
An Empirical Evaluation of
Federated Contextual Bandit Algorithms

Anonymous Author(s)
Affiliation
Address
email

Abstract

Fine-tuning (foundation) models with user feedback can be important for improving1

task-specific performance, as fine-grained supervision is generally unavailable.2

While the adoption of federated learning increases for learning from sensitive data3

local to user devices, it is unclear if learning can be done using implicit signals4

generated as users interact with the applications. We approach such problems with5

the framework of federated contextual bandits, and develop variants of prominent6

contextual bandit algorithms from the centralized seting for the federated setting.7

We carefully evaluate these algorithms in a range of scenarios simulated using8

publicly available datasets. Our simulations model typical setups encountered in9

the real-world, such as various misalignments between an initial pre-trained model10

and the subsequent user interactions due to non-stationarity in the data and/or11

heterogeneity across clients. Our experiments reveal the surprising effectiveness12

of the simple and commonly used softmax heuristic in balancing the well-know13

exploration-exploitation tradeoff across the breadth of our settings.14

1 Introduction15

Federated learning [19, 21, 23] has emerged as an important machine learning paradigm for settings16

where the raw training data remains decentralized across a potentially heterogeneous collection of17

devices. A key motivation for cross-device federated learning (henceforth FL) arises from scenarios18

where these devices belong to various users of a service, and the goal is to learn predictive models19

from the data generated when the user interacts with the service. This has benefits from a privacy20

perspective, and can also allow the development of more expressive models that leverage contextual21

features that would be unavailable in the datacenter. As we look towards the use of pretrained22

foundation models to leverage large public corpora in driving federated learning, a central challenge23

we need to address is how to fine-tune these models for specific tasks, and for specific user populations.24

A key challenge of optimizing from the naturally available user feedback signal in federated settings is25

that it usually only pertains to the choices the system presents to a user, as opposed to the ground-truth26

choice for the user input. For example, consider an application where we want to display a featured27

image from a user’s phone every time they open the photo gallery. Other applications could be to28

annotate each image and/or text message with a label corresponding to its category from a predefined29

set, or to suggest emoji and stickers (where the user does not know the full set of options) in a mobile30

keyboard. In all these examples, the underlying training data for learning is highly sensitive to the31

user, and collecting ground truth labels from third-party human labelers is not feasible. Furthermore,32

even if privacy allowed the use of human labelers, in the first example of selecting a featured image,33

it is nearly impossible for a labeler to guess which image from a user’s collection appeals to them,34

and it is impractical for a user to respond with the best choice of a featured image from their entire35

collection. A much more natural feedback modality in all these settings is to make a recommendation36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

(of an image, label, emoji, or sticker) to the user, and observe and learn from their response to that37

recommendation. Further, note that both user preferences and the set of available recommendations38

may evolve over time. Supervised learning fails to properly capture such settings where we only39

observe feedback on the choices driven by the learning algorithm, and reinforcement learning (RL)40

offers a much better fit for these problems where we seek to learn from user feedback.41

A particular subset of RL which is quite effective at capturing several recommendation settings is42

that of contextual bandits (CB) [3, 5, 22]. A key difference between RL/CB and more traditional43

supervised learning approaches is the explicit recognition that the algorithm only collects feedback44

for the choices it presents to the user, and hence it is important to navigate the exploration/exploitation45

tradeoff. That is, the algorithm should explore over a diverse set of plausibly good choices in any46

situation, and use the feedback to further prune the set of plausible choices. Motivated by the twin47

concerns of learning from user feedback in a decentralized and private manner, there is an emerging48

literature on federated CB learning [10, 11, 16]. However, the bulk of the existing work is theoretical49

in nature, with a focus on simple models such as multi-armed or linear bandits, with a key focus on50

exploration in the federated setting. An important aspect of several works here is also developing the51

right notions of privacy suited to the interactive learning setting [11, 30].52

In this work, we study federated CB learning with a complementary focus to the aforementioned works.53

We design federated adaptations of practical state-of-the-art CB algorithms from the centralized54

setting, and conduct an extensive empirical evaluation in a range of realistic settings. Algorith-55

mically, we focus on a black-box approach, where we isolate a component of the centralized CB56

algorithms which relies on solving a classification or regression problem, and replace this with a57

federated learning counterpart. This is practically desirable, as it makes it easy to incorporate latest58

advances from federated optimization into the CB algorithms as drop-in replacements. The isolated59

federated optimization can also be combined with complementary privacy techniques such as secure60

aggregation [7] and differential privacy [18, 24]. We notice that our approach is also organically61

compatible with the predominant RLHF methodology used for fine-tuning foundation models, given62

user feedback. We focus on settings when the model chooses from a small number of alterantives in63

a given context, which makes the setup amenable to contextual bandits. For more complex output64

spaces such as sequences, the underlying CB algorithms can be easily replaced with alternatives such65

as PPO [29], which are still amenable to the softmax exploration that is the preferred exploration66

strategy based on our results.67

Even in the centralized setting, empirical evaluation of CB methods is limited to just a few works [6,68

14], and often ignores practical concerns such as data non-stationarity and the impracticality of69

updating the CB model after each example. The federated setting adds further challenges related70

to data heterogeneity across clients, greater delays in model updates on clients and configuring the71

settings of the underlying federated optimization approach as some examples. Our work uses two72

popular FL benchmarks, EMNIST and StackOverflow (SO for short), and turns them into simulators73

for the federated CB setting by adapting and extending the ideas from the work of Bietti et al. [6].74

Within this simulation, we evaluate federated adaptations of several centralized CB algorithms in75

both stationary and realistic simulations of non-stationary settings. We also study the influence of76

providing a small amount of labeled data to create an initial model, which is typical in practice.77

Bietti et al. [6] observed that the greedy approach offers an extremely strong baseline in stationary78

centralized settings. We show this result can extend to the federated setting, and in particular that79

a greedy strategy is highly effective when the problem is stationary and the model can be updated80

frequently. However, exploration becomes critical under delayed updates and/or non-stationarity.81

The use of a strong initial model can mitigate this to a reasonable degree, particularly in stationary82

settings. When exploration strategies are necessary, we find federated versions of a simple softmax83

exploration strategy, and an adaptation of FALCON, to be the best performing across the range of84

settings, with softmax being easier to tune than FALCON.85

We emphasize our goal is not to show that bandit algorithms “win” against baselines. Rather, we hope86

that this study can both provide a valuable resource in terms of a strong evaluation setup for future87

research on federated CBs, as well as offer practical recipes for practitioners facing the federated CB88

setting and needing to decide whether the additional complexity of deploying a bandit algorithm with89

an explicit exploration strategy is likely to be beneficial.90

2

Algorithm 1 Federated Contextual Bandits

Require: Communication rounds T per period; training periods I ≥ 1; initial inference model θ0

1: for i = 1, 2, . . . , I do
2: Deploy inference policy π parameterized by θi−1 to all clients C
3: for each c ∈ C in parallel do
4: Bc ← BanditInference(π, θi−1) . Algorithm 2
5: end for
6: . In a real deployment, training and inference might occur in parallel, but we simulate

sequentially:
7: Initialize optimization θ(0) ← θi−1

8: for t = 1, 2, . . . , T do
9: θ(t) ← FederatedRound(θ(t−1)) . Algorithm 3

10: end for
11: θi ← θ(T)

12: end for

2 Federated Contextual Bandits91

We briefly present the federated contextual bandits algorithms and defer more background in Ap-92

pendix A, more discussion in Appendix B, and theoretical study in Appendix E.93

Framework. The high-level framework for the algorithms and the interaction with the environment94

is presented in Algorithm 1. In a federated CB problem, there is a distribution p over clients c ∈ C,95

with each client having a joint distribution Dc over context and reward pairs. The server maintains96

a global policy π ∈ Π, which is now learned in a federated manner. That is, each client maintains97

some (potentially stale) version of the server’s policy locally, which we denote as πc. Each client c98

collects data by choosing actions on observed contexts according to πc and logs the reward received99

(lines 3-5 in Algorithm 1), and we call this operation bandit inference. Some subset of the clients100

periodically participate in federated training to update the policy π at the server, using their local101

data (lines 7-11).102

Bandit inference. Bandit inference refers to the user-visible use of the policy πc locally at a client,103

whenever it is queried for an action with a context. For instance, this might correspond to choosing a104

featured image or an emoji recommendation upon observing the user’s photo album or text message105

in our previous examples. Formally, at an inference step, a client c observes a context x ∼ Dc,106

chooses an action a ∼ πc(·|x) and observes the reward r ∼ D(·|x, a). The inference steps happen107

asynchronously at the clients and do not require any communication, since the client only invokes a108

locally stored version of the policy to choose actions. The agent also maintains an internal log of109

inference tuples of the form (x, a, r, πc(a|x)) ∈ (Rd,A,R, [0, 1]), which are saved in data cache [15]110

and later used to update the server policy in the training rounds which we describe next. See111

Algorithm 2.112

Federated training. Periodically, the server polls a subset of the clients to participate in federated113

training. Roughly, this corresponds to using the inference logs across the participating clients to114

improve the regression model f(·, ·; θ). However, this federated training for policy improvement115

happens in a decentralized manner with no explicit data pooling. For instance, each participating116

client c downloads the current server regression parameters θ(t) and uses its local logs to compute117

a local gradient direction, which is communicated to the server. The server then accumulates the118

gradients across the clients to update θ(t) to form θ(t+1). After several communication rounds,the119

training period concludes and the server can broadcast the updated regression parameters (and hence120

updated policy) to all the clients, or rely on the clients to pull an updated policy periodically. See121

Algorithm 3.122

3 Empirical Evaluation Results123

We present a few key results in this section, and provide more results in Appendix D.124

Simulation. We consider three simulation scenarios in this paper. They roughly correspond to the125

scenarios where the CB agent starts from scratch, as is typically assumed in theory, as well as two126

3

Algorithm 2 Bandit Inference on Client c

Require: Model parameters θ; number of actions K = |A|; data cache size M ; exploration parame-
ter ε for ε-Greedy , β for Softmax , µ, γ for FALCON

1: (Optional) initialize data cache Bc = ∅ . The cache can be reset for simplicity in simulation
2: for j = 1, . . . ,M do . We only simulate sufficient user interactions to fill the cache
3: Observe xj ∼ Dc. Let ajθ = argmaxa∈A fθ(x

j , a)

4: π(a|xj) = 1− ε+ ε/K if a = ajθ else ε/K . ε-Greedy

5: π(a|xj) = exp(fθ(x
j , a)/β)/

∑
b exp(fθ(x

j , b)/β) . Softmax

6: π(a|xj) = 1/
(
µ+ γ(fθ(x

j , ajθ)− fθ(xj , a))
)

if a 6= ajθ) else 1−
∑
b 6=ajθ

π(b|xj) .

