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Abstract

Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is
often hampered by overly verbose outputs. Prior steering methods attempt to address this
issue by applying a single, global vector to hidden representations—an approach grounded
in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer,
a nonlinear steering method that goes beyond uniform linear shifts by learning a complete
transformation between the distributions associated with verbose and concise reasoning. This
transformation is learned via Flow Matching as a velocity field, enabling precise, input-
dependent control over the model’s reasoning process. By aligning steered representations
with the distribution of concise-reasoning activations, FlowSteer yields more compact rea-
soning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates
strong task performance and token efficiency compared to leading inference-time baselines.
Our work demonstrates that modeling the full distributional transport with generative tech-
niques offers a more effective and principled foundation for controlling LRMs.

1 Introduction

Recent Large Reasoning Models (LRMs), such as the OpenAI o1-series (OpenAI, 2024) and DeepSeek-R1
series (Guo et al., 2025), leverage Chain-of-Thought (CoT) reasoning (Wei et al., 2022) to tackle complex
problems in domains like mathematics and coding (Ahn et al., 2024; AlphaProof & AlphaGeometry, 2024;
Luo et al., 2023). By externalizing their reasoning into intermediate steps, LRMs achieve strong performance
on logic-intensive tasks. However, a key challenge has emerged: their reasoning paths are often excessively
verbose (Chen et al., 2025b). These over-extended traces are often filled with unnecessary self-reflection,
which not only inflates computational costs but also diminishes accuracy (Chen et al., 2025a; Huang et al.,
2025).

To address this inefficiency, steering methods have emerged as a promising, lightweight solution for com-
pacting the reasoning paths of LRMs (Chen et al., 2025a; Azizi et al., 2025). These methods alter a model’s
behavior by directly manipulating its hidden representations at inference time. The core principle is to
identify internal representations that lead to verbose outputs (source) and transform them toward repre-
sentations associated with concise outputs (target). Most existing approaches, however, rely on the linear
representation hypothesis (Park et al., 2024). This hypothesis posits that complex model behaviors can be
controlled by shifting a hidden representation along a single direction, i.e. a steering vector. While simple
to implement, this linear approach applies the same shift to all source representations, irrespective of their
individual starting positions. This rigid transformation ignores the complex geometry of the underlying
representation space (Wang et al., 2025b), risking pushing steered representations off the data manifold and
leading to suboptimal performance (Rodriguez et al., 2025; Huang et al., 2025).

In this work, we introduce FlowSteer, a novel steering approach that does not rely on the linear representa-
tion hypothesis. Building on the perspective of steering as a distribution transport problem (Rodriguez et al.,
2025), we leverage Flow Matching (FM) (Lipman et al., 2023; Liu, 2022) to learn a nonlinear velocity field
that maps the “verbose” representation distribution to the “concise” one. This technique enables a full distri-
butional alignment that respects the data manifold, overcoming a key limitation of prior linear approaches.
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However, applying Flow Matching to the LRM activation space is non-trivial; we uncover two phenomena
that impede naive implementation. First, we identify that massive activation magnitudes severely destabilize
training dynamics. We address this via a robust training strategy featuring outlier-resistant normalization
and a Huber loss (Huber, 1992). Second, we observe that representations frequently stagnate in low-velocity
zones, failing to reach the target state. To counteract this, we introduce a novel probabilistic guidance mech-
anism that ensures trajectories effectively converge to the target manifold. Importantly, FlowSteer operates
while keeping the original LRM parameters intact; the resulting flow model is a lightweight MLP, adding
minimal overhead during inference. Our contributions are as follows:

• We propose a novel Flow Matching-based nonlinear steering method that better preserves the target
representation distribution. Quantitative experiments show that FlowSteer has roughly 5.4× better distri-
butional alignment to target representations compared to the linear steering baseline.

• We reveal and systematically address critical challenges unique to using flow models within LRM
activation space. We introduce a suite of novel techniques that ensure both stable training and the effective
generation of steering trajectories, successfully overcoming pitfalls caused by massive activations and velocity
stagnation.

• We demonstrate that the superior distributional alignment translates into reasoning efficiency. Specifi-
cally, we evaluate FlowSteer across five reasoning benchmarks and LRMs at 1.5B, 7B, and 32B scales. Sta-
tistical tests confirm that our approach requires fewer tokens than other inference-time baselines to achieve
comparable performance. Notably, in the best case, FlowSteer achieves up to a 6.0% absolute accuracy
increase over the next-best method while further reducing token consumption by 14.5%.

2 Preliminaries

2.1 Reducing reasoning path length by linear steering

Hidden representation sets Steering methods for efficient LRMs operate by intervening on the model’s
hidden representations x ∈ Rd at a specific transformer block during inference. The core of these methods is
the construction of two sets of representations: a source set S associated with verbose reasoning and a target
set T associated with concise reasoning (Huang et al., 2025). Different approaches populate these sets in
different ways. For instance, ASC (Azizi et al., 2025) and Manifold Steering (Huang et al., 2025) generate
paired responses to the same prompt—a verbose CoT and a concise one—and assign representations from the
former to S and the latter to T . Another approach, SEAL (Chen et al., 2025a), derives these sets by analyzing
a single CoT. It categorizes reasoning steps into different functional roles, identifying “Reflection/Transition”
steps as verbose and “Execution” steps as concise; the hidden states corresponding to these steps are then
extracted to populate S and T , respectively.

Steering vector The steering vector v is typically defined as the difference-in-means:

v = 1
|T |

∑
x∈T

x − 1
|S|

∑
x∈S

x, (1)

where v encodes the direction toward more concise reasoning paths. To enhance robustness against noise
in the hidden representations, Manifold Steering (Huang et al., 2025) additionally applies a Principal Com-
ponent Analysis (PCA) projection to v. At inference time, once a token is identified for intervention, its
representation x is shifted using the steering vector:

x′ = x + γv, (2)

where x′ is the updated representation. The coefficient γ ∈ R is either a fixed hyperparameter (Chen et al.,
2025a; Zhao et al., 2025; Azizi et al., 2025) or a value dependent on x (Huang et al., 2025). Because these
methods adjust hidden representations via a simple affine transformation, we refer to them as linear steering
methods and term the coefficient γ the linear strength.
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Figure 1: Left: The source distribution corresponds to hidden representations that produce verbose CoTs,
while the target distribution corresponds to representations that produce concise CoTs. Better zoom in for
clarity. Middle: Linear steering methods apply the same steering vector (the blue bolded arrow) to all source
representations, aligning only the means of the two distributions. This ignores higher-order statistics such
as covariance, often resulting in a substantial mismatch. Right: Our FlowSteer leverages Flow Matching to
learn a mapping from the source distribution to the target distribution, naturally aligning the two due to
the theoretical properties of Flow Matching.

2.2 Preliminaries on Flow Matching

From interpolation to velocity fields Flow Matching is a recent generative modeling technique to learn
a smooth interpolation between a source distribution p0 and a target distribution p1, enabling sampling from
p1 given samples from p0. Given a sample pair from the joint distribution (x0, x1) ∼ π0,1, a linear path can
be constructed as: xt = tx1 + (1 − t)x0 for t ∈ [0, 1], which specifies the position at time t. Flow Matching
characterizes the motion of xt, which later serves as the basis for generating new samples. This motion is
described mathematically by a time-dependent velocity field u : Rd × [0, 1] → Rd. Taking the time derivative
of xt yields the conditional velocity field: ut(xt|x1, x0) = dxt

dt = x1 − x0. However, x1 is unavailable when
generating new samples. To obtain a velocity field that depends only on (xt, t), Flow Matching learns to
model the marginal velocity field:

ut(xt) = Ept(x1,x0|xt) [ut(xt|x1, x0)] . (3)

Conditional Flow Matching loss The marginal velocity field can be learned by minimizing the regression
loss LFM(θ) = Et,pt(xt)[||vθ(xt, t) − ut(xt)||22], where vθ is the flow model parametrized by θ. However,
computing ut(xt) requires marginalization over all (x0, x1), making LFM(θ) intractable. To address this
issue, Flow Matching introduces the conditional Flow Matching loss:

LCFM(θ) = Et∼U [0,1],(x0,x1)∼π0,1

[
||vθ(xt, t) − ut(xt|x1, x0)||22

]
. (4)

Lipman et al. (2023); Liu (2022) show that LCFM(θ) and LFM(θ) yield identical gradients, so optimizing
LCFM(θ) effectively learns the marginal velocity field ut(xt).

New sample generation Once the flow model vθ(xt, t) is trained, new samples can be generated by using
it as an approximation of the marginal velocity field ut(xt). Starting with an initial sample x0 ∼ p0, one
simulates the Ordinary Differential Equation (ODE) defined by the learned model: dxt

dt = vθ(xt, t), from
t = 0 to t = 1. In practice, the ODE is solved numerically using methods such as Euler or Dopri5 (Dormand
& Prince, 1980). Two important properties of Flow Matching are worth highlighting: (1) By construction,
the marginal velocity field ut(xt) transports the source distribution p0 exactly to the target distribution p1.
Consequently, if the flow model vθ(xt, t) perfectly recovers ut(xt) and is used for generation, the resulting
samples also follow p1. (2) Although the conditional velocity field is derived from a linear interpolation
between x0 and x1, the trajectories produced by the marginal velocity field during generation are generally
curved. These properties are central to our motivation for grounding method in Flow Matching, which we
introduce next.

