
Easy-to-Hard Generalization:
Scalable Alignment Beyond Human Supervision

Zhiqing Sun1∗, Longhui Yu2∗, Yikang Shen3, Weiyang Liu4,5,
Yiming Yang1†, Sean Welleck1†, Chuang Gan3,6†

1Carnegie Mellon University, 2Peking University, 3MIT-IBM Watson AI Lab
4University of Cambridge, 5Max Planck Institute for Intelligent Systems, 6UMass Amherst

Code: Edward-Sun/easy-to-hard

Abstract

Current AI alignment methodologies rely on human-provided demonstrations or
judgments, and the learned capabilities of AI systems would be upper-bounded by
human capabilities as a result. This raises a challenging research question: How can
we keep improving the systems when their capabilities have surpassed the levels of
humans? This paper answers this question in the context of tackling hard reasoning
tasks (e.g., level 4-5 MATH problems) via learning from human annotations on
easier tasks (e.g., level 1-3 MATH problems), which we term as easy-to-hard
generalization. Our key insight is that an evaluator (reward model) trained on
supervisions for easier tasks can be effectively used for scoring candidate solutions
of harder tasks and hence facilitating easy-to-hard generalization over different
levels of tasks. Based on this insight, we propose a novel approach to scalable
alignment, which firstly trains the (process-supervised) reward models on easy
problems (e.g., level 1-3), and then uses them to evaluate the performance of policy
models on hard problems. We show that such easy-to-hard generalization from
evaluators can enable easy-to-hard generalizations in generators either through
re-ranking or reinforcement learning (RL). Notably, our process-supervised 7b
RL model and 34b model (reranking@1024) achieves an accuracy of 34.0% and
52.5% on MATH500, respectively, despite only using human supervision on easy
problems. Our approach suggests a promising path toward AI systems that advance
beyond the frontier of human supervision.

1 Introduction

Rapid advancements in large language models (LLMs) indicate that in the near future, highly
sophisticated AI systems could surpass human capabilities in certain areas, significantly enhancing
our capabilities in solving harder problems beyond the levels we can currently solve [47, 49]. Since
the current AI alignment methods mostly rely on either supervised fine-tuning (SFT) with human-
provided demonstrations [59, 78, 14] or reinforcement learning from human feedback (RLHF)
[97, 68, 50], their capabilities would be inherently limited as humans cannot always provide helpful
demonstrations or supervision on the hard tasks beyond their expertise [64].

In order to build future AI systems for tackling complex challenges, such as advancing scientific
knowledge, it is crucial to develop new approaches for scalable oversight challenge, i.e., to supervise
the AI systems that can potentially outperform humans in most skills [9]. The key question is:

• Can we limit human supervision to easier tasks, yet enable the model to excel in harder tasks?

*Equal contributions as leading authors.
†Equal contributions as senior authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Edward-Sun/easy-to-hard

Traditional Alignment

2x2=4

humans supervise strong models on hard tasks

Scalable Alignment
(Superalignment)

3^3^3

humans cannot reliably supervise

superhuman models on the hardest tasks

3^3=?
3x3=?

Burns’ Analogy on
Weak-to-Strong Generalization

2x2=3?

weak models unreliably supervise strong models

on hard tasks that humans can evaluate

Our Analogy on
Easy-to-Hard Generalization

1+1=2

humans reliably supervise strong models

on easy tasks and evaluate them on hard tasks

3x3=? 3x3=?

5^5=?

Figure 1: Illustration of different alignment scenarios: traditional alignment relies on human demon-
strations or judgements [50]; scalable alignment [9] assumes that humans cannot reliably supervise
smarter-than-human models; weak-to-strong generalization [11] focuses on using weak models
with unreliable labels to supervise strong models; Our proposed easier-to-general generalization
focuses on the transfer of rewarding policies from weak models to harder tasks.

We refer to this scenario as Easy-to-Hard Generalization [63, 95, 11, 29]. This setting requires no
human supervision on the harder tasks, which differs from existing work that either enhances humans’
ability to verify the outputs of AI systems [81, 60, 9, 57] or enables weak-to-strong generalization
via a teacher that only offers unreliable or noisy supervision [11].

The most basic form of easy-to-hard generalization can be achieved by training the policy models
(i.e., generator) using supervised fine-tuning (SFT) or in-context learning (ICL) on easy tasks
[55, 10], and expect this will unlock the ability to perform well on hard tasks. However, it has
been observed that SFT or ICL training of generators on easy tasks often fails to generalize to hard
tasks [71, 24, 95]. We hypothesize and show that methods beyond these can enable stronger degrees
of easy-to-hard generalization. Our intuition is guided by the observation that evaluation is easier
than generation [34, 46], so an evaluator may offer a degree of easy-to-hard generalization that is
useful for improving a generator. If that is true, we can first train a verifier on easy tasks, then make
use of its generalization ability to supervise the generator on hard tasks.

Complex tasks can often be broken down into smaller steps [95] and verified by validating the
individual steps – a strategy that is commonly employed in solving mathematical problems [74, 40, 73].
Inspired by this, we train outcome-supervised and process-supervised reward models [74, 85, 75, 40]
as our easy-to-hard evaluators. The training dataset is often comprised of a set of labeled easy tasks,
each with a question and a high-quality solution1, paired with a set of unlabeled hard tasks that
are represented only by their questions. This simulates the practical setting of having numerous
problems with known solutions, as well as significant unresolved challenges, such as the Millennium
Prize Problems [12], which present challenging open problems. The pivotal aspect of easy-to-hard
generalization thus lies in how we effectively leverage the capabilities of easier-level models in
solving harder problems.

Our investigation includes to training policy and reward models on the easy (i.e., level 1-3) portion of
the PRM800K [40] dataset, and comparing the performance of majority voting with the policy model

1We assume that human supervision is of high quality on the easy tasks in general.

2

Easy-to-Hard Generators Easy-to-Hard Evaluators

Easy (train) : Domain of Human Supervision
Hard (test): Domain Beyond Human Supervision

Sampling Solutions

Verifying Solutions

trained on process supervisionoptimized against
easy-to-hard evaluators

Successful Generalization in
Easy-to-Hard Evaluation

Failed Generalization in
Easy-to-Hard Generation

Figure 2: We first train the evaluator with process supervision or outcome supervision (which
simulates the process supervision) to enable easy-to-hard evaluation, and then use it to facilitate
easy-to-hard generation via re-ranking or RL.

only and weighted majority voting with the policy model and PRMs (Process-supervised Reward
Models). We also introduce the Outcome & Process Reward Model (OPRM), which harnesses the
complementary strengths of outcome reward models (ORMs) and process reward models (PRMs):
judging if each step in reasoning is correct (like PRMs do) and deciding if the final answer is right
(like ORMs do). Our findings reveal a marked performance improvement with the inclusion of reward
models, especially on the hard (i.e., level 4-5) portion of the MATH500 test set. This improvement
indicates that easier-level evaluators can maintain their effectiveness on harder tasks. We have similar
observations in our experiments on the MetaMath dataset [86] and the Math-Shepherd dataset [75].

We further investigate the use of the easy-to-hard evaluator as a reward model in reinforcement
learning, where the evaluator provides targeted, step-by-step guidance in solving hard problems. We
have an intriguing finding that training with human supervision only on the easy tasks (i.e., training
with Level 1-3 problems and answers) can outperform both SFT and Final-Answer RL training on
the full dataset (Level 1-5). This finding underscores the potential of using easy-to-hard evaluation to
improve easy-to-hard generators, particularly when dealing with varied levels of task complexity.

2 Related Work

2.1 Scalable Oversight

While present-day models operate within the scope of human assessment, future, more advanced
models may engage in tasks that are beyond human evaluation capabilities. This raises a concern
that such models might prioritize objectives other than maintaining accuracy (Andreas 3, Perez et al.
53, Sharma et al. 64, Wei et al. 80). To address this, a branch of research develops techniques to
enhance the human capacity to supervise such models, such as via using AI to evaluate the work of
other AIs [1, 38, 60, 9]. Our setting differs from enhancing human oversight; instead, we focus on
enabling models to excel in hard tasks where human supervision may not be available. This also
differs from weak-to-strong generalization [11], where human supervision may be available, but not
reliable, on hard tasks. However, our framework aligns with the “sandwiching” concept proposed for
measuring progress in scalable oversight, which involves domain experts evaluating the outputs of
AI-assisted non-experts [18, 9, 57].

3

MATH-Easy (Level 1-3)
Problems

and Final Answers

MATH-Hard (Level 4-5)
Problems

and Final Answers*

Base
Language Model

Easy-to-Hard
SFT Model

In-Context Learning
(ICL) Model

Solution Samples
MATH-Easy (Level 1-3)

Solutions

MATH-Easy (Level 1-3)
Solution Samples and

Process Labels

Easy-to-Hard
Reward Model

Majority Voting

Reranking:
Weighted Voting,

Best-of-N

Reinforcement Learning:
ReST-EM, DPO,

PPO

Figure 3: The overview diagram of our methods: the different components of modeling and training
and how they are interconnected.

2.2 Compositional Generalization

Compositional generalization is a fundamental aspect of how language works [13]. It refers to the
ability to understand and utilize novel combinations based on the understanding of basic concepts
and a limited number of their combinations [23]. Recently, least-to-most prompting [95, 20] teaches
language models how to solve a complex problem by reducing it to a series of easier sub-problems,
achieving easy-to-hard generalization on semantic parsing tasks like SCAN [37] and CFQ [35] with
perfect generalization accuracy. In addition, least-to-most prompting has also been successful in
mathematical reasoning tasks, specifically in datasets like GSM8K [16] and DROP [21], by teaching
language models to solve problems more difficult than those seen in the prompts. This success not
only underscores the capacity of language models to effectively break down complex tasks into
simpler sub-tasks Perez et al. [51], but also demonstrates their generalization capability in solving
these sub-problems.

2.3 Easy-to-Hard Generalization

Past work has evaluated easy-to-hard generalization by training easy-to-hard generators on easy
tasks using supervised finetune-tuning (SFT) or in-context learning (ICL) [55, 10]. Nevertheless,
Swayamdipta et al. [71] showed that the BERT model performs poorly on common-sense reasoning
when only trained on easy data. Fu et al. [24] showed similar results for ICL on reasoning tasks
like GSM8K [17]. In concurrent work, Hase et al. [29] evaluate the performance of easy-to-hard
generators on more datasets and models, and find that ICL or SFT on easy tasks is a strong baseline
for multiple-choice tasks like ARC [15] and MMLU [30]. In contrast, we evaluate the easy-to-hard
generation performance on the more challenging MATH dataset [32], and show that easy-to-hard
evaluation can improve a generator’s easy-to-hard generalization beyond ICL and SFT. Iterative
machine teaching [43] gives theoretical justification to show that training classifiers from easy to hard
examples yield better generalization.

3 Methodology

We study the easy-to-hard generalization problem: how can we enable capabilities beyond human su-
pervision? Specifically, we explore the efficacy and scalability of various easy-to-hard methodologies
on competition-level mathematical problem-solving problems (MATH; Hendrycks et al. 32). This
dataset is suitable for our study since it explicitly categorizes problems across five difficulty levels.
We consider levels 1-3 as “easy” tasks, encompassing both the problems and their respective solution
demonstrations, along with the correct answers. Conversely, levels 4-5, characterized by their more
complex nature, are treated as “hard” tasks and are represented solely by their questions. The MATH

4

dataset’s difficulty distribution roughly follows a 1 : 2 : 2 : 3 : 3 ratio across levels 1 to 5. So our
division maintains a balanced number of easy and hard tasks.

The remainder of the paper aims to answer following research questions:

RQ1: How do generators generalize from easy to hard?

RQ2: How do evaluators generalize from easy to hard?

RQ3: If evaluators generalize better than generators, how can we take advantage of this to enable
stronger easy-to-hard generalization in generators?

3.1 Setup

Dataset MATH [32] is a dataset of 12,500 challenging competition mathematics problems, where
7,500 of them are training problems and 5,000 are originally used for testing. Following Lightman et al.
[40], Wang et al. [75], we use the identical subset of 500 representative problems (i.e., MATH500) as
our test set, uniformly sample another 500 problems for validation, across all five difficulty levels,
and leave the rest 4,000 MATH test split problems combined with the original 7,500 MATH training
split problems as our training set.

Simulated Human Demonstrations While the original MATH dataset provides full step-by-step
solutions, these solutions typically skip many chain-of-thought steps [79], which can be hard for
language models to directly imitate2. Instead, we consider filtered PRM800K [40] and MetaMATH
[86] as our SFT training data: the former is generated by a Minerva-style base GPT-4 model using
few-shot prompting after filtering the correct answers [39, 48], while the latter is generated by
ChatGPT [47]. We keep all the GSM8K data in the MetaMATH dataset since they are typically
easier than the problems in MATH. PRM800K comes with human annotated process labels, while for
MetaMath, we use Math-Shepherd as the corresponding process labels [75].

3.2 Generators

For a given dataset (e.g., a variant of MATH), we consider the following generator models:

Full & Hard ICL Full in-context learning (ICL) is a base model prompted with exemplars sampled
from all difficulty levels, or only from the level 5 [24].

Easy-to-Hard ICL This model is prompted with exemplars from easy problems. This baseline
evaluates the degree to which a model can solve problems more difficult than those seen in the
prompts [95].

Full SFT As prior work suggests that finetuning should outperform prompting alone [68, 52, 50], the
full supervised fine-tuning (SFT) model is typically considered as a ceiling that a model can achieve
on a type of task [11, 29].

Easy-to-Hard SFT This generator model is trained only on the easy tasks. Prior work suggests that
it can generalize to hard tasks but with some degeneration in performance [71].

The generator models are evaluated in greedy decoding and self-consistency (also known as majority
voting) settings [76].

3.3 Evaluators

Similarly, we consider the following evaluator models that can be trained either on the easy tasks
only, or on the full dataset. Notably, unlike final-answer rewards, reward models trained on easy tasks
can be applied to evaluate solutions to hard problems.

Final-Answer Reward is a symbolic reward that provides a binary reward based on the accuracy of
the model’s final answer. The matching is performed after normalization3.

2Hendrycks et al. [32] found that having models generate MATH-style step-by-step solutions before producing
an answer actually decreased accuracy.

3https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.py

5

https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.py

Table 1: Easy-to-hard generalization of generators. We compare generator performance under various
decoding settings. PRM800K and METAMATH indicate the SFT training data and ICL exemplars.
Evaluations are performed on the same MATH500 test set.

PRM800K METAMATH
GREEDY MAJ@16 MAJ@256 GREEDY MAJ@16 MAJ@256

LLEMMA-7B

FULL ICL 12.8 15.6 20.8 16.4 18.4 25.6
HARD ICL 12.6 18.0 27.0 16.6 19.0 27.0
EASY-TO-HARD ICL 14.0 17.6 24.4 14.2 17.4 26.8
FULL SFT 20.6 32.0 36.2 31.4 40.2 41.6
EASY-TO-HARD SFT 19.8 31.6 36.0 30.0 38.6 42.4

LLEMMA-34B

FULL ICL 18.6 23.6 36.0 20.6 28.8 39.2
HARD ICL 15.8 21.4 34.2 21.8 26.4 38.6
EASY-TO-HARD ICL 18.2 25.2 36.8 19.8 26.8 37.2
FULL SFT 25.6 41.8 46.4 35.4 44.2 45.6
EASY-TO-HARD SFT 24.8 40.8 46.0 32.2 42.6 43.4

Outcome Reward Model (ORM) is trained on the Final-Answer rewards. Following Cobbe et al.
[16], Uesato et al. [74], Lightman et al. [40], we train the reward head to predict on every token
whether the solution is correct, in a similar sense to a value model [85]. At inference time, we use the
ORM’s prediction at the final token as the reward of the solution.

Process Reward Model (PRM) is trained to predict whether each step (delimited by newlines) in
the chain-of-thought reasoning path is correct. The labels are usually labeled by humans [74, 40] or
estimated with rollouts [65, 75].

Outcome & Process Reward Model (OPRM) Building on the distinct advantages of ORMs and
PRMs, we introduce the Outcome & Process Reward Model (OPRM), which harnesses the comple-
mentary strengths of both. OPRM is trained on the mixed data of ORMs and PRMs. Specifically, it
evaluates the correctness of each intermediate reasoning step, akin to PRMs, while also assesses the
overall solution’s accuracy at the final answer stage, mirroring the functionality of ORMs.

3.4 Optimizing Generators Against Evaluators

Finally, given a generator model (i.e., policy model) and a evaluator model (i.e., reward model; RM),
we optimize the generator against the evaluator using either re-ranking or reinforcement learning.

Best-of-n (BoN), also known as rejection sampling, is a reranking approach that sample multiple
solutions from the generator and selects one with the highest RM score.

Weighted Voting is similar to majority voting or self-consistency [76], but weights each solution
according to its RM score [74].

Reinforcement Learning (RL) We consider three online/offline RL variants, Reinforced Self-
Training (ReST) [28, 67], Direct Policy Optimization (DPO) [56], and Proximal Policy Optimization
(PPO) [62]. Due to the space limit, please find their detailed description in Appendix B.

3.5 Evaluation Metrics

In this study, we have chosen not to establish terms analogous to the weak-to-strong performance gap
recovery (PGR) as discussed in Burns et al. [11] or the easy-to-hard supervision gap recovery (SGR)
highlighted by Hase et al. [29]. This decision is based on our observations that sometimes, models
trained exclusively on simpler tasks—particularly when employing RL training—can outperform
those trained across the entire spectrum of problem difficulties. Therefore, we mainly focus on
the absolute and relative performance of generators (optionally optimized by the evaluator) on the
MATH500 test set [40].