FALCON
7: Sample aj ∼ π(·|xj) and observe rj for aj
8: Bc ← Bc ∪ {(xj , aj , rj , π(aj |xj))}
9: end for

10: return Bc

Algorithm 3 One Round of Federated Optimization

Require: Global model θ(t−1) from the previous round; subset of clients S(t) ⊂ C
1: Broadcast θ(t−1) from server to clients S(t)

2: for each c ∈ S(t) in parallel do
3: ∆

(t)
c = ClientUpdate(θ(t−1), Bc)

4: end for
5: ∆(t) = aggregate(∆

(t)
c) . Compatible with SecAgg and DP

6: return θ(t) = server-optimizer(θ(t−1), ∆(t))

7: function CLIENTUPDATE(ω0, Bc)
8: for k = 1, . . . , N do
9: Sample a minibatch G ⊂ Bc

10: Compute gradient g = ∂
∂θ

∑
(x,a,r,ρ)∈G

1
2 (f(x, a)− r)2 . Regression-based loss

11: Compute gradient g = ∂
∂θ

∑
(x,a,r,ρ)∈G

1
2ρ (f(x, a)− r)2 . Importance weighting loss

12: ωk = client-optimizer(ωk−1, g)
13: end for
14: return ∆

(t)
c ← ωN − ω0

15: end function

settings where it starts from an initial model pre-trained with supervised data from a small number127

of clients, before being deployed in the CB setting. In the first pre-training setting, the reward128

distribution is the same in the pre-training and deployment phases, while the second one considers a129

distribution shift on the rewards. More details on how we simulate bandits problem from supervised130

EMNIST and StackOverflow datasets are described in Appendix C.131

Results. In Fig 1 (3), we show a comparison of the different bandit algorithms on the EMNIST132

(SO) benchmarks, respectively, across a range of experimental settings. In most of the exper-133

iments, we deploy a new model every 200 communication rounds, while the settings vary in134

{scratch, init, init-shift}.135

As a first takeaway, we note that exploration almost always helps relative to the baseline Greedy136

strategy, and never hurts, even as the extent of gains can be dependent on the setting. When137

starting without an initial model in the scratch setting, exploration is typically crucial since the138

initial model can arbitrarily prefer certain actions. This is most clearly reflected in Fig. 1a for the139

EMNIST benchmark, although the absolute reward is quite low in both EMNIST and SO at the end140

of the experiment in both the cases for this setting, meaning that the regime might be less relevant141

practically. While exploration is generally helpful, it is critical to balance the explore-exploit tradeoff,142

4

0 200 400 600 800
Communication rounds

0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

EMNIST scratch
Softmax
FALCON

Greedy
Epsilon

(a) EMNIST scratch

0 200 400 600
Communication rounds

0.55

0.60

0.65

0.70

0.75

Re
wa

rd

EMNIST init
Softmax
FALCON
Greedy

Epsilon
Init

(b) EMNIST init

0 200 400 600
Communication rounds

0.5

0.6

0.7

0.8

Re
wa

rd

EMNIST init-shift
Softmax
FALCON
Greedy

Epsilon
Init

(c) EMNIST init shift

0 200 400 600
Communication rounds

0.5

0.6

0.7

0.8

Re
wa

rd

EMNIST init-shift (deploy_freq=40)
Softmax
FALCON
Greedy

Epsilon
Init

(d) EMNIST init shift with deploy_freq = 40,
vs 200 in (a)-(c)

Figure 1: EMNIST experiments, without importance weighting. The y-axis gives running average
reward, with different scales for each plot. While the regression model is the same for the first 200
rounds of each scenario, cumulative rewards are different depending on the amount of exploration
done by the policy. The “Init” lines correspond to the greedy policy on the initial model, with no
additional training. All the plots use the exploration parameters β = 0.05 and ε = 0.05 for Softmax
and ε-Greedy respectively. Learning rate and exploration parameter values for each algorithm are
detailed in Tables 1-4 for Figures 1a-1d respectively.

and best performance is generally achieved for parameter settings that result in fairly aggressive143

exploration early on, before converging closer to a greedy choice towards the end of training in both144

FALCON and Softmax algorithms. In Appendix D.3, we quantify this phenomenon for Softmax in145

Figs. 5b and 5d while also showing noise added for differential privacy also has an effect.146

In the init setting, the results are more mixed since the algorithms start with an initial model147

which already has a strong performance. For instance, the initial model has a higher reward than the148

performance at the end of training from scratch in Fig. 1b for EMNIST (and 3b for StackOverflow).149

Consequently, there is little benefit from additional learning, and we find that the best results are150

attained for hyperparameters that favor little exploration, and small optimization updates through151

small learning rates.152

Expecting stationarity after deployment, or fully representative labeled set in training the initial153

model, however, is an unrealistic assumption, which is the reason we focus on the init-shift154

setting as our primary one. Here, we again find that exploration helps substantially, and the preferred155

hyperparameters result in more aggressive exploration as well as larger optimization steps. This is156

particularly pronounced in Figure 3c, where the initial model is quite poor, Greedy gets a middling157

improvement on it while the exploration algorithms all reach significantly larger rewards. For158

Figure 1c, the preferred exploration parameters are comparitively less aggressive, and this is also159

reflected in a smaller edge over Greedy. Overall, this reinforces the intuition that some amount of160

persistent exploration is beneficial in dynamic, non-stationary environments.161

5

Given this evaluation across settings and algorithms, we are ready to present the first high-level162

takeaway from our experiments for practitioners:163

Takeway 1: Effectiveness of Softmax.

We find that the Softmax approach, while being a simple modification of the Greedy strategy,
has a remarkably strong performance across benchmarks and experimental settings, always
either performing the best or close to it. While FALCON performs comparably well, the fact
that getting strong exploration performance requires tuning two unrelated hyperparameters is
a serious practical drawback. Consequently, we recommend Softmax as an effective default
strategy for practitioners.

164

Effect of deployment frequency. So far, we have discussed results where new models are deployed165

once every 200 communication rounds. The choice of deployment frequency is itself a tunable param-166

eter in practice, although very small frequencies are typically infeasible from system considerations,167

and often undesirable from a stability perspective. In Fig. 1d, we investigate the performance of168

algorithms in the init-shift setting, when the deployment frequency is reduced to just 40 rounds.169

This means that we get a total of 20 training periods in EMNIST. The first observation is that the170

absolute performance of all the methods improves over the corresponding Fig. 1c with a frequency171

of 200 in the same setting. This is not surprising as better models are deployed early with a smaller172

deployment frequency, giving a longer time to effectively exploit the gains from exploration. This173

confirms the intuition that smaller deployment frequencies are preferable from a learning perspective,174

as long as the rest of the system architecture allows it.175

A Closer look at some choices in the algorithms and setup. Next we study the effect of varying176

some important elements in Algorithm 7. We discuss optimizer choice, importance sampling and177

choosing hyperparameters in detail in Appendix D.2, and highlight the second takeaway here.178

Takeaway 2: Importance of variance control.

Both the choice of ADAM versus SGD as server optimizer and the use or not of importance
weights eventually control the variance in the training process, and crucially modulate the
sample efficiency in our experiments. We find the choices of ADAM and regression-based loss
to be effective across settings, and recommend them to practitioners.

179

4 Conclusion180

This paper aims to provide a practical perspective on the important problem of federated contextual181

bandits, with a goal of both highlighting the relevance of this paradigm to real-world applications,182

and to demonstrate the effectiveness of simple strategies when instantiated with the right choices.183

An additional goal and contribution of this work is to develop a robust simulation methodology for184

the federated CB setting, which incorporates practical concerns such as leveraging small amounts185

of pre-training data, potentially mis-aligned with the eventual performance metrics, as well as non-186

stationarity and distributional shifts. Indeed some of these factors are rarely incorporated even in187

the most comprehensive centralized CB evaluation, and are of independent interest to the bandit188

community. For practitioners, we hope that the takeaways from our simulations on which algorithmic189

choices work well can be a useful guide to applying these ideas.190

More generally, as we see an ever increasing focus on personalization and fine-tuning of large,191

general purpose models with RL, the availability of technologies such as federated CB and more192

general forms of federated RL are essential to our ability to learn in a private and responsible manner.193

Extending these ideas to more general forms of RL is an important direction for future work, as is a194

deeper understanding of the interplay between privacy and the RL setting.195

References196

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,197

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC198

6

conference on computer and communications security, pages 308–318, 2016.199

[2] Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, and Robert Schapire. Contextual200

bandit learning with predictable rewards. In Artificial Intelligence and Statistics, pages 19–26.201

PMLR, 2012.202

[3] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.203

Taming the monster: A fast and simple algorithm for contextual bandits. In International204

Conference on Machine Learning, pages 1638–1646. PMLR, 2014.205

[4] Galen Andrew, Om Thakkar, H Brendan McMahan, and Swaroop Ramaswamy. Differentially206

private learning with adaptive clipping. Conference on Neural Information Processing Systems207

(NeurIPS), 2021.208

[5] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine209

Learning Research, 3(Nov):397–422, 2002.210

[6] Alberto Bietti, Alekh Agarwal, and John Langford. A contextual bandit bake-off. J. Mach.211

