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Abstract

In materials discovery, descriptors that are both accurate and interpretable are essen-
tial for predicting molecular properties. However, existing descriptors, including
neural network-based approaches, often struggle to capture long-range interactions
between substructures. We analyze the previously proposed descriptor TDiMS,
which models nonlocal structural relationships via average topological distances
between substructure-pairs. While TDiMS has shown strong performance, its size
dependence had not been systematically assessed. Our analysis reveals that TDiMS
is particularly effective for larger molecules, where long-range interactions are crit-
ical and conventional descriptors underperform. SHAP-based analysis highlights
that its predictive power derives from distant substructure-pair features. In addition
to improved accuracy, TDiMS offers interpretable features that provide chemical
insight, potentially accelerating molecular design and discovery.

1 Introduction

Machine learning (ML) has accelerated materials discovery by enabling efficient prediction of
molecular properties [24]. A critical component of this process is the representation of molecules
through informative descriptors that encode their structural and chemical characteristics. Conventional
Quantitative Structure—Property Relationship (QSPR)-based descriptors [4 13| 2| [18] enumerate
substructures or physicochemical properties, while neural network-based approaches [0, 20, 22 [1]]
learn data-driven representations from molecular graphs or SMILES. Despite their success, both types
of descriptors often struggle to capture nonlocal relationships among intra-molecular substructures.
Moreover, the interpretability of these models remains limited, posing challenges in applications that
demand chemical insight and design rationale.

We previously proposed the Topological Distance of intra-Molecular Substructures (TDiMS) de-
scriptor [8]], which captures long-range topological relationships between substructure-pairs while
maintaining interpretability, even with a potentially vast number of features. It also supports flexible
substructure definitions, including data-driven and domain-specific motifs, making it adaptable to a
wide range of prediction tasks. Prior studies showed that TDiMS outperforms conventional and neural
descriptors on datasets such as Chromophore [8] and MolNet [9], particularly where long-range
interactions are critical.

In this study, we further investigate the effectiveness of TDiMS with a particular focus on molecular
size, examining the conditions under which it offers strong advantages over existing descriptors. We
find that TDiMS demonstrates particularly strong performance for larger molecules, especially those
with heavy atom counts of 25 or more, where long-distance interactions are more likely to influence
target properties. Furthermore, we show that incorporating custom-defined substructures tailored to
the dataset leads to additional improvements in predictive performance. This study also provides an
important direction for descriptor development, including neural-network-based models, by showing
that capturing long-range substructure distances can further improve predictive performance.
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2 Related Works

Mordred [[18]] is an advanced descriptor open-source tool that calculates over 1800 two- and three-
dimensional descriptors by counting substructures based on physical chemistry knowledge. However,
this approach lacks global molecule information, such as intra-molecular positional relationships,
which can critically affect molecular properties. To address this, the Atom-Pair descriptor [3]] encodes
global information by capturing atomic environments and shortest path distances between all atom
pairs. Still, relying solely on atoms presents limitations. MAP4 [2] extends Atom-Pair by replacing
atomic features with circular substructures around each atom and encoding their distances. To
handle the combinatorial explosion of substructure-pairs, MAP4 uses MinHash values from Locality
Sensitive Hashing (LSH) for efficient representation. While this enables fast similarity search in large
databases, it comes at the cost of reduced interpretability.

Latent vectors from neural-network models, including Transformer-based chemical language models
(CLMs) and graph neural networks (GNNs), are increasingly used as molecular descriptors [1, [15]].
These models are pretrained on large datasets such as PubChem [13]] and ZINC [10]]. For example,
MoICLR [22] is a contrastive-learning-based GNN that learns molecular graph embeddings via
self-supervised pretraining. MolFormer [20], on the other hand, is a Transformer-based CLM that
directly encodes SMILES strings to generate context-aware molecular representations.

GNNss capture atomic and bond-level information but are limited by the number of message-passing
steps, restricting the range of bond-path distances [14]. CLMs can, in principle, model long-range
relationships via attention, but are constrained by input representations like SMILES, which the
sequence of characters does not necessarily reflect the actual spatial arrangement of atoms in the
molecular structure [25, [11]]. Moreover, the feature vectors derived from neural-network models,
commonly referred to as latent vectors, often lack interpretability, as individual features typically
have no clear chemical meaning.