3.6 Implementation Details

Base Language Model Llemma is a large language model for mathematics [6], which is continue pre-
trained from Code Llama [58] / LlaMA-2 [72]. We use both 7b and 34b variants in our experiments.

6

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

27.84
29.02

36.19

43.88

49.84

53.21
55.36

56.58 57.03 57.17 56.76

28.23

35.31

41.63

47.07

51.72

55.36

58.29
60.63

62.07 62.80 63.20

27.87

35.66

41.69

46.07

49.23
51.38

52.86
53.87 54.65 55.03 55.06

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

%
 P

ro
bl

em
s S

ol
ve

d

6.84
7.56

9.20

11.60

14.14

15.75

17.03
17.94 18.38

18.92 19.19

6.93

9.32

11.41

13.69

15.69

17.70

19.25

20.89

22.39
23.33

24.12

6.80

9.48

11.84

13.92

15.26

16.50
17.66

18.70
19.38

19.95 19.91

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

16.87
17.78

22.07

26.96

31.09

33.56
35.27

36.33 36.78 37.12 37.10

17.07

21.67

25.84

29.57

32.85

35.60

37.86

39.75
41.27

42.09 42.74

16.81

21.93

26.04

29.20

31.41
33.08

34.42
35.43

36.17 36.62 36.66

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.52
38.93

47.59

56.06

61.96

65.69
67.52

68.56 68.89 68.85 68.51

37.47

46.88

54.25

60.14

64.96

68.36

71.00
72.64

73.61 74.08 74.37

37.79

46.97

54.16

59.83

63.40

65.88
67.57 68.19 68.24 68.04 67.44

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.19 10.86

13.69

17.25

20.59

23.09
24.75

25.60 26.09 26.37 26.41

10.34

13.87

17.18

20.27

23.04

25.42

27.34

29.16
30.50

31.61
32.58

10.31

14.11

17.40

20.31

22.30
24.04

24.97
25.73 26.16 26.68 27.02

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.21
24.22

29.80

35.71

40.28

43.34
45.16

46.07 46.52 46.62 46.53

23.26

29.58

34.83

39.21

42.99

45.84

48.17
49.87

50.98 51.81 52.45

23.41

29.76

34.88

39.10

41.86
43.94

45.26 45.97 46.25 46.37 46.31

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on All (Level 1-5) Problems

Figure 4: Easy-to-hard generalization of 7b (upper) and 34b (lower) evaluators. Both SFTs and RMs
are trained on the easy data. We found that PRMs trained on easy tasks can significantly improve the
re-ranking (i.e., weighted voting) performance on hard tasks. The shaded margin of the curve plot in
this paper represents the performance variance.

SFT / RL / Reward Model We fine-tune all models in full fine-tuning with frozen input-output
embedding layers and normalization layers. RMs are initialized from the base model, and have an
added scalar head to output the reward. In PPO training, we initialize the value model from the
reward model.

Hyper-parameters Due to the space limit, our training hyper-parameters can be found in Ap-
pendix. C.

4 Main Results

4.1 Easy-to-Hard Generalization of Generators

In Table 1, we compare the easy-to-hard generalization performance of the generators under various
decoding settings:

Supervised Fine-Tuning (SFT) outperforms In-Context Learning (ICL): This is consistent with
prior work [68, 50, 74]. We also find that the performance of ICL has larger variance than SFT with
respect to data ordering (or random seeds) [19, 93].

SFT data quality impacts easy-to-hard generalization: PRM800K data is generated by a base
(unaligned) GPT-4 model through few-shot prompting and is thus of lower quality than well-aligned
ChatGPT-generated MetaMATH data. We find that only MetaMath-trained models have certain
easy-to-hard gaps (e.g., 16.6 v.s. 14.2 in MetaMath-7b-ICL), while such gaps in PRM800K-trained
models are very small (less than 1%), or even inverted in the ICL setting. We hypothesize that
low-quality SFT data may only teach the model the format of the task [59, 78, 76], while high-quality
(imitation) SFT data can teach the model the principles of solving the task [70, 27]. Nevertheless, the
strongest performance is achieved by full SFT on the high-quality MetaMath data (35.4), showing an
unignorable difference, with a gap of up to 3.2, compared to its easy-to-hard SFT counterpart (32.2).

4.2 Easy-to-Hard Generalization of Evaluators

The primary metric we use to assess the effectiveness of our process reward model is not the average
accuracy of verifying each step in a solution but rather the overall performance achieved through
re-ranking methods (See discussion in Sec. 3.5). We first use re-ranking to evaluate the easy-to-hard
generalization performance of evaluators.

7

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

27.84
29.02

36.19

43.88

49.84

53.21
55.36

56.58 57.03 57.17 56.76

28.22

36.18

43.20

49.09

54.09

57.74

60.77
63.07

64.65
66.05 66.54

27.97

37.00

44.01

49.80

54.47

57.62
59.90

61.68 62.66 63.52 64.38

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5

10

15

20

25

30

%
 P

ro
bl

em
s S

ol
ve

d

6.84
7.56

9.20

11.60

14.14

15.75
17.03

17.94 18.38 18.92 19.19

6.83

9.52

12.22

14.82

17.35

19.40

21.50

23.54

25.25

26.83
27.81

6.84

9.83

12.90

15.65

17.91

19.89

21.50

23.19
24.45

25.42 26.00

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45
50

%
 P

ro
bl

em
s S

ol
ve

d

16.87
17.78

22.07

26.96

31.09

33.56
35.27

36.33 36.78 37.12 37.10

17.03

22.20

26.97

31.13

34.83

37.67

40.16

42.32
44.04

45.49 46.27

16.93

22.74

27.70

31.86

35.34

37.84
39.77

41.50
42.63

43.55 44.27

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.52
38.93

47.59

56.06

61.96

65.69
67.52

68.56 68.89 68.85 68.51

37.72

45.99

52.58

58.04

62.63

66.03

68.57
70.42

71.42 72.28 72.68

37.50

46.31

52.58

56.84

59.29
60.92

62.13 62.87 63.27 63.60 63.46

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.19 10.86

13.69

17.25

20.59

23.09
24.75

25.60 26.09 26.37 26.41

10.23

13.33

16.33

18.99

21.44

23.58

25.64
27.41

28.80
30.06 30.68

10.39

13.59

16.61

18.71
20.17

21.44
22.59

23.32
24.04 24.33 24.38

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.21
24.22

29.80

35.71

40.28

43.34
45.16

46.07 46.52 46.62 46.53

23.31

28.86

33.58

37.59

41.04

43.77

46.12
47.93

49.10
50.15 50.67

23.27

29.16

33.69

36.86
38.75

40.20
41.41 42.11 42.69 43.02 42.96

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on All (Level 1-5) Problems

Figure 5: Easy-to-hard generalization of evaluators applied to generators of different sizes. We
evaluated 7b generator + 34b evaluator (upper) and 34b generator + 7b evaluator (lower). Both SFTs
and RMs are trained on the easy data.

4.2.1 Re-ranking

We consider two re-ranking strategies: Best-of-n (or rejection sampling) and Weighted Voting. In our
easy-to-hard generalization setting, both SFT models and Reward Models (RMs) are trained on easier
tasks (levels 1-3), but evaluated on all difficulty levels (1-5). We compare the performance between
majority voting (SFT only) and re-ranking (SFT + OPRM) on the PRM800K dataset in Figure 4-5,
and the performance of different reward models (PRMs, ORMs, & OPRMs) on the PRM800K dataset
in Figure 8-9. Specifically, we use min as the reward aggregation function for best-of-n and prod for
weighted voting4. The figures illustrate the performance of different decoding strategies or reward
models under the same number of sampled solutions per problem. We have the following findings:

OPRMs outperforms ORMs and PRMs This confirms our hypothesis that Process Reward
Models (PRMs) and Outcome Reward Models (ORMs) capture different aspects of task-solving
processes. By integrating the strengths of both PRMs and ORMs, Outcome & Process Reward Models
(OPRMs) demonstrate superior performance. However, follow-up experiments conducted on the
MetaMath/Math-Shepherd datasets do not demonstrate significant improvements from incorporating
additional ORM training examples. This lack of enhancement may be attributed to the fact that
Math-Shepherd is already generated from final-answer rewards. This suggests that there remains
a substantial difference between process rewards labeled by humans (e.g., PRM800K) and those
generated automatically (e.g., Math-Shepherd).

Weighted voting outshines Best-of-n This finding diverges from past research where minimal
performance differences were observed between weighted voting and Best-of-n [40, 74]. Our
hypothesis is that this discrepancy arises from our specific experiment, which involves training a
less powerful base model (Llemma; Azerbayev et al. 6) on more difficult tasks (MATH; Hendrycks
et al. 32). This setup might diminish the effectiveness of the reward model, potentially leading
to an over-optimization of rewards [25]. Given these insights, weighted voting is preferred as the
primary re-ranking method for further discussions. Nevertheless, Best-of-n still achieves competitive
performance to majority voting when producing only one full solution. In Figure 5, we also find that
the 34b evaluator can significantly improve the 7b generator, while the 7b evaluator can still improve
the performance of the 34b generator.

Greater effectiveness of re-ranking on harder tasks: Weighted voting not only consistently
surpasses majority voting but also shows a more pronounced advantage on harder tasks. This

4See more detailed analysis of reward aggregation functions in Appendix. L.

8

Table 2: Comparing reinforcement learning (RL) approaches for easy-to-hard generalization. All
methods are of 7b size and evaluated with greedy decoding.

RL DATA
REWARD ACCURACY

FINAL-ANSWER PROCESS RM EASY (LEVEL 1-3) HARD (LEVEL 4-5) ALL

(SFT / PRM trained on level 1-3 of PRM800K)
SFT 28.2 12.2 19.8
REST-EM EASY EASY × 33.2 12.6 22.4
ITERATIVE DPO EASY EASY

√
42.0 12.2 26.4

PPO EASY EASY × 42.0 14.1 27.4
PPO ALL EASY

√
45.4 14.9 29.4

(SFT / PRM trained on level 1-5 of MetaMath / Math-Shepherd)
LLEMMA-BASED SFT SOTA (OURS) 51.7 13.7 31.4
PREVIOUS RL SOTA [75] - - 33.0

(SFT / PRM trained on level 1-3 of MetaMath / Math-Shepherd)
SFT 44.1 14.9 28.8
REST-EM EASY EASY × 50.4 14.5 31.6
ITERATIVE DPO EASY EASY

√
53.8 16.0 34.0

ITERATIVE DPO ALL EASY
√

49.6 10.7 29.2
PPO EASY EASY × 50.8 15.3 32.2
PPO ALL EASY

√
53.8 16.0 34.0

observation leads to the conclusion that evaluators demonstrate better easy-to-hard generalization
capabilities in comparison to generators. This motivates us to explore RL approaches that optimize
the generator against the evaluator to further improve the performance of easy-to-hard generation.

4.2.2 Reinforcement Learning (RL)

Given the conclusion above, an important question arises: how can evaluators once again assist
generators in achieving enhanced easy-to-hard generalization capabilities? We further investigate
the enhancement of policy models through RL, utilizing easy-to-hard evaluators as reward models.
Similar to re-ranking, SFT and PRM are only trained on easy data. For a fair comparison between
PRM800K and MetaMath, we only use vanilla PRMs in the RL training. All the RL methods use the
validation accuracy for selecting the best checkpoint5. Our comparison spans offline (ReST & DPO)
and online (PPO) RL algorithms under two training conditions:

Easy Questions & Easy Final Answers. The SFT model samples from easy questions and receives
the corresponding Final-Answer and optional PRM rewards.

All Questions & Easy Final Answers. This assumes access to a range of easy and hard problems for
RL training, with rewards for hard tasks solely provided by the easy-to-hard evaluator.

Based on the results reported in Table 2, we have the following findings:

DPO and PPO excel over ReST. Among the RL algorithms trained on the PRM800K dataset,
PPO emerges as the most effective, significantly surpassing both ReST and DPO. On the MetaMATH
dataset, PPO and DPO achieve top performance, while ReST shows only marginal improvements
over the SFT baseline. The comparative analysis between DPO and PPO across the PRM800K and
MetaMATH datasets indicates that while DPO’s efficacy is on par with PPO given a high-quality SFT
model as initialization, PPO’s effectiveness is less contingent on the quality of the underlying SFT
model [50, 56].

PRM rewards are more beneficial than Final-Answer rewards for hard tasks. Notably, models
trained with PRM rewards with human supervision on the easy tasks (achieving a top performance
of 34.0) outperform the previous state-of-the-art model trained across all task levels (33.0). This
highlights the effectiveness of leveraging easy-to-hard evaluations to improve generator performance
across varying task difficulties.

5This includes stopping iterations in ReST-EM and iterative DPO, and stopping online steps in PPO.

9

Table 3: Easy-to-hard generalization of evaluators on coding problems (APPS). Both SFTs and RMs
are trained on the easy (Introductory) data. We found that ORMs trained on easy tasks can improve
the re-ranking (Best-of-N) performance on hard (Interview & Competition) coding problems.

SFT / ORM DECODING
AVERAGE ACCURACY (%) STRICT ACCURACY (%)

TRAIN DATA INTRO. INTER. COMP. ALL INTRO. INTER. COMP. ALL

CODE LLAMA - 7B

ALL GREEDY 31.4 15.5 12.2 18.0 17.0 2.3 2.0 5.2
EASY GREEDY 26.8 14.1 9.5 15.7 11.0 3.0 0.0 4.0
EASY BEST-OF-1 25.4 12.0 0.1 13.5 16.0 2.7 0.0 4.8
EASY BEST-OF-4 27.1 13.8 8.1 15.3 14.0 4.0 0.0 5.2
EASY BEST-OF-16 29.7 16.3 11.3 18.0 19.0 5.0 3.0 7.4

CODE LLAMA - 34B

ALL GREEDY 37.6 19.9 11.3 21.7 22.0 5.0 2.0 7.8
EASY GREEDY 33.9 19.4 8.5 20.1 21.0 6.0 1.0 8.0
EASY BEST-OF-1 28.5 14.5 4.4 15.3 21.0 3.3 0.0 6.2
EASY BEST-OF-4 36.3 21.3 10.5 22.1 24.0 8.7 1.0 10.2
EASY BEST-OF-16 45.9 25.8 10.0 26.6 30.0 10.7 3.0 13.0

4.3 Easy-to-Hard Generalization on the Coding Domain

We conduct further experiments in the coding domain with the APPS dataset [31]. Similarly to
Lightman et al. [40], we sub-sampled 500 questions from the original test set of APPS as our test
set. Specifically, we sub-sampled 100 Introductory questions, 300 Interview questions, and 100
Competition questions, following the original distribution in the test set.

In Table 3, we compare the performance of SFT-trained Code Llama [58] (7b & 34b) with greedy
decoding and best-of-N approach. In the latter, an Outcome Reward Model (ORM) of the same
model size is trained to select the best coding one from N sampled solutions.

We found that while the reward model is only trained on the outcome supervision of easy (Introduc-
tory) data, it significantly improves the model performance on hard (Interview & Competition) data.
These findings extend the premise of easy-to-hard generalization beyond the confines of mathematical
reasoning, suggesting its applicability across diverse domains.

5 Conclusion

Our study advances the field of AI alignment by demonstrating the potential of easy-to-hard gen-
eralization, where models trained on simpler tasks can be guided to solve more complex problems
without direct human supervision on these harder tasks. Through the use of (process-supervised)
reward models for evaluating and enhancing policy models, we show that evaluators can facilitate
this form of generalization, outperforming traditional training methods. Our findings highlight the
effectiveness of re-ranking strategies and reinforcement learning (RL) in leveraging evaluators for
performance gains on difficult tasks. This approach presents a promising direction for developing AI
systems capable of surpassing human problem-solving capabilities, suggesting a scalable alignment
method that could enable AI to independently advance knowledge in complex domains.

While our study provides valuable insights into easy-to-hard generalization and the potential of
process-supervised reward models, there are limitations to consider. These include the focus on
specific model sizes and datasets, the domain specificity of reasoning tasks, and the need for further
research on the long-term implications and robustness of the method.

6 Acknowledgement

This work is supported by OpenAI Superalignment Fast Grants and Microsoft Accelerate Foundation
Models Research (AFMR) Initiative. Additionally, ZS thanks Google PhD Fellowship; SW thanks
NSF SCALE (NSF DMS 2134012) and Convergent Research.

References
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.

Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016. 3

10

[2] Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen.
Learning from mistakes makes llm better reasoner. arXiv preprint arXiv:2310.20689, 2023. 18

[3] Jacob Andreas. Language models as agent models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 5769–5779, 2022. 3

[4] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. Advances in neural information processing systems, 30, 2017. 18

[5] Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello,
Michal Valko, and Rémi Munos. A general theoretical paradigm to understand learning from
human preferences. arXiv preprint arXiv:2310.12036, 2023. 18

[6] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics. arXiv preprint arXiv:2310.10631, 2023. 6, 8, 18, 24

[7] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022. 18

[8] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine
Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli
Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan.
Constitutional ai: Harmlessness from ai feedback, 2022. 18

[9] Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamile
Lukosuite, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring progress on scalable
oversight for large language models. arXiv preprint arXiv:2211.03540, 2022. 1, 2, 3

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.
2, 4

[11] Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschen-
brenner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong gener-
alization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023. 2, 3, 5, 6

[12] James A Carlson, Arthur Jaffe, and Andrew Wiles. The millennium prize problems. American
Mathematical Soc., 2006. 2

[13] Noam Chomsky. On the representation of form and function. 1981. 4

[14] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022. 1

[15] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018. 4

11

[16] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021. 4, 6, 18

[17] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. 4

[18] Ajeya Cotra. The case for aligning narrowly superhuman models. In AI Alignment Forum, 2021.
3

[19] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020. 7

[20] Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun
Chen, Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large language
models. In The Eleventh International Conference on Learning Representations, 2022. 4

[21] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2368–2378, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1246. URL https://aclanthology.
org/N19-1246. 4

[22] Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. arXiv preprint arXiv:2305.14387, 2023. 20

[23] Jerry A Fodor and Ernest Lepore. The compositionality papers. Oxford University Press, 2002.
4

[24] Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
prompting for multi-step reasoning. In The Eleventh International Conference on Learning
Representations, 2022. 2, 4, 5, 18

[25] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pages 10835–10866. PMLR, 2023. 8

[26] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen,
et al. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv preprint
arXiv:2309.17452, 2023. 18

[27] Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms. arXiv preprint
arXiv:2305.15717, 2023. 7

[28] Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts,
Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced
self-training (rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023. 6, 18

[29] Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness of
easy training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024. 2, 4, 5, 6

[30] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2020. 4

[31] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021. 10

12

https://aclanthology.org/N19-1246
https://aclanthology.org/N19-1246

[32] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021. 4, 5, 8, 18, 24

[33] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023. 18

[34] Richard M Karp. On the computational complexity of combinatorial problems. Networks, 5(1):
45–68, 1975. 2

[35] Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-
bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measuring
compositional generalization: A comprehensive method on realistic data. In International
Conference on Learning Representations, 2019. 4

[36] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022. 18

[37] Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International conference on machine
learning, pages 2873–2882. PMLR, 2018. 4

[38] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871,
2018. 3

[39] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.
5, 18

[40] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023. 2, 5, 6, 8, 10, 18, 19, 30

[41] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 158–167, 2017. 18

[42] Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen,
Rachel Ward, and Yi Zhang. Tinygsm: achieving> 80% on gsm8k with small language models.
arXiv preprint arXiv:2312.09241, 2023. 18

[43] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith, James M
Rehg, and Le Song. Iterative machine teaching. In International Conference on Machine
Learning, pages 2149–2158. PMLR, 2017. 4

[44] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical rea-
soning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023. 18

[45] Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al.
Nash learning from human feedback. arXiv preprint arXiv:2312.00886, 2023. 18

[46] Moni Naor. Evaluation may be easier than generation. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 74–83, 1996. 2

[47] OpenAI. OpenAI: Introducing ChatGPT, 2022. URL https://openai.com/blog/chatgpt.
1, 5

13

https://openai.com/blog/chatgpt

[48] OpenAI. Gpt-4 technical report, 2023. 5, 18

[49] OpenAI. OpenAI: GPT-4, 2023. URL https://openai.com/research/gpt-4. 1

[50] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022. 1, 2, 5, 7, 9,
18, 20

[51] Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, and Douwe Kiela. Unsupervised
question decomposition for question answering. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 8864–8880, 2020. 4

[52] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
Advances in neural information processing systems, 34:11054–11070, 2021. 5

[53] Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model
behaviors with model-written evaluations. arXiv preprint arXiv:2212.09251, 2022. 3

[54] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020. 18

[55] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018. 2, 4

[56] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
arXiv preprint arXiv:2305.18290, 2023. 6, 9, 18, 20

[57] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. arXiv preprint arXiv:2311.12022, 2023. 2, 3

[58] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023. 6, 10

[59] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, et al. Multitask prompted training
enables zero-shot task generalization. In International Conference on Learning Representations,
2021. 1, 7

[60] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022. 2, 3

[61] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015. 20

[62] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 6, 18

[63] Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34:6695–6706, 2021.
2

[64] Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R
Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards
understanding sycophancy in language models. arXiv preprint arXiv:2310.13548, 2023. 1, 3

14

https://openai.com/research/gpt-4

[65] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016. 6

[66] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017. 18

[67] Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023. 6, 18, 19,
20

[68] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020. 1, 5, 7, 18

[69] Zhiqing Sun, Yikang Shen, Hongxin Zhang, Qinhong Zhou, Zhenfang Chen, David Cox, Yiming
Yang, and Chuang Gan. Salmon: Self-alignment with principle-following reward models. arXiv
preprint arXiv:2310.05910, 2023. 18

[70] Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
minimal human supervision. arXiv preprint arXiv:2305.03047, 2023. 7

[71] Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9275–9293, 2020. 2, 4, 5

[72] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 6, 18

[73] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024. 2

[74] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process- and outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022. 2, 6, 7, 8, 18,
29

[75] Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023. 2, 3, 5, 6, 9, 19, 20, 26

[76] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instruc-
tions. arXiv preprint arXiv:2212.10560, 2022. 5, 6, 7

[77] Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. arXiv preprint arXiv:2402.02658, 2024. 30

[78] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2021. 1, 7

[79] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 2022.
5, 18

15

[80] Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, and Quoc V Le. Simple synthetic data reduces
sycophancy in large language models. arXiv preprint arXiv:2308.03958, 2023. 3

[81] Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and
Paul Christiano. Recursively summarizing books with human feedback. arXiv preprint
arXiv:2109.10862, 2021. 2

[82] Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more
cringe than others: Preference optimization with the pairwise cringe loss. arXiv preprint
arXiv:2312.16682, 2023. 18

[83] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022. 18

[84] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023. 18

[85] Fei Yu, Anningzhe Gao, and Benyou Wang. Outcome-supervised verifiers for planning in
mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023. 2, 6

[86] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023. 3, 5, 18, 19, 20,
26

[87] Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou.
Scaling relationship on learning mathematical reasoning with large language models. arXiv
preprint arXiv:2308.01825, 2023. 18

[88] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning. arXiv
preprint arXiv:2309.05653, 2023. 18

[89] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022. 18, 19

[90] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting
in large language models. arXiv preprint arXiv:2210.03493, 2022. 18

[91] Yao Zhao, Mikhail Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Peter J
Liu. Calibrating sequence likelihood improves conditional language generation. In The Eleventh
International Conference on Learning Representations, 2022. 18

[92] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-
hf: Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425,
2023. 18

[93] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In International Conference on Machine
Learning, pages 12697–12706. PMLR, 2021. 7

[94] Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompt-
ing improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.
18

[95] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, 2022. 2, 4, 5, 18

[96] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022. 18

16

[97] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019. 1

17

A Additional Related Work

A.1 Rationale-Augmented (Mathematical) Reasoning

Ling et al. [41] pioneer the work of solving math word problems by generating step-by-step solutions
before the final answer. Cobbe et al. [16] extend this work by constructing a much larger dataset to
finetune a pre-trained large language model to solve math word problems, and a outcome-supervised
verifier to rank candidate solutions. Wei et al. [79] demonstrate that the reasoning ability of a language
model can be elicited through the use of prefixed rationales. Subsequent research [36, 83, 39, 96,
84] in tasks requiring human-level reasoning skills has also highlighted the efficacy of rationale
augmentation.

Among all the reasoning tasks, we select mathematical reasoning to evaluate easy-to-hard generaliza-
tion ability, given that mathematical reasoning serves as a valuable assessment for complex reasoning
abilities and features a clear delineation of difficulty levels. Recent research efforts focus on prompt
design [79, 95, 24, 90, 94] to elicit the intrinsic reasoning capabilities of models, or data engineering
for fine-tuning [44, 87, 88, 86, 26, 42, 2, 6], which draws on experts to provide high-quality training
datasets. Our work is categorized as fine-tuning based work. However, unlike previous work, our
focus lies in exploring how to generalize to more challenging mathematical problems when only
provided with easy mathematical data.

A.2 Outcome Reward Models & Process Reward Models

For some multi-step complex reasoning tasks, such as generating highly complex code, it may be
challenging for humans to fully grasp the outputs produced by an advanced AI system. In such
scenarios, process-supervised reward models (PRMs) present a promising solution [74, 40]. These
models operate by supervising each step in the reasoning or generation process, rather than focusing
solely on the end result. They are particularly effective in tasks where the reasoning process itself is
as important as the final outcome [32, 33].

Uesato et al. [74] find that process-supervised reward models (PRMs) achieve better performance
than outcome-supervised reward models (ORMs) when re-ranking sampled solutions from the policy
model, but their performance is similar during reinforcement learning (RL) via expert iteration
[66, 4, 54, 89, 28, 67]. Lightman et al. [40] compare ORMs and PRMs with a more capable base
model [48] and significantly more human-labeled process feedback on the more challenging MATH
dataset, and also find that PRMs significantly outperform ORMs in the reranking setting. In contrast
to these works, which only study the effectivenss of PRM in an independent and identically distributed
(IID) domain, we study the utilization of PRMs in the easy-to-hard generalization scenario, and
show that easy-to-hard evaluators instantiated by PRMs can enable easy-to-hard generation of policy
models.

B Reinforcement Learning Algorithms

Reinforced Self-Training (ReST) is an offline RL algorithm, which alternates between generating
samples from the policy, which are then used to improve the LLM policy with RM-weighted SFT
[28, 67]. Its variants include expert iteration [4] and rejection sampling fine-tuning [72, 87].

Direct Policy Optimization (DPO) is a class of offline RL algorithms [56] that consider both positive
and negative gradient updates. It fine-tunes the policy model on a preference dataset consisting of
paired positive and negative samples. The variants include NLHF [45], IPO [5], and SLiC [91, 92].
Recent work shows that iteratively applying DPO leads to improved performance [82].

Proximal Policy Optimization (PPO) is an online RL algorithm which samples from the policy
during fine-tuning [62]. It is widely used in RLHF [68, 7, 50] and RLAIF [8, 69].

18

C Hyper-parameters

C.1 Supervised Fine-Tuning & Reward Modeling

For the PRM800K dataset [40], the SFT model is trained using steps that are labeled as correct. For
the MetaMath dataset [86], given that the original dataset can contain upwards of ten solutions for
the same question, potentially leading to over-fitting, we implement a filtering process. This process
ensures that, during any given epoch, no more than three solutions per question are retained, thereby
mitigating the risk of over-fitting.

The PRMs are trained on the corresponding released dataset [40, 75]. For generating solutions to train
ORMs, we sample 32 solutions for each question from the language model using top-K sampling with
K=20 and temperature of 0.7. We also ensure that the ratio between positive and negative samples for
each question is between 1:3 to 3:1.

See Table 4 for a list of training hyper-parameters used in the training jobs. We use full fine-tuning
for all SFT/RM training.

Table 4: Hyper-parameters in our SFT/RM training jobs

PRM800K METAMATH
SFT PRM ORM OPRM SFT PRM

LLEMMA-7B

LEARNING RATE 2E-5 2E-5 2E-5 2E-5 8E-6 2E-5
EPOCHS 3 2 2 2 3 2
BATCH SIZE 128 128 128 128 128 128
MAX SEQ LEN 768 768 1024 1024 1024 768
DTYPE BF16 BF16 BF16 BF16 FP32 BF16

LLEMMA-34B

LEARNING RATE 1E-5 1E-5 1E-5 1E-5 5E-6 -
EPOCHS 3 2 2 2 3 -
BATCH SIZE 128 128 128 128 128 -
MAX SEQ LEN 768 768 1024 1024 768 -
DTYPE BF16 BF16 BF16 BF16 FP32 -

C.2 Re-Ranking

For majority voting, weighted voting, and best-of-n, we sample from the language model using top-K
sampling with K=20 and temperature of 0.7. At test time, we use the ORM’s prediction at the final
token as the overall score for the solution, and use the PRM’s prediction at each intermediate step
(denoted by the new line symbol) and the final token as the process reward scores.

C.3 Reinforcement Learning

We use full fine-tuning during the RL stage.

ReST-EM Following Singh et al. [67], we sample 32 solutions for each question from the language
model using top-K sampling with K=40. We also used a cut-off threshold of 10 for the maximum
number of solutions per problem [89, 67]. We performed iterative ReST training for two epochs,
and observed performance degeneration starting from the third epoch. For PRM800K, we used a
temperature of 1.0, while for MetaMath, we used a temperature of 1.2. The rest training hyper-
parameters are the same as in SFT training.

Iterative DPO We sample 8 solutions for each question from the language model using top-K
sampling with K=20 and temperature of 1.0. We use the process reward model to assign a score
between 0 and 1 to each solution, and use final-answer reward to assign an additional 0/1 score to
each solution. A preference training pair is constructed only when the score difference between
positive and negative solutions is greater than 1.0. We used a cut-off threshold of 3 for the maximum
number of preference pairs per problem.

19

Table 5: Full results of comparing reinforcement learning (RL) approaches for easy-to-hard gener-
alization. All methods are of 7b size and evaluated with greedy decoding. † indicates the model is
trained with additional final-answer labels on hard tasks (similar to Singh et al. [67]), which is not
strictly a easy-to-hard generalization setup.

RL DATA
REWARD ACCURACY

FINAL-ANSWER PROCESS RM EASY (LEVEL 1-3) HARD (LEVEL 4-5) ALL

(SFT / PRM trained on level 1-3 of PRM800K)
SFT 28.2 12.2 19.8
REST-EM EASY EASY × 33.2 12.6 22.4
REST-EM HARD HARD × 31.9 8.0 19.4
REST-EM† ALL ALL × 35.7 8.8 21.6
ITERATIVE DPO EASY EASY

√
42.0 12.2 26.4

ITERATIVE DPO† ALL ALL
√

38.2 11.5 24.2
PPO EASY EASY × 42.0 14.1 27.4
PPO HARD HARD × 34.0 9.2 21.0
PPO† ALL ALL × 42.0 10.7 25.6
PPO ALL EASY

√
45.4 14.9 29.4

(SFT / PRM trained on level 1-5 of MetaMath / Math-Shepherd)
LLEMMA-BASED SFT SOTA (OURS) 51.7 13.7 31.4
PREVIOUS RL SOTA [75] - - 33.0

(SFT / PRM trained on level 1-3 of MetaMath / Math-Shepherd)
SFT 44.1 14.9 28.8
REST-EM EASY EASY × 50.4 14.5 31.6
ITERATIVE DPO EASY EASY

√
53.8 16.0 34.0

ITERATIVE DPO ALL EASY
√

49.6 10.7 29.2
ITERATIVE DPO† ALL ALL

√
47.9 12.2 29.2

PPO EASY EASY × 50.8 15.3 32.2
PPO† ALL ALL × 50.8 13.4 31.2
PPO ALL EASY

√
53.8 16.0 34.0

For all DPO training [56], we used a learning rate of 2× 10−6, a batch size of 64, and a DPO training
epoch of 1. We set β = 0.1 for all DPO experiments, and performed at most 5 DPO iterations (i.e.,
sampling new solutions and performing one DPO epoch).

PPO We follow Dubois et al. [22] on the implementation of the PPO algorithm, which is a variant
of [50]6. Specifically, we normalize the advantage across the entire batch of rollouts obtained for
each PPO step and initialize the value model from the reward model.

We clipped the gradient by its Euclidean norm at a limit of 1. Our training spanned 500 PPO steps on
the RL data (MATH questions except MATH500 and our 500 validation questions). For generalized
advantage estimation (GAE; Schulman et al. [61]), both λ and γ were set at 1.

For PRM800K, we used a batch size of 512 for each PPO step. This comprised 8 epochs of gradient
steps, each having 64 rollouts. We applied a peak learning rate of 2× 10−5 with cosine decay. We
opted for a constant KL regularizer coefficient of 0.01, and a sampling temperature of 0.7.

For MetaMath/Math-Shepherd, we used a batch size of 512 for each PPO step. This comprised 2
epochs of gradient steps, each having 256 rollouts. We applied a peak learning rate of 5 × 10−6

with cosine decay. We opted for a constant KL regularizer coefficient of 0.002, and a sampling
temperature of 1.2.

D Re-ranking Results on MetaMath

Similar to Sec. 4.2.1, we assess the effectiveness of process reward models on the MetaMath/Math-
Shepherd dataset [86, 75]. From Figure 6, we can see that PRMs are also more effective on harder
tasks when trained on MetaMath/Math-Shepherd.

6https://github.com/openai/lm-human-preferences

20

https://github.com/openai/lm-human-preferences

Table 6: Pass@N scores (upper bound of Best-of-N) on coding problems (APPS).

SFT / ORM DECODING
ACCURACY (%)

TRAIN DATA INTRO. INTER. COMP. ALL

CODE LLAMA - 7B
EASY PASS @ 1 11.0 1.6 0.0 3.2
EASY PASS @ 4 20.0 4.7 2.0 7.2
EASY PASS @ 16 39.0 9.3 6.0 14.6

CODE LLAMA - 34B
EASY PASS @ 1 19.0 5.3 2.0 7.3
EASY PASS @ 4 32.0 10.7 3.0 13.4
EASY PASS @ 16 44.0 18.3 8.0 21.4

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

45

50

55

60

65

%
 P

ro
bl

em
s S

ol
ve

d

44.84 44.84

51.52

56.45

59.60

61.78
63.08

63.83 64.11 64.21 64.17

44.62

50.01

54.79

58.63

61.38

63.14
64.56

65.17 65.49 65.56 65.63

44.75

50.18

53.18

54.73
55.92

56.69 57.09 57.38 57.43 57.13 56.93

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-7b
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
12
14
16
18
20
22
24

%
 P

ro
bl

em
s S

ol
ve

d

12.11 12.26

14.57

17.20

19.06

20.20
20.80

21.25
21.72 21.94

22.32

12.14

14.50

16.51

18.59

20.30

21.45
22.05

22.57 22.72
23.09 23.37

12.12

14.34

16.12

17.17

18.08
18.69

19.29 19.61 19.66 19.66

20.54

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-7b
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

27.5
30.0
32.5
35.0
37.5
40.0
42.5

%
 P

ro
bl

em
s S

ol
ve

d

27.68 27.77

32.11

35.87

38.37

40.00
40.90

41.53 41.88 42.09 42.19

27.57

31.39

34.70

37.65

39.82

41.25
42.27

42.78 43.01 43.23 43.39

27.65

31.38

33.75

35.05
36.14

36.79
37.32 37.60 37.66 37.52 37.89

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-7b
Accuracy on All (Level 1-5) Problems

Figure 6: Easy-to-hard generalization of evaluators on MetaMath. Both SFTs and RMs are trained on
the easy data.