3 Methodology

Distribution alignment via Flow Matching As introduced earlier, hidden states linked to verbose
CoTs form the source distribution, while those linked to concise CoTs form the target distribution (Figure 1,
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left). The goal of steering is to transport the source distribution to the target (Rodriguez et al., 2025), guiding
the LRM to produce concise CoTs. Constrained by the linear representation hypothesis, existing steering
methods simplify this transport into a uniform shift. This approach, however, only aligns the means of the
two distributions while ignoring higher-order statistics, often resulting in a distributional mismatch (Figure 1,
middle). In contrast, our FlowSteer is grounded in Flow Matching, whose marginal velocity field guarantees
an exact transport between arbitrary distributions (Figure 1, right). This capability align steered represen-
tations with the target geometry, minimizing off-manifold excursions that trigger degenerative repetition or
reasoning collapse (Huang et al., 2025). Furthermore, the ability to induce nonlinear steering trajectories
marks a key distinction from linear steering works (Chen et al., 2025a; Huang et al., 2025; Rodriguez et al.,
2025).

Challenges of flowing in LRM activation space Despite the appealing properties of Flow Matching for
distribution transport, applying it in the hidden space of LRMs introduces significant challenges. (1) The first
arises from massive activations (Sun et al., 2024): a subset of activations consistently exhibits magnitudes
orders larger than the rest, often dominating the global norm of the hidden states. These extreme values
can severely destabilize training by inflating the MSE loss. This prevents the flow model from learning
useful structure and leads to divergent generation trajectories, pushing the steered representation toward
infinity. (2) The second challenge is the emergence of low-velocity zones: regions between the source and
target manifolds where the learned velocity field has a very small magnitude. If a representation x0 lies in
such a zone, it may move only minimally toward the target distribution and lead to suboptimal performance.
Next, we elaborate on these challenges and our solutions.

3.1 Robust training strategy

Figure 2: Boxplot of activations
from the 20th layer of DeepSeek-
R1-Distill-Qwen-1.5B.

Massive activations cause divergent steering trajectories In typ-
ical application domains of Flow Matching, e.g. image generation, the
source x0 is standard Gaussian noise and the target pixels x1 are bounded
in [0, 1]. Consequently, the regression target ut(xt|x1, x0) = x1 − x0
in Eq. (4) typically has a moderate scale and limited variance. In con-
trast, activations in LRMs are unbounded and can contain substantial
outliers (Sun et al., 2024), as illustrated for the first four dimensions of
the representations in Figure 2. These massive activations inflate the vari-
ance of the loss and destabilize training. The flow model then dispropor-
tionately allocates capacity to predicting conditional velocities associated
with these extremes, underfitting the typical structure of the source and
target distributions. At steering time, the poorly fitted flow model makes
large prediction errors in certain regions, pushing representations off the
target manifold and causing steering trajectories to diverge toward infin-
ity. To mitigate this problem, we explicitly reduce the influence of outlier
activations by introducing robust data normalization and a robust loss.

Robust data normalization The presence of massive activations ne-
cessitates a robust normalization of the source and target representations.
Conventional dimensionwise z-score scaling ( x−µ

σ ) is unsuitable for this
landscape, as outliers may skew the estimated mean µ and inflate the standard deviation σ. This effect com-
presses the majority of typical activations into a narrow range, masking important structural information.
Indeed, our ablation study in Section 4.4 confirms that this information loss is fatal: training the flow model
with z-score normalization leads to model collapse, yielding near-zero accuracy across multiple benchmarks.
We therefore adopt a more robust normalization using the median and interquartile range (median-IQR
normalization), which we apply independently to the source and target representation sets. For a given
activation value x in a single dimension (of x0 or x1), its normalized value x̃ is computed as

x̃ = x − median(X)
Q75(X) − Q25(X) , (5)
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where median(X), the 75th percentile Q75(X), and the 25th percentile Q25(X) are computed for that
dimension across the training set (of either source or target representations). This method is inherently
resilient to outliers, preserving meaningful variations within the non-outlier data.

Robust loss function The standard MSE loss ||vθ(xt, t) − (x1 − x0)||22 in the conditional Flow Matching
loss (Eq. (4)) is also highly sensitive to outliers. To improve training stability, we replace it with a more
robust, dimension-wise Huber loss (Huber, 1992). Let ζ = vθ(xt, t) − (x1 − x0) be the prediction residual
vector. The Huber loss for its k-th dimension is:

DHuber(ζk) =
{

1
2 ζ2

k if |ζk| ≤ 1,

|ζk| − 1
2 otherwise.

(6)

The total loss is obtained by averaging across all d dimensions. This loss replaces the MSE loss in Eq. (4),
and the final optimization objective is the expectation of this total Huber loss over time t ∼ U [0, 1] and
data pairs (x0, x1) ∼ π0,1. The Huber loss behaves quadratically for small residuals (|ζk| ≤ 1) and linearly
for large ones, reducing the influence of outliers. As training progresses, the residual values ζk typically
converge to be smaller than 1. In this regime, the Huber loss becomes equivalent to the squared loss, thereby
preserving the key theoretical guarantee of Flow Matching such as the relationship ∇LCFM(θ) = ∇LFM(θ),
as introduced in Section 2.2.

Better source-target coupling The standard approach in Eq. (4) couples source x0 and target x1
samples independently (i.e., π0,1(x0, x1) = p0(x0)p1(x1)), which can create unnecessarily complex paths for
the flow model to learn. To address this, we adopt the minibatch 2-Wasserstein Optimal Transport (OT)
coupling strategy (Tong et al., 2024). This strategy finds an optimal pairing of source and target samples
within each batch, which simplifies the resulting conditional velocity fields and thus makes the learning
objective easier to optimize. In practice, the OT plan πOT

0,1 is computed efficiently using a solver such as the
Sinkhorn algorithm (Cuturi, 2013).

The robust training techniques above successfully resolve the issue of divergent steering trajectories, elimi-
nating infinite values in steered representations. The second challenge, the existence of low-velocity zones,
becomes the primary obstacle to effective steering. In the following section, we analyze the underlying causes
of these zones and introduce our probabilistic guidance as the solution.

3.2 Probabilistic guidance avoids stagnation in low-velocity zones

Causes of low-velocity zones We refer a low-velocity zone to a region where the velocity vectors of the
learned field have a small magnitude. The formation of these zones stems from the conditional Flow Matching
loss, LCFM(θ) (Eq. (4)), where the ground-truth regression target is the conditional velocity ut(xt|x1, x0) =
x1 − x0. Prior studies (Chen et al., 2025a; Huang et al., 2025) indicate that the source (p0) and target
(p1) distributions maintain significant spatial proximity in the representation space. Consequently, training
pairs (x0, x1) sampled from these proximal regions naturally yield velocity targets with small magnitudes
(x1 − x0 ≈ 0). Furthermore, the minibatch OT plan exacerbates the formation of low-velocity zones.
By design, OT minimizes transport cost by coupling pairs (x0, x1) that are already close. This strategy
systematically pairs more points within the proximal regions, which in turn generates more small-magnitude
regression targets and encourages the flow model to learn a low-velocity field there. Consequently, at steering
time, any source representation x0 that starts in this zone will stagnate, leading to suboptimal compression
of the reasoning paths.

Probabilistic guidance Inspired by guidance techniques in conditional image generation (Dhariwal &
Nichol, 2021; Ho & Salimans, 2021; Karras et al., 2024), we introduce a probabilistic guidance to help
representations escape low-velocity zones. Unlike in image generation, where guidance aims to align outputs
with text prompts, our goal is to steer representations from the source distribution p0 toward the target
distribution p1. Intuitively, this process should increase the likelihood p1(xt) while decreasing p0(xt) along
the trajectory. A standard approach is classifier guidance (Dhariwal & Nichol, 2021), which derives a
guidance from the score function ∇x log q(c = 1|xt) of an auxiliary classifier trained to distinguish between
the source (class c = 0) and target (class c = 1) distributions. However, we avoid this method due to the
computational overhead of training and deploying an additional classifier.
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Instead, we propose a training-free guidance mechanism that eliminates the need for additional learnable
parameters. Our approach is motivated by prior work (Hashemi et al., 2021; Zhang et al., 2021) showing
that activation distributions in the later layers of neural networks are well-approximated by Gaussians, an
approximation also adopted in previous LLM steering research (Rodriguez et al., 2025). Since we perform
steering in later LRM layers (see Appendix A), we approximate both the source distribution p0 and the
target distribution p1 with Gaussians: p0(·) ≈ N (·; µ0, Σ0) and p1(·) ≈ N (·; µ1, Σ1). This allows us to
analytically compute the difference between their score functions:

gt(xt) = ∇x log p1(xt) − ∇x log p0(xt) = Σ−1
1 (µ1 − xt) − Σ−1

0 (µ0 − xt). (7)

This vector gt(xt) points in the direction that maximally increases the log-likelihood of the target distribution
while decreasing that of the source. Let ḡt(xt) = gt(xt)/||gt(xt)||2 be its normalized version. We incorporate
this guidance into the generation ODE dxt

dt = vθ(xt, t) as follows:

dxt

dt
= vθ(xt, t) + ηgt(xt) −

(
vθ(xt, t)⊤ḡt(xt)

)
ḡt(xt), (8)

where η ∈ R+ is a hyperparameter for guidance strength. The final term, (vθ(xt, t)⊤ḡt(xt))ḡt(xt), is the
projection of the learned velocity vθ(xt, t) onto the guidance direction ḡt(xt). This formulation allows the
guidance to operate adaptively depending on the representation’s location:

(1) When xt is in a low-velocity zone, the learned velocity vθ(xt, t) has small magnitude. Consequently,
its projection is negligible, and the dynamics are dominated by the guidance term ηgt(xt). As defined in
Eq. (7), this guidance vector is non-zero almost everywhere as long as the source and target distributions
are distinct (i.e., have different means or covariances). It thus provides a persistent force throughout the
low-velocity zones, pushing the representation toward the target and effectively helping it escape stagnation.