3 Method
3.1 TDiMS algorithm
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Figure 1: Workflow of TDiMS for a target molecule in dataset.

Figure 1| outlines the TDiMS workflow. Canonical SMILES are used as input, and all substructure-
pairs within a molecule are exhaustively enumerated. We consider three types of substructures:
(i) Hetero atoms, (ii) fragments, and (iii) circular substructures from Morgan fingerprints [17]].
When substructures are extracted using Morgan fingerprints or fragments, smaller substructures
are often entirely encompassed by larger ones. To avoid redundant representation of the same
structural effect, TDiMS excludes smaller substructures from a pair if they are fully contained within
larger substructures (Step 2 in Fig. [I). The topological distance (TD) between two substructures is
computed as the mean shortest bond distance between their heavy atoms using the Floyd-Warshall

algorithm [[7, [12, 23]:
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where tdg,p4,sup5 denotes the average shortest bond distance between all pairs of heavy atoms in
substructures subA and subB, with N4 and Np being the number of heavy atoms, and bd,,, s, the
shortest bond distance between atom «; in subA and 3; in subB. This formulation captures the
spatial spread between substructures, making it robust to variations in their internal geometry. It
also allows flexible targeting of arbitrary substructure definitions. The feature values are computed
as the inverse or inverse square of the TD, emphasizing short-range effects and reflecting physical
principles such as Coulomb’s law (Step3 in Fig. [I). To handle identical substructure-pairs appearing

tdsubA,subB =



at multiple locations within a molecule, TDiMS applies an aggregation function to their TDs. This
function, such as sum, max, or min, is selected based on the property of interest and how repeated
occurrences should be weighted. This reduces redundancy while preserving meaningful recurring
interactions. Then TDiMS calculates the set of the feature values for all substructure-pairs |J Dj.
k=1
TDiMS computes feature values for all observed substructure-pairs | J Dy, and constructs a unified
k=1

feature vector for each molecule based on the full set across the dataset. Missing pairs are filled with
zero. Feature vectors are normalized across all molecules. We tested all combinations of substructure
types (Hetero atoms, fragments, circular substructures), feature functions (raw, inverse, inverse
square), and aggregation methods for duplicate substructure-pairs (min, max, sum), and selected the
best-performing configuration for each task.

3.2 Evaluation Tasks

To investigate the molecular size range where TDiMS is most effective, we conducted a dipole
moment prediction task using subsets of the PubChemQC dataset [19], grouped by heavy atom
count (HAC). Each subset consists of 1,000 randomly selected molecules per HAC group, real-world
data scarcity commonly observed in materials discovery datasets. Distributions of HAC and dipole
moments are shown in Figure@] (a) and (b).

As described in the Method section, TDiMS features were generated under various configurations,
and the best-performing setup was selected based on initial validation. Hetero atoms were always
included as a target substructure. Since no established fragment database exists for dipole moment
prediction, we used the MacFrag method [3] to extract candidate substructures from the PubChemQC
dataset. We compared TDiMS against five representative baseline descriptors covering a diverse
range of molecular representation strategies: one knowledge-driven descriptor (Mordred), two neural
network-based descriptors (MolFormer and MolCLR), and two enumerative descriptors based on
intramolecular TDs (Atom-Pair and MAP4).

For prediction, we adopted the elastic net (including Lasso and Ridge) and random forest, following
prior studies [21]]. Hyperparameters were tuned via grid search with 3-fold cross-validation and 10
repeats using the RepeatedKFold class. To interpret the contribution of each substructure-pair feature,
we computed feature importance scores using SHAP [16]]. This allowed us to quantify the impact of
individual features on the model’s predictions.
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Figure 2: Data characteristics and performance comparison. (a) Heavy atom count. (b) Dipole
moment. (c) R? scores for each descriptor. Each subset is labeled as HAC X-Y’, indicating the HAC
range. “HAC 33-" denotes molecules with 33 or more heavy atoms.

Table 1: R? scores of TDiMS under different configurations. 7 indicates the radius of circular
substructures; w/ and w/o refer to the inclusion or exclusion of custom fragments. Bold values
indicate the best-performing configurations.