21

E Qualitative Comparison

QUESTION The value of y varies inversely as
√
x and when x = 24, y = 15. What is x when

y = 3?

METAMATH-SFT

If y varies inversely as
√
x, then y = k√

x
for some constant k.

Plugging in the given values, we have 15 = k√
24

, or k = 15
√
24

24 = 15
√
6

4 .

Now we can find x when y = 3 by plugging in these values
into the equation y = k√

x
.

We have 3 =
15

√
6

4√
x

, or 3 = 15
√
6

4
√
x

.
Cross-multiplying, we get 3 · 4

√
x = 15

√
6, or 12

√
x = 15

√
6.

Dividing both sides by 12, we find
√
x = 15

√
6

12
√
6
= 5

2 .

Squaring both sides, we get x =
(
5
2

)2
= 6.25 .

METAMATH-
PPO

If y varies inversely as
√
x, then we can write the equation as y = k√

x

for some constant k.
We are given that when x = 24, y = 15, so we can substitute these values
into the equation to solve for k: 15 = k√

24

Multiplying both sides by
√
24 gives 15

√
24 = k

Simplifying the left side gives 15 · 2
√
6 = k, which further simplifies to 30

√
6 = k

Now we can use this value of k in the equation to find x when y = 3:
3 = 30

√
6√

x

Multiplying both sides by
√
x gives 3

√
x = 30

√
6

Dividing both sides by 3 gives
√
x = 10

√
6

Squaring both sides gives x = (10
√
6)2 = 100(6) = 600

Table 7: Qualitative comparison between MetaMath-7b-SFT and MetaMath-7b-PPO, as well as the
first error detected in MetaMath-SFT greedy decoding by Math-Shepherd. Examples are cherry-
picked for better illustration.

F Performance of DPO Iterations

Figure 7: Test performance as a function of DPO iterations.

22

QUESTION What is the total surface area, in square inches, of a cube with a volume of 1
cubic foot?

PRM800K-SFT

The volume of a cube is given by V = s3, where s is the length of one side.
We are given that V = 1 cubic foot, so s3 = 1.
Taking the cube root of both sides, we find that s = 1.
The surface area of a cube is given by A = 6s2,
so the total surface area of this cube is A = 6(12) = 6 square inches.
Answer
6

PRM800K-PPO

So the volume of a cube is s3.
And we know the volume is 1.
So s3 = 1.
So s = 1.
The surface area of a cube is 6s2.
So the surface area is 6 · 12 = 6.
So the answer is 6 .
Answer
6

Table 8: The distribution shift before and after PPO training of a Llemma-7B model trained on
PRM800K. We believe such a big shift could explain why does PPO work exceptionally well on
PRM800K, where the policy is initialized from a weak SFT model.

23

G Re-ranking Performance Analysis of PRMs, ORMs & OPRMs

We compare the re-ranking performance of Process Reward Models (PRMs), Outcome Reward
Models (ORMs), and our proposed Outcome & Process Reward Models (OPRMs). Figure 8 shows
the results on 7b models and Figure 9 is on 34b models. We find that in our setting of Llemma [6] +
MATH [32], PRMs and ORMs perform similarly, with PRMs slightly outperforming ORMs on hard
tasks. But the OPRMs that trained on the mixed data of PRMs and ORMs significantly outperforms
both of them.

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

27.84
29.02

36.19

43.88

49.84

53.21
55.36

56.58 57.03 57.17 56.76

28.02

34.59

40.48

45.77

50.42

53.81

56.40
58.11

59.14 59.82 60.19

28.02

34.26

38.85

42.25

45.54
47.61

49.06 49.88 50.21 49.81 49.09

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + PRM-7b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d
27.84

29.02

36.19

43.88

49.84

53.21
55.36

56.58 57.03 57.17 56.76

28.00

36.08

42.89

48.70

53.16

56.08
58.04

59.55 60.25 60.77 60.81

28.21

36.16

41.76

46.07

48.51
50.22 50.90 51.16 51.29 50.92 50.91

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + ORM-7b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

27.84
29.02

36.19

43.88

49.84

53.21
55.36

56.58 57.03 57.17 56.76

28.23

35.31

41.63

47.07

51.72

55.36

58.29
60.63

62.07 62.80 63.20

27.87

35.66

41.69

46.07

49.23
51.38

52.86
53.87 54.65 55.03 55.06

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

%
 P

ro
bl

em
s S

ol
ve

d

6.84
7.56

9.20

11.60

14.14

15.75

17.03
17.94 18.38

18.92 19.19

6.90

8.82

10.79

12.93

14.95

16.66

18.12

19.62

20.89
21.98

22.77

6.93

8.93

10.35

11.82
12.88

14.05
14.70

15.28 15.67 15.79 15.66

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + PRM-7b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

%
 P

ro
bl

em
s S

ol
ve

d

6.84
7.56

9.20

11.60

14.14

15.75

17.03
17.94 18.38

18.92 19.19

6.92

9.62

11.95

14.19

15.87

17.41

18.69
19.86

20.51
21.01 21.23

6.88

9.44

11.50

13.09
14.06

14.85
15.60 15.96 16.25 16.38 16.34

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + ORM-7b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

%
 P

ro
bl

em
s S

ol
ve

d

6.84
7.56

9.20

11.60

14.14

15.75

17.03
17.94 18.38

18.92 19.19

6.93

9.32

11.41

13.69

15.69

17.70

19.25

20.89

22.39
23.33

24.12

6.80

9.48

11.84

13.92

15.26

16.50
17.66

18.70
19.38

19.95 19.91

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

16.87
17.78

22.07

26.96

31.09

33.56
35.27

36.33 36.78 37.12 37.10

16.99

21.10

24.95

28.59

31.83

34.32

36.35
37.93

39.05
39.93 40.47

17.00

20.95

23.95

26.31

28.40
29.99

31.05 31.72 32.09 31.95 31.55

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + PRM-7b (on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

16.87
17.78

22.07

26.96

31.09

33.56
35.27

36.33 36.78 37.12 37.10

16.97

22.23

26.66

30.64

33.61

35.80
37.41

38.74 39.42 39.90 39.98

17.06

22.17

25.91

28.75
30.44

31.66 32.38 32.67 32.88 32.80 32.77

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + ORM-7b (on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

16.87
17.78

22.07

26.96

31.09

33.56
35.27

36.33 36.78 37.12 37.10

17.07

21.67

25.84

29.57

32.85

35.60

37.86

39.75
41.27

42.09 42.74

16.81

21.93

26.04

29.20

31.41
33.08

34.42
35.43

36.17 36.62 36.66

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on All (Level 1-5) Problems

Figure 8: Comparing process reward models (PRMs, left), outcome reward models (ORMs, middle),
and outcome & process reward models (OPRMs, right) on 7b models trained on the PRM800K
dataset. Both SFTs and RMs are trained on the easy data.

24

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.52
38.93

47.59

56.06

61.96

65.69
67.52

68.56 68.89 68.85 68.51

37.65

45.44

52.37

57.84

62.71

66.31
68.41

69.77 70.59 70.69 70.48

37.60

45.20

50.74

55.06

58.48
60.82

62.40
63.64 64.09 64.51 64.57

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + PRM-34b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.52
38.93

47.59

56.06

61.96

65.69
67.52

68.56 68.89 68.85 68.51

37.84

46.71

54.42

60.66

65.29

68.38
70.28 71.18 71.54 71.71 71.53

37.65

46.72

53.41

57.51

60.25
62.05 62.83 63.50 64.21 64.53 64.99

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + ORM-34b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.52
38.93

47.59

56.06

61.96

65.69
67.52

68.56 68.89 68.85 68.51

37.47

46.88

54.25

60.14

64.96

68.36

71.00
72.64

73.61 74.08 74.37

37.79

46.97

54.16

59.83

63.40

65.88
67.57 68.19 68.24 68.04 67.44

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.19 10.86

13.69

17.25

20.59

23.09
24.75

25.60 26.09 26.37 26.41

10.36

13.32

16.14

18.88

21.20

23.40

25.49
27.07

27.93
28.70 29.38

10.16

13.11

15.51

17.52
18.86

20.16
21.35

22.40 23.09 23.43 23.67

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + PRM-34b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.19 10.86

13.69

17.25

20.59

23.09
24.75

25.60 26.09 26.37 26.41

10.27

13.73

17.03

19.90

22.56

24.88
26.62

27.87
29.01

29.78 30.19

10.23

13.75

16.56

18.53
20.17

21.24 21.95 22.45 22.74 23.00 23.70

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + ORM-34b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.19 10.86

13.69

17.25

20.59

23.09
24.75

25.60 26.09 26.37 26.41

10.34

13.87

17.18

20.27

23.04

25.42

27.34

29.16
30.50

31.61
32.58

10.31

14.11

17.40

20.31

22.30
24.04

24.97
25.73 26.16 26.68 27.02

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.21
24.22

29.80

35.71

40.28

43.34
45.16

46.07 46.52 46.62 46.53

23.38

28.58

33.37

37.44

40.95

43.80

45.98
47.43 48.24 48.72 48.91

23.24

28.41

32.27

35.39

37.75
39.51

40.89
42.02 42.61 42.96 43.12

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + PRM-34b (on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.21
24.22

29.80

35.71

40.28

43.34
45.16

46.07 46.52 46.62 46.53

23.38

29.42

34.82

39.30

42.90

45.58
47.45

48.49 49.28 49.73 49.88

23.26

29.45

34.09

37.10

39.24
40.64 41.38 41.96 42.45 42.73 43.32

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + ORM-34b (on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.21
24.22

29.80

35.71

40.28

43.34
45.16

46.07 46.52 46.62 46.53

23.26

29.58

34.83

39.21

42.99

45.84

48.17
49.87

50.98 51.81 52.45

23.41

29.76

34.88

39.10

41.86
43.94

45.26 45.97 46.25 46.37 46.31

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on All (Level 1-5) Problems

Figure 9: Comparing process reward models (PRMs, left), outcome reward models (ORMs, middle),
and outcome & process reward models (OPRMs, right) on 34b models trained on the PRM800K
dataset. Both SFTs and RMs are trained on the easy data.

25

H Re-ranking Results on MetaMath

Similar to Sec. 4.2.1, we assess the effectiveness of process reward models on the MetaMath/Math-
Shepherd dataset [86, 75]. From Figure 10, we can see that PRMs are also more effective on harder
tasks when trained on MetaMath/Math-Shepherd.

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

44.84 44.84

51.52

56.45

59.60

61.78
63.08

63.83 64.11 64.21 64.17

44.75

50.22

54.64

58.53

61.22

63.22
64.55 64.98 65.16 65.17 65.27

44.69

50.33

53.71

55.95

57.79
58.97

59.73 60.39 60.62 60.78 60.80

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-7b
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

44.84 44.84

51.52

56.45

59.60

61.78
63.08

63.83 64.11 64.21 64.17

44.41

49.87

54.35

57.98

60.84

62.92
64.10 64.82 65.40 65.61 65.72

44.72

49.66

52.64

54.48
55.59 56.26 56.89 57.39 57.85 57.77 57.45

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + ORM-7b
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

44.84 44.84

51.52

56.45

59.60

61.78
63.08

63.83 64.11 64.21 64.17

44.76

50.18

55.18

59.20

62.11

64.29
66.07

67.13 67.67 67.87 67.80

44.78

50.35

53.46

55.61
56.46

57.20 57.21 56.92 57.06 56.92 56.58

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-OPRM-7b
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
12
14
16
18
20
22
24

%
 P

ro
bl

em
s S

ol
ve

d

12.11 12.26

14.57

17.20

19.06

20.20
20.80

21.25
21.72 21.94

22.32

12.08

14.30

16.68

18.55

20.38

21.41
22.11

22.51 22.72 22.88 23.09

11.98

14.48

16.09

17.30
17.92

18.28
18.64 18.80 18.82

18.33
17.54

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-7b
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
12
14
16
18
20
22
24

%
 P

ro
bl

em
s S

ol
ve

d

12.11 12.26

14.57

17.20

19.06

20.20
20.80

21.25
21.72 21.94

22.32

12.05

14.37

16.37

18.07

19.58

20.76
21.25 21.59 21.60 21.71 21.77

11.95

14.25

15.91

17.31

18.55
19.08 19.23 19.33 19.43 19.53 19.40

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + ORM-7b
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
12
14
16
18
20
22
24

%
 P

ro
bl

em
s S

ol
ve

d

12.11 12.26

14.57

17.20

19.06

20.20
20.80

21.25
21.72 21.94

22.32

12.17

14.42

16.42

18.30

19.83

20.91
21.52 21.83 22.05 22.20 22.31

12.02

14.39

16.03

17.07
17.62 17.85 17.91

18.32
19.04

19.73 19.48

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-OPRM-7b
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

%
 P

ro
bl

em
s S

ol
ve

d

27.68 27.77

32.11

35.87

38.37

40.00
40.90

41.53 41.88 42.09 42.19

27.63

31.38

34.74

37.59

39.81

41.32
42.29 42.67 42.89 42.93 43.08

27.57

31.52

33.94

35.69

36.89
37.62

38.20 38.60 38.73 38.49 38.10

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-7b
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

%
 P

ro
bl

em
s S

ol
ve

d

27.68 27.77

32.11

35.87

38.37

40.00
40.90

41.53 41.88 42.09 42.19

27.46

31.25

34.47

37.07

39.22

40.87
41.66

42.14 42.41 42.56 42.63

27.52

31.12

33.38

35.00
36.18

36.75 37.17 37.44 37.71 37.75 37.50

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + ORM-7b
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

%
 P

ro
bl

em
s S

ol
ve

d

27.68 27.77

32.11

35.87

38.37

40.00
40.90

41.53 41.88 42.09 42.19

27.66

31.44

34.83

37.75

39.98

41.54
42.69

43.40 43.76 43.95 43.90

27.60

31.46

33.82

35.41
36.11 36.58 36.63 36.71 37.16 37.43 37.16

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

MetaMath-7b + Math-Shepherd-OPRM-7b
Accuracy on All (Level 1-5) Problems

Figure 10: Comparing process reward models (PRMs, left, trained on Meth-Shepherd), outcome
reward models (ORMs, middle), and outcome & process reward models (OPRMs, right) on 7b models
trained on the MetaMath dataset. Both SFTs and RMs are trained on the easy data.

26

I More Comparisons

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

28.02

34.59

40.48

45.77

50.42

53.81

56.40
58.11

59.14 59.82 60.19

28.00

36.08

42.89

48.70

53.16

56.08
58.04

59.55 60.25 60.77 60.81

28.23

35.31

41.63

47.07

51.72

55.36

58.29
60.63

62.07 62.80 63.20

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Weighted Voting on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

%
 P

ro
bl

em
s S

ol
ve

d

6.90

8.82

10.79

12.93

14.95

16.66

18.12

19.62

20.89
21.98

22.77

6.92

9.62

11.95

14.19

15.87

17.41

18.69
19.86

20.51
21.01 21.23

6.93

9.32

11.41

13.69

15.69

17.70

19.25

20.89

22.39
23.33

24.12

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Weighted Voting on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

16.99

21.10

24.95

28.59

31.83

34.32

36.35
37.93

39.05
39.93 40.47

16.97

22.23

26.66

30.64

33.61

35.80
37.41

38.74 39.42 39.90 39.98

17.07

21.67

25.84

29.57

32.85

35.60

37.86

39.75
41.27

42.09 42.74

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Weighted Voting on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

28.02

34.26

38.85

42.25

45.54
47.61

49.06 49.88 50.21 49.81 49.09

28.21

36.16

41.76

46.07

48.51
50.22 50.90 51.16 51.29 50.92 50.91

27.87

35.66

41.69

46.07

49.23
51.38

52.86
53.87 54.65 55.03 55.06

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Best-of-N on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

%
 P

ro
bl

em
s S

ol
ve

d

6.93

8.93

10.35

11.82
12.88

14.05
14.70

15.28 15.67 15.79 15.66

6.88

9.44

11.50

13.09
14.06

14.85
15.60 15.96 16.25 16.38 16.34

6.80

9.48

11.84

13.92

15.26

16.50
17.66

18.70
19.38

19.95 19.91

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Best-of-N on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

17.00

20.95

23.95

26.31

28.40
29.99

31.05 31.72 32.09 31.95 31.55

17.06

22.17

25.91

28.75
30.44

31.66 32.38 32.67 32.88 32.80 32.77

16.81

21.93

26.04

29.20

31.41
33.08

34.42
35.43

36.17 36.62 36.66

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Best-of-N on PRM800K)
Accuracy on All (Level 1-5) Problems

Figure 11: Comparing different reward models with Weighted Voting (upper) and Best-of-N (lower)
on 7b models trained on the PRM800K dataset. Both SFTs and RMs are trained on the easy data.