(2) When xt is outside a low-velocity zone, the magnitude of vθ(xt, t) is larger. Both vθ(xt, t) and ḡt(xt)
generally point toward the target region, making their inner product positive. In this regime, the projection
term subtracts a portion of the guidance, reducing its influence. This allows the trajectory to be primarily
determined by the more nuanced, learned flow model vθ(xt, t), which captures the finer-grained structure of
the target manifold.

Practical considerations Computing the matrix inverse Σ−1 in Eq. (7) is computationally challenging
in high-dimensional spaces. To reduce this overhead, we employ a diagonal factorization for Σ, a technique
consistent with recent research on LLMs that also handles high-dimensional Gaussians (Yang et al., 2024; Li
et al., 2025; Rodriguez et al., 2025). Specifically, we set Σ1 = diag(σ1 ⊙ σ1) and Σ0 = diag(σ0 ⊙ σ0), where
⊙ denotes the Hadamard product. The vectors σ1, σ0 ∈ Rd

+ contain the per-dimension standard deviations,
which we estimate from the training data along with the means µ0 and µ1. While this factorization is less
expressive than the full covariance structure, our experiments in Sections 4.4 and 4.5 show that the guidance
substantially boosts accuracy and token efficiency, justifying the factorization choice.

4 Experiments

4.1 Implementation

Steering layer and steering tokens Representation steering involves two key components: a protocol
that specifies where to intervene (i.e., at which layers and tokens) and a mechanism that defines how to modify
the representations. Focusing on the latter, our primary contribution is FlowSteer, a steering mechanism.
To isolate the impact of our approach, we conduct a controlled comparison against one of the state-of-the-art
linear methods, SEAL (Chen et al., 2025a). We adopt SEAL’s intervention protocol by steering the same
layer and intervening at every “\n\n” token, which serves as the delimiter for splitting reasoning steps. By
retaining this protocol while replacing the linear mechanism with FlowSteer, we ensure that any observed
improvements are attributable solely to our proposed steering mechanism. Further implementation details
are available in Appendix A.

Training dataset To ensure a fair comparison and equivalent data efficiency, we use an identical training
dataset for both SEAL and FlowSteer. We extract representations from the MATH/train set (Hendrycks
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Table 1: Distributional distance between the source/steered representations and the target ones. FlowSteer
achieves a substantially better alignment (lower distance) to the target than both the original source repre-
sentations (“Before Steering”) and those steered by SEAL.

Methods R1-1.5B R1-7B QwQ-32B
MMD ↓ FID ↓ KID ↓ MMD ↓ FID ↓ KID ↓ MMD ↓ FID ↓ KID ↓

Before Steering 564.6 8227.4 1137.5 577.1 22784.8 1609.5 652.9 67647.1 33951.7
After SEAL 386.2 4639.6 69.8 517.0 17158.1 189.4 539.9 44987.7 766.6
After FlowSteer 98.0 690.2 11.4 105.3 4701.4 25.3 60.4 5658.2 293.1

et al., 2021). These representations are then used for two purposes: (1) to compute the steering vector for
SEAL, and (2) to train our MLP flow model, which includes the estimation of distributional statistics (e.g.,
percentiles, mean). Notably, the number of question samples used for representation extraction is modest,
ranging from 1,000 to 3,600. Even for a 32B LRM, our flow model can be trained on a single GPU within
24 hours. Consequently, compared to RL-based approaches (e.g., Dai et al. (2025); Xiang et al. (2025)), our
method is significantly less demanding in terms of data samples and computational resources. We outline
the specific training details in Table 5.

Evaluation benchmarks For math, we use: MATH500 (Lightman et al., 2024; Hendrycks et al., 2021),
GSM8K (Cobbe et al., 2021), AIME24 (Mathematical Association of America, 2024), and AMC23 (Math-
ematical Association of America, 2023). To test the cross-domain generalization, we evaluate on the coding
task LiveCodeBench (Jain et al., 2025).

LRMs To evaluate the generalizability of our approach across different model families and scales, we con-
duct experiments on Deepseek-R1-distill-Qwen-1.5B (Guo et al., 2025) and its 7B variant (denoted with
R1-1.5B/7B), and Qwen-QwQ-32B (Qwen-Team, 2025) (denoted with QwQ-32B). To maintain a con-
trolled environment, we follow Chen et al. (2025a) and use greedy decoding for the vanilla models and all
inference-time approaches (listed in Section 4.3). We set the maximal token length of LRMs to 15,000 on
AIME24 and 10,000 on all other benchmarks.

Flow model and guidance strength Our flow model vθ is a lightweight MLP, adding minimal compu-
tational overhead, as detailed in Section 4.5. Specifically, we use a 6-layer MLP for the R1-1.5B/7B models
and an 8-layer MLP for the QwQ-32B model. During steering, we generate trajectories using the Dopri5
ODE solver. To ensure a fair comparison of performance, we conduct a hyperparameter sweep for both the
guidance strength η of FlowSteer and the linear strength γ of SEAL, reporting the best-performing configu-
ration for each. The detailed hyperparameter values are reported in Appendix A.4. We note that a default
η = 1 is a strong choice across most models and datasets.

Baseline methods We compare FlowSteer against a diverse set of inference-time intervention methods.
These include the linear steering method SEAL (Chen et al., 2025a), a logit-level intervention method Log-
itsPenalty (Wang et al., 2025c), two token-level methods, AlphaOne (Zhang et al., 2025) and s1* (Muen-
nighoff et al., 2025), and the prompt-based method CoD (Xu et al., 2025a). The s1* is the version without
supervised fine-tuning. In addition, we report results from a single run, which aligns with the standard
evaluation settings established by previous works (Chen et al., 2025a; Zhang et al., 2025; Wang et al.,
2025c). In line with SEAL and AlphaOne, we do not compare against RL-based approaches. These meth-
ods represent an orthogonal line of work focused on optimizing LRM weights to improve CoT generation.
In contrast, the methods evaluated here are inference-time interventions that do not alter the base LRM.
Notably, these two approaches are not mutually exclusive; inference-time approaches could potentially be
applied to RL-optimized LRMs to further control the reasoning paths.

4.2 Alignment between steered and target distributions

FlowSteer achieves superior distributional alignment To quantify how well steered representations
align with the target ones, we measure their distributional distance before and after steering. Both source and
target representations are extracted from the MATH/train set. We first establish a baseline distance between
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Table 2: Performance across various math and coding benchmarks. “Acc.” (↑) denotes Pass@1 accuracy
(%) . “T.” (↓) is the average number of generated tokens across all answers, and “T.@C” (↓) is the
average number of tokens in correct answers. The best and second-best values are highlighted with bold
and underline, respectively. “Vanilla” refers to the vanilla LRM without intervention. “Average” shows the
average performance across all benchmarks.

Methods MATH500 GSM8K AIME24 AMC23 LiveCodeBench Average

Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C

DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 66.6 4785 2390 73.8 2072 819 6.7 13807 2735 52.5 6269 2998 21.2 7749 2372 44.2 6936 2263
s1* 69.8 7428 6188 69.0 6849 5799 26.7 14334 12498 47.5 9020 7936 19.0 8308 2606 46.4 9188 7005
CoD 73.0 4040 2093 79.5 2044 1004 20.0 12419 4264 47.5 6561 3000 20.5 8061 2394 48.1 6625 2551
LogitsPenalty 72.6 3847 1988 77.9 1360 715 10.0 13538 8801 50.0 6454 2709 21.2 7749 2331 46.3 6590 3309
AlphaOne 75.6 3858 3472 78.2 996 946 23.3 7314 6304 62.5 4550 4060 24.3 4927 4040 52.8 4329 3764
SEAL 78.2 3194 2003 81.0 968 732 33.3 10517 4792 66.5 4810 3256 23.3 7217 2380 56.5 5341 2633
FlowSteer 79.6 2915 1948 80.1 961 700 33.3 10211 3884 72.5 4111 2565 24.5 7217 2327 58.0 5083 2285

DeepSeek-R1-Distill-Qwen-7B

Vanilla 87.0 3341 2605 87.9 1160 867 50.0 9903 5539 72.5 5431 3698 45.3 6799 3394 68.5 5327 3221
s1* 84.0 4846 4013 88.3 2782 2181 43.3 12060 8214 70.0 5990 4270 45.3 6976 3652 66.2 6531 4466
CoD 89.0 2397 2143 87.5 925 867 40.0 10595 4810 80.0 4360 2999 44.8 6431 3331 68.3 4942 2830
LogitsPenalty 88.0 2978 2333 87.4 902 758 40.0 10457 4914 77.5 4764 3244 44.0 6487 3367 67.4 5118 2923
AlphaOne 87.4 4070 3797 90.1 862 851 46.7 7605 6052 82.5 4820 4221 49.5 5256 4769 71.2 4523 3938
SEAL 90.2 2613 2158 88.4 846 754 46.7 9934 5223 90.0 3627 2919 50.0 6005 3183 73.1 4605 2847
FlowSteer 90.2 2549 2010 88.6 797 732 53.3 8453 4132 90.0 3177 2739 50.5 5930 3204 74.5 4181 2563

Qwen-QwQ-32B

Vanilla 90.8 3549 3027 95.6 1157 1069 63.3 10791 8486 80.0 6053 5067 77.5 5680 4494 81.4 5446 4429
s1* 91.4 4180 3744 96.3 1858 1753 70.0 10852 9073 85.0 6275 5618 76.2 5734 4479 83.8 5780 4933
CoD 91.0 3672 3346 96.1 1008 971 70.0 9498 8976 85.0 5169 4316 78.8 5370 4191 84.2 4943 4360
LogitsPenalty 90.2 3135 2746 95.6 956 906 63.3 9942 8831 85.0 5779 5381 78.8 5993 4070 82.6 5161 4387
AlphaOne 91.6 3067 2908 94.8 866 876 53.3 6544 5165 82.5 4082 3573 78.2 5834 5646 80.1 4079 3634
SEAL 92.8 3102 2732 96.4 976 905 60.0 10795 8665 82.5 5452 4487 80.5 5036 3981 82.4 5072 4154
FlowSteer 91.0 3118 2675 96.5 917 857 76.7 9848 8355 90.0 5698 5220 81.2 5030 3970 87.1 4922 4215

the original source and target distributions (“Before Steering”). Next, we apply SEAL and FlowSteer to
the source representations and measure the distance from each of the two resulting steered distributions
to the target. We use three metrics: Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Sutherland et al.,
2018) (detailed in Appendix E). As shown in Table 1, FlowSteer consistently reduces distributional distance
by a large margin across all LRMs, often by more than an order of magnitude compared to the unsteered
baseline. Moreover, it outperforms the linear steering method SEAL, achieving distances that are 5.4×
lower in average. These results demonstrate that FlowSteer produces representations better aligned with
the target manifold than linear steering, providing a strong quantitative explanation for its task performance
reported in Table 2, which we will analyze in the next subsection.