Method HAC <S8 9<HACK<16 17T<HAC<24 25<HAC <32 33< HAC

r=1w/o 0432+0.041 0.420+0.041 0.200 £ 0.029 0.242 £ 0.028 0.293 £0.035
r=1w  0.423+£0.040 0.417 £ 0.028 0.200 £ 0.025 0.244 £0.024 0.299 £ 0.044
r=2,w/o 0.310 £ 0.051 0.307 £ 0.037 0.209 £ 0.029 0.255 £ 0.020 0.310 £ 0.049
r=2,w/  0.298+£0.053 0.392 £ 0.043 0.218 £0.038 0.269 £0.028 0.312 £ 0.043

4 Results and Discussion

Figure2](c) compares TDiMS with other descriptors. TDiMS outperformed others for molecules with
HAC > 25, while Mordred showed stronger performance for smaller molecules, particularly in the
0-8 HAC range. In intermediate HAC groups (9-24), the two were competitive. Table [I| summarizes



R? scores across TDIMS configurations. Radius 1 was effective for small molecules, while radius
2 yielded better results for larger ones, validating the effectiveness of our configuration selection.
Custom fragments had limited impact on small molecules but consistently improved performance for
those with HAC > 17, highlighting the value of task-specific substructure extraction in TDiMS.

Interestingly, TDiMS outperformed both Atom-Pair and MAP4, which also target TDs between sub-
structures. As shown in Table[l] it achieved higher prediction scores than MAP4 even without custom
fragments, namely when targeting equivalent substructures. Figure |3|shows that for larger molecules
(HAC 17+), features involving substructures with more than two heavy atoms contributed more
significantly, explaining TDiMS’s growing advantage over Atom-Pair. While Atom-Pair is limited
to small substructures and MAP4 sacrifices interpretability through MinHash compression, TDiMS
retains interpretability by removing redundancy and grouping similar substructure-pairs. These
results highlight the advantage of explicitly modeling distances between meaningful substructures,
rather than compressing or simplifying them.

TDiMS consistently outperformed neural-network models, likely due to the limitations of GNNs
and CLMs discussed in Related Works. As shown in Figure 3| (b), an increase in heavy atom count
(HAC) leads to a greater contribution from features with bond-path distances of five or more. In the
HAC 33+ dataset, where TDiMS achieved the largest performance gains, these long-range features
accounted for a substantial portion of the model’s output. When they were removed, over 36% of
TDiMS’s predictive performance was lost. These findings highlight the importance of modeling
long-range structural interactions, which are difficult to capture with conventional GNNs constrained
by message-passing depth [14].

Next, we further analyze the substructure-pairs that contributed most to the prediction of dipole
moment. Figure [3|(c) shows the top 20 substructure-pairs with the highest total SHAP values across
all HAC groups. While detailed interpretation is beyond this study’s scope, further analysis may yield
deeper insights into their chemical relevance. Such interpretability is made possible by TDiMS’s
explicit and structured design.
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Figure 3: SHAP analysis of TDiMS features. SHAP values by (a) HAC and (b) TD of substruc-
tures(red numbers: % in shaded region). (c) Top 20 substructure-pairs.

5 Conclusion and Future Work

In this study, we demonstrated that the TD of intra-Molecular Substructures (TDiMS) descriptor
provides a significant advantage in predicting molecular properties, as demonstrated on a dipole
moment prediction task using the PubChemQC dataset. TDiMS consistently outperformed competi-
tive descriptors, particularly for larger molecules with more than 24 heavy atoms, where modeling
long-range substructure interactions becomes essential. From the perspective of Al-guided materials
design, TDiMS offers a compelling alternative to end-to-end deep learning models. Its ability to
capture long-range intra-molecular interactions while preserving interpretability provides a valuable
tool for the design and screening of molecules with targeted properties. Additionally, the flexible
design of TDiMS allows it to incorporate task-specific substructures, further enhancing its adapt-
ability to different material property prediction tasks. Future work will focus on expanding TDiMS
to support multi-property prediction and integration with generative models. Another promising
direction is to integrate TDiMS with graph transformers or virtual-node GNNs to enhance their
ability to represent long-range substructure interactions while preserving interpretability. We are also
exploring its application to broader materials datasets beyond organic molecules, such as polymers or
inorganic compounds.
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