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.65

45.44

52.37

57.84

62.71

66.31
68.41

69.77 70.59 70.69 70.48

37.84

46.71

54.42

60.66

65.29

68.38
70.28 71.18 71.54 71.71 71.53

37.47

46.88

54.25

60.14

64.96

68.36

71.00
72.64

73.61 74.08 74.37

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-34b (Weighted Voting on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.36

13.32

16.14

18.88

21.20

23.40

25.49
27.07

27.93
28.70 29.38

10.27

13.73

17.03

19.90

22.56

24.88
26.62

27.87
29.01

29.78 30.19

10.34

13.87

17.18

20.27

23.04

25.42

27.34

29.16
30.50

31.61
32.58

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-34b (Weighted Voting on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.38

28.58

33.37

37.44

40.95

43.80

45.98
47.43 48.24 48.72 48.91

23.38

29.42

34.82

39.30

42.90

45.58
47.45

48.49 49.28 49.73 49.88

23.26

29.58

34.83

39.21

42.99

45.84

48.17
49.87

50.98 51.81 52.45

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-34b (Weighted Voting on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.60

45.20

50.74

55.06

58.48
60.82

62.40
63.64 64.09 64.51 64.57

37.65

46.72

53.41

57.51

60.25
62.05 62.83 63.50 64.21 64.53 64.99

37.79

46.97

54.16

59.83

63.40

65.88
67.57 68.19 68.24 68.04 67.44

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-34b (Best-of-N on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.16

13.11

15.51

17.52
18.86

20.16
21.35

22.40 23.09 23.43 23.67

10.23

13.75

16.56

18.53
20.17

21.24 21.95 22.45 22.74 23.00 23.70

10.31

14.11

17.40

20.31

22.30
24.04

24.97
25.73 26.16 26.68 27.02

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-34b (Best-of-N on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.24

28.41

32.27

35.39

37.75
39.51

40.89
42.02 42.61 42.96 43.12

23.26

29.45

34.09

37.10

39.24
40.64 41.38 41.96 42.45 42.73 43.32

23.41

29.76

34.88

39.10

41.86
43.94

45.26 45.97 46.25 46.37 46.31

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-34b (Best-of-N on PRM800K)
Accuracy on All (Level 1-5) Problems

Figure 12: Comparing different reward models with Weighted Voting (upper) and Best-of-N (lower)
on 34b models trained on the PRM800K dataset. Both SFTs and RMs are trained on the easy data.

27

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.61

45.01

51.38

56.68

61.51

64.99
67.32

68.98 69.85 70.32 70.41

37.62

46.62

54.00

60.19

64.77

67.98
69.71 70.41 70.72 70.88 71.01

37.72

45.99

52.58

58.04

62.63

66.03

68.57
70.42

71.42 72.28 72.68

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-7b (Weighted Voting on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.26

12.96

15.75

18.25

20.53

22.69

24.63
26.11

27.23 27.75 28.12

10.35

13.48

16.53

19.60

22.09

24.13

25.96
27.06

27.88
28.60 29.09

10.23

13.33

16.33

18.99

21.44

23.58

25.64
27.41

28.80
30.06 30.68

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-7b (Weighted Voting on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.29

28.19

32.64

36.54

40.01

42.81

44.99
46.56

47.53 48.02 48.25

23.34

29.25

34.35

38.96

42.38

45.05
46.79

47.72 48.33 48.76 49.06

23.31

28.86

33.58

37.59

41.04

43.77

46.12
47.93

49.10
50.15 50.67

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-7b (Weighted Voting on PRM800K)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

37.52

44.79

49.93

53.80

56.52
58.58

60.01
61.35

62.41 63.31 63.89

37.71

46.31

52.57

56.59
58.42

59.45 59.66 59.74 59.70 59.09
57.72

37.50

46.31

52.58

56.84

59.29
60.92

62.13 62.87 63.27 63.60 63.46

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-7b (Best-of-N on PRM800K)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.29

13.26

15.16
16.91

18.39
19.53

20.41 20.78 21.00 21.11 21.16

10.31

13.49

15.77
16.96

18.07 18.52 19.05 19.00 18.97 18.90 18.86

10.39

13.59

16.61

18.71
20.17

21.44
22.59

23.32
24.04 24.33 24.38

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-7b (Best-of-N on PRM800K)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

23.24

28.22

31.67

34.46

36.55
38.11

39.26 40.09 40.72 41.20 41.51

23.37

29.13

33.28

35.81
37.27 38.00 38.38 38.37 38.33 38.02 37.33

23.27

29.16

33.69

36.86
38.75

40.20
41.41 42.11 42.69 43.02 42.96

Process RM
Outcome RM
Outcome \& Process RM

SFT-34b + RM-7b (Best-of-N on PRM800K)
Accuracy on All (Level 1-5) Problems

Figure 13: Comparing different reward models with Weighted Voting (upper) and Best-of-N (lower)
on 34b SFT model and 7b reward model trained on the PRM800K dataset. Both SFTs and RMs are
trained on the easy data.

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

44.75

50.22

54.64

58.53

61.22

63.22
64.55 64.98 65.16 65.17 65.27

44.41

49.87

54.35

57.98

60.84

62.92
64.10 64.82 65.40 65.61 65.72

44.76

50.18

55.18

59.20

62.11

64.29
66.07

67.13 67.67 67.87 67.80

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Weighted Voting on MetaMath)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
12
14
16
18
20
22
24

%
 P

ro
bl

em
s S

ol
ve

d

12.08

14.30

16.68

18.55

20.38

21.41
22.11

22.51 22.72 22.88 23.09

12.05

14.37

16.37

18.07

19.58

20.76
21.25 21.59 21.60 21.71 21.77

12.17

14.42

16.42

18.30

19.83

20.91
21.52 21.83 22.05 22.20 22.31

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Weighted Voting on MetaMath)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

%
 P

ro
bl

em
s S

ol
ve

d

27.63

31.38

34.74

37.59

39.81

41.32
42.29 42.67 42.89 42.93 43.08

27.46

31.25

34.47

37.07

39.22

40.87
41.66

42.14 42.41 42.56 42.63

27.66

31.44

34.83

37.75

39.98

41.54
42.69

43.40 43.76 43.95 43.90

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Weighted Voting on MetaMath)
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

44.69

50.33

53.71

55.95

57.79
58.97

59.73 60.39 60.62 60.78 60.80

44.72

49.66

52.64

54.48
55.59 56.26 56.89 57.39 57.85 57.77 57.45

44.78

50.35

53.46

55.61
56.46

57.20 57.21 56.92 57.06 56.92 56.58

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Best-of-N on MetaMath)
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
12
14
16
18
20
22
24

%
 P

ro
bl

em
s S

ol
ve

d

11.98

14.48

16.09

17.30
17.92

18.28
18.64 18.80 18.82

18.33
17.54

11.95

14.25

15.91

17.31

18.55
19.08 19.23 19.33 19.43 19.53 19.40

12.02

14.39

16.03

17.07
17.62 17.85 17.91

18.32
19.04

19.73 19.48

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Best-of-N on MetaMath)
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

%
 P

ro
bl

em
s S

ol
ve

d

27.57

31.52

33.94

35.69

36.89
37.62

38.20 38.60 38.73 38.49 38.10

27.52

31.12

33.38

35.00
36.18

36.75 37.17 37.44 37.71 37.75 37.50

27.60

31.46

33.82

35.41
36.11 36.58 36.63 36.71 37.16 37.43 37.16

Process RM
Outcome RM
Outcome \& Process RM

SFT-7b + RM-7b (Best-of-N on MetaMath)
Accuracy on All (Level 1-5) Problems

Figure 14: Comparing different reward models with Weighted Voting (upper) and Best-of-N (lower)
on 7b models trained on the MetaMath dataset. Both SFTs and RMs are trained on the easy data.

28

Table 9: Results of Full, Easy-to-Hard, & Hard-to-Easy SFT training of the Llemma-7b model

TRAINING DATA
PRM800K METAMATH

ALL HARD ALL HARD

FULL SFT ALL 20.6 9.9 31.4 13.7
EASY-TO-HARD SFT EASY 19.8 12.2 30.0 14.9
HARD-TO-EASY SFT HARD 18.4 13.0 30.4 15.3

Figure 15: The agreement between the prediction from the Llemma-7b-based reward model when
trained on ORM and PRM data, and their agreement to ground-truth final-answer labels.

J Hard-to-Easy Generalization

From Table 5, it is evident that reinforcement learning training on hard tasks alone significantly
underperforms compared to training the model on easy tasks or on all tasks. This difference is
especially pronounced for PPO on the PRM800K dataset. This raises a crucial question: does training
on hard tasks only generalize to easy tasks?

To address this, we fine-tuned the Llemma-7b model using all data (easy and hard), only easy data,
and only hard data. As shown in Table 9, we found that training on all data consistently yields the
best performance. Conversely, the generator’s performance deteriorates when transitioning from easy-
to-hard and hard-to-easy tasks. This suggests that language models face difficulties in generalizing in
both directions.

It is also worth noting that while Full SFT underperforms Easy-to-Hard SFT and Hard-to-Easy SFT
on hard test questions, it eventually outperforms Easy-to-Hard SFT and Hard-to-Easy SFT when
evaluated on all test questions. We believe that this is because by exposing the model to a wider
variety of unique questions and difficulties, it gains a better understanding of the problem space in
general, as measured by the accuracy on the full distribution.

K On ORM’s Approximation of PRM Labels

From Sec. G, we observe that in PRM800K, PRMs and ORMs exhibit similar performance levels,
with OPRMs outperforming both. This raises the question of why ORMs also demonstrate strong
easy-to-hard generalization ability. A straightforward explanation is that ORMs are trained to
approximate PRM labels [74]. Specifically, ORMs are trained to predict the correctness of the entire
solution through value estimation. As Uesato et al. [74] state, “it is simpler for the ORM to learn
to recognize when steps are correct than it is to check the answer by internally computing the final
answer itself.”

Nevertheless, people may argue that the conclusion from Uesato et al. [74] is based on GSM8K’s
experimental results, so the conclusion may not transfer to the more challenging Hendrick’s MATH
dataset. To show the universal existence of “ORM’s approximation of PRM labels”, we further
conduct evaluation of agreement between different rewards on two variants of the MATH dataset:
PRM800K and MetaMath.

The results are shown in Figure 15. Similarly to the findings from Uesato et al. [74], we see that the
ORM has higher agreement with the PRM, despite being trained to predict the Final-Answer rewards.

29

Thus, “this result indicates that the ORM tends more towards predicting whether the full trace is
correct, and not just whether the final answer is correct.”

Overall, this shows easy-to-hard generalization is not exclusively linked to reward models trained on
explicit step-wise annotations. It also applies to ORMs that are trained to perform value estimation
and practically evaluates each solution step.

We also perform DPO training on a MetaMath-initialized Llemma-7b model. We find that in this
RL setting, re-ranking the output pairs with ORM also gives similar performance to re-ranking with
PRM (29.2 v.s. 30.4 & 31.2 v.s. 34.0).

L Analysis of Aggregation Functions in PRMs & OPRMs

We explored different methods to consolidate step-wise prediction scores into a single score value, a
process we describe as employing an aggregation function, during the use of the evaluator. Lightman
et al. [40] report comparable performance when using min (minimum) and prod (product) as the
aggregation function to reduce multiple scores into a single solution-level score. Note that when
training PRMs on PRM800K [40], we have already considered neutral steps to be positive as training
labels.

Following Wang et al. [77], given {p1, p2, . . . , pn} as a list of predicted correctness probability of
each step (including the final answer), we considered the following aggregation functions:

min = min{p1, p2, . . . , pn} (1)

max = max{p1, p2, . . . , pn} (2)

prod =
∏
i

pi (3)

mean =

∑
i pi
n

(4)

mean_logit = σ

(∑
i log

pi

1−pi

n

)
(5)

mean_odd = ReLU

(∑
i

pi

1−pi

n

)
(6)

last = pn (7)
In Figure 16-18, we perform analysis of aggregation functions on PRM800K and Math-Shepherd
(from MetaMath) datasets with weighted voting and best-of-n decoding and PRMs or OPRMs. In
general, we find prod works universally well in weighted voting and min works well in best-of-n.
So we adopt these two strategies in our main experiments.

One interesting finding is that for reward models trained on the human annotated process reward (e.g.,
PRM800K), the last strategy does not perform very well, but last works much better on OPRMs
and pseudo PRMs (e.g., Math-Shepherd). This could partially explain why OPRMs does not further
improve the performance on the Math-Shepherd dataset.

30

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30

35

40

45

50

55

60

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + PRM-7b + Weighted Voting
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

6
8

10
12
14
16
18
20
22

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + PRM-7b + Weighted Voting
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20

25

30

35

40

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + PRM-7b + Weighted Voting
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30

35

40

45

50

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + PRM-7b + Best-of-N
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

8

10

12

14

16

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + PRM-7b + Best-of-N
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

18
20
22
24
26
28
30
32

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + PRM-7b + Best-of-N
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + PRM-34b + Weighted Voting
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + PRM-34b + Weighted Voting
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25

30

35

40

45

50

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + PRM-34b + Weighted Voting
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40

45

50

55

60

65

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + PRM-34b + Best-of-N
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
12
14
16
18
20
22
24

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + PRM-34b + Best-of-N
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25

30

35

40

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + PRM-34b + Best-of-N
Accuracy on All (Level 1-5) Problems

Figure 16: Analysis of aggregation functions in process reward models (PRMs) on the PRM800K
dataset with Weighted Voting and Best-of-N. Both SFTs and RMs are trained on the easy data.

31

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + OPRM-7b + Weighted Voting
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

7.5
10.0
12.5
15.0
17.5
20.0
22.5

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + OPRM-7b + Weighted Voting
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20

25

30

35

40

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + OPRM-7b + Weighted Voting
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30

35

40

45

50

55

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + OPRM-7b + Best-of-N
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

8
10
12
14
16
18
20

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + OPRM-7b + Best-of-N
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-7b + OPRM-7b + Best-of-N
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70
75

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + OPRM-34b + Weighted Voting
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10

15

20

25

30

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + OPRM-34b + Weighted Voting
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25

30

35

40

45

50

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + OPRM-34b + Weighted Voting
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + OPRM-34b + Best-of-N
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + OPRM-34b + Best-of-N
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25

30

35

40

45

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
max
mean
mean_logit
mean_odd
last

SFT-34b + OPRM-34b + Best-of-N
Accuracy on All (Level 1-5) Problems

Figure 17: Analysis of aggregation functions in outcome & process reward models (OPRMs) on the
PRM800K dataset with Weighted Voting and Best-of-N. Both SFTs and RMs are trained on the easy
data.

32

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

45

50

55

60

65

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
mean
last

MetaMath-7b + Math-Shepherd-7b + Weighted Voting
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

12

14

16

18

20

22

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
mean
last

MetaMath-7b + Math-Shepherd-7b + Weighted Voting
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

28
30
32
34
36
38
40
42
44

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
mean
last

MetaMath-7b + Math-Shepherd-7b + Weighted Voting
Accuracy on All (Level 1-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

44
46
48
50
52
54
56
58

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
mean
last

MetaMath-7b + Math-Shepherd-7b + Best-of-N
Accuracy on Easy (Level 1-3) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

12

14

16

18

20

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
mean
last

MetaMath-7b + Math-Shepherd-7b + Best-of-N
Accuracy on Hard (Level 4-5) Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

28

30

32

34

36

38

%
 P

ro
bl

em
s S

ol
ve

d

prod
min
mean
last

MetaMath-7b + Math-Shepherd-7b + Best-of-N
Accuracy on All (Level 1-5) Problems

Figure 18: Analysis of aggregation functions in psuedo process reward models (PRMs) on the
Math-Shepherd (from MetaMath) dataset with Weighted Voting and Best-of-N. Both SFTs and RMs
are trained on the easy data.

M Societal Impact

Our work on easy-to-hard generalization has the potential for both positive and negative societal
impacts. On the positive side, this approach could enable AI systems to tackle increasingly complex
problems in domains such as scientific discovery, healthcare, and education, potentially leading to
groundbreaking advancements that benefit society. However, the development of AI systems that
can operate beyond human supervision also raises concerns about the transparency, accountability,
and potential misuse of such systems. It is crucial to carefully consider the ethical implications and
establish robust safeguards to mitigate the risks of unintended consequences or malicious applications.
Ongoing research and public discourse on the responsible development and deployment of these
technologies will be essential to ensure that their societal benefits outweigh the potential drawbacks.