Learn. Res., 22:133–1, 2021.212

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,213

Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for214

privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on215

Computer and Communications Security, pages 1175–1191, 2017.216

[8] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On217

large-cohort training for federated learning. Advances in neural information processing systems,218

34:20461–20475, 2021.219

[9] Christopher A. Choquette-Choo, H. Brendan McMahan, Keith Rush, and Abhradeep Thakurta.220

Multi-epoch matrix factorization mechanisms for private machine learning, 2022. URL https:221

//arxiv.org/abs/2211.06530.222

[10] Zhongxiang Dai, Yao Shu, Arun Verma, Flint Xiaofeng Fan, Bryan Kian Hsiang Low, and223

Patrick Jaillet. Federated neural bandit. arXiv preprint arXiv:2205.14309, 2022.224

[11] Abhimanyu Dubey and AlexSandy’ Pentland. Differentially-private federated linear bandits.225

Advances in Neural Information Processing Systems, 33:6003–6014, 2020.226

[12] Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation227

and optimization. Statistical Science, 29(4):485–511, 2014.228

[13] Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits229

with regression oracles. In International Conference on Machine Learning, pages 3199–3210.230

PMLR, 2020.231

[14] Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent232

complexity of contextual bandits and reinforcement learning: A disagreement-based perspective.233

arXiv preprint arXiv:2010.03104, 2020.234

[15] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean235

Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile236

keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.237

[16] Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.238

Advances in neural information processing systems, 34:27057–27068, 2021.239

[17] Liangze Jiang and Tao Lin. Test-time robust personalization for federated learning. arXiv240

preprint arXiv:2205.10920, 2022.241

[18] Peter Kairouz, Brendan Mcmahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng242

Xu. Practical and private (deep) learning without sampling or shuffling. In International243

Conference on Machine Learning (ICML), pages 5213–5225, 2021.244

7

https://arxiv.org/abs/2211.06530
https://arxiv.org/abs/2211.06530
https://arxiv.org/abs/2211.06530

[19] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-245

jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,246

et al. Advances and open problems in federated learning. Foundations and Trends R© in Machine247

Learning, 14(1–2):1–210, 2021.248

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint249

arXiv:1412.6980, 2014.250

[21] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimiza-251

tion: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527,252

2016.253

[22] John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-armed254

bandits. Advances in neural information processing systems, 20(1):96–1, 2007.255

[23] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.256

Communication-efficient learning of deep networks from decentralized data. In AISTATS, pages257

1273–1282. PMLR, 2017.258

[24] Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially259

private recurrent language models. In International Conference on Learning Representations260

(ICLR), 2018. URL https://openreview.net/pdf?id=BJ0hF1Z0b.261

[25] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations262

symposium (CSF), pages 263–275. IEEE, 2017.263

[26] Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan264

McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Thakurta. How to dp-fy ml: A265

practical guide to machine learning with differential privacy. arXiv preprint arXiv:2303.00654,266

2023.267

[27] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated268

learning for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329, 2019.269

[28] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,270

Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. ICLR, 2021.271

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal272

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.273

[30] Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits. Advances in274

Neural Information Processing Systems, 31, 2018.275

[31] David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal276

algorithm for contextual bandits under realizability. Mathematics of Operations Research, 47277

(3):1904–1931, 2022.278

[32] TFF Authors. TensorFlow Federated EMNIST dataset, 2022. https://www.tensorflow.279

org/federated/api_docs/python/tff/simulation/datasets/emnist.280

[33] TFF Authors. TensorFlow Federated StackOverflow dataset, 2022. https:281

//www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/282

stackoverflow.283

[34] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Agüera284

y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh285

Data, Suhas N. Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis,286

Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horváth, Zhouyuan Huo, Alex Ingerman,287

Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konečný,288

Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtárik,289

Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh,290

Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake E. Woodworth, Shanshan Wu,291

Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen292

Zhu, and Wennan Zhu. A field guide to federated optimization. CoRR, abs/2107.06917, 2021.293

URL https://arxiv.org/abs/2107.06917.294

8

https://openreview.net/pdf?id=BJ0hF1Z0b
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/emnist
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/emnist
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/emnist
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://arxiv.org/abs/2107.06917

[35] Jianyu Wang, Rudrajit Das, Gauri Joshi, Satyen Kale, Zheng Xu, and Tong Zhang. On the295

unreasonable effectiveness of federated averaging with heterogeneous data. arXiv preprint296

arXiv:2206.04723, 2022.297

[36] Shanshan Wu, Tian Li, Zachary Charles, Yu Xiao, Ziyu Liu, Zheng Xu, and Virginia Smith.298

Motley: Benchmarking heterogeneity and personalization in federated learning. arXiv preprint299

arXiv:2206.09262, 2022.300

[37] Zheng Xu, Maxwell Collins, Yuxiao Wang, Liviu Panait, Sewoong Oh, Sean Augenstein, Ting301

Liu, Florian Schroff, and H Brendan McMahan. Learning to generate image embeddings with302

user-level differential privacy. arXiv preprint arXiv:2211.10844, 2022.303

[38] Chen Zhu, Zheng Xu, Mingqing Chen, Jakub Konečnỳ, Andrew Hard, and Tom Goldstein.304

Diurnal or nocturnal? federated learning of multi-branch networks from periodically shifting305

distributions. In International Conference on Learning Representations, 2021.306

A Preliminaries307

We by briefly recalling the federated learning and contextual bandit paradigms in this section, then308

build on these to set up the federated contextual bandit setting in Section 2.309

Federated Learning In a federated learning problem, we are given a distribution p over a popu-310

lation C of clients. Client c ∈ C has an associated data distribution Dc over samples z ∈ Z . The311

learning algorithm aims to find a good model f ∈ F under some loss function ` : F × Z → R, so312

as to minimize the objective:313

min
f∈F

Ec∼pEz∼Dc`(f, z). (1)

Like most learning algorithms, the objective (1) is optimized approximately using a sample-based314

approximation. Unique to federated learning, however, the datasets stay local to each client, while315

model updates from each client are aggregated and applied on the central server. For intuition, a316

canonical federated learning algorithm is FEDAVG [23], in which a random subset of the clients each317

use their local data to compute an update to the shared model by performing a few stochastic gradient318

steps with the local dataset. The updates are then communicated to the server which averages these319

local model changes and uses this average to update the shared global model at the server.320

Contextual Bandits Contextual bandits are a paradigm to learn from interaction data where each321

interaction consists of observing a context x ∈ Rd from some fixed and unknown distribution,322

choosing an action a ∈ A from some action setA and observing some reward r(x, a) ∈ R specifying323

the quality of the action a for context x. Crucially, the learner receives no signal on the quality of324

actions a′ 6= a which were not chosen. We let D represent the joint distribution of (x, r), but also325

overload it to denote the marginal distribution over x, when it is clear from the context. We view r326

as a random variable, where r(x, a) is the ath entry in the reward vector r ∼ D(·|x). As mentioned327

above, the learner never observes the full reward vector r, but only the entry r(x, a) when it chooses328

action a upon observing context x. The learner has access to a policy class Π ⊆ {X → A}, where329

a policy is a mapping from contexts to actions. For deterministic policies we write π(x) ∈ A; we330

generalize this to randomized policies where π(a|x) ∈ [0, 1] below. The goal of learning is to find a331

policy that maximizes the expected reward, and the quality of some policy π is measured in terms of332

regret, defined as1333

Regret(π) = E(x,r)∼D[r(x, π(x))]−max
π′∈Π

E(x,r)∼D[r(x, π′(x))]. (2)

For intuition, a deterministic policy class Π might be induced by a regression function class F as334

Π = {πf : πf (x) = argmaxa∈A f(x, a), f ∈ F}, where the functions f are trained to predict the335

expected reward using regression. That is, given a dataset (xs, as, rs)
t−1
s=1 of historical examples336

(where rs ∈ R represent the realization of the random variable r(xs, as)), we train the reward337

1For a randomized policy, we can replace π(x) with an expectation over a ∼ π(·|x).

9

estimator ft = argminf∈F
∑t−1
s=1(f(xs, as) − rs)2. A common choice we will use in most of our338

setup is when the functions f are parameterized as fθ for some parameter θ ∈ Θ, where θ might339

denote the weights of a linear function or a neural network, for instance.340

There are several standard ways of extracting a randomized policy πt from ft, some of which we341

discuss below.342

• Greedy corresponds to the standard supervised learning approach, where we always choose the343

best action according to ft,344

Π =
{
πf : πf (a|x) = 1 if a = argmax

a′∈A
f(x, a′) and 0 otherwise, f ∈ F

}
(3)

(with ties broken arbitrarily).345

• ε-Greedy chooses the greedy action with probability 1− ε, and with probability ε, picks an action346

uniformly from A. The extra exploration helps in collecting a more diverse dataset to train ft,347

with the parameter ε providing a tradeoff between exploration and exploitation. For any data348

distribution D, the regret of ε-Greedy is known to be bounded, whenever the class F is sufficiently349

expressive [2, 22].350

• Softmax is another variant of Greedy, where the policy uses a softmax distribution on the predicted351

rewards by the underlying model: πt(a|x) ∝ exp(f(x, a)/β). When β approaches zero, the πt352

approaches the greedy policy, and diffuses to a uniform exploration for β =∞. In general, this353

strategy does not have theoretical guarantees on the regret, but is often practically used owing to354

its simplicity. We note that this also matches the popular temperature sampling scheme used for355

exploration in foundation models.356

• FALCON is provably optimal in the worst-case [13, 31] and uses a more carefully crafted distribution357

over actions, given ft (see line 6 in Algorithm 5). The degree of exploration is governed by two358

hyperparameters γ and µ, which makes this strategy a little harder to tune in practice. For setting359

these hyperparameters, we depart from the theoretical recommendation in Simchi-Levi and Xu360