4.3 Evaluation on mathematical and coding tasks

FlowSteer achieves a competitive accuracy–token count trade-off As summarized by the average
columns in Table 2 and the scatter plots in Figure 3, FlowSteer consistently lies on the empirical accuracy–
token Pareto frontier across all three LRMs. Specifically, FlowSteer achieves the best of both worlds on
R1-7B with the highest accuracy and lowest token count; meanwhile, on R1-1.5B and QwQ-32B, while there
are baselines with lower token usage than FlowSteer, they substantially sacrifice accuracy. That said, there
is an inherent trade-off between accuracy and token usage: deeper reasoning can improve accuracy, but
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Figure 3: Average accuracy and token count aggregated across all benchmarks.
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Figure 4: Average accuracy as a function of average token count for correct answers.

may consume more tokens. On challenging math benchmarks like AIME24 and AMC23, the accuracy gains
of FlowSteer are particularly striking. For instance, with R1-1.5B on AMC23, FlowSteer reaches 72.5%
accuracy, a 6.0% absolute improvement over the strongest baseline (66.5%) while further reducing the
token count by 14.5%. Furthermore, this strong performance is not limited to math; FlowSteer achieves the
highest accuracy across all three LRMs on the LiveCodeBench coding task, demonstrating its cross-domain
versatility. To evaluate token efficiency, we conduct a Wilcoxon signed-rank test in Appendix B, comparing
the average token counts of FlowSteer against the most accurate baseline. We restrict this comparison to
benchmarks where FlowSteer and the strongest baseline attain comparable accuracy (an absolute difference
below 5 percentage points). We introduce this constraint because a direct comparison of token counts can
be misleading, as attaining higher accuracy may require longer CoTs, a relationship we elaborate on in the
subsequent paragraph. The one-sided p ≈ 0.032 suggests that, at the 5% significance level, FlowSteer uses
fewer tokens than the strongest baseline when achieving comparable accuracy.

FlowSteer prioritizes efficient reasoning over mere brevity A deeper analysis of token usage shows
a key advantage of our method. On AIME24 and LiveCodeBench, while methods like AlphaOne often
produce shorter responses on average (column “T.” in Table 2), this brevity does not consistently translate
to the most concise reasoning for correct answers (“T.@C”). In contrast, FlowSteer requires fewer tokens
to generate correct solutions on these benchmarks, as shown in Table 2 and Figure 4. This suggests that
FlowSteer does not merely shorten outputs, but more effectively streamlines the underlying reasoning paths
required for a successful outcome. This efficiency is particularly noteworthy given that FlowSteer successfully
solves harder problems. As our study in Appendix C shows, problems correctly solved by FlowSteer are up to
1.5× more difficult than those solved by AlphaOne. These challenging questions naturally demand longer
CoTs, which can increase the average token count. Thus, the superior performance of FlowSteer is rooted in
adaptively allocating necessary reasoning to complex problems rather than compressing all reasoning paths.
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Table 3: Ablation study on R1-1.5B. Results show that: (1) Median-IQR normalization and Huber loss are
both essential for flow model training; their omission causes the steered LRM to produce random outputs
until the maximum token limit is exhausted. (2) Probabilistic guidance provides significant gains in accuracy
and token efficiency. See Appendix D.1 for additional LRM results.

Data normalization + Loss MATH500 GSM8K AIME24 AMC23 LiveCodeBench

Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C

Vanilla LRM 66.6 4785 2390 73.8 2072 819 6.7 13807 2735 52.5 6269 2998 21.2 7749 2372

Z-score + MSE 0.4 9980 2815 0.8 9421 2111 0.0 14999 - 0.0 10000 - 0.3 9986 4715
Z-score + Huber 0.8 9799 2865 0.5 9980 2804 0.0 15000 - 0.0 10000 - 0.5 9676 2851
Median-IQR + MSE 1.7 9735 2666 1.0 9557 1411 0.0 15000 - 0.0 10000 - 1.0 9519 2754
Median-IQR + Huber 78.6 3168 2026 81.2 1071 782 13.3 11534 2996 67.5 4688 2919 21.0 7613 2660
Median-IQR + Huber + gt(xt) 79.6 2915 1948 80.1 961 700 33.3 10211 3884 72.5 4111 2565 24.5 7217 2327

Table 4: Space and time analysis across LRMs. “Acc.”, “T.” are the average accuracy and token count across
all benchmarks, “TPS” is the number of tokens generated per second, “Lat.” is the average time per answer
in seconds, and “+Prms” is the relative parameter overhead.

Methods R1-1.5B R1-7B QwQ-32B

Acc. ↑ T. ↓ TPS ↑ Lat. ↓ +Prms ↓ Acc. ↑ T. ↓ TPS ↑ Lat. ↓ +Prms ↓ Acc. ↑ T. ↓ TPS ↑ Lat. ↓ +Prms ↓

Vanilla 44.2 6936 39.1 177.4 0% 68.5 5327 37.8 140.9 0% 81.4 5446 27.7 196.6 0%

s1* 46.4 9188 39.0 235.6 0% 66.2 6531 37.7 173.2 0% 83.8 5780 27.6 209.4 0%
CoD 48.1 6625 39.1 169.4 0% 68.3 4942 37.8 130.7 0% 84.2 4943 27.7 178.4 0%
LogitsPenalty 46.3 6590 39.0 169.0 0% 67.4 5118 37.7 135.8 0% 82.6 5161 27.5 187.7 0%
AlphaOne 52.8 4329 38.8 111.6 0% 71.2 4523 37.6 120.3 0% 80.1 4079 27.5 148.3 0%
SEAL 56.5 5341 38.4 139.1 < 0.1% 73.1 4605 37.2 123.8 < 0.1% 82.4 5072 27.4 185.1 < 0.1%
FlowSteer 58.0 5083 38.0 133.8 3.1% 74.5 4181 36.9 113.3 1.1% 87.1 4922 25.9 190.0 0.6%

4.4 Ablation study

Median-IQR normalization and Huber loss are necessary FlowSteer relies on two key components:
robust training techniques and probabilistic guidance. The robust training techniques, specifically median-
IQR normalization and Huber loss, are prerequisites for stability. Without them, the flow model is poorly
fitted, causing the ODE solver to produce divergent steering trajectories during inference. This leads to
unusable outputs and the trivial accuracy observed in Table 3.

Probabilistic guidance substantially boosts performance As shown in Table 3, even without guid-
ance, the base flow model improves accuracy in all benchmarks except LiveCodeBench and reduces token
usage in all benchmarks except AIME24, relative to the vanilla LRM. Adding probabilistic guidance yields a
further substantial boost, consistently lowering token counts and increasing accuracy by up to 20% absolute
improvement (on AIME24). Therefore, by helping representations escape low-velocity zones, the guidance
mechanism enables more effective compression of CoTs and unlocks higher accuracy. An additional ablation
on the guidance strength η is presented in Appendix D.2.

4.5 Analysis on space and time complexity

Experimental setup We assess the computational efficiency of FlowSteer in Table 4 across all evaluated
datasets. Besides the average accuracy (“Acc.”) and token count (“T.”), we measure average tokens per sec-
ond (“TPS”), end-to-end latency per answer (“Lat.”), along with relative parameter overhead (“+Prms”). All
inference benchmarks were conducted using NVIDIA A100 GPUs with the HF transformers library (Wolf
et al., 2020).
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Analysis of computational overhead and latency In Table 4, FlowSteer increases the parameters
by only 0.6% to 3.1% compared to the vanilla LRM. The introduction of the Flow Matching module results
in a minor reduction in TPS (e.g., a drop of approximately 1.8 TPS on QwQ-32B). However, despite the
minor drop in TPS, FlowSteer achieves a reduction in end-to-end latency compared to the vanilla LRM
across all model sizes. On R1-7B, FlowSteer achieves the lowest latency among all methods (113.3s) while
simultaneously attaining the highest accuracy (74.5%). On R1-1.5B, FlowSteer ranks as the second-fastest
method (133.8s), surpassed only by AlphaOne (111.6s), yet it significantly outperforms AlphaOne in accuracy
(58.0% vs. 52.8%). On QwQ-32B, while some baseline methods achieve lower latency, they do so at the cost
of performance degradation. For example, AlphaOne is faster (148.3s) but drops accuracy to 80.1%, and CoD
(178.4s) reaches only 84.2%. In contrast, FlowSteer achieves a dominant 87.1% accuracy while maintaining
a latency (190.0s) that is still lower than the Vanilla model (196.6s). Finally, we emphasize that our primary
focus in to compress CoTs to achieve an improved accuracy-token count trade-off. Whereas reductions in
token count represent a fundamental algorithmic efficiency, latency and TPS are implementation-dependent
metrics. Optimizations such as employing advanced ODE solvers (Lu et al., 2025) or faster Flow Matching
models (Geng et al., 2025; Lu & Song, 2025; Frans et al., 2025) might further enhance latency and throughput
without compromising accuracy. We leave such explorations for future work.