33

N Fine-Grained Analysis of OPRMs’ Re-ranking strategies

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40

50

60

70

80
%

 P
ro

bl
em

s S
ol

ve
d

41.75 42.65

52.27

61.07

66.67

69.98
71.53 72.55 72.47 72.42 72.13

41.34

50.92

59.31

65.49

70.49

74.56

78.04
80.65

82.21 82.95 83.45

41.48

52.08

59.37

65.16

70.28
72.96

75.06 75.69 75.97 75.30
73.19

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Level1 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40

50

60

70

80

%
 P

ro
bl

em
s S

ol
ve

d

41.75 42.65

52.27

61.07

66.67
69.98

71.53 72.55 72.47 72.42 72.13

41.67

52.09

60.79

66.64

70.42
73.28

75.46
77.03

78.42 79.52 80.02

41.60

53.09

62.06

68.52

73.91
76.97

79.45
81.17 82.02 82.68

84.05

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Level1 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

50

60

70

80

90

%
 P

ro
bl

em
s S

ol
ve

d

53.06
54.32

65.29

74.04

80.41

84.66
87.42

89.02 89.67 89.67 89.75

53.09

62.64

70.44

76.28

80.36

83.56
85.22 86.32 86.91 87.12 87.36

52.94

63.89

69.84

74.41

77.57
79.61

80.84 81.39 81.97 82.75 83.75

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Level1 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

50

60

70

80

90

%
 P

ro
bl

em
s S

ol
ve

d

53.06
54.32

65.29

74.04

80.41

84.66
87.42

89.02 89.67 89.67 89.75

53.26

63.81

72.67

78.18

82.11
84.50

86.18 86.66 86.64 86.35 86.03

53.15

64.99

72.11

77.28

80.46
82.69

83.94 83.98 83.94 83.32 82.90

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Level1 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30
35
40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

33.00 33.99

41.98

50.23

56.12

59.79
61.98

63.71
64.74 65.07 64.58

33.14

41.02

47.72

52.88

57.59

60.97
63.19

65.15
66.49 67.40 67.91

33.49

41.44

47.06

50.53

53.65
55.28

57.23
58.78

60.03
61.11

62.45

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Level2 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30

40

50

60

70

80

%
 P

ro
bl

em
s S

ol
ve

d

33.00 33.99

41.98

50.23

56.12

59.79
61.98

63.71 64.74 65.07 64.58

33.33

41.77

49.35

55.35

60.69

64.92

68.23
70.94

73.01
74.64

76.06

33.13

42.95

50.08

55.69

60.14
63.22

65.71
67.14 68.06 68.84 69.38

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Level2 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70
75
80

%
 P

ro
bl

em
s S

ol
ve

d

43.24 43.77

53.93

62.41

68.52

71.53
73.17 74.10 74.83 74.88 74.75

43.45

51.62

58.60

63.93

68.33

71.55
74.07

75.97
77.34 78.04 78.25

43.02

52.23

58.59

61.61
63.21

64.30 64.81 65.40 65.45 65.25 64.28

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Level2 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

40
45
50
55
60
65
70
75
80

%
 P

ro
bl

em
s S

ol
ve

d

43.24 43.77

53.93

62.41

68.52

71.53
73.17 74.10 74.83 74.88 74.75

43.59

53.34

60.56

67.02

71.31

74.63
77.16

78.38 78.88 78.99 78.83

43.24

53.75

60.81

66.06

69.54
71.86

72.98 73.50 73.22 72.52 71.62

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Level2 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45
50

%
 P

ro
bl

em
s S

ol
ve

d

18.27 18.88

24.45

31.37

37.02

41.05
43.20 43.75 44.13 44.29 44.07

18.08

23.60

29.40

33.97

39.00

43.36

46.35
48.55

49.91 50.83 50.99

17.80

24.22

30.00

33.83

36.93
38.79

40.01 40.64 41.23 41.24 41.16

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Level3 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

18.27 18.88

24.45

31.37

37.02

41.05
43.20 43.75 44.13 44.29 44.07

18.18

24.43

30.73

36.07

41.28

45.33

48.27
50.39

51.58 52.37 52.59

17.99

25.84

31.48

37.24

41.58

45.10
47.19

48.89
50.25 51.15 51.52

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Level3 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

26.77
27.85

34.44

42.76

49.30

52.80
54.47 54.92 55.13 55.06 54.59

26.52

33.37

39.74

45.74

50.30

54.22

56.90
58.96

60.42 61.17 62.03

26.66

33.87

40.28

44.84

48.16
50.23

51.97 52.84 53.37 54.13 53.96

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Level3 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30

40

50

60

70

%
 P

ro
bl

em
s S

ol
ve

d

26.77 27.85

34.44

42.76

49.30

52.80
54.47 54.92 55.13 55.06 54.59

26.74

33.92

41.23

47.28

52.25

56.56

60.05
62.22

63.76
65.17 66.19

26.58

34.49

41.31

47.05

51.32
53.56

55.70
57.35 57.73 58.23 57.12

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Level3 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.32 10.93

13.70

17.88

21.62

23.82
25.47

26.39 26.83 27.21 27.56

10.39

14.01

17.54

20.56

23.76

26.89

29.07

31.03

32.88
33.84 34.49

10.64

14.30

17.80

20.57

22.72

24.67
26.34

27.60
28.31 28.80

29.52

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Level4 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35
40

%
 P

ro
bl

em
s S

ol
ve

d

10.32 10.93

13.70

17.88

21.62

23.82
25.47

26.39 26.83 27.21 27.56

10.35

14.62

18.75

22.57

25.66

28.75

31.66

34.44
36.41

38.70
40.51

10.44

14.82

19.55

23.39

26.55

29.46

31.86
33.94

36.07
37.10 37.59

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Level4 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

15.40 16.26

20.22

25.92

30.00

33.43

35.94
37.83 38.54 38.81 38.69

15.37

19.95

23.84

27.96

31.69

35.09

38.25

40.61
42.69

44.39
45.61

15.29

20.01

24.19

27.32

29.60

31.95
33.05

34.38
35.50

36.50 36.41

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Level4 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

15.40 16.26

20.22

25.92

30.00

33.43

35.94
37.83 38.54 38.81 38.69

15.17

20.31

25.30

29.53

33.30

36.81

39.58

42.25
43.91

45.31 46.08

15.18

20.77

25.63

29.15

32.50
34.48

36.50
37.95 38.22

39.30
40.37

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Level4 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

2
4
6
8

10
12
14

%
 P

ro
bl

em
s S

ol
ve

d

3.45
3.85

4.61

5.65

6.90

8.12
8.83

9.66
10.49 10.79

11.19

3.47

4.64

5.77

6.84

7.94
8.78

9.95

11.02

12.23

13.26
14.10

3.45

4.80

6.25

7.34
8.02

8.84
9.50

10.02
10.74 11.00 10.75

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Level5 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

2
4
6
8

10
12
14
16

%
 P

ro
bl

em
s S

ol
ve

d

3.45
3.85

4.61

5.65

6.90

8.12
8.83

9.66
10.49 10.79

11.19

3.40

4.66

6.08

7.37

8.90

10.33

11.89

12.90

14.54

15.61 15.78

3.43

4.99

6.61

8.11

9.32

10.66

11.71
12.52

13.42
14.27

15.02

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Level5 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

4
6
8

10
12
14
16
18

%
 P

ro
bl

em
s S

ol
ve

d

5.27
6.04

7.13

9.37

11.43

12.89

13.85
14.22 14.32 14.46 14.73

5.36

7.10

8.94

10.40

11.66

12.83

13.84

14.85
15.66

16.19 16.36

5.22

7.34

9.09

10.29

11.35
11.94 12.23

12.61 12.92 13.01 12.74

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Level5 Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

%
 P

ro
bl

em
s S

ol
ve

d

5.27
6.04

7.13

9.37

11.43

12.89
13.85 14.22 14.32 14.46 14.73

5.14

7.34

9.53

11.16

12.92

14.37
15.38

16.48
17.55

18.45

19.77

5.41

7.62

9.82

11.67

12.88
13.83 14.18 14.32 14.61 14.58 14.47

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Level5 Problems

Figure 19: Easy-to-hard generalization for different difficulty levels’ data. Both SFTs and OPRMs
are trained on the level1-3 data. Each row compares the performance of different OPRMs’ reranking
strategies across different levels’ data.

As shown in Figure 19, both the Best-of-N and Weighted Voting strategies demonstrate strong perfor-
mance across all levels, which leverage the advantages of OPRM methods and thereby underscoring
OPRM’s effectiveness. Furthermore, despite the SFT models and OPRM models being trained on
level 1-3 data, re-ranking strategies enhanced by OPRMs continue to perform well on the unseen and
more challenging level 4-5 data. This indicates the feasibility of generalizing from easier to harder
tasks using OPRMs.

34

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55
60
65

%
 P

ro
bl

em
s S

ol
ve

d

27.67 28.15

34.82

42.20

47.75

51.42
53.86

55.23
56.35 57.07 57.10

27.52

34.30

40.31

45.19

49.80

53.38

56.42
58.85

61.05
62.78 63.57

27.62

34.82

40.02

43.84

46.59
48.52

50.30
51.58

52.76 53.28 54.02

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30

40

50

60

70

%
 P

ro
bl

em
s S

ol
ve

d

27.67 28.15

34.82

42.20

47.75

51.42
53.86

55.23 56.35 57.07 57.10

27.74

35.29

42.09

47.61

52.17

55.96

59.39
61.69

64.19
66.31 67.36

27.68

36.12

42.66

48.30

52.06

55.33
57.68

59.33
61.00 62.03 63.11

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

35.80 36.66

43.86

51.28

56.31

59.50
61.31 61.98 62.45 62.45 62.54

35.92

43.10

49.14

54.44

58.62

62.16

64.84
66.61

67.74
68.75 69.46

35.80

43.57

49.14

53.34
55.71

57.68
58.87 59.84 60.71 61.26 60.84

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

35.80 36.66

43.86

51.28

56.31

59.50
61.31 61.98 62.45 62.45 62.54

35.87

43.62

50.42

55.84

60.40

63.85
66.35

68.16
69.44 70.38

71.46

35.90

44.48

50.56

55.49

59.21
61.32

62.73 63.68 63.78 63.93 63.78

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10

15

20

25

30

35

%
 P

ro
bl

em
s S

ol
ve

d

13.66 13.85

17.40

20.96

23.53

25.39
26.23

27.44
28.89

30.69

32.53

13.26

16.42

19.26

21.43
22.74

23.64 24.21
25.30 25.59 25.29 24.93

13.48

16.48

19.12
20.52

21.66 22.17
22.89

23.58 24.10
24.78 24.24

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Counting & Probability Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

13.66 13.85

17.40

20.96

23.53

25.39
26.23

27.44
28.89

30.69

32.53

13.80

17.72

20.71

23.28
25.01

26.49
27.55

28.97
30.42

31.48

34.21

13.43

17.82

22.07

24.48
25.69

27.36
28.54 28.44

29.28
28.22

26.94

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Counting & Probability Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

19.60 20.04

24.80

28.88

32.01

34.45
36.58

38.51 39.08 39.67 39.97

19.72

23.24

26.59

30.18

32.91

35.66

38.39

41.03

43.36
44.48 45.29

19.51

23.66

26.49
27.74 28.48 29.11 29.67 30.27 30.38

31.41 31.75

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Counting & Probability Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

19.60 20.04

24.80

28.88

32.01

34.45

36.58
38.51 39.08 39.67 39.97

19.71

24.70

28.36

31.67

34.30
36.12

37.97
39.86

41.93
43.28

44.31

19.86

24.83

27.81

30.07
31.95 32.73 33.50 33.84 33.89

34.75 35.44

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Counting & Probability Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35
40
45

%
 P

ro
bl

em
s S

ol
ve

d

13.46 14.26

17.63

22.22

26.02

29.12
31.16

32.49 33.22 32.61 31.92

13.73

18.29

22.80

25.41

29.66

33.39

36.84

39.91

42.37
44.22

45.22

13.73

18.54

22.96

25.96

28.49

30.96
32.92

34.85
36.58 37.25

39.34

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Geometry Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35
40
45
50

%
 P

ro
bl

em
s S

ol
ve

d

13.46 14.26

17.63

22.22

26.02

29.12
31.16

32.49 33.22 32.61 31.92

13.81

18.56

22.50

26.69

30.44

34.52

37.73

40.82

43.39
44.92 45.58

13.31

19.36

24.25

27.23

30.90

33.55
35.94

38.77
40.40

42.05 42.91

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Geometry Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45
50

%
 P

ro
bl

em
s S

ol
ve

d

19.20
20.35

24.77

31.63

37.46

41.92

44.53
46.17 46.20 45.73 45.24

19.58

25.36

30.38

34.86

38.81

42.47

45.21
46.97 47.65 47.60 47.48

18.91

25.30

31.35

34.36

37.00
39.04 39.70 39.96 40.71

41.68 41.96

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Geometry Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20

30

40

50

%
 P

ro
bl

em
s S

ol
ve

d

19.20
20.35

24.77

31.63

37.46

41.92
44.53

46.17 46.20 45.73 45.24

19.38

25.22

31.19

35.71

40.09

43.35

47.08

50.17
51.76 52.80 53.25

19.39

25.48

30.73

35.27

38.09

40.90
42.39 42.63 42.93 42.17 43.00

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Geometry Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5

10

15

20

25

%
 P

ro
bl

em
s S

ol
ve

d

6.60
7.43

9.33

12.18

14.69

17.44

19.20
20.30

21.04 21.56 21.83

6.43

8.92

11.31

13.75

16.23

18.94

20.34

21.96
22.93 23.40 23.76

6.44

9.02

11.79

14.25

16.50

18.27
19.39

20.52
21.32 21.67 21.63

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Intermediate Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5

10

15

20

25

30

%
 P

ro
bl

em
s S

ol
ve

d

6.60
7.43

9.33

12.18

14.69

17.44

19.20
20.30

21.04 21.56 21.83

6.45

8.96

11.26

14.12

16.43

18.83

20.71

22.50
23.83

24.95 25.28

6.62

9.37

12.19

15.06

17.90

20.28
21.86

23.35
24.58

25.83
27.07

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Intermediate Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5

10

15

20

25

30
%

 P
ro

bl
em

s S
ol

ve
d

8.14
9.65

12.10

15.48

19.40

21.51
22.87 23.27 23.65 23.78 23.45

8.41

11.15

14.09

17.12

19.88

22.17

24.32

26.26

27.90
29.04 29.64

8.38

11.60

14.81

17.62

19.93
21.38

22.79
24.12

25.13
26.15

27.15

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Intermediate Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30

%
 P

ro
bl

em
s S

ol
ve

d

8.14
9.65

12.10

15.48

19.40

21.51
22.87 23.27 23.65 23.78 23.45

8.44

11.58

14.79

18.21

21.36

23.71

25.84
27.52

29.06
30.51

31.47

8.31

11.78

15.41

18.81

21.97

24.39
26.06

28.02
29.30

30.27 30.52

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Intermediate Algebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

11.33
12.41

15.25

18.76

21.70

23.76
24.55 24.65 24.43 24.23 24.12

11.54

14.27

17.69

20.62

23.72

26.58

29.07

31.00
32.80

33.59
34.65

11.67

14.98

17.67

19.73

22.45
23.56

24.80
25.66

26.74 27.12
28.14

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Number Theory Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35
40

%
 P

ro
bl

em
s S

ol
ve

d

11.33
12.41

15.25

18.76

21.70
23.76 24.55 24.65 24.43 24.23 24.12

11.37

14.83

19.17

22.28

25.63

28.06

31.26

33.68
34.86

36.75
38.91

11.61

15.86

19.32

23.12

25.60

27.85

30.41

32.67
34.59

36.18 36.87

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Number Theory Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45
50

%
 P

ro
bl

em
s S

ol
ve

d

19.03
20.03

25.11

30.95

36.23

39.92

42.63
44.77

45.92 46.63 46.85

19.02

23.32

27.59

31.55

35.25

38.47
40.32

42.38
43.76

44.81
46.53

18.83

23.62

27.43

29.95

32.23
33.52 34.36 35.19 35.57 36.42

37.31

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Number Theory Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

15
20
25
30
35
40
45
50

%
 P

ro
bl

em
s S

ol
ve

d
19.03

20.03

25.11

30.95

36.23

39.92

42.63
44.77

45.92 46.63 46.85

18.89

24.18

29.44

33.70

37.72

41.88

44.30
46.44 47.06 47.72 48.01

18.86

24.24

29.31

32.96

36.38
38.25

39.97
41.49 40.73 40.80

38.78

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Number Theory Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

25
30
35
40
45
50
55

%
 P

ro
bl

em
s S

ol
ve

d

27.16 27.74

34.94

43.45

49.72

52.39
53.73 54.36 54.19 53.36 52.80

27.17

34.62

41.12

46.17

50.05

53.07
54.86 55.41 55.83 56.10 56.00

27.47

35.28

41.86

45.63

47.86
48.99 49.55 49.39 49.06 48.79

47.50

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Prealgebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

30

40

50

60

%
 P

ro
bl

em
s S

ol
ve

d

27.16 27.74

34.94

43.45

49.72
52.39

53.73 54.36 54.19 53.36 52.80

26.97

35.14

43.42

49.15

54.10

58.26
60.73

62.57
63.69 64.36 64.27

26.88

36.27

43.88

49.84

54.50

57.98
59.77

60.97 61.90 62.39 62.81

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Prealgebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

37.83 37.88

47.33

56.75

62.55

66.14
67.41 67.79 67.65 67.34 67.23

36.94

45.87

52.31

57.53

61.11

64.10
65.74 66.68

67.92 68.56 68.68

37.01

46.56

52.33

55.50
57.28

58.54 58.40 58.06 57.51 56.70
55.27

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Prealgebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

35
40
45
50
55
60
65
70

%
 P

ro
bl

em
s S

ol
ve

d

37.83 37.88

47.33

56.75

62.55

66.14
67.41 67.79 67.65 67.34 67.23

37.04

46.88

55.02

60.77

64.55

67.41
69.11 69.96 70.25 70.45 70.98

36.90

47.87

55.53

60.18

62.76
63.80 64.19 63.64 63.10 62.36 61.47

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Prealgebra Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5
10
15
20
25
30

%
 P

ro
bl

em
s S

ol
ve

d

7.13 7.58

9.34

11.38

13.65
15.12

16.30
17.36 17.91 18.38 18.50

7.32

9.59

12.44

15.10

18.28

20.64

22.96

25.26
26.91

28.54
29.95

7.22

10.04

12.91

16.09

18.72

21.00

23.30
24.48 24.87 25.13 24.81

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-7b (on PRM800K)
Accuracy on Precalculus Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

5

10

15

20

25

30

%
 P

ro
bl

em
s S

ol
ve

d

7.13 7.58

9.34

11.38

13.65
15.12

16.30
17.36 17.91 18.38 18.50

7.43

9.93

12.67

15.25

18.06

20.12

22.00

23.97

25.80
27.05 27.09

7.30

10.43

13.71

16.80

20.00

22.03

23.82
24.70

25.57 25.91 25.90

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-7b + OPRM-34b (on PRM800K)
Accuracy on Precalculus Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10

15

20

25

30

%
 P

ro
bl

em
s S

ol
ve

d

10.53
11.37

14.52

18.30

21.27

23.31
24.61

25.66
26.32 26.57 26.27

10.80

14.19

17.78

20.42

23.07

25.07

26.99
28.23

29.33 29.89 29.81

10.85

14.38

17.73

20.38

22.99

25.01

26.75
28.23

29.00 29.00

26.91

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-7b (on PRM800K)
Accuracy on Precalculus Problems

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

10
15
20
25
30
35

%
 P

ro
bl

em
s S

ol
ve

d

10.53
11.37

14.52

18.30

21.27

23.31
24.61

25.66 26.32 26.57 26.27

10.86

15.03

18.34

21.41

23.93

26.62

28.44
29.24 29.81 30.23 30.35

10.86

15.33

18.80

22.01

24.73

26.48
28.15

28.90 29.34
30.07

30.94

Majority Voting
Weighted Voting w/ RM
Best-of-N w/ RM

SFT-34b + OPRM-34b (on PRM800K)
Accuracy on Precalculus Problems

Figure 20: Easy-to-hard generalization for different type’s data. Both SFTs and OPRMs are trained
on the easy data. Each row compares the performance of different OPRMs’ reranking strategies
across different types’ data.