[31] of using a careful schedule and use a best constant setting closer to Foster and Rakhlin [13],361

as some of the quantities in the theoretical recommendations depending on the function class362

complexity and failure probability are unknown in practice.363

B Federated Contextual Bandits364

We begin with the high-level problem setting and the algorithmic framework, and then present the365

detailed federated variants of popular CB algorithms. More background can be found in Appendix A.366

B.1 Problem Setting367

Algorithm 4 Federated Contextual Bandits

Require: Communication rounds T per period; training periods I ≥ 1; initial inference model θ0

1: for i = 1, 2, . . . , I do
2: Deploy inference policy π parameterized by θi−1 to all clients C
3: for each c ∈ C in parallel do
4: Bc ← BanditInference(π, θi−1) . Algorithm 5
5: end for
6: . In a real deployment, training and inference might occur in parallel, but we simulate

sequentially:
7: Initialize optimization θ(0) ← θi−1

8: for t = 1, 2, . . . , T do
9: θ(t) ← FederatedRound(θ(t−1)) . Algorithm 6

10: end for
11: θi ← θ(T)

12: end for

The high-level framework for the algorithms and the interaction with the environment is presented in368

Algorithm 4. In a federated CB problem, there is a distribution p over clients c ∈ C, with each client369

having a joint distribution Dc over context and reward pairs. The server maintains a global policy370

10

π ∈ Π, which is now learned in a federated manner. That is, each client maintains some (potentially371

stale) version of the server’s policy locally, which we denote as πc. Each client c collects data by372

choosing actions on observed contexts according to πc and logs the reward received (lines 3-5 in373

Algorithm 4), and we call this operation bandit inference. Some subset of the clients periodically374

participate in federated training to update the policy π at the server, using their local data (lines 7-11).375

We explain the details of inference and training rounds in detail below.376

Bandit inference. Bandit inference refers to the user-visible use of the policy πc locally at a client,377

whenever it is queried for an action with a context. For instance, this might correspond to choosing a378

featured image or an emoji recommendation upon observing the user’s photo album or text message379

in our previous examples. Formally, at an inference step, a client c observes a context x ∼ Dc,380

chooses an action a ∼ πc(·|x) and observes the reward r ∼ D(·|x, a). The inference steps happen381

asynchronously at the clients and do not require any communication, since the client only invokes a382

locally stored version of the policy to choose actions. The agent also maintains an internal log of383

inference tuples of the form (x, a, r, πc(a|x)) ∈ (Rd,A,R, [0, 1]), which are saved in data cache [15]384

and later used to update the server policy in the training rounds which we describe next.385

Federated training. Periodically, the server polls a subset of the clients to participate in federated386

training. Roughly, this corresponds to using the inference logs across the participating clients to387

improve the regression model f(·, ·; θ). However, this federated training for policy improvement388

happens in a decentralized manner with no explicit data pooling. For instance, each participating389

client c downloads the current server regression parameters θ(t) and uses its local logs to compute390

a local gradient direction, which is communicated to the server. The server then accumulates the391

gradients across the clients to update θ(t) to form θ(t+1). After several communication rounds,the392

training period concludes and the server can broadcast the updated regression parameters (and hence393

updated policy) to all the clients, or rely on the clients to pull an updated policy periodically.394

B.2 Federated CB algorithms395

Algorithm 5 Bandit Inference on Client c

Require: Model parameters θ; number of actions K = |A|; data cache size M ; exploration parame-
ter ε for ε-Greedy , β for Softmax , µ, γ for FALCON

1: (Optional) initialize data cache Bc = ∅ . The cache can be reset for simplicity in simulation
2: for j = 1, . . . ,M do . We only simulate sufficient user interactions to fill the cache
3: Observe xj ∼ Dc. Let ajθ = argmaxa∈A fθ(x

j , a)

4: π(a|xj) = 1− ε+ ε/K if a = ajθ else ε/K . ε-Greedy

5: π(a|xj) = exp(fθ(x
j , a)/β)/

∑
b exp(fθ(x

j , b)/β) . Softmax

6: π(a|xj) = 1/
(
µ+ γ(fθ(x

j , ajθ)− fθ(xj , a))
)

if a 6= ajθ) else 1−
∑
b 6=ajθ

π(b|xj) .

FALCON
7: Sample aj ∼ π(·|xj) and observe rj for aj
8: Bc ← Bc ∪ {(xj , aj , rj , π(aj |xj))}
9: end for

10: return Bc

In this section, we describe the federated CB algorithms that are developed and studied in this paper.396

The federated CB algorithms that we design are federated versions of the centralized CB algorithms397

described in Appendix A. Recalling the general framework of Algorithm 4, we consider a meta398

iterator in the outer-loop named period, which can possibly run forever in an online setting, i.e.,399

I =∞. Each period simulates the deployment of a machine learning model parameterized by some400

parameters θi−1, which can be less frequent for on-device applications compared to a web service.401

We focus on regression-based CB algorithms as in Appendix A, where the parameters θ induce a402

regression model which predicts the expected reward of actions a, given context x. Each period403

i consists of some number of bandit inference steps followed by a training. At the beginning of404

each period, an inference model is deployed to all clients, and the model is trained with bandits data405

11

Algorithm 6 One Round of Federated Optimization

Require: Global model θ(t−1) from the previous round; subset of clients S(t) ⊂ C
1: Broadcast θ(t−1) from server to clients S(t)

2: for each c ∈ S(t) in parallel do
3: ∆

(t)
c = ClientUpdate(θ(t−1), Bc)

4: end for
5: ∆(t) = aggregate(∆

(t)
c) . Compatible with SecAgg and DP

6: return θ(t) = server-optimizer(θ(t−1), ∆(t))

7: function CLIENTUPDATE(ω0, Bc)
8: for k = 1, . . . , N do
9: Sample a minibatch G ⊂ Bc

10: Compute gradient g = ∂
∂θ

∑
(x,a,r,ρ)∈G

1
2 (f(x, a)− r)2 . Regression-based loss

11: Compute gradient g = ∂
∂θ

∑
(x,a,r,ρ)∈G

1
2ρ (f(x, a)− r)2 . Importance weighting loss

12: ωk = client-optimizer(ωk−1, g)
13: end for
14: return ∆

(t)
c ← ωN − ω0

15: end function

generated by a (delayed) inference model from the last period. For simplicity of presentation, we406

use the same number of examples at each client in inference, and do not incorporate heterogeneous407

delays in model deployment across clients as mentioned before.408

Algorithm 5 describes the details of the inference procedure that happens asynchronously at each409

client. Client c observes a context x ∼ Dc. Given the current model parameters θ = θi−1, we use410

fθ to refer to the induced reward predictor. This reward predictor fθ is used to define a probability411

distribution over the actions as described in lines 4-6. The Greedy strategy is implemented by setting412

ε = 0 in ε-Greedy. The chosen action a is subsequently drawn from this probability distribution,413

and the observed reward is logged along with the context, action and sampling probability in a local414

data log Bc (line 8). In practice, where the number of inference examples handled at a client is415

exogenously determined, each client observes a potentially different number of inference examples in416

a period, Bc is maintained locally on client and can be configured with suitable cap M on the size of417

the local data log to respect memory and system constraints. Local cache Bc potentially contains418

inference examples predicted by multiple previous model θ0, . . . , θi−1 due to heterogeneous delays419

of model deployment. When the deployment period is large, most of the clients participate in training420

contain lcoal cache of examples predicted by the most recent inference model θi−1, and hence we421

reset Bc every round for simplicity in simulation when used Algorithm 7.422

Next, we discuss the algorithmic details of the training period, described in Algorithm 6. At a423

high-level, this procedure boils down to identifying an appropriate optimization objective on the424

local data logs of all the clients, which can then be optimized by any standard federated optimization425

algorithm. We consider two optimization objectives, motivated by the two predominant algorithmic426

settings in centralized CB. We describe their expected versions here, with the understanding that427

actual implementations use sample averages. The simplest objective is a regression on observed428

rewards as described before [2, 13, 31]:429

Regression: min
f∈F

Ec∼p
∑

(x,a,r,ρ)∈Bc

(f(x, a)− r)2. (4)

When the class F is rich enough to satisfy E[r|x, a] ∈ F , this objective is natural, as the minimizer430

converges to the true expected rewards. However, if this assumption is grossly violated, then the431

regression objective can learn an unreliable predictor. A potentially preferable objective in such432

contexts is the following importance weighted regression variant [6]:433

Importance-weighted regression: min
f∈F

Ec∼p
∑

(x,a,r,ρ)∈Bc

1

ρ
(f(x, a)− r)2, (5)

where ρ is the recorded probability of choosing a given x in the local data log. Importance-weighting434

ensures that the objective is an unbiased estimator of Ec∼pE(x,r)∼Dc
∑
a∈A(f(x, a)− r)2, so that435

12

the learned reward estimator is uniformly good for all the actions. This leads to strong guarantees436

for any function class F , at the cost of a harder to optimize and higher variance training objective.437

We note that the application of FALCON with importance weighted updates is not considered in the438

original paper [31]. For our experiments, we primarily focus on the regression version as it displays439

superior empirical performance.440

For either objective, we note that the underlying optimization problem clearly fits the form of441

the standard federated learning objective (1), meaning that off-the-shelf federated optimization442

algorithms can be readily applied. Federated Averaging (FedAvg) [23] is a popular choice in pracitce,443

as it achieves both communication efficiency and fast convergence under heterogeneity [35]. In444

Algorithm 6, we adopt the generalized FedAvg algorithm [28, 34], which views FL algorithms as two445

stage optimization: clients perform local training to compute model update ∆c, and the server uses446

the averaged ∆ as a pseudo gradient to update the global model θ. The server performs such updates447

for T rounds, sampling a fresh subset of clients at each round. Subsequently, the updated parameters448

are communicated to the clients for bandits inference, as mentioned earlier.449

The updates on client and server require the specification of optimizers to be used. We follow standard450

practice and use stochastic gradient descent (SGD) as the client-optimizer as it works well and incurs451

no additional memory or computation overhead. We use Adam [20] as the server-optimizer following452