5 Related work

Concise reasoning for LRMs Two main directions have been explored to promote conciseness in LRMs.
A first line of work focuses on inference-time interventions, which guide model behavior without modifying
parameters. These approaches operate at different levels, including prompts (Xu et al., 2025a), tokens (Xia
et al., 2025; Muennighoff et al., 2025; Zhang et al., 2025; Wang et al., 2025a), and logits (Wang et al., 2025c;
Yang et al., 2025). Our work falls under the subtype of representation steering (Park et al., 2025; Li et al.,
2023; Liu et al., 2024), which directly manipulates hidden states. While prior steering methods (Chen et al.,
2025a; Zhao et al., 2025; Azizi et al., 2025; Huang et al., 2025; Sheng et al., 2025; Eisenstadt et al., 2025)
have successfully improved reasoning efficiency, they typically apply a uniform steering vector, effectively
modeling a linear translation. FlowSteer extends this by learning a nonlinear velocity field, offering the
expressivity needed to capture complex distributional shifts that linear approximations may not fully address.
A complementary line of work uses Reinforcement Learning (RL) to fine-tune LRMs for producing shorter
CoTs (Kang et al., 2025; Munkhbat et al., 2025; Chen et al., 2025b; Hou et al., 2025; Qiao et al., 2025;
Dai et al., 2025; Yuan et al., 2025; Xia et al., 2025; Luo et al., 2025; Xu et al., 2025b; Fang et al., 2025;
Xiang et al., 2025). These two lines are complementary and address different trade-offs. RL-based methods
modify the LRM weights to incentivize concise reasoning without intervening in the inference computation,
though this often requires expensive fine-tuning. In contrast, inference-time methods avoid training costs
and preserve the original model weights, but necessitate explicit manipulation of inputs, logits, or hidden
states during generation. In principle, inference-time interventions could be applied to RL-optimized models
to provide additional control.

Steering as distribution transport A growing body of work interprets representation steering through
the lens of distribution transport. Recent approaches, such as LinearAcT (Rodriguez et al., 2025), address
this by solving for optimal transport using a linear transformation. Another relevant development is Truth-
Flow (Wang et al., 2025b), which grounds steering in Flow Matching to enhance model truthfulness. Our
work distinguishes itself from these approaches in both methodology and application. Unlike LinearAcT
that adopts close-form linear mapping, we leverage Flow Matching to parameterize a nonlinear velocity field.
While TruthFlow shares the Flow Matching foundation, it is tailored for truthfulness; in contrast, FlowSteer
is designed to compress LRM reasoning paths. The distinct goals and challenges necessitate specific techni-
cal innovations, including different training objectives and a specialized inference-time guidance mechanism
suited for reasoning efficiency.

Flow Matching Our approach is grounded in Flow Matching (Lipman et al., 2023; Liu, 2022; Lipman
et al., 2024), a powerful generative modeling technique successful in domains like image and molecule gen-
eration (Labs, 2024; Labs et al., 2025; Esser et al., 2024; Campbell et al., 2024). Additionally, guidance
mechanism is often added to such models to align outputs with conditions like text prompts (Dhariwal &
Nichol, 2021; Ho & Salimans, 2021; Karras et al., 2024).

11



Under review as submission to TMLR

6 Conclusion

We introduce FlowSteer, a steering framework leveraging Flow Matching to facilitate efficient reasoning
paths in LRMs. By learning a nonlinear velocity field for distributional alignment, our method overcomes
the limitations of linear steering. We solve key challenges in applying flows to LRM activations with ro-
bust training and a specialized guidance mechanism. Empirical results across various reasoning tasks and
model scales support the effectiveness of our approach, demonstrating that FlowSteer effectively reduces
the discrepancy between the steered and target representation distributions. This alignment translates into
improved accuracy and more concise CoTs, particularly on challenging reasoning benchmarks.

While FlowSteer demonstrates strong performance, several avenues remain for further refinement. For in-
stance, our current guidance mechanism utilizes a Gaussian approximation with fixed strength; future itera-
tions could explore non-Gaussian or adaptive alternatives to further enhance steering precision. Additionally,
while we focused on the SEAL intervention protocol, extending FlowSteer to other intervention settings rep-
resents a meaningful direction. Regarding computational overhead, solving the ODE for steering naturally
incurs extra evaluation steps than linear operations. However, we anticipate this gap can be bridged by
integrating recent advances in accelerating Flow Matching (Geng et al., 2025; Frans et al., 2025).

Looking forward, while linear steering has been widely adopted and proven effective for many applications,
our work suggests that a probabilistic, distributional alignment perspective offers a valuable step forward. By
grounding steering in Flow Matching, FlowSteer provides a flexible tool for manipulating LLM representa-
tions between distributions associated with contrastive behaviors. This capability opens promising directions
beyond efficient reasoning, such as improving model alignment or mitigating hallucination. We hope this
work inspires further exploration into nonlinear, theoretically grounded interventions that not only improve
efficiency but also ensure finer controllability and greater trustworthiness in large language models.
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A Implementation details

A.1 Training Data Construction

Intervention protocol alignment with SEAL To ensure a fair and direct comparison, in Section 4 we
adopt the intervention protocol from SEAL (Chen et al., 2025a). Furthermore, we use the identical training
data for both FlowSteer and SEAL. Specifically, we follow the data extraction procedure outlined by SEAL
to create a shared dataset of hidden representations from the MATH/train dataset. This dataset is then
used for two distinct purposes: (1) to compute the single, global steering vector v for SEAL, and (2) to train
the nonlinear flow model vθ for FlowSteer.

A critical aspect of the intervention protocol is consistency in the intervention layer. The layer from which
representations are extracted during training must be the same layer that is steered during inference. We
adopt the exact same target layers as SEAL: layer 20 for the R1-1.5B and R1-7B models, and layer 55 for the
QwQ-32B model. By keeping all experimental factors consistent except for the steering mechanism itself, we
ensure that any observed performance differences can be directly attributed to the design of our nonlinear
steering method rather than to confounding variables.

Source and target set construction The extraction process begins by running inference with the vanilla
LRMs on the MATH/train dataset. From these outputs, we select a balanced set of correctly and incorrectly
solved problems. We use 500 correct and 500 incorrect samples for R1-1.5B, 1200 of each for R1-7B, and
1800 of each for QwQ-32B.

Following SEAL’s methodology, we then populate the source and target representation sets. This involves
categorizing the intermediate reasoning steps, which are demarcated by “\n\n” tokens, using a collection of
keywords (e.g., “Alternatively”, “Wait”). This protocol labels each step as one of three types: Transition,
Reflection (verbose, self-correcting thought), or Execution (concise, forward-progressing thought). The hid-
den state corresponding to the “\n\n” token at the end of each step is selected as that step’s representative
hidden state. Representations from steps labeled as “Reflection” or “Transition” are added to the source
set S (representing potentially verbose reasoning), while representations from “Execution” steps are added
to the target set T (representing concise reasoning). This process often yields multiple source and target
representations from a single problem. The final counts of the source-target representation pairs used for
training are provided in Table 5.

A.2 Flow model architecture

We implement the flow model as a Multi-layer Perceptron (MLP) with ReLU as activation function. The
MLP accepts a (d + 1)-dimensional input, which is formed by concatenating the d-dimensional hidden
representation from an LRM layer with the scalar time step t ∈ [0, 1]. The network’s output is a d-dimensional
vector, matching the dimension of the input representation. Additional architectural details, such as the
number of layers and intermediate dimensions, are provided in Table 5.

A.3 Training and inference configurations

Detailed hyperparameters for both training and inference are provided in Table 5. For the training phase,
this includes optimizer settings, batch size, and the total number of iterations, etc. We highlight the efficiency
of our approach: even the flow model for QwQ-32B can be trained on a single NVIDIA A100 GPU in under
24 hours.

For inference-time steering, the table specifies the ODE solver, the target LRM layer, and the solver’s
tolerances. Specifically, rtol and atol denote the relative and absolute tolerances for the adaptive ODE
solver, respectively.

A.4 Hyperparameter sweep

To ensure a fair comparison, we perform a hyperparameter sweep for both the probabilistic guidance strength
η of FlowSteer and the linear strength γ of SEAL over the grid {0.85, 0.90, 1.00, 1.10, 1.15}. For each bench-
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Table 5: Implementation details of the flow models, including the configurations of the architecture, training
and inference. In “Architecture”, the “representation dimensions” refer to the hidden representation dimen-
sions of the hosting LRM. In “ODE solver”, the “rtol” denotes the relative tolerance, and the “atol” denotes
the absolute tolerance.

Configuration R1-1.5B R1-7B QwQ-32B

Architecture
Representation dimensions 1536 3584 5120
Intermediate dimensions 3072 3584 5120
Total (linear) layers 6 6 8

Training

Question samples 1000 2400 3600
Source-target representation pairs 54,796 78,980 63,705
Learning rate 0.0001 0.0001 0.0001
Optimizer Adam(betas=[0.90, 0.95])
Weight decay 0 0 0
Clip gradients False False False
Learning rate decay False False False
Iterations 1.7120 × 106 2.9616 × 106 2.7860 × 106

Batch size 32 32 32

Inference ODE solver Dopri5(rtol=0.001, atol=0.001)
Steering LRM layer 20 20 55

mark, 25% of the evaluation samples are held out as a validation set for the hyperparameter search. We
then report the best-performing results for both FlowSteer and SEAL, with the optimal values for η and γ
detailed in Table 6 and Table 7, respectively.