To determine which types of data benefit more from OPRM’s easy-to-hard generalization and which
types still struggle with this challenging generalization, we compare OPRM’s generalization abilities
on different problem types in Figure 20. Among Algebra, Counting & Probability, Geometry,
Intermediate Algebra, Number Theory, Prealgebra, and Precalculus problems, OPRMs generalize
best on Algebra, Intermediate Algebra, and Precalculus problems. Conversely, OPRMs generalize
worst on Counting & Probability problems. These findings are highly valuable for practical system
design, allowing us to decide when to use OPRMs to enhance performance based on the downstream
data type.

35

O Pass@N Analysis for Different Math Questions

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20

40

60

80

100
%

 P
ro

bl
em

s S
ol

ve
d

41.84

57.89

72.52

83.93

91.40
95.10 97.20 98.36 98.85 99.44 99.88

33.41

47.21

59.60

71.71

80.58

87.51
91.27

93.78 95.92 97.14 98.05

18.06

28.84

41.93

55.34

68.44

78.24

85.59
90.08

92.90 95.02 96.20

10.51

17.20

26.75

37.17

47.75

57.85

67.03

74.22
79.75

83.99
87.17

3.48
6.48

11.18

18.32

27.88

38.83

49.89

60.26

69.64

76.69
81.75

Level 1
Level 2
Level 3
Level 4
Level 5

SFT-7b (on PRM800K)
Pass@N on Problems by Level

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20

40

60

80

100

%
 P

ro
bl

em
s S

ol
ve

d

52.99

69.65

82.44

90.38
94.77

97.38 98.66 99.41 99.89 100.00 100.00

43.49

58.38

70.79

80.10

86.29
89.84

92.46
94.91 96.93 98.26 98.90

26.52

39.22

52.99

66.06

76.00

83.81
88.99

91.55 93.66 95.47 96.95

15.20

24.18

34.28

44.61

55.39

65.38

73.53

80.03
85.02

88.14 90.32

5.34
9.64

16.09

24.97

34.92

45.66

55.66

65.08

72.48
78.36

82.71

Level 1
Level 2
Level 3
Level 4
Level 5

SFT-34b (on PRM800K)
Pass@N on Problems by Level

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20

40

60

80

100

%
 P

ro
bl

em
s S

ol
ve

d

27.74

40.01

52.36

64.81

74.92

82.64
88.07

91.42
93.92 95.55 96.73

27.13

40.18

55.07

68.59

80.69

89.50
94.80

97.59 98.76 99.18 99.50

13.52

21.33

30.19

39.09

48.93

60.61

71.41

81.00

88.81

95.26
98.69

11.65

19.12

29.63

41.80

53.21

64.49

74.17

82.30

88.41
93.11

96.41

6.62
10.73

17.05

24.71

33.12

42.34

52.09

61.04

68.58
74.42

78.49

7.19
11.64

16.78

24.01

31.90

39.55

47.04

55.29

62.59

68.74
73.79

14.02

21.05

29.69

40.59

52.15

62.13

71.95

78.48
83.88

86.94
89.50

Prealgebra
Counting & Probability
Algebra
Number Theory
Geometry
Intermediate Algebra
Precalculus

SFT-7b (on PRM800K)
Pass@N on Problems by Category

1 2 4 8 16 32 64 128 256 5121024
N = number of solutions per problem

20

40

60

80

100

%
 P

ro
bl

em
s S

ol
ve

d

35.51

48.80

60.90

72.02

81.04

87.67
92.11

94.59 96.12 97.09 97.70

37.55

52.53

66.93

79.39

88.49

94.34
96.73 98.22 99.10 99.76 99.98

19.48

28.68

37.48

48.68

62.27

75.67

86.16

92.65
96.36 98.46 99.75

18.57

29.64

42.96

54.33

65.77

74.57

82.99

89.56
93.66 95.96 96.92

8.38
13.46

20.64

28.16

35.89

44.39

54.51

63.19

70.32
75.19

78.43

11.12

17.08

23.64

29.73
35.48

42.47

49.87

57.90

65.87

73.34

80.53

19.54

28.88

39.51

49.26

58.03

66.07

72.26

78.72
83.79

88.58
92.11

Prealgebra
Counting & Probability
Algebra
Number Theory
Geometry
Precalculus
Intermediate Algebra

SFT-34b (on PRM800K)
Pass@N on Problems by Category

Figure 21: The increase of Pass@N metrics with the number of samples, divided by level and category.
As the number of samples increases, the Pass@N rate tends to improve. However, not all problems
will eventually yield a correct solution, meaning that even as N approaches infinity, the Pass@N
metric may not reach 100%.

Figure 21 shows the changes in Pass@N as the number of samples increases. As shown in the
figure, not all problems reach a 100% Pass@N rate, even with a larger N. Specifically, three key
observations can be made: First, Pass@N is strongly correlated with problem difficulty. As depicted
in Figure 21, for Level 1 problems, the Pass@N rate nearly saturates with more samples, while for
Level 5 problems, many instances still do not achieve a correct solution. Second, larger models (e.g.,
34b) perform significantly better on Pass@1 compared to smaller models (e.g., 7b). However, as
N increases, the advantage of the larger model diminishes on metrics like Pass@1024. Third, the
variations in Pass@N across different categories of math questions are different, which is expected,
as the difficulty of different types of math questions varies for large language models.

36

P Case Studies for OPRM

Case Study 1: A robot moving forward at a constant speed takes 2.5 hours to travel 1 kilometer. Moving forward at this same constant

speed, it takes the robot 90 seconds to travel the length of a particular hallway. How many meters long is the hallway? Level: 5 GT: 10

Majority Solution: OPRM Solution:

Voting V.S. Reward: {Answer: 36, Voting times: 139, OPRM reward: 11.3}, {Answer: 10, Voting times: 99, OPRM reward: 23.7}

Let's call the number of meters in the hallway x.
 0.97
We know the robot moved 1 km in 2.5 hours.
 0.97
That means it moved x meters in 90 seconds.
 0.28
We can write that as the equation $\\frac{1}{2.5}=\\frac{x}{90}$.
 0.11
To solve for x, we can multiply both sides by 90 to get $36=x$.
 0.07
So the hallway is 36 meters long.
 0.03
Answer

36

To solve this problem, I need to find the relationship between the robot's speed,
distance, and time.
 0.98
I can use the formula distance = speed * time to write an equation for each case.
 0.98
Let s be the robot's speed in meters per hour.
 0.98
Then the first case gives me 1000 = s * 2.5, or s = 1000 / 2.5 = 400 meters per hour.
 0.98
The second case gives me the length of the hallway = s * 90 / 3600, or length = 400 *
90 / 3600 = 10 meters.
 0.79
Answer

10

#Reward #Reward

#Final Reward: 6.7e-5 #Final Reward: 0.74

Figure 22: Case Study 1. The evaluator can help identify and reduce the confidence of hallucinations
caused by misleading information.

Case Study 2: In a regular polygon, the measure of an interior angle is 6.5 times the measure of an exterior angle. How many sides

does the polygon have? Level: 4 GT: 15

Majority Solution: OPRM Solution:

Voting V.S. Reward: {Answer: 0, Voting times: 132, OPRM reward: 0.03}, {Answer: 15, Voting times: 94, OPRM reward: 17.3}

So we know that the measure of an interior angle is 6.5 times the measure of an exterior
angle.
 0.98
And we know that the sum of the measures of the interior angles of a polygon is given
by the formula (n-2)180, where n is the number of sides.
 0.89
Right. So we can say that 6.5(n-2)=(n-2)180.
 0.22
And that simplifies to 6.5=180, which is false.
 0.12
So there is no such polygon.
 0.03
Answer

0

I know that the sum of the interior angles of any polygon with n sides is (n-2) times
180 degrees, and the sum of the exterior angles is 360 degrees.
 0.98
I can write an equation relating the interior and exterior angles of a regular polygon:
(n-2) * 180 = 6.5 * 360, where n is the number of sides.
 0.84
I can simplify this equation by dividing everything by 180: n - 2 = 6.5 * 2, which
gives me n - 2 = 13.
 0.97
I can add 2 to both sides to isolate n: n = 13 + 2, which gives me n = 15.
 0.95
Answer

15

#Reward #Reward

#Final Reward: 6e-4 #Final Reward: 0.75

Figure 23: Case Study 2. The evaluator can assist in reducing the confidence of solutions that misuse
mathematical theorems or formulas.

We have included more case studies in Figures 22 and 23. We find that evaluator can help generalize
to harder ones in the following ways:

• The evaluator can help identify and reduce the confidence of hallucinations caused by misleading
information in problems. As demonstrated in Case Study 1, the solution selected by majority voting
with an answer of 36 is misled by the different units of measurement in the problem (2.5 hours
and 90 seconds), resulting in an incorrect solution. Then, the ORPM model successfully gives this
solution a low score.

• The evaluator can assist in reducing the confidence of solutions that misuse mathematical theorems.
In Case Study 2, the majority solution incorrectly applies the theorem "the sum of the exterior
angles of a polygon is 360°", leading to erroneous reasoning, and low confidence by the ORPM
model.

37

Q Step and Outcome ROC Curve

Model Step ACC (%) Outcome ACC (%)

ORM-PRM800K-7B 64.3 71.7
ORM-PRM800K-7B 80.4 63.5

OPRM-PRM800K-7B 79.8 74.4

Table 10: The accuracy of the reasoning steps for differ-
ent models.

To assess the accuracy of reasoning step
judgments of different reward models, we
conducted additional experiments using
the PRM800K-test data, which includes
correctness annotations for each step, to
test our model’s ability to distinguish cor-
rect reasoning steps. We randomly se-
lected a portion of PRM800K-test data
to balance positive and negative samples.
The accuracy of the reasoning steps for the
three models is shown in Table 10. This
table demonstrates the effectiveness of our trained PRM, showing that PRM has a significantly
greater ability to distinguish steps compared to ORM. Additionally, in Figure 24, we present the
Step ROC curves of three models, where PRM and OPRM exhibit better step discrimination abilities
compared to ORM. However, it is important to note that a stronger ability to distinguish steps does
not necessarily indicate that the evaluator is more helpful for generation. We then also present the
Outcome ROC curves of three models on discriminating the final outcome. We collect data generated
on MATH500 test set from our 7B policy model. According to the final outcome and groundtruth, we
label each data and select a positive-negative balanced set to plot the Outcome ROC curves, where
OPRM exhibits better outcome discrimination abilities compared to ORM and PRM. The above table
also shows the effectiveness of OPRM on Outcome discrimination ability.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Step ROC Curve

Random Guess (AUC = 0.50)
ORM-PRM800K (AUC = 0.55)
PRM-PRM800K (AUC = 0.79)
OPRM-PRM800K (AUC = 0.76)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Outcome ROC Curve

Random Guess (AUC = 0.50)
ORM-PRM800K (AUC = 0.67)
PRM-PRM800K (AUC = 0.62)
OPRM-PRM800K (AUC = 0.71)

Figure 24: The Step and Outcome ROC Curve show the ability of discriminate the reasoning step
and the whole reasoning solution, illustrating OPRM’s effectiveness on identifying both steps and
outcomes.

38

R Few-Shot Prompt in In-Context Learning

We sample with temperature T = 0.9 for ICL-related experiments. We list our few-shot sample for
the In-context learning experiments in Table 1.

4-shot example for PRM800K Full ICL:

Problem:
In right triangle PQR, we have $\\angle Q = \\angle R$ and $PR = 6\\sqrt{2}$.

What is the area of $\\triangle PQR$?

Solution:
I see that this is an isosceles right triangle, since $\\angle Q = \\angle R =

45^\\circ$.\n\nThat means that $PQ = PR = 6\\sqrt{2}$.\n\nTo find the area of a
triangle, I need to multiply the base and the height and divide by 2.\n\nIn

this case, the base and the height are both $6\\sqrt{2}$, so the area is $(6\\
sqrt{2})(6\\sqrt{2})/2$.\n\nI can simplify this expression by using the
property that $\\sqrt{a}\\sqrt{b} = \\sqrt{ab}$.\n\nSo, the area is $(\\sqrt
{2}\\sqrt{2})(6\\cdot 6)/2 = 2\\cdot 36/2 = 36$.

Final Answer: The final answer is 36. I hope it is correct.

Problem:
The length of the longer side of rectangle R is 10 percent more than the length

of a side of square $S.$ The length of the shorter side of rectangle R is
10 percent less than the length of a side of square $S.$ What is the ratio of
the area of rectangle R to the area of square $S?$ Express your answer as a

common fraction.

Solution:
Let the side of the square be s.\n\nThen the longer side of the rectangle is $1.1

s$.\n\nAnd the shorter side of the rectangle is $0.9s$.\n\nThe area of the
square is s^2.\n\nThe area of the rectangle is $1.1s * 0.9s = 0.99s^2$.\n\nSo
the ratio of the area of rectangle R to the area of square S is $\\frac

{0.99s^2}{s^2} = 0.99$.\n\nTherefore, the answer is $\\boxed{\\frac{99}{100}}$.
Final Answer: The final answer is $\\frac{99}{100}$. I hope it is correct.

Problem:
Compute $\\sin(-60^\\circ)$.

Solution:
I know the sine function is periodic with period $360^\\circ$, so $\\sin(-60^\\circ

) = \\sin(-60^\\circ + 360^\\circ) = \\sin(300^\\circ)$.\n\nI also know that
the sine function is symmetrical about the origin, so $\\sin(-x) = -\\sin(x)$
for any angle x.\n\nTherefore, $\\sin(-60^\\circ) = -\\sin(60^\\circ)$.\n\nTo
find $\\sin(60^\\circ)$, I can use the special right triangle with angles $30

^\\circ$, $60^\\circ$, and $90^\\circ$ and sides in the ratio $1:\\sqrt{3}:2$.\
n\nThe sine of an angle is the ratio of the opposite side to the hypotenuse, so
$\\sin(60^\\circ) = \\frac{\\sqrt{3}}{2}$.\n\nTherefore, $\\sin(-60^\\circ) =

-\\frac{\\sqrt{3}}{2}$.
Final Answer: The final answer is $-\\frac{\\sqrt{3}}{2}$. I hope it is correct.

Problem:
Simplify $\\sin (x - y) \\cos y + \\cos (x - y) \\sin y.$

Solution:
’Ok, so we have $\\sin (x - y) \\cos y + \\cos (x - y) \\sin y$\n\nNotice that $\\

sin (x - y) \\cos y + \\cos (x - y) \\sin y$ is in the form of $\\sin(\\alpha)
\\cos(\\beta)+\\cos(\\alpha)\\sin(\\beta)$.\n\nYes, and we know that $\\sin(\\
alpha)\\cos(\\beta)+\\cos(\\alpha)\\sin(\\beta)=\\sin(\\alpha+\\beta)$\n\nSo, $
\\sin (x - y) \\cos y + \\cos (x - y) \\sin y=\\sin((x-y)+y)$\n\n$\\sin((x-y)+y
)=\\sin(x)$

Final Answer: The final answer is $\\sinx$. I hope it is correct.

39

4-shot example for PRM800K Hard ICL:

Problem:
In right triangle PQR, we have $\\angle Q = \\angle R$ and $PR = 6\\sqrt{2}$.

What is the area of $\\triangle PQR$?

Solution:
I see that this is an isosceles right triangle, since $\\angle Q = \\angle R =

45^\\circ$.\n\nThat means that $PQ = PR = 6\\sqrt{2}$.\n\nTo find the area of a
triangle, I need to multiply the base and the height and divide by 2.\n\nIn

this case, the base and the height are both $6\\sqrt{2}$, so the area is $(6\\
sqrt{2})(6\\sqrt{2})/2$.\n\nI can simplify this expression by using the
property that $\\sqrt{a}\\sqrt{b} = \\sqrt{ab}$.\n\nSo, the area is $(\\sqrt
{2}\\sqrt{2})(6\\cdot 6)/2 = 2\\cdot 36/2 = 36$.

Final Answer: The final answer is 36. I hope it is correct.