Reddi et al. [28].453

Differential privacy (DP). The privacy properties of Algorithm 6 can be further improved via454

techniques like secure aggregation [7] for the model updates, and by replacing FedAvg with variants455

that offer differential privacy [9, 18, 24]. We apply adaptive clipping [4] with zero noise in aggregation456

as this has been shown to improve robustness with minimal computation and communication cost457

[8] in the bulk of our evaluation. In some of our experiments, we show the easy composition with458

differential privacy by introducing two additional operations for DP-FedAvg [24]: clip the model459

update ∆̃
(t)
c = min

(
1, C

||∆(t)
c ||

)
∆

(t)
c with clip norm C estimated by adaptive clipping [4]; add460

Gaussian noise with standard deviation σC to ∆(t) = aggregate(∆̃
(t)
c), where σ is noise multiplier461

and C is the clip norm.462

C Simulation Setup463

In this section, we describe the setup used for our simulations of real-world federated CB problems.464

We describe the datasets used in our simulation, a detailed specification of the algorithms in the465

simulation setting, and the various settings that we simulate. Our code will be open-sourced.466

C.1 Datasets for Simulating Federated CB467

The methods that we evaluate roughly correspond to those outlined in Sections A and 2. Concretely,468

we evaluate the Greedy, ε-Greedy, Softmax and FALCON strategies described above. For each469

strategy, we consider a few choices of the hyperparameters and mainly show the results for the best470

choice in a particular experimental condition. Details of the hyperparameters used can be found in471

Appendix F.472

We use two datasets two evaluate these methods across a range of simulation settings in this work.473

The datasets are EMNIST and StackOverflow (SO), both of which have been used in prior works474

on federated learning. EMNIST is a handwritten character recognition dataset, comprising of digits475

(0-9) and letter (a-z, A-Z) inducing a multi-class classification problem with 62 labels. The dataset476

consists of characters written by different individuals, which are mapped to the different clients in the477

federated setting. We use the EMNIST dataset of 3400 clients provided by Tensorflow Federated [32]478

to train a two-layer convolutional neural network (CNN) [23, 28]. In bandit interaction, the learner479

predicts a class label upon seeing a character, and only gets a feedback about the correctness of this480

prediction, but does not observe the ground-truth label when this prediction is wrong, following the481

setup from prior works [6, 12].482

SO [33] is a language dataset of processed question and answer text with additional metadata such as483

tags. The dataset contains 342,477 unique users as training clients. We consider the tag prediction484

task and use a linear model based on the bag of words features for the sentences in each client. A485

13

vocabulary of 10,000 most frequent words is used. To make exploration feasible, we limit the tag set486

to the 50 most frequent tags. The original tag prediction is a multi-label and multi-class classification487

problem, and similar to EMNIST in bandit interaction, the learner will only get feedback about the488

correctness of a single predicted tag without observing the ground-truth label.489

Next we discuss the various simulation setups used in this work.490

Algorithm 7 Federated Contextual Bandits in Simulations

Require: Communication rounds T per period; training periods I; initial inference model θ0; bandits
inference algorithm and hyparameters in Algorithm 5; federated optimization algorithms and
hyparameters in Algorithm 6.

1: for t = 1, 2, . . . , IT do
2: i = dt/T e
3: Send training model θ(t−1), inference model θi−1 from server to a subset clients S(t)

4: for each c ∈ S(t) in parallel do
5: Bc ← BanditInference(π, θi−1) . Algorithm 5
6: ∆

(t)
c = ClientUpdate(θ(t−1), Bc) . Algorithm 6

7: end for
8: ∆(t) = aggregate(∆

(t)
c)

9: θ(t) = server-optimizer(θ(t−1), ∆(t))
10: if t mod T == 0 then
11: θi ← θ(t)

12: end if
13: end for

C.2 Simulation Scenarios491

We consider three simulation scenarios in this paper. They roughly correspond to the scenarios where492

the CB agent starts from scratch, as is typically assumed in theory, as well as two settings where it493

starts from an initial model pre-trained with supervised data from a small number of clients, before494

being deployed in the CB setting. In the first pre-training setting, the reward distribution is the same495

in the pre-training and deployment phases, while the second one considers a distribution shift on the496

rewards. We begin with the high-level details of mapping the abstract federated CB framework of497

Algorithm 4 into a simulation setting, before describing the 3 variants below.498

Simulated federated CB: When simulating a federated CB problem from a supervised dataset499

like EMNIST or SO, we need to choose the inference and training periods. For simplicity, we consider500

each period i in Algorithm 4 to consist of T communication rounds in Algorithm 7, which contains501

detailed implementation of the simulation framework. In each round t ∈ [T] of a period i ∈ [I],502

we choose a subset S(t) of the client population. This represents the clients which participate in503

federated training at round t in period i in Algorithms 4 and 6. We limit the inference to only happen504

at the clients selected for training at this round, since the inference data generated at the other clients505

does not matter for model updates. While the inference rewards at all the clients are needed for506

measuring the performance of the deployed model, the average over the selected clients provides an507

unbiased approximation and makes the simulation computationally more tractable. Upon generating508

the inference data log Bc at all the selected clients Bc, we then perform N local updates, followed509

by an aggregated update of the server parameters. Upon the completion of T such rounds, the510

client parameters are updated at each client and a new period starts. In this manner, each client has511

parameters delayed by up to T rounds relative to the server. Note that a minor mismatch between512

the descriptions of Algorithms 4 and 7 is that if a client is selected at two different rounds within a513

period, then it uses an identical data log Bc at both the periods in Algorithm 4, but samples a fresh514

log Bc in Algorithm 7.515

Next we describe how the client distributions are simulated using the supervised learning datasets in516

multiple ways below.517

Training from scratch with no initial model (scratch) This scenario is the closest to the feder-518

ated generalization of the standard CB setting studied in most papers. The server and clients start519

14

with some randomly initialized model θ0. The model is used to choose actions for the inference520

period. The rewards of chosen actions are based on the classification loss, namely 1 for the action521

corresponding to a correct label and 0 otherwise.522

Initial model on a subset of clients (init) This scenario roughly captures a common practice in523

the industry where some small number of users (say employees of the organization) might try the524

application before broader deployment. In such cases, these initial users might even supply a richer525

feedback on the algorithm’s chosen actions, an extreme case of which is providing the ground-truth526

label on each example, which allows the instantiation of rewards of all the actions. We model this527

by selecting a small number of clients for pre-training, and use supervised learning to minimize the528

squared loss across all the actions for each x, given the full reward vector. With this initial model,529

we then deploy to a broader client pool. Subsequently, the model is again updated in every training530

period in the same manner as the scratch scenario. We choose the number of initial clients to be531

100 for both EMNIST and SO.532

Initial model on a subset of clients with reward distribution shift (init-shift) In practice, it533

is often unrealistic to assume that the reward distribution for model pre-training will match that during534

deployment due to a number of factors. The distribution of best actions within a subset of initial535

users (such as within an organization) might be heavily skewed relative to the general population. If536

the supervision for the initial model is instead obtained by third-party labelers, then there can be a537

mismatch between their preferences and those of the users. Finally, even beyond these, most practical538

problems exhibit non-stationarity [17, 34, 36, 38] due to seasonal or other periodic effects, drifts in539

user preferences over time, changes in the action set etc. For example, emoji and users’ preference540

can gradually change in an emoji recommendation application [27]. In a way, some distributional541

mismatch between initial and deployment phases is likely most representative of the current practical542

scenario, and we treat this as our default scenario.543

In EMNIST, we simulate this distribution shift by setting the reward in the initial training to be 1 if the544

label is correct, 0.5 if the true label is an upper-case letter and we predict its lower-case version and 0545

otherwise. During the subsequent bandit simulation, we use the 0-1 valued rewards for exact match546

with the label, causing a label distribution shift.547

In SO, we model distribution shift from two sources. The initial training only gets a multilabel 0/1548

feedback based on tags in the 10 most frequent tags. That is, the learner sees a vector of labels of size549

10, which has value 1 for all the tags in which are present in the example and 0 otherwise. However,550

the tag-set is expanded to the top 50 tags in the deployment phase, where the reward of a tag is defined551

as inversely proportional to the frequency of the tag in the corpus. Thus, the algorithm gets a higher552

reward for correctly predicting rare tags, which are not likely to be observed in the pre-training phase.553

Simulation durations Throughout the experiments, we use a total of 800 communication rounds554

(corresponding to IT in Algorithm 7) for EMNIST and 1600 communication rounds for the larger555

SO benchmark, and randomly sample 64 clients in each round. The number of training periods T is556

set to 4 for EMNIST and 8 for SO unless otherwise specified, corresponding to the deployment of a557

new model every 200 communication rounds. For init and init-shift, where we train an initial558

model for 100 iterations of supervised training, we only perform 700 (respectively 1500) rounds in559

the bandit phase for EMNIST (respectively SO). The comparison across settings at the end of training560

is not completely fair, however, as 100 rounds of supervised training provide significantly more561

information than 100 rounds of bandit interactions, since we observe feedback on all the actions in562

the supervised setup. We note that the scale of rewards also changes due to the rewards configuration563

in the init-shift setting.564

D Empirical Evaluation Results565

We begin with an evaluation of the baselines mentioned in the previous section across all the different566

experimental settings, before studying the effect of changing some important aspects of the setup as567

well as algorithmic choices.568

15

0 200 400 600 800
Communication rounds

0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

EMNIST scratch
Softmax
FALCON

Greedy
Epsilon

(a) EMNIST scratch

0 200 400 600
Communication rounds

0.55

0.60

0.65

0.70

0.75

Re
wa

rd

EMNIST init
Softmax
FALCON
Greedy

Epsilon
Init

(b) EMNIST init

0 200 400 600
Communication rounds

0.5

0.6

0.7

0.8

Re
wa

rd

EMNIST init-shift
Softmax
FALCON
Greedy

Epsilon
Init

(c) EMNIST init shift

0 200 400 600
Communication rounds

0.5

0.6

0.7

0.8

Re
wa

rd

EMNIST init-shift (deploy_freq=40)
Softmax
FALCON
Greedy

Epsilon
Init

(d) EMNIST init shift with deploy_freq = 40,
vs 200 in (a)-(c)

Figure 2: EMNIST experiments, without importance weighting. The y-axis gives running average
reward, with different scales for each plot. While the regression model is the same for the first 200
rounds of each scenario, cumulative rewards are different depending on the amount of exploration
done by the policy. The “Init” lines correspond to the greedy policy on the initial model, with no
additional training. All the plots use the exploration parameters β = 0.05 and ε = 0.05 for Softmax
and ε-Greedy respectively. Learning rate and exploration parameter values for each algorithm are
detailed in Tables 1-4 for Figures 2a-2d respectively.