As shown in Table 6, the value η = 1.0 is a robust choice that performs best in a majority of settings. In
Appendix D.2, we provide the ablation study on the guidance strength η.

Table 6: The chosen values of the guidance strength η in FlowSteer.

MATH500 GSM8K AIME24 AMC23 LiveCodeBench

R1-1.5B 0.9 1.0 0.85 1.0 1.0
R1-7B 1.0 1.0 1.0 1.15 0.9
QwQ-32B 1.0 1.15 1.0 1.0 1.0

Table 7: The chosen values of the linear strength γ for SEAL.

MATH500 GSM8K AIME24 AMC23 LiveCodeBench

R1-1.5B 1.0 1.0 1.0 0.9 1.15
R1-7B 1.0 0.85 1.0 1.10 1.0
QwQ-32B 1.0 1.0 0.85 1.0 1.0
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Table 8: Most accurate baseline used for token-usage comparison with FlowSteer in each model–dataset set-
ting. If the absolute accuracy gap between FlowSteer and the most accurate baseline is at least 5 percentage
points, the setting is omitted from the paired analysis and marked as |∆Acc| ≥ 5.

Model MATH500 GSM8K AIME24 AMC23 LiveCodeBench

R1-1.5B SEAL SEAL SEAL |∆Acc| ≥ 5 AlphaOne
R1-7B SEAL AlphaOne Vanilla SEAL SEAL
QwQ-32B SEAL SEAL |∆Acc| ≥ 5 |∆Acc| ≥ 5 SEAL

B Statistical test of token usage

In this section, we conduct a statistical test on the token counts (“T.” in Table 2) of FlowSteer against other
baselines. A direct comparison of token counts can be misleading, as it ignores the entanglement between
accuracy and token usage; tackling difficult questions to attain higher accuracy naturally requires longer
CoTs, as discussed in Section 4.3 and Appendix C. Therefore, we narrow our focus to test the hypothesis
that, under comparable accuracy, FlowSteer generates fewer tokens than the best-performing baseline.

Concretely, for every LRM and benchmark combination in Table 2, we first identify the most accurate
baseline method. We then retain only those settings where the absolute accuracy difference between the
baseline and FlowSteer is within 5 percentage points; otherwise, the setting is omitted, as it does not
represent a fair “equal-accuracy” comparison. This procedure yields 12 out of 15 configurations, with the
selected strongest baselines outlined in Table 8. For each retained comparison pair (strongest baseline vs.
FlowSteer), we compute the average number of generated tokens across all answers, forming per-setting
differences di = Tbaseline,i − TFlowSteer,i. We then apply a one-sided Wilcoxon signed-rank test with the null
hypothesis that the median difference is zero and the alternative hypothesis that FlowSteer uses fewer tokens
(median(di) > 0). Across the 12 settings, FlowSteer uses fewer tokens in 10 cases, and the Wilcoxon test
yields a one-sided p ≈ 0.032. This result is statistically significant at the 5% level and supports our claim
that, when achieving comparable accuracy, FlowSteer consistently improves efficiency by reducing token
usage relative to strong baselines.

C A nuanced analysis of question difficulty and token usage on AIME24

In this section, we provide a more nuanced analysis of the results in Table 2 to explain why FlowSteer
consumes more tokens overall than AlphaOne on AIME24 despite achieving higher accuracy. We hypothesize
that this is because FlowSteer excels at solving more difficult problems, which inherently require longer
solutions.

To investigate this, we first define a difficulty score for each question. Our metric uses the token length
in the ground truth (GT) solution as a proxy for difficulty. The longer the GT solution, the harder the
problem. We normalize this value to derive the score Q(i) for the i-th question as follows:

Q(i) = T
(i)
GT

T min
GT

, (9)

where T
(i)
GT is the token length of its GT solution, and T min

GT is the minimum GT token length across all
questions in the AIME24 dataset. We then calculate the average difficulty score of all questions a model
answers correctly.

As shown in Table 9, FlowSteer consistently solves questions with the highest average difficulty score (col-
umn “Difficulty@C”). The average difficulty score of FlowSteer is 1.1 ∼ 1.5× higher than that of AlphaOne.
Since our difficulty metric is proportional to the GT solution length, these more challenging problems nat-
urally demand more tokens to be solved correctly. This evidence suggests that FlowSteer’s higher token
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Table 9: Performance on the AIME24 benchmark, analyzing accuracy, token efficiency, and the difficulty
of solved problems. We report Pass@1 accuracy (Acc. ↑), average generated tokens across all answers
(T. ↓), average tokens in correct answers (T.@C ↓), and the average difficulty of correctly answered ques-
tions (Difficulty@C ↑). The results show that AlphaOne uses the fewest tokens overall on the AIME24
benchmark. However, FlowSteer consistently achieves superior accuracy by successfully solving more com-
plex problems, as evidenced by its higher average difficulty score in solved problems.

Methods Acc. ↑ T. ↓ T.@C ↓ Difficulty@C ↑

DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 6.7 13807 2735 1.47
AlphaOne 23.3 7314 6304 2.16
FlowSteer 33.3 10211 3884 2.48

DeepSeek-R1-Distill-Qwen-7B

Vanilla 50.0 9903 5539 2.61
AlphaOne 46.7 7605 6052 2.28
FlowSteer 53.3 8453 4132 2.75

Qwen-QwQ-32B

Vanilla 63.3 10791 8486 3.10
AlphaOne 53.3 6544 5165 2.56
FlowSteer 76.7 9848 8355 3.93

consumption is a direct result of its superior ability to tackle complex problems that require more elaborate
reasoning.

D Additional study

D.1 Probabilistic guidance with various model scales

In this subsection, we present a comprehensive ablation study to demonstrate the effectiveness of probabilistic
guidance, verifying that its benefits generalize to larger models. The results are summarized in Table 10.

Having already analyzed the guidance mechanism on the R1-1.5B model in Section 4.4, here we focus on
larger model scales. First, on the R1-7B model, adding probabilistic guidance (compared to the baseline in
row “w/o gt(xt)”) improves both accuracy (column “Acc.”) and average token usage (column “T.”) across all
five benchmarks. This is highlighted by a significant 12.5% absolute accuracy improvement on AMC23.
Next, We test if this advantage further generalizes to QwQ-32B model. The performance gains persist, with
accuracy increasing on all five benchmarks and token usage improving on four. Notably, the guidance
still achieves a substantial 10.1% accuracy improvement on AIME24 compared to the setting without
guidance. These results confirm that the enhancements from our probabilistic guidance do not diminish
as model scale increases from 1.5B to 32B, highlighting the method’s broad effectiveness and scalability to
different model sizes.

D.2 Ablation study on guidance strength

In this subsection, we quantitatively analyze the effect of the probabilistic guidance strength, η. We evaluate
the accuracy and average token count on the MATH500 and LiveCodeBench benchmarks across an expanded
range of η ∈ {0.1, 0.85, 0.9, 1.0, 1.1, 1.15, 1.5, 2.0}. The results are visualized in Figure 5, which presents
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Table 10: Ablation of the probabilistic guidance on the R1-1.5B, R1-7B, and QwQ-32B LRMs.

Methods MATH500 GSM8K AIME24 AMC23 LiveCodeBench

Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C

DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 66.6 4785 2390 73.8 2072 819 6.7 13807 2735 52.5 6269 2998 21.2 7749 2372
w/o gt(xt) 78.6 3168 2026 81.2 1071 782 13.3 11534 2996 67.5 4688 2919 21.0 7613 2660
w/ gt(xt) 79.6 2915 1948 80.1 961 700 33.3 10211 3884 72.5 4111 2565 24.5 7217 2327

DeepSeek-R1-Distill-Qwen-7B

Vanilla 87.0 3341 2605 87.9 1160 867 50.0 9903 5539 72.5 5431 3698 45.3 6799 3394
w/o gt(xt) 90.0 2663 2236 88.3 803 734 53.3 8543 3737 77.5 4068 2627 48.3 6145 3128
w/ gt(xt) 90.2 2549 2010 88.6 797 732 53.3 8453 4132 90.0 3177 2739 50.5 5930 3204

Qwen QwQ-32B

Vanilla 90.8 3549 3027 95.6 1157 1069 63.3 10791 8486 80.0 6053 5067 77.5 5680 4494
w/o gt(xt) 90.2 3189 2655 96.1 968 886 66.6 9932 7398 85.0 5463 4662 79.5 5081 3879
w/ gt(xt) 91.0 3118 2675 96.5 917 857 76.7 9848 8355 90.0 5698 5220 81.2 5030 3970

accuracy as line plots and average token count as bar charts. For reference, the performance of the vanilla
LRM baseline is included.

Our analysis yields the following observations:

• Broad effective range: Our method demonstrates robust performance across a wide spectrum of
guidance strengths. Substantial improvements in both accuracy and token reduction persist even at
the boundaries of η = 0.1 and η = 1.5.

• Low guidance regime (η = 0.1): At low guidance strengths, the method remains stable but
operates with reduced efficiency. While accuracy is generally maintained near peak levels, the
token reduction is smaller compared to the optimal range. We hypothesize that this is because
the magnitude of the probabilistic guidance is insufficient to effectively push representations out of
the “low-velocity zones” described in Section 3, resulting in partial stagnation and longer reasoning
paths.