Problem:
The length of the longer side of rectangle R is 10 percent more than the length

of a side of square $S.$ The length of the shorter side of rectangle R is
10 percent less than the length of a side of square $S.$ What is the ratio of
the area of rectangle R to the area of square $S?$ Express your answer as a

common fraction.

Solution:
Let the side of the square be s.\n\nThen the longer side of the rectangle is $1.1

s$.\n\nAnd the shorter side of the rectangle is $0.9s$.\n\nThe area of the
square is s^2.\n\nThe area of the rectangle is $1.1s * 0.9s = 0.99s^2$.\n\nSo
the ratio of the area of rectangle R to the area of square S is $\\frac

{0.99s^2}{s^2} = 0.99$.\n\nTherefore, the answer is $\\boxed{\\frac{99}{100}}$.
Final Answer: The final answer is $\\frac{99}{100}$. I hope it is correct.

Problem:
Suppose that y^3 varies inversely with $\\sqrt[3]{z}$. If $y=2$ when $z=1$, find

the value of z when $y=4$. Express your answer in simplest fractional form.

Solution:
I know that inverse variation means that the product of the two quantities is

constant, so I can write an equation of the form $y^3\\cdot\\sqrt[3]{z}=k$,
where k is some constant.\n\nTo find k, I can plug in the given values of
y and z: $2^3\\cdot\\sqrt[3]{1}=k$, which simplifies to $8=k$.\n\nNow I can
use this equation to find z when $y=4$: $4^3\\cdot\\sqrt[3]{z}=8$, which

implies that $\\sqrt[3]{z}=\\frac{8}{64}=\\frac{1}{8}$.\n\nTo get rid of the
cube root, I can cube both sides: $z=\\left(\\frac{1}{8}\\right)^3=\\frac
{1}{512}$.

Final Answer: The final answer is $\\frac{1}{512}$. I hope it is correct.

Problem:
Let d be a positive number such that when 109 is divided by d, the remainder

is $4.$ Compute the sum of all possible two-digit values of d.

Solution:
This problem involves finding the divisors of a given number, as well as using the

concept of remainders.\n\nOne way to approach this is to write the division as
a quotient and a remainder, like this: $109 = qd + 4$, where q is the
quotient.\n\nThen, I can rearrange this equation to get $105 = qd$, which means
that d is a divisor of 105.\n\nNow, I need to find all the two-digit

divisors of 105.\n\nI can use prime factorization to help me do this.\n\nI
notice that $105 = 3 \\times 5 \\times 7$, which are all prime numbers.\n\
nTherefore, any divisor of 105 must be a product of some combination of these
three factors.\n\nThe possible products are $1, 3, 5, 7, 15, 21, 35, 105$.\n\

nHowever, not all of these are two-digit numbers. Only $15, 21, 35$ are.\n\
nThese are the only possible values of d that satisfy the given condition.\n\
nTo find their sum, I just add them up: $15 + 21 + 35 = 71$.

Final Answer: The final answer is 71. I hope it is correct.

40

4-shot example for PRM800K Easy-to-Hard ICL:

Problem:
How many 4-letter words with at least one consonant can be constructed from the

letters A, B, C, D, and E? (Note that B, C, and D are
consonants, any word is valid, not just English language words, and letters may
be used more than once.)

Solution:
To count the number of 4-letter words with at least one consonant, I can use the

complement principle and subtract the number of 4-letter words with no
consonants from the total number of 4-letter words.\n\nThe total number of 4-
letter words is simply 5^4, since each letter has 5 choices and the order
matters.\n\nThe number of 4-letter words with no consonants is just the number
of ways to choose 4 letters from the 2 vowels A and E, which is 2^4.\n\
nTherefore, the number of 4-letter words with at least one consonant is $5^4 -
2^4$. 625 - 16 = 609

Final Answer: The final answer is 609. I hope it is correct.

Problem:
Compute the integer $k > 2$ for which\n\\[\\log_{10} (k - 2)! + \\log_{10} (k - 1)!

+ 2 = 2 \\log_{10} k!.\\]

Solution:
I recognize that this equation involves logarithms of factorials, which are

products of consecutive integers.\n\nI also know that logarithms have some
useful properties, such as $\\log_{10} a + \\log_{10} b = \\log_{10} (ab)$ and
$c \\log_{10} d = \\log_{10} d^c$.\n\nUsing these properties, I can simplify
the equation as follows: \\[\\log_{10} (k - 2)! + \\log_{10} (k - 1)! + 2 = 2
\\log_{10} k! \\implies \\log_{10} \\left[(k - 2)! (k - 1)! 100 \\right] = \\
log_{10} (k!)^2.\\]\n\nSince the bases of the logarithms are equal, I can
conclude that the arguments must also be equal, i.e., \\[(k - 2)! (k - 1)! 100
= (k!)^2.\\]\n\nNow I have a simpler equation to solve for k.\n\nI notice
that the left-hand side has a factor of $(k - 2)!$, which is also a factor of $
(k - 1)!$ and $(k!)^2$.\n\nTherefore, I can divide both sides by $(k - 2)!$ to
get \\[(k - 1)! 100 = k! (k - 1)!\\]\n\nSimplifying further, I get \\[100 = k
!.\\]\n\nThis means that k is the smallest integer such that its factorial is
greater than or equal to 100.\n\nI can try some values of k to find the

right one.\n\nIf $k = 3$, then $k! = 3! = 6 < 100$.\n\nIf $k = 4$, then $k! =
4! = 24 < 100$.\n\nIf $k = 5$, then $k! = 5! = 120 > 100$.\n\nTherefore, $k = 5
$ is the smallest integer that satisfies the equation.

Final Answer: The final answer is 5. I hope it is correct.

Problem:
What is the largest perfect square factor of 1512?

Solution:
I know that 1512 is divisible by 2, so I can try to factor out powers of 2 until I

get an odd number.\n\nDividing by 2 once, I get 756.\n\nDividing by 2 again, I
get 378.\n\nDividing by 2 one more time, I get 189.\n\nNow 189 is odd, so I can
’t divide by 2 anymore.\n\nI notice that 189 is divisible by 3, so I can try to
factor out powers of 3.\n\nDividing by 3 once, I get 63.\n\nDividing by 3

again, I get 21.\n\nDividing by 3 one more time, I get 7.\n\nNow 7 is prime, so
I can’t factor it anymore.\n\nI have factored 1512 as 2^3 * 3^3 * 7.\n\nTo

find the largest perfect square factor, I need to use the highest even powers
of each prime factor.\n\nThe highest even power of 2 that I have is 2^2.\n\nThe
highest even power of 3 that I have is 3^2.\n\nThe highest even power of 7

that I have is 7^0, which is just 1.\n\nSo the largest perfect square factor is
2^2 * 3^2 * 7^0, which is 36.

Final Answer: The final answer is 36. I hope it is correct.

Problem:
If $3p+4q=8$ and $4p+3q=13$, what is q equal to?

Solution:

41

I notice that the coefficients of p and q are reversed in the two equations, so
I wonder if I can use elimination to get rid of one of them.\n\nI try

multiplying the first equation by 4 and the second equation by 3, and then
subtracting them to eliminate p.\n\nI get $12p+16q-12p-9q=32-39$, which
simplifies to $7q=-7$.\n\nDividing both sides by 7, I get $q=-1$.

Final Answer: The final answer is -1. I hope it is correct.

42

4-shot example for MetaMath Full ICL:

Problem:
In right triangle PQR, we have $\\angle Q = \\angle R$ and $PR = 6\\sqrt{2}$.

What is the area of $\\triangle PQR$?

Solution:
Since $\\angle Q = \\angle R$, we have $\\triangle PQR$ is an isosceles right

triangle.\nTherefore, $PQ = PR = 6\\sqrt{2}$.\nThe area of $\\triangle PQR$ is
$\\frac{1}{2} \\cdot PQ \\cdot PR = \\frac{1}{2} \\cdot 6\\sqrt{2} \\cdot 6\\
sqrt{2} = \\boxed{36}$.

Final Answer: The final answer is 36. I hope it is correct.

Problem:
The length of the longer side of rectangle R is 10 percent more than the length

of a side of square $S.$ The length of the shorter side of rectangle R is
10 percent less than the length of a side of square $S.$ What is the ratio of
the area of rectangle R to the area of square $S?$ Express your answer as a

common fraction.

Solution:
Let the side length of square S be x.\nThen the longer side of rectangle R is

$1.1x$ and the shorter side is $0.9x$.\nThe area of square S is x^2 and
the area of rectangle R is $(1.1x)(0.9x) = 0.99x^2$.\nTherefore, the ratio of
the area of rectangle R to the area of square S is $\\frac{0.99x^2}{x^2} =
\\boxed{\\frac{99}{100}}$.

Final Answer: The final answer is $\\frac{99}{100}$. I hope it is correct.

Problem:
Compute the integer $k > 2$ for which\n\\[\\log_{10} (k - 2)! + \\log_{10} (k - 1)!

+ 2 = 2 \\log_{10} k!.\\]

Solution:
Using the properties of logarithms, we can rewrite the equation as\n\\[\\log_{10}

((k-2)! \\cdot (k-1)!) + 2 = \\log_{10} (k!)^2.\\]\nThen, using the fact that $
\\log_{a} b + \\log_{a} c = \\log_{a} (bc)$, we have\n\\[\\log_{10} ((k-2)! \\
cdot (k-1)! \\cdot 100) = \\log_{10} (k!)^2.\\]\nFinally, using the fact that $
\\log_{a} b = \\log_{a} c$ if and only if $b = c$, we have\n\\[(k-2)! \\cdot (k
-1)! \\cdot 100 = (k!)^2.\\]\nSimplifying, we have\n\\[(k-2)! \\cdot (k-1)! \\
cdot 100 = (k \\cdot (k-1) \\cdot (k-2))!.\\]\nCancelling out the common
factors, we have\n\\[100 = k \\cdot (k-1) \\cdot (k-2).\\]\nFactoring, we find
that $100 = 5 \\cdot 5 \\cdot 4 = 2^2 \\cdot 5^2$.\nSince $k > 2$, we see that
$k = \\boxed{5}$.

Final Answer: The final answer is 5. I hope it is correct.

Problem:
If $3p+4q=8$ and $4p+3q=13$, what is q equal to?

Solution:
We can solve this system of equations using the method of elimination.\nMultiplying

the first equation by 3 and the second equation by 4 gives us:\n$9p+12q=24$\
n$16p+12q=52$\nWe can subtract the first equation from the second equation to
eliminate the q term:\n$16p+12q-(9p+12q)=52-24$\n$7p=28$\nDividing both sides
by 7 gives us:\n$p=4$\nSubstituting this value of p into either of the original
equations gives us:\n$4(4)+3q=13$\n$16+3q=13$\n$3q=-3$\n$q=\\boxed{-1}$

Final Answer: The final answer is -1. I hope it is correct.

43

4-shot example for MetaMath Hard ICL:

Problem:
In right triangle PQR, we have $\\angle Q = \\angle R$ and $PR = 6\\sqrt{2}$.

What is the area of $\\triangle PQR$?

Solution:
Since $\\angle Q = \\angle R$, we have $\\triangle PQR$ is an isosceles right

triangle.\nTherefore, $PQ = PR = 6\\sqrt{2}$.\nThe area of $\\triangle PQR$ is
$\\frac{1}{2} \\cdot PQ \\cdot PR = \\frac{1}{2} \\cdot 6\\sqrt{2} \\cdot 6\\
sqrt{2} = \\boxed{36}$.

Final Answer: The final answer is 36. I hope it is correct.

Problem:
The length of the longer side of rectangle R is 10 percent more than the length

of a side of square $S.$ The length of the shorter side of rectangle R is
10 percent less than the length of a side of square $S.$ What is the ratio of
the area of rectangle R to the area of square $S?$ Express your answer as a

common fraction.

Solution:
Let the side length of square S be x.\nThen the longer side of rectangle R is

$1.1x$ and the shorter side is $0.9x$.\nThe area of square S is x^2 and
the area of rectangle R is $(1.1x)(0.9x) = 0.99x^2$.\nTherefore, the ratio of
the area of rectangle R to the area of square S is $\\frac{0.99x^2}{x^2} =
\\boxed{\\frac{99}{100}}$.

Final Answer: The final answer is $\\frac{99}{100}$. I hope it is correct.

Problem:
Suppose that y^3 varies inversely with $\\sqrt[3]{z}$. If $y=2$ when $z=1$, find

the value of z when $y=4$. Express your answer in simplest fractional form.

Solution:
Since y^3 varies inversely with $\\sqrt[3]{z}$, we can write the equation as $y

^3\\sqrt[3]{z}=k$, where k is a constant.\nWe are given that $y=2$ when $z=1$
, so we can substitute these values into the equation to solve for k:\n$2^3\\
sqrt[3]{1}=k\n8\\cdot 1=k\nk=8$\nNow we can use this value of k to find
z when $y=4$:\n$4^3\\sqrt[3]{z}=8$\n$64\\sqrt[3]{z}=8$\n$\\sqrt[3]{z}=\\frac
{8}{64}=\\frac{1}{8}\nz=\\left(\\frac{1}{8}\\right)^3=\\frac{1}{512}$\nSo
when $y=4$, $z=\\boxed{\\frac{1}{512}}$.

Final Answer: The final answer is $\\frac{1}{512}$. I hope it is correct.

Problem:
Let d be a positive number such that when 109 is divided by d, the remainder

is $4.$ Compute the sum of all possible two-digit values of d.

Solution:
If 109 is divided by d and the remainder is 4, then d divides $109-4=105$.\

nThe prime factorization of 105 is $3\\cdot5\\cdot7$.\nSince d must be a
factor of 105, the possible values of d are $1, 3, 5, 7, 15, 21, 35, 105$.\
nOut of these, only the two-digit values are $15, 21, 35$.\nThe sum of these
values is $15+21+35=\\boxed{71}$.

Final Answer: The final answer is 71. I hope it is correct.

44

4-shot example for MetaMath Easy-to-Hard ICL:

Problem:
How many 4-letter words with at least one consonant can be constructed from the

letters A, B, C, D, and E? (Note that B, C, and D are
consonants, any word is valid, not just English language words, and letters may
be used more than once.)

Solution:
There are a total of $5^4 = 625$ possible 4-letter words that can be constructed

from the given letters.\nTo count the number of words with no consonants, we
can use the principle of complementary counting.\nSince there are 2 vowels (A
and E) and 3 consonants (B, C, and D), there are $2^4 = 16$ words with
only vowels.\nTherefore, the number of words with at least one consonant is

$625 - 16 = \\boxed{609}$.
Final Answer: The final answer is 609. I hope it is correct.

Problem:
Compute the integer $k > 2$ for which\n\\[\\log_{10} (k - 2)! + \\log_{10} (k - 1)!

+ 2 = 2 \\log_{10} k!.\\]

Solution:
Using the properties of logarithms, we can rewrite the equation as\n\\[\\log_{10}

((k-2)! \\cdot (k-1)!) + 2 = \\log_{10} (k!)^2.\\]\nThen, using the fact that $
\\log_{a} b + \\log_{a} c = \\log_{a} (bc)$, we have\n\\[\\log_{10} ((k-2)! \\
cdot (k-1)! \\cdot 100) = \\log_{10} (k!)^2.\\]\nFinally, using the fact that $
\\log_{a} b = \\log_{a} c$ if and only if $b = c$, we have\n\\[(k-2)! \\cdot (k
-1)! \\cdot 100 = (k!)^2.\\]\nSimplifying, we have\n\\[(k-2)! \\cdot (k-1)! \\
cdot 100 = (k \\cdot (k-1) \\cdot (k-2))!.\\]\nCancelling out the common
factors, we have\n\\[100 = k \\cdot (k-1) \\cdot (k-2).\\]\nFactoring, we find
that $100 = 5 \\cdot 5 \\cdot 4 = 2^2 \\cdot 5^2$.\nSince $k > 2$, we see that
$k = \\boxed{5}$.

Final Answer: The final answer is 5. I hope it is correct.

Problem:
If n is 1 less than a multiple of 50, then what is the remainder when $n^2+2n

+3$ is divided by 50?

Solution:
Since n is 1 less than a multiple of 50, we can write $n=50k-1$ for some

integer k.\nThen \\[n^2+2n+3=(50k-1)^2+2(50k-1)+3=2500k^2-96k+2,\\] so the
remainder when n^2+2n+3 is divided by 50 is $\\boxed{2}$.

Final Answer: The final answer is 2. I hope it is correct.

Problem:
If $3p+4q=8$ and $4p+3q=13$, what is q equal to?

Solution:
We can solve this system of equations using the method of elimination.\nMultiplying

the first equation by 3 and the second equation by 4 gives us:\n$9p+12q=24$\
n$16p+12q=52$\nWe can subtract the first equation from the second equation to
eliminate the q term:\n$16p+12q-(9p+12q)=52-24$\n$7p=28$\nDividing both sides
by 7 gives us:\n$p=4$\nSubstituting this value of p into either of the original
equations gives us:\n$4(4)+3q=13$\n$16+3q=13$\n$3q=-3$\n$q=\\boxed{-1}$

Final Answer: The final answer is -1. I hope it is correct.

45

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: They are supported by the experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:[Yes]

Justification: We discuss this in the section of “Conclusion & Limitations”.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

46

Justification: We have no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have open-sourced the code and released the model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

47

Answer: [Yes]
Justification: See our supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We do that in our experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have error bars in our curves.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

48

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We open-sourced the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, We discuss it in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

49

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t pre-train language models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we do the proper citations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

50

paperswithcode.com/datasets

Answer: [Yes]
Justification: Yes, we open-sourced the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing is used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

51

