly-Multi-Hop (18%) conflicts compared to ex- 453

isting datasets. These results reinforce the claim 454

that our dataset presents more challenging knowl- 455

edge conflict cases, demanding more sophisticated 456

reasoning capabilities from LLMs. 457

Comparison of Difficult Conflict Types We 458

compare a challenging subset of an existing KC 459

dataset with those from our dataset. pecifically, we 460

analyze implicit conflicts in WikiContradict and 461

multi-hop conflicts in our dataset. WikiContradict 462
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Figure 10: Comparison of the difficulty in challenging
subsets of two KC datasets.

includes both explicit and implicit conflicts, with463

the latter being more challenging for models.464

Figure 10 presents the CI and CL performance465

results for different conflict types. The results show466

that multi-hop conflicts in our dataset are more467

challenging to resolve than WikiContradict’s im-468

plicit conflicts. CI performance for our dataset’s469

multi-hop conflicts is up to 15% lower, while CL470

performance drops by up to 37% compared to Wi-471

kiContradict’s implicit conflicts. This highlights472

the increased complexity of our dataset, demanding473

more advanced conflict resolution abilities.474

KG vs. Text-based Dataset Creation We com-475

pare the performance of knowledge conflicts gen-476

erated using knowledge graphs (KG-based) and477

those created based on textual context (text-based).478

The goal is to assess which method produces more479

diverse and challenging conflicts.480

We select Mono-Single-Hop and Poly-Single-481

Hop conflict data from HKC to evaluate each482

method’s effectiveness in generating different types483

of conflicts. For a fair comparison, the text-based484

approach uses prompts adapted from the KG-based485

method, modified for a purely textual context.486

Table 4 presents the CI scores for conflicts gen-487

erated by each method. The results show that488

KG-based knowledge conflict generation produces489

more challenging conflicts than the text-based ap-490

proach. Specifically, the KG-based method yields491

CI scores that are 11% lower for single-hop con-492

flicts and 8% lower for multi-hop conflicts. This493

suggests that KG-based conflict generation is more494

effective in introducing difficult contradictions.495

Effectiveness of Prompts for Conflict Detection496

Previous studies (Jiayang et al., 2024; Hou et al.,497

2024) on KC detection rely on binary (yes/no)498

prompts to determine conflict presence, making499

Text-based KG-based

Mono-Single-Hop 92.73 81.36
Mono-Multi-Hop 78.82 70.65

Table 4: Comparison of CI scores between KG-based vs.
context-based construction methods. Lower is better.
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Figure 11: Comparison of the effectiveness of prompts
for knowledge conflict detection, tested on two models.

the detection process overly simplistic. In contrast, 500

our research employs a multi-step prompt approach 501

to enhance the accuracy of knowledge conflict de- 502

tection (refer to Section 4). 503

To compare the effectiveness of different knowl- 504

edge conflict detection prompts, we conducted 505

conflict detection experiments on three datasets: 506

ECON, Wikicontradict, and HKC. Figure 11 507

presents the results of these experiments. 508

The results show that across all datasets and mod- 509

els, our multi-step prompt outperforms the naive 510

prompt. Specifically, our prompt achieves a mini- 511

mum CI performance improvement of 9.5% and a 512

maximum improvement of 33.56% over the naive 513

prompt. These findings indicate that a multi-step 514

approach to conflict detection is more effective, 515

providing greater accuracy in identifying knowl- 516

edge conflicts. These improvements highlight the 517

importance of structuring the conflict detection pro- 518

cess through detailed, multi-step reasoning rather 519

than relying on simplistic binary prompts. 520

7 Conclusion 521

We propose a KG-based benchmark for knowledge 522

conflict detection with greater diversity and com- 523

plexity. Results on this dataset reveal the strengths 524

and limitations of LLMs in handling knowledge 525

conflicts. Despite recent progress, LLMs continue 526

to struggle with conflict detection in complex cases, 527

e.g., those equiring multi-hop reasoning. As a fu- 528

ture direction, we aim to develop an optimized 529

method to help models overcome these limitations. 530
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Limitations531

While our proposed dataset and benchmark offer532

significant improvements in knowledge conflict de-533

tection, several limitations remain. The current534

dataset consists of 234 instances, which is relatively535

limited, though our framework is designed for scal-536

ability, and future work will focus on expanding the537

dataset with a more diverse range of conflicts. Ad-538

ditionally, our dataset primarily includes conflicts539

involving two conflicting knowledge statements,540

whereas expanding to multi-source conflicts could541

better reflect real-world knowledge inconsisten-542

cies. Manual verification is currently required for543

conflict generation and evaluation, but automating544

this process through advanced LLM-based filtering545

or weak supervision methods could enhance effi-546

ciency and scalability. Furthermore, our dataset is547

generated using Wikidata-based knowledge graphs,548

and incorporating other structured sources such as549

DBpedia, YAGO, and domain-specific knowledge550

graphs could enhance robustness and applicability.551

Addressing these limitations in future work will552

help enhance the robustness, scalability, and appli-553

cability of knowledge conflict detection in large-554

scale AI systems.555
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A Appendix675

A.1 Selected Relation Lists for Subgraph676

Extraction677

• P22 (father), P25 (mother), P1038 (father-in-678

law), P1066 (student of), P183 (endemic to)679

• P828 (has cause), P463 (member of), P176680

(made by), P361 (part of), P3179 (territory681

overlaps)682

• P551 (lived in), P150 (contains), P807 (sep-683

arated from), P2789 (connects with), P740684

(originates from)685

• P1889 (different from), P179 (part of the se-686

ries), P460 (equivalent to), P1382 (overlaps687

with)688

• P527 (consists of), P1923 (participating team),689

P54 (member of team), P1542 (has result),690

P355 (subsidiary)691

A.2 Prompts for KG-to-Text Verification692

KG-to-Text Verification Prompt

Instruction

You are an expert KG-to-text error detection system.
Your task is to understand structured triplet data and
determine whether the given context contains errors
based on the following criteria:

- INCORRECT: The triplet contradicts the context.
- NOT CHECKABLE: The triplet cannot be checked in
the context.
- MISLEADING: The triplet is present but creates a
misleading interpretation in the context.

Your response must be a single categorical value:

- “NO ERROR”: If none of the above errors are
present.
- “YES ERROR”: If any of the above errors are present.

...

Figure 12: Prompt for KG-to-Text verification.
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