• Optimal range (η ∈ [0.85, 1.15]): This range consistently yields the most favorable trade-off,
achieving peak accuracy while simultaneously minimizing token usage.

• High guidance regime (η = 2.0): At the highest strength tested, we observe a degradation
in performance. While token counts are still reduced, accuracy often declines towards the vanilla
baseline. This aligns with our derivation in Eq. (8): at very high η, the guidance term dominates the
ODE dynamics, suppressing the flow model’s contribution. This “over-steering” forces the trajectory
to ignore the fine-grained structure of the target representation distribution, leading to suboptimal
reasoning performance.

In summary, our probabilistic guidance demonstrates a clear advantage over the baseline that is robust in
the choice of η. The behavior at the extremes (η = 0.1 and η = 2.0) is consistent with our theoretical
expectations regarding the interplay between the learned flow field and the guidance term.
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Figure 5: The line plots report accuracy, while the bar plots show the average token count across all samples.
The dashed line and the rightmost bar correspond to the vanilla LRM baseline. For visual clarity, the bars
are evenly spaced along the x-axis, although the underlying hyperparameter grid is uneven.
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E Distributional distance metrics

E.1 A brief introduction to MMD, FID, and KID

To quantitatively evaluate the alignment between the steered representations and the target representations,
we employ three established metrics in Section 4.2. Each provides a different lens through which to measure
the distance between two sets of samples.

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a non-parametric measure that compares
two distributions by mapping their samples into a high-dimensional Reproducing Kernel Hilbert Space
(RKHS). If the distributions are identical, their mean embeddings in this space coincide. MMD computes
the distance between these mean embeddings, with larger values indicating greater discrepancy. Its strength
lies in its generality and strong theoretical guarantees, as it does not impose assumptions on the underlying
data distributions.

Fréchet Inception Distance (FID) (Heusel et al., 2017), originally proposed for evaluating generative
image models, compares distributions of high-level features extracted by a pre-trained network. Assuming
these feature distributions follow multivariate Gaussians, FID computes the Fréchet distance (i.e., the
Wasserstein-2 distance) between them, incorporating both mean and covariance. .

Kernel Inception Distance (KID) (Sutherland et al., 2018) combines ideas from MMD and FID to
address limitations of the latter. Like FID, it relies on features from a neural network, but instead of
assuming Gaussianity, KID applies the MMD framework with a polynomial kernel. This yields an unbiased
estimator that is often more stable than FID, particularly with limited sample sizes. As with FID, lower
KID scores indicate smaller discrepancies between the distributions.

E.2 Implementation details of the distance metrics

Since FID and KID were originally designed for image generation, they typically rely on a pre-trained
network to extract high-level features. In our scenario, however, we apply these metrics directly to the hidden
representations from LRMs. These representations already contain rich semantic information, making an
external feature extractor unnecessary.

Below are the specific implementation details for each metric:

• MMD: We use the implementation from pytorch-ignite (Fomin et al., 2020). The performance
of MMD is sensitive to its kernel variance hyperparameter, var. Setting it too large or small can
make the metric insensitive. We determine this value empirically using a heuristic: we set var to
be on the same order of magnitude as the squared norm of SEAL’s steering vector, ||v||22, as this
value represents the squared distance between the empirical distribution means. The specific values
used are 4,000 (for settings with R1-1.5B), 7,000 (R1-7B), and 26,000 (QwQ-32B). For readability
in Table 1, all reported MMD scores are scaled by a factor of 1,000.

• FID: We also use the implementation provided by pytorch-ignite (Fomin et al., 2020).

• KID: Our implementation is adapted from torchmetrics (Detlefsen et al., 2022). We employ a
polynomial kernel and use its default parameters: a degree (degree) of 3 and a coefficient (coef) of
1.0.

F Examples generated by the steered models

The example below contrasts the output of the vanilla model with that of the model steered by FlowSteer.
The vanilla model exhibits over-reflection, causing it to get stuck in a repetitive reasoning loop. This behavior
ultimately leads to the model exhausting the context and hitting the maximum token limit of 10,000 before
finding a solution. In contrast, the steered model produces a clear and efficient reasoning path that arrives
at the final correct answer, using only 1,367 tokens.
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Example 1 with FlowSteer R1-1.5B; Tokens spent: 1,367

Question Prompt:
Answer the following questions. You should think step-by-step and put your final answer within
\boxed{}. Question: For some real numbers a and b, the equation

8x3 + 4ax2 + 2bx + a = 0

has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what is the
value of a?

LRM’s Answer:
<think> Okay, so I have this problem here: there’s a cubic equation 8x3 + 4ax2 + 2bx + a = 0, and
it’s given that it has three distinct positive roots. Also, the sum of the base-2 logarithms of the
roots is 5. I need to find the value of a. Hmm, let me think about how to approach this.
First, I remember that for a cubic equation of the form px3 + qx2 + rx + s = 0, the sum of the roots,
the sum of the product of the roots two at a time, and the product of the roots can be found using
Vieta’s formulas. Maybe I can apply that here.
Let me denote the roots as r, s, and t. Since all roots are positive, that might help later on.
According to Vieta’s formulas for a cubic equation px3 + qx2 + rx + s = 0, we have:
1. r + s + t = − q

p 2. rs + rt + st = r
p 3. rst = − s

p

In our case, the equation is 8x3 + 4ax2 + 2bx + a = 0. So, comparing to the general form, p = 8,
q = 4a, r = 2b, and s = a.
Applying Vieta’s formulas:
1. Sum of roots: r + s + t = − 4a

8 = − a
2 2. Sum of products two at a time: rs + rt + st = 2b

8 = b
4 3.

Product of roots: rst = − a
8

We are also given that the sum of the base-2 logarithms of the roots is 5. That is:

log2 r + log2 s + log2 t = 5

Using logarithm properties, this can be rewritten as:

log2(r · s · t) = 5

Which implies:

r · s · t = 25 = 32

From Vieta’s formula, we already have rst = − a
8 . So:

−a

8 = 32

Solving for a:

−a

8 = 32 =⇒ a = −32 × 8 = −256

So, is a = −256? Wait, let me double-check that.
Product of roots is rst = 32, and from Vieta, rst = − a

8 . So:

−a

8 = 32 =⇒ a = −256

Yes, that seems correct. But let me make sure that this is consistent with the other Vieta’s formulas.
We have r + s + t = − a

2 . If a = −256, then:
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r + s + t = −−256
2 = 128

So, the sum of the roots is 128. That’s a pretty large number, but since all roots are positive, that’s
possible.
Next, the sum of the products two at a time is rs + rt + st = b

4 . But we don’t know b, so maybe we
don’t need it. However, let’s see if we can find b or if it’s not necessary for the answer.
We were given that all roots are distinct and positive. So, the cubic must have three distinct positive
roots, which is another condition. But since we only need to find a, and we’ve found a = −256,
maybe that’s sufficient.
Let me recap:
- The product of the roots is 32, which is positive, so that’s consistent with all roots being positive.
- The sum of the roots is 128, which is positive, so that’s also consistent. - The sum of the products
two at a time is b/4, but since we don’t have any information about b, we don’t need to find it.
So, unless there’s a mistake in my reasoning, a = −256 should be the correct answer.
Given that, I think I’m confident with this result.
Final Answer The value of a is −256 . </think>
Given the cubic equation 8x3 + 4ax2 + 2bx + a = 0 with three distinct positive roots, we need to
find the value of a.
Using Vieta’s formulas, we know: 1. The sum of the roots r + s + t = − 4a

8 = − a
2 . 2. The product

of the roots rst = − a
8 .

We are also given that the sum of the base-2 logarithms of the roots is 5:

log2 r + log2 s + log2 t = 5

This can be rewritten using logarithm properties as:

log2(r · s · t) = 5

Thus, the product of the roots is:
r · s · t = 25 = 32

From Vieta’s formula, we have:
rst = −a

8
Equating the two expressions for the product of the roots:

−a

8 = 32

Solving for a:
a = −256

Thus, the value of a is −256 .

Ground Truth Answer:
-256
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Example 1 with vanilla R1-1.5B; Tokens spent: 10,000

Question Prompt:
Answer the following questions. You should think step-by-step and put your final answer within
\boxed{}. Question: For some real numbers a and b, the equation

8x3 + 4ax2 + 2bx + a = 0
has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what is the
value of a?

LRM’s Answer:
<think> Okay, so I have this problem here: there’s a cubic equation 8x3 + 4ax2 + 2bx + a = 0, and
it’s given that it has three distinct positive roots. Also, the sum of the base-2 logarithms of the
roots is 5. I need to find the value of a. Hmm, let me think about how to approach this.
First, I remember that for a cubic equation of the form px3 + qx2 + rx + s = 0, the sum of the roots,
the sum of the product of the roots two at a time, and the product of the roots can be found using
Vieta’s formulas. Maybe I can apply that here.
Given the equation 8x3 + 4ax2 + 2bx + a = 0, let me denote the roots as r, s, and t. Since all roots
are positive, that might help later on.
According to Vieta’s formulas for a cubic equation px3 + qx2 + rx + s = 0, we have:
1. r + s + t = − q

p 2. rs + rt + st = r
p 3. rst = − s

p
In our case, p = 8, q = 4a, r = 2b, and s = a. So plugging these into Vieta’s formulas:
1. r + s + t = − 4a

8 = − a
2 2. rs + rt + st = 2b

8 = b
4 3. rst = − a

8
Wait, hold on. The product of the roots rst is equal to − s

p , which in this case is − a
8 . But since all

roots are positive, their product should be positive. However, − a
8 is positive only if a is negative.