D.1 Results for the three simulation settings569

In Figures 2 and 3, we show a comparison of the different bandit algorithms on the EMNIST570

and SO benchmarks, respectively, across a range of experimental settings. In most of the ex-571

periments, we deploy a new model every 200 communication rounds, while the settings vary in572

{scratch, init, init-shift}, with the results summarized in Figures 2a-2c and 3a-3c for the two573

benchmarks.574

As a first takeaway, we note that exploration almost always helps relative to the baseline Greedy575

strategy, and never hurts, even as the extent of gains can be dependent on the setting. When starting576

without an initial model in the scratch setting, exploration is typically crucial since the initial577

model can arbitrarily prefer certain actions. This is most clearly reflected in Figure 2a for the578

EMNIST benchmark, although the absolute reward is quite low in both EMNIST and SO at the end579

of the experiment in both the cases for this setting, meaning that the regime might be less relevant580

practically. While exploration is generally helpful, it is critical to balance the explore-exploit tradeoff,581

and best performance is generally achieved for parameter settings that result in fairly aggressive582

exploration early on, before converging closer to a greedy choice towards the end of training in both583

FALCON and Softmax algorithms. In Appendix D.3, we quantify this phenomenon for Softmax in584

Figs. 5b and 5d while also showing noise added for differential privacy also has an effect.585

16

0 500 1000 1500
Communication rounds

0.0

0.1

0.2

0.3

0.4

Re
wa

rd

SO scratch

Softmax
FALCON

Greedy
Epsilon

(a) SO scratch

0 250 500 750 1000 1250 1500
Communication rounds

0.35

0.40

0.45

0.50

0.55

Re
wa

rd

SO init

Softmax
FALCON
Greedy

Epsilon
Init

(b) SO init

0 250 500 750 1000 1250 1500
Communication rounds

0.4

0.6

0.8

1.0

Re
wa

rd

SO init-shift
Softmax
FALCON
Greedy

Epsilon
Init

(c) SO init shift

0 250 500 750 1000 1250 1500
Communication rounds

0.4

0.6

0.8

1.0

Re
wa

rd

SO init-shift (deploy_freq=40)

Softmax
FALCON
Greedy

Epsilon
Init

(d) SO init shift with deploy_freq = 40, vs
200 in (a)-(c)

Figure 3: StackOverflow experiments. Note the different y-axis reward scales on the different
plots. Learning rate and exploration parameter values for each algorithm are detailed in Tables 5-8
for Figures 3a-3d respectively.

In the init setting, the results are more mixed since the algorithms start with an initial model586

which already has a strong performance. For instance, the initial model has a higher reward than the587

performance at the end of training from scratch in both Figures 2b and 3b. Consequently, there is little588

benefit from additional learning, and we find that the best results are attained for hyperparameters589

that favor little exploration, and small optimization updates through small learning rates. This is also590

reflected in the nearly identical behavior as Greedy for most exploration strategies other than FALCON591

for SO in Figure 3b. We expect that the performance of Greedy deteriorates with respect to the initial592

model, because a smaller learning rates close to zero outside our search grid can be preferable when593

initial model is very strong. Nevertheless, the overarching conclusion we draw here is that even small594

amounts of high quality fully supervised data can be very powerful, when the downstream model595

does not encounter any subsequent distribution shift.596

Expecting stationarity after deployment, or fully representative labeled set in training the initial597

model, however, is an unrealistic assumption, which is the reason we focus on the init-shift598

setting as our primary one. Here, we again find that exploration helps substantially, and the preferred599

hyperparameters result in more aggressive exploration as well as larger optimization steps. This is600

particularly pronounced in Figure 3c, where the initial model is quite poor, Greedy gets a middling601

improvement on it while the exploration algorithms all reach significantly larger rewards. For602

Figure 2c, the preferred exploration parameters are comparitively less aggressive, and this is also603

reflected in a smaller edge over Greedy. Overall, this reinforces the intuition that some amount of604

persistent exploration is beneficial in dynamic, non-stationary environments.605

Given this evaluation across settings and algorithms, we are ready to present the first high-level606

takeaway from our experiments for practitioners:607

17

0 200 400 600
Communication rounds

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Re
wa

rd

EMNIST variance
Softmax

(a) Variance across Softmax trials for
EMNIST

0 250 500 750 1000 1250 1500
Communication rounds

0.2

0.4

0.6

0.8

Re
wa

rd

SO variance
Softmax

(b) Variance across Softmax trials for SO

Figure 4: Variance across 5 trials of Softmax in the init-shift setting for EMNIST and SO

Takeway 1: Effectiveness of Softmax.

We find that the Softmax approach, while being a simple modification of the Greedy strategy,
has a remarkably strong performance across benchmarks and experimental settings, always
either performing the best or close to it. While FALCON performs comparably well, the fact
that getting strong exploration performance requires tuning two unrelated hyperparameters is
a serious practical drawback. Consequently, we recommend Softmax as an effective default
strategy for practitioners.

608

Variance across repeated trials. All our algorithms are randomized due to the random sampling609

involved in exploration. The simulation itself has many random choices such as the choice of which610

clients participate in a training round and example selection in each mini-batch. The conclusions611

discussed so far are remarkably robust to this randomness, and we show the stability in our results for612

the recommended Softmax strategy in the init-shift setting in Figure 4. As we see, the variation613

in rewards across repeated trials is negligible.614

D.2 A Closer look at some choices in the algorithms and setup615

We now take a deeper look into some of the choices both in our setup and the design and implementa-616

tion of the algorithms which can lead to a significant change in the results, and hence are important to617

be aware of in practice. We start with a common practical question of the effect of model deployment618

frequency, corresponding to the number of model updates and training rounds that the algorithm619

faces.620

Effect of deployment frequency. So far, we have discussed results where new models are de-621

ployed once every 200 communication rounds. The choice of deployment frequency is itself a tunable622

parameter in practice, although very small frequencies are typically infeasible from system considera-623

tions, and often undesirable from a stability perspective. In Figures 2d and 3d, we investigate the624

performance of algorithms in the init-shift setting, when the deployment frequency is reduced625

to just 40 rounds. This means that we get a total of 20 training periods in EMNIST and 40 periods626

in SO. The first observation is that the absolute performance of all the methods improves over the627

corresponding Figures 2c and 3c with a frequency of 200 in the same setting. This is not surprising628

as better models are deployed early with a smaller deployment frequency, giving a longer time to629

effectively exploit the gains from exploration. This confirms the intuition that smaller deployment630

frequencies are preferable from a learning perspective, as long as the rest of the system architecture631

allows it.632

Next we study the effect of varying some important elements in Algorithm 7.633

18

Effect of optimizer choice. Algorithm 6 allows us to choose different client and server optimizers.634

We fix client optimizer to SGD throuhgout, but use ADAM [20] as the default choice for server635

optimizer, consistent with prior works on supervised federated learning [28]. We test the effectiveness636

of this choice by changing the server optimizer to SGD for Softmax in the init-shift setting in637

both SO and EMNIST. While there is no change in the final performance at tuned hyperparameters638

for EMNIST, the average bandit reward at the end of 1500 communication rounds drops from 0.81 to639

0.62. This mirrors prior results in the supervised setting [28], where ADAM is found to be superior640

for the SO task, due to the presence of sparse, high-dimensional features.641

Effect of importance sampling. As we discuss in Appendix B.2, several prior works train an642

importance weighted regressor [6] to form the underlying greedy policy in ε-Greedy, while we adopt643

an unweighted regression. This is due to the destabilizing effects of the variance from importance644

weighting on the learning process. Indeed, we find that changing the ε-Greedy approach to use645

weighted regression worsens the performance in the init-shift setting from 0.71 to 0.6 for EMNIST646

and from 0.72 to 0.47 for SO. There is a wealth of literature on variance reduction techniques647

with importance weighting, such as the doubly robust methods [12]. However, given the strong648

performance of unweighted methods here, we do not investigate these additional techniques due to649

added challenges with hyperparameters and learning complexity in practice. While the theoretical650

foundations of the unweighted approach here rely on an expressivity assumption on the underlying651

function class as we discuss in the next section, we find that this is less of a concern in modern652

systems with powerful, over-parameterized regression models.653

Takeaway 2: Importance of variance control.

Both the choice of ADAM versus SGD as server optimizer and the use or not of importance
weights eventually control the variance in the training process, and crucially modulate the
sample efficiency in our experiments. We find the choices of ADAM and regression-based loss
to be effective across settings, and recommend them to practitioners.

654

Choosing hyperparameters. While hyperparameter choice is a process fraught with some over-655

head in all learning pipelines, it is particularly challenging in bandit settings, where each hyperpa-656

rameter drives different data collection and hence tuning is not so straightforward. Unfortunately,657

we find that while the exploration parameters show remarkable stability for most approaches and658

regimes, the optimization learning rates are more sensitive. For Softmax, a temperature parameter659

of 0.05 performs the best in all regimes other than init-shift, where a slightly higher choice of660

0.1 does somewhat better, though 0.05 is still reasonably good. Similarly ε = 0.05 works best in661

most cases for ε-Greedy. FALCON, in contrast, requires very different choices across datasets and set-662

tings, explaining our preference of Softmax over FALCON. For optimization parameters, we find that663

higher learning rates are preferred in scratch and init-shift settings, while init prefers smaller664

learning rates due to the high-quality initial model. Since practical setups typically use fairly large665

deployment frequencies, it is reasonable to pick the optimization hyperparameters through offline666

off-policy evaluation style approaches [12] from the accumulated training data. See Appendix F for667

hyperparameter tuning details.668

D.3 Incorporating differential privacy.669

We provide preliminary results on adding differential privacy to the federated CB experiments by670

applying DP-FedAvg [24] in Algorithm 6, as discussed in Section 2. We consider the scratch setting671

in Fig. 5, but same approach can be applied in the init and init-shift settings after accounting the672

privacy budget for pretraining or pretraining on public data. We follow the strategy in Xu et al. [37]673

to tune the hyperparameters: we first estimate an (aggressive) clip norm with adaptive clipping [4] of674

target quantile 0.5 and noise multiplier 0, and a small grid of learning rates around the best learning675

rates tuned in no DP settings; we fix the clip norm to 0.1 for EMNIST and 0.8 for StackOverflow676

and then choose a small and large noise multiplier respectively for EMNIST and SO; we further tune677

the learning rates in a small grid based on the learning rates chosen for adaptive clipping experiments,678

and select the best hyperparameters based on the final (averaged) reward.679

Fig. 5 compares four approaches:680

19

0 200 400 600 800
Communication rounds

0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

no DP
NM=0

NM=0.01
NM=0.1

(a) EMNIST scratch with DP

0 200 400 600 800
Communication rounds

0.0

0.2

0.4

0.6

0.8

Ac
tio

n
pr

ob
ab

ilit
y

no DP
NM=0

NM=0.01
NM=0.1

(b) Exploration-exploitation in Fig. 5a

0 500 1000 1500
Communication rounds

0.0

0.1

0.2

0.3

0.4

Re
wa

rd

no DP
NM=0

NM=0.3
NM=0.7

(c) SO scratch with DP

0 500 1000 1500
Communication rounds

0.0

0.2

0.4

0.6

Ac
tio

n
pr

ob
ab

ilit
y

no DP
NM=0

NM=0.3
NM=0.7

(d) Exploration-exploitation in Fig. 5c

Figure 5: Differential privacy for Softmax variations in the scratch setting. Hyperparameters are
detailed in Table 9

• No DP shows vanilla FedAvg with adaptive clipping of to a large target quantile (0.8) that681

clips rarely, without noise.682

• NM=0 uses a fixed clipping norm with no added noise.683

• NM=0.01 or 0.3, small noise multipliers for EMNIST and SO respectively.684

• NM=0.1 or 0.7, corresponding large noise multipliers.685

The large noise multiplier will conceptually result in stronger privacy guarantees, however, for the686

small EMNIST dataset of 3400 clients, even NM=0.1 is not large enough to achieve meaningful formal687

DP guarantees. For SO of ∼0.34M clients, when assuming Poisson sampling and add-or-remove-one688

adjacency, we use RDP [1, 25] accounting to compute privacy guarantees measured by (ε, δ)-DP.689

Fixing δ = 10−6, the noise multipliers 0.3 and 0.7 can lead to ε = 15.8 and 1.5 respectively.690

Fig. 5a (EMNIST) and Fig. 5c (SO) show the running average reward of these approaches, and suggest691

that clipping alone does not necessarily degrade the model utility measured by reward, and noise692

multiplier controls the privacy-utility trade-off. The observations of the DP effect in bandits settings693

are similar to the previous observation in supervised settings [4, 18]. The preliminary DP results are694

provided to show the proposed federated bandit algorithms are indeed compatible with differential695

privacy. There are many potential tuning strategies to achieve stronger privacy-utility trade-offs [26].696

A particular useful tuning strategy for DP is to sample large number of clients per round. Following697

[18, 24, 37], we can extrapolate the privacy and utility in a more realistic setting by assuming larger698

number of total clients, and linearly increasing noise multiplier and clients per round. Figure 5a shows699

that NM=0.01 can achieve strong utility. When ∼ 0.34M total clients can participate in training, and700

scaling up NM from 0.01 to 1, RDP accounting can achieve (ε = 4.13, δ = 10−6)-DP. If we also701

linearly scale up clients per round from 64 to 6400, the utility measured by reward is expected to be702

similar to the strong utility of NM=0.01 in Fig. 5a.703

In Figs. 5b and 5d, we further report the probability of the chosen action (pj(aj) in Algorithm 5)704

averaged for data of the sampled clients in each round, which is an indicator of the exploration-705

20

exploitation trade-off of the Softmax algorithm. The Softmax algorithm has an interesting annealing706

effect of exploration: the probability of chosen actions gradually increase as the models become more707

confident in their predictions after training. DP seems to have a larger effect on the probability at the708

early stage of training for SO, while the effect happens at later stage for EMNIST. The relationship of709

randomness in bandits exploration and the noise addition of DP can be an interesting topic for future710

study.711

E A theoretical model712

We now present a simple theoretical model to understand some of the key considerations in federated713

CB learning. Using the same high-level setup as Appendix B.1, we abstract the inference and training714

periods as described below.715

Inference: At inference period i, each client c simultaneously uses the currently available model716

πi to choose actions for any contexts x ∼ Dc that it observes, and logs (x, a, r, πi(a|x)), with717

a ∼ πi(·|x) and r = r(x, a) for (x, r) ∼ Dc.718

Training: At each training period i = 1, 2, . . ., the server updates the model using a total of n new719

training log entries for this training period, distributed across the clients participating in the training720

period. To abstract away the specifics of client sampling and its effects, we consider the n samples to721

be i.i.d. according to the choice of a client c ∼ p and (x, r) ∼ Dc.722

We make an additional assumption on the problem setup which leads to computationally nicer723

algorithms. Concretely, we assume that our CB algorithm models the rewards, and has access to724

a function class F ⊆ {X × A → [0, 1]}, so that each f ∈ F predicts rewards, given a context,725

action pair as the input. To obtain theoretical justification for the use of such a parameterization,726

centralized CB algorithms make the so-called realizability assumption that for some f? ∈ F ,727

E[r|x, a] = f?(x, a) for all x, a. However, in the federated setting, we have heterogeneous data728

distributions across clients. Nevertheless, we use a common set of parameters to predict the rewards729

at each client, which motivates the following realizability assumption in the federated setting.730

Assumption 1 (Realizability in Federated CBs). There exists f? ∈ F such that EDc [r|x, a] =731

f?(x, a) for all x ∈ X , a ∈ A and c ∈ C.732

Importantly, this assumption does not contradict the substantial heterogeneity in client preferences733

that may naturally arise in federated settings, as such heterogeneity can be modeled via appropriate734

distributions Dc, allowing a single f? to effectively behave arbitrarily differently on different clients735

(e.g., in the extreme case where the support of the clients Dc is non-overlapping).736

Under the realizability assumption, it is natural to learn the regression function using the unweighted737

regression objective (4). To abstract away the details of the underlying FL algorithms, we assume738

access to a federated regression oracle which can optimize such objectives, formally:739

Definition 1 (Federated Regression Oracle). Given clients c1, . . . , cm with local datasets740

Sc1, S
c
2, . . . , S

c
m satisfying |Sc1 ∪ Sc2 ∪ Scm| = n , a federated regression oracle returns a function f̂ ,741

using a federated learning protocol, which satisfies:742

1

n

m∑
i=1

∑
(x,a,r)∈Scm

(f̂(x, a)− r)2 ≤ 1

n
min
f∈F

m∑
i=1

∑
(x,a,r)∈Scm

(f(x, a)− r)2 + εfed-opt.

743

The parameter εfed-opt captures the accuracy of solving the regression problem over n examples744

distributed over m clients in a federated manner, and will in general depend on the choice of the745

federated learning method, settings of hyperparameters such as communication rounds, etc. We746

assume that the clients c1, . . . , cm are chosen i.i.d. from the underlying distribution p, and that the747

effective training set for the regression problem Sc1 ∪ Sc2 ∪ Scm (which is never explicitly materialized748

in one place) is of a fixed size n, with samples i.i.d. from the ideal sampling distribution c ∼ p and749

(x, r) ∼ Dc.750

Federated inference regret of ε-Greedy With this background, it is straightforward to analyze751

a simple regression-based ε-Greedy method for the federated setting. Let f̂i+1 be the regressor752

21

computed at the training period i. Furthermore, for any f ∈ F , let πf (x) = argmaxa f(x, a) denote753

the greedy policy, with ties broken in an arbitrary manner, and let πi(x) = (1− ε)πfi(x) + εUnif(A)754

denote the inference policy deployed at inference period i and π? = πf? denote the optimal policy.755

Since f, r are both bounded in [0, 1] and we use n fresh training samples at each training period i to756

have a total of ni samples after i periods, it can be show that (see e.g. [2]) with probability at least757

1− δ, the following generalization bound for the regression performance of f̂u+1 holds:758

1

i

i∑
j=1

Ej
[
(f̂i+1(x, a)− r)2 − (f?(x, a)− r)2

]
= O

(
ln(|F|/δ)

ni
+ εfed-opt

)
. (6)

Here we use Ej as a shorthand to denote expectation over random variables c ∼ p, x, r ∼ D and759

a ∼ πj(·|x). We also assume that the class F is finite for our analysis here for convenience. Using760

standard arguments, a similar result can also be obtained for infinite function classes through the use761

of covering. Under Assumption 1, the proof of Lemma 4.3 of Agarwal et al. [2] further implies that762

Ec∼pE(x,r)∼Dc

[
r(π?(x))− r(πf̂i+1

(x))
]
≤
√
Ec∼pE(x,r)∼Dc

[(
r(π?(x))− r(πf̂i+1

(x))
)2]

≤

√√√√2K

ε

1

i

i∑
j=1

Ej
[
(f̂i+1(x, a)− r)2 − (f?(x, a)− r)2

]

=O

(√
2K

ε

(
ln(|F|i/δ)

ni
+ εfed-opt

))
, (7)

where the first inequality follows from Jensen’s inequality, the second inequality uses Lemma 4.3763

of Agarwal et al. [2], and in the last step we use Eq. (6). Since our actual inference policy πi+1 is764

ε-greedy, the per-round inference regret after I training rounds is at most765

O

(
ε+

√
2K

ε

(
ln(|F|I/δ)

nI
+ εfed-opt

))
.