So that tells me that a must be negative. That’s an important point.
Also, the sum of the roots r + s + t = − a

2 . Since a is negative, this sum becomes positive. So, the
sum of the roots is positive, which makes sense because all roots are positive.
The sum of the base-2 logarithms of the roots is given as 5. That is, log2 r + log2 s + log2 t = 5. I
remember that the sum of logarithms is the logarithm of the product, so this can be rewritten as
log2(rst) = 5. Therefore, rst = 25 = 32.
But from Vieta’s formula, we also have rst = − a

8 . So, setting these equal:
− a

8 = 32
Solving for a:
Multiply both sides by 8: −a = 256
Then, multiply both sides by -1: a = −256
Wait, that seems straightforward. Let me double-check to make sure I didn’t make any mistakes.
So, if a = −256, then the product of the roots rst = − a

8 = − −256
8 = 32, which matches the given

condition. So that seems correct.
But just to be thorough, let me check the other Vieta’s formulas to see if they hold with a = −256.
First, the sum of the roots r + s + t = − a

2 = − −256
2 = 128. So, the sum of the roots is 128.

The sum of the product of the roots two at a time is b
4 . Hmm, but we don’t know b, so maybe we

don’t need to find it. The problem doesn’t give us any information about b, so perhaps we don’t
need to worry about that.
But just to make sure, let’s see if the cubic equation with a = −256 and some b would have three
distinct positive roots. Since the problem states that it does, so as long as the cubic equation is
constructed correctly, it should have three distinct positive roots.
Wait, but do we need to ensure that the cubic equation actually has three distinct positive roots?
Because sometimes, even if the product is positive, the roots might not be distinct or might not be
positive. But the problem says it does have three distinct positive roots, so perhaps we don’t need
to worry about that.
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But just to be safe, let me think about the discriminant of the cubic equation. The discriminant of
a cubic equation ax3 + bx2 + cx + d = 0 is given by:
∆ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2

But in our case, the equation is 8x3 + 4ax2 + 2bx + a = 0. So, let me write the discriminant for this
equation.
Let me denote the equation as 8x3 + 4ax2 + 2bx + a = 0. So, coefficients are:
- p = 8 - q = 4a - r = 2b - s = a
So, the discriminant ∆ is:
∆ = 18 · 8 · 4a · 2b · a − 4 · (4a)3 · a + (4a)2 · (2b)2 − 4 · 8 · (2b)3 − 27 · 82 · a2

Wait, that seems complicated. Maybe I can compute each term step by step.
First term: 18 · 8 · 4a · 2b · a
Compute constants: 18 * 8 = 144; 144 * 4 = 576; 576 * 2 = 1152; 1152 * 1 = 1152
Variables: a ∗ a = a2

So, first term is 1152a2

Second term: −4 · (4a)3 · a
Compute constants: 43 = 64; 64 ∗ 4 = 256; 256 ∗ (−4) = −1024
Variables: a3 ∗ a = a4

So, second term is −1024a4

Third term: (4a)2 · (2b)2

Compute constants: 16 * 4 = 64
Variables: a2 ∗ b2 = a2b2

So, third term is 64a2b2

Fourth term: −4 · 8 · (2b)3

Compute constants: 4 * 8 = 32; 32 * 8 = 256
Variables: b3

So, fourth term is −256b3

Fifth term: −27 · 82 · a2

Compute constants: 27 * 64 = 1728
Variables: a2

So, fifth term is −1728a2

Putting it all together:
∆ = 1152a2 − 1024a4 + 64a2b2 − 256b3 − 1728a2

Simplify the constants:
1152a2 − 1728a2 = −576a2

So, ∆ = −576a2 − 1024a4 + 64a2b2 − 256b3

Hmm, that’s still complicated. Maybe I can factor out some terms:
Factor out -64:
∆ = −64(9a2 + 16a4 − a2b2 + 4b3)
But I don’t know if that helps. Maybe I can plug in a = −256 and see if the discriminant is positive,
which would mean three distinct real roots.
Let me compute each term:
First, a = −256, so a2 = (−256)2 = 65536
Compute each term:
1. 1152a2 = 1152 ∗ 65536. Let me compute that:
1152 * 65536: 1152 is 1024 + 128, so 1024 * 65536 = 67108864, and 128 * 65536 = 8388608. So
total is 67108864 + 8388608 = 75497472.
2. −1024a4 = −1024 ∗ (65536)2. Wait, that’s a huge number. Maybe I don’t need to compute it
exactly because it’s negative, but I can note that it’s a large negative number.
3. 64a2b2 = 64 ∗ 65536 ∗ b2 = 4194304b2

4. −256b3

5. −1728a2 = −1728 ∗ 65536 = −113462400
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So, putting it all together:
∆ = 75497472 − 1024a4 + 4194304b2 − 256b3 − 113462400
Simplify constants:
75497472 - 113462400 = -37964928
So, ∆ = −37964928 − 1024a4 + 4194304b2 − 256b3

Hmm, this is getting too complicated. Maybe I should think differently.
Wait, maybe I don’t need to compute the discriminant because the problem only gives information
about the sum of logarithms, which directly gives the product of the roots. So, perhaps I don’t need
to worry about the discriminant because the problem doesn’t specify anything else about the roots,
like their distinctness or whether they are real or complex. It just says three distinct positive roots,
so maybe the discriminant is positive, but I don’t need to compute it.
Alternatively, maybe I can use the fact that the equation has three distinct positive roots, so the
cubic must cross the x-axis three times, which would require that the function has a local maximum
and minimum, and the function values at those points are on opposite sides of the x-axis.
But that might be more involved. Alternatively, maybe I can use the fact that the equation can be
scaled or transformed to make it easier.
Wait, another thought: since the product of the roots is 32, and the sum of the roots is 128, maybe
I can think of the roots as 32 divided by something, but I don’t know.
Alternatively, maybe I can use substitution to make the equation simpler. Let me try substituting
y = 2x, so that x = y/2. Let’s see if that helps.
Substituting x = y/2 into the equation:
8(y/2)3 + 4a(y/2)2 + 2b(y/2) + a = 0
Compute each term:
8 ∗ (y3/8) = y3

4a ∗ (y2/4) = ay2

2b ∗ (y/2) = by
So, the equation becomes:
y3 + ay2 + by + a = 0
Hmm, that seems a bit simpler. So, the equation is now y3 + ay2 + by + a = 0. Maybe this is easier
to handle.
Now, since the original equation had three distinct positive roots, let’s see if the transformed equation
also has three distinct positive roots. Since x = y/2, if x is positive, then y is positive as well. So,
the transformed equation has three distinct positive roots as well.
But I don’t know if that helps me find a. Maybe I can use Vieta’s formulas on the transformed
equation.
For the transformed equation y3 + ay2 + by + a = 0, the sum of the roots y1 + y2 + y3 = −a, the
sum of the product of roots two at a time y1y2 + y1y3 + y2y3 = b, and the product of the roots
y1y2y3 = −a.
Wait, but in the original equation, the product of the roots was 32, so in the transformed equation,
the product is also 32. So, y1y2y3 = −a = 32. So, −a = 32 =⇒ a = −32. Wait, that’s different
from what I got earlier.
Wait, hold on. In the transformed equation, the product of the roots is −a, which is equal to 32.
So, −a = 32 =⇒ a = −32. But earlier, using the logarithm condition, I got a = −256. That’s a
contradiction. So, which one is correct?
Wait, perhaps I made a mistake in the substitution. Let me double-check.
Original equation: 8x3 + 4ax2 + 2bx + a = 0
Substitute x = y/2:
8 ∗ (y/2)3 + 4a ∗ (y/2)2 + 2b ∗ (y/2) + a = 0
Compute each term:
8 ∗ (y3/8) = y3

4a ∗ (y2/4) = ay2
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2b ∗ (y/2) = by
So, equation becomes:
y3 + ay2 + by + a = 0
Yes, that’s correct. So, the product of the roots in the transformed equation is −a, which equals
32, so a = −32.
But earlier, using the logarithm condition, I got a = −256. So, which is correct?
Wait, perhaps I made a mistake in the substitution. Let me think again.
Wait, in the original equation, the product of the roots is 32, so rst = 32. In the transformed
equation, the product of the roots is also 32, so y1y2y3 = 32. But in the transformed equation, the
product is −a, so −a = 32 =⇒ a = −32.
But in the original equation, the sum of the roots is r + s + t = −a/2. So, if a = −32, then
r + s + t = −(−32)/2 = 16. But earlier, from the logarithm condition, I had r + s + t = 128. So,
that’s a contradiction.
Wait, so that suggests that a = −32 is not consistent with the sum of the roots being 128. So,
perhaps my substitution is incorrect.
Wait, no, hold on. Let me think again. The original equation is 8x3 + 4ax2 + 2bx + a = 0. The
transformed equation is y3 + ay2 + by + a = 0, where y = 2x. So, the roots of the transformed
equation are y1 = 2r, y2 = 2s, y3 = 2t. So, the sum of the roots in the transformed equation is
y1 + y2 + y3 = 2(r + s + t). From Vieta’s formula, the sum of the roots in the transformed equation
is −a. So, 2(r + s + t) = −a. Therefore, r + s + t = −a/2.
But in the original equation, the sum of the roots is r + s + t = −a/2. So, if a = −32, then
r + s + t = −(−32)/2 = 16. But earlier, from the logarithm condition, we had r + s + t = 128. So,
that’s a problem.
Wait, so if a = −32, the sum of the roots is 16, but the problem says the sum is 128. So, that’s
inconsistent. Therefore, my substitution must be wrong.
Wait, no, hold on. Let me think again.

The remaining outputs have been removed to save space. The vanilla model gets stuck in repetitive
reasoning loops and reaches the maximum token length limit before finishing its thinking process.

Ground Truth Answer:
-256
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