To better contrast this result with standard CB guarantees in the centralized setting, we make a766

simplifying assumption that we have only 1 client in the pool, and that the number of samples per767

inference period is the same as the size of our training pool for each period, equal to n. Then the768

cumulative inference regret after I periods is at most769 (
ε+

√
2K

ε
εfed-opt

)
nI + n+

I∑
i=2

√
2K

ε
· n ln(|F|I/δ)

(i− 1)
. (8)

In comparison, under the same assumptions, updating the regressor after each inference round yields770

a regret of at most771 (
ε+

√
2K

ε
εopt

)
nI + 1 +

nI∑
j=2

√
2K

ε
· ln(|F|nI/δ)

j − 1
, (9)

where εopt is the accuracy of the centralized regression oracle. Assuming that the two optimization772

errors are of a comparable order, then the main difference in the two bounds arises due to the delay of773

roughly one inference period in the model updates in the federated setting. Clearly the gap is at most774

of a constant factor and decreases over time, which is consistent with prior results on delayed bandit775

learning. As we have already observed in the empirical evaluation, however, when the number of776

inference and training periods, given by I above, is relatively small, then this delay has a non-trivial777

effect on the performance (see e.g. the effect of deployment frequency in Appendix D.2). An extreme778

case of this can be observed by setting I = 1, whence the bound in (8) becomes vacuously large in779

the final term, while that in (9) still decreases as Õ(1/
√
n) in the final term.780

Note that our calculations above assume that our regression solution f̂i fits all the training data781

accumulated over prior training periods 1, 2, . . . , i− 1. In practice, depending on the implementation782

details, it might only incorporate the data from the most recent, or roughly a constant number of past783

training periods, but where the optimizer is warm-started from the previous solution. As long as the784

optimizer does provide guarantees of approximately fitting the entire data through the warm-start785

however, our conclusions continue to hold in this setting.786

22

Federated inference regret of FALCON . While our analysis of the ε-greedy approach above serves787

to illustrate most of the key ideas and modifications in the federated setting from a centralized one,788

it has the drawback of a weak overall regret bound due to the simplistic uniform exploration. In789

the centralized setting, recent algorithms [13, 31] have leveraged Assumption 1 to give statistically790

optimal CB results, and can be computationally implemented using regression oracles. For the791

federated setting, the FALCON algorithm of Simchi-Levi and Xu [31] is particularly attractive, since it792

takes an offline squared loss regression oracle as an input, which can be instantiated with a federated793

regression oracle in the federated setting. This combination allows us to get a per-round inference794

regret after I training rounds of795

O

(√
K

(
ln(|F|I/δ)

nI
+ εfed-opt

))
,

which removes the undesirable scaling of O(1/ε) on a fixed exploration parameter through a more796

adaptive exploration-exploitation tradeoff. The effect of delays and other aspects of the comparison797

with the centralized setting remain unchanged.798

F Detailed Hyperparameter Settings799

We now give the detailed hyperparameter settings for the different simulation scenarios and algo-800

rithms.801

Where we discuss choosing hyperparameters from a grid, unless otherwise noted we ran all combina-802

tions of the hyperparameters for each (scenario × algorithm × dataset) configuration, and report the803

runs which achieved the best running average reward at the end (last round) of training. As described804

in Algorithm 7, the same set of clients are used for bandit inference and federated training. For805

EMNIST, a client may be revisited 64× 800/3400 ∼ 15 times while for SO, as the dataset is large, it806

would be rare to revisit the same client twice.807

F.1 Settings for the exploration parameters808

We begin with ε-Greedy and Softmax, which use fixed hyperparameters across all simulations. The809

preferred choices which result in the highest CB reward at the end of the experiment are indicated in810

bold.811

• ε for ε-Greedy: ε ∈ {0.05, 0.1}.812

• β for Softmax: β ∈ {0.02, 0.05, 0.1}.813

For the FALCON algorithm, we found setting the two hyperparameters of γ and µ to be significantly814

more challenging. To have a standardized way of setting these across both the datasets, we first chose815

µ ∈ {1, 0.1, 0.01}K/ε with ε = 0.05, so that the contribution of this term is in various multiples of816

our preferred parameter in ε-Greedy. Since the number of actions is different in the two cases, this817

results in µ ∈ {12, 124, 1240} and µ ∈ {10, 100, 1000} for EMNIST and SO respectively. For γ, we818

further tune it in the set γ ∈ {1000, 5000}, which we found to be reasonable for both the datasets.819

F.2 Settings for the optimization hyperparameters820

Next we describe the optimization hyperparameters which are more sensitive to the dataset and the821

simulation setting used. We always choose learning rates from a grid of the form {1, 2, 5} ∗ 10−n,822

where n is chosen appropriately for each setting. We used a fixed grid across algorithms and scenarios823

for each dataset, and when the best settings fell on the edge for an algorithm in a setting, we ran824

additional runs to confirm that expanding the grid does not improve the results. We start with the825

parameters for EMNIST.826

• learning rate for client optimizer (SGD) ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.827

• learning rate for server optimizer (ADAM)∈ {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05}.828

The corresponding settings for SO are:829

23

Algorithm Server learning rate Client learning rate Exploration param
Softmax 0.002 0.1 β = 0.05
FALCON 0.002 0.1 µ = 12, γ = 1000
Greedy 0.001 0.2 ·
ε-Greedy 0.01 0.1 ε = 0.05

Table 1: Hyperparameter settings for the EMNIST dataset and the scratch scenario (Fig. 2a)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.5 0.5 ·

Softmax 0.005 0.1 β = 0.05
FALCON 0.002 0.2 µ = 12, γ = 5000
Greedy 0.002 0.1 ·
ε-Greedy 0.002 0.1 ε = 0.05

Table 2: Hyperparameter settings for the EMNIST dataset and the init scenario (Fig. 2b)

• learning rate for client optimizer (SGD) ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}.830

• learning rate for server optimizer (ADAM)∈ {0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05}831

We use the default values in Keras for the remaining ADAM hyperparameters such as β1, β2 and ε.832

The large grids for the server optimizer are primarily because the init setting prefers a much smaller833

learning rate at the server than the other settings.834

We fix other federated optimization parameters in all experiments: each client run one epoch on their835

local logged data for training; minibatch size of 16 is used on clients; 64 clients are sampled per836

round; the maximum number of samples per client on SO is capped at 256.837

We conclude this section by giving tables of learning rate settings for each of the plots in Figures 2, 3838

and 5.839

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.5 0.5 ·

Softmax 0.005 0.1 β = 0.05
FALCON 0.005 0.2 µ = 12, γ = 5000
Greedy 0.001 0.1 ·
ε-Greedy 0.01 0.1 ε = 0.05

Table 3: Hyperparameter settings for the EMNIST dataset and the init-shift scenario (Fig. 2c)

24

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.5 0.5 ·

Softmax 0.005 0.2 β = 0.05
FALCON 0.005 0.1 µ = 12, γ = 5000
Greedy 0.002 0.1 ·
ε-Greedy 0.005 0.2 ε = 0.05

Table 4: Hyperparameter settings for the EMNIST dataset and the init-shift scenario with de-
ploy_freq = 40 (Fig. 2d)

Algorithm Server learning rate Client learning rate Exploration param
Softmax 0.01 1 β = 0.05
FALCON 0.01 0.05 µ = 10, γ = 5000
Greedy 0.01 0.1 ·
ε-Greedy 0.01 0.2 ε = 0.05

Table 5: Hyperparameter settings for the SO dataset and the scratch scenario (Fig. 3a)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.05 0.2 ·

Softmax 0.005 0.05 β = 0.05
FALCON 0.0005 0.1 µ = 10, γ = 5000
Greedy 0.001 0.02 ·
ε-Greedy 0.005 0.1 ε = 0.05

Table 6: Hyperparameter settings for the SO dataset and the init scenario (Fig. 3b)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.05 0.05 ·

Softmax 0.02 2 β = 0.1
FALCON 0.05 0.2 µ = 100, γ = 1000
Greedy 0.05 1 ·
ε-Greedy 0.05 0.2 ε = 0.05

Table 7: Hyperparameter settings for the SO dataset and the init-shift scenario (Fig. 3c)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.05 0.05 ·

Softmax 0.05 1 β = 0.1
FALCON 0.05 0.05 µ = 10, γ = 1000
Greedy 0.05 0.1 ·
ε-Greedy 0.05 0.05 ε = 0.05

Table 8: Hyperparameter settings for the SO dataset and the init-shift scenario with deploy_freq
= 40 (Fig. 3d)

Dataset Clip Norm Noise Multiplier Server learning rate Client learning rate

EMNIST 0.1
0 0.002 0.2

0.01 0.002 0.1
0.1 0.002 0.2

SO 0.8
0 0.02 0.5

0.3 0.01 2
0.7 0.01 2

Table 9: Hyperparameter settings for the DP experiments using Softmax β = 0.05 in the scratch
scenario (Fig. 5).

25

	Introduction
	Federated Contextual Bandits
	Empirical Evaluation Results
	Conclusion
	Preliminaries
	Federated Contextual Bandits
	Problem Setting
	Federated CB algorithms

	Simulation Setup
	Datasets for Simulating Federated CB
	Simulation Scenarios

	Empirical Evaluation Results
	Results for the three simulation settings
	A Closer look at some choices in the algorithms and setup
	Incorporating differential privacy.

	A theoretical model
	Detailed Hyperparameter Settings
	Settings for the exploration parameters
	Settings for the optimization hyperparameters

