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Abstract

The Laplace approximation (LA) of the Bayesian posterior is a Gaussian distribution cen-
tered at the maximum a posteriori estimate. Its appeal in Bayesian deep learning stems
from the ability to quantify uncertainty post-hoc (i.e., after standard network parameter
optimization), the ease of sampling from the approximate posterior, and the analytic form
of model evidence. Uncertainty in turn can direct experimentation. However, an important
computational bottleneck of LA is the necessary step of calculating and inverting the Hes-
sian matrix of the log posterior. The Hessian may be approximated in a variety of ways,
with quality varying with a number of factors including the network, dataset, and inference
task. In this paper, we propose an alternative algorithm that sidesteps Hessian calculation
and inversion. The Hessian-free Laplace (HFL) approximation uses curvature of both the
log posterior and network prediction to estimate its variance. Two point estimates are re-
quired: the standard maximum a posteriori parameters and the optimal parameter under
a loss regularized by the network prediction. We show that under standard assumptions of
LA in Bayesian deep learning, HFL targets the same variance as LA, and this is empirically
explored in small-scale simulated experiments comparing against the exact Hessian.

Keywords: Bayesian Neural Networks, Laplace Approximation, Epistemic Uncertainty

1. Introduction

Bayesian neural networks, where a prior is placed on model weights, offer an opportunity
to understand uncertainty and direct experimentation. However, exact computation of the
model-weight posterior and predictive distributions is prohibitive given size and complexity.
It is instead appealing to approximate it using the maximum a posteriori (MAP) solution
and the curvature thereat. However, even this curvature, characterized by a Hessian, can
be challenging to compute.

Consider the maximum a posteriori (MAP) solution of a Bayesian neural network fθ
with parameters θ given data {(xi, yi)}ni=1,

θ̂ = argθ maxLθ (1)

where Lθ =

n∑
i=1

log p(yi | fθ(xi)) + log p(θ), (2)

for some observation likelihood p(y | φ) and prior p(θ). This is equivalent to optimizing a
loss (e.g., squared loss for Gaussian likelihood or cross-entropy for categorical likelihood)
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regularized by log p(θ) and means that computing the MAP of a Bayesian neural network
is akin to fitting a vanilla neural network.

As detailed in the next section, the Laplace approximation of of the posterior distribution
leverages the (negative) Hessian of the log joint distribution at the MAP (Mackay, 1992),

P = −∇∇θLθ̂. (3)

Calculating and inverting P are the central steps in performing the Laplace approximation.
For high dimensional θ – common in deep neural networks – these steps are a prohibitive
computational bottleneck even for an approximate posterior. One remedy is further ap-
proximation of the Hessian as well, but these may ignore important directions of curvature.

In this paper we propose Hessian-free Laplace (HFL), which directly approximates the
uncertainty of the predicted output mean in the Laplace approximation without explicitly
computing and inverting the Hessian (while still assuming it exists as in Laplace). Instead,
one additional point estimate is required, the prediction-regularized MAP, derived from the
network objective with a small amount of regularization added that is conditional on the
query point x of the prediction. Under the assumptions that Laplace approximation is
used, we find that the rescaled difference in network outputs given by the MAP and the
prediction-regularized MAP recovers the Laplace variance.

The rest of the paper is organized as follows. In Section 2, we develop the Hessian-free
Laplace method. Empirical evaluation is presented in Section 3 before discussing conclusions
and future work in Section 4.

2. Bayesian Deep Learning with Hessian-Free Laplace

Our starting point is the learning of parameters θ of a deep neural network fθ as per
Eq. 1 and 2. While the representational power and accuracy of the network may be high,
in many applications it is crucial to also quantify the uncertainty of predictions, such as
in autonomous vehicles, healthcare, risk-averse recommendations (Kendall and Gal, 2017;
Leibig et al., 2017).

Bayesian probability theory provides a framework for analyzing uncertainty in deep
learning, referred to as Bayesian deep learning (BDL). As for Bayesian inference in general,
the key components are the prior distribution p(θ) and likelihood function p(y | θ, x) in
a family of models indexed by θ, and an i.i.d. dataset D = {(xi, yi)}ni=1 assumed to be
collected from a model in this family. The posterior distribution is then derived,

p(θ | D) =
p(D | θ)p(θ)∫
p(D | θ)p(θ)dθ

, (4)

and may be flexibly used as the density (or mass) for the expectation of any downstream
prediction depending on θ, e.g. expectation or variance of predicted mean, as part of a
larger simulation involving fitted deep models, or interpreting the variance of weights for
different layers of the network. The main evaluations of interest in BDL are the mean
Ep(θ | D)[fθ(x)] and (co)variance Varp(θ | D)[fθ(x)] of the prediction for a query vector (or set
of query vectors) x. These will be the focus of our study in this paper.
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Double Intractability The steps in BDL discussed so far are doubly intractable in the
following ways.

• Model Evidence For all but the most trivial networks, the integral in the denom-
inator of Eq. 4, (the model evidence) entails a sum over high-dimensional θ. Many
techniques have been developed to approximate the posterior – the most common be-
ing MAP estimation, variational inference, and Markov chain Monte Carlo – and these
vary in their scalability and applicability to deep neural nets (Blundell et al., 2015;
Ritter et al., 2018). A key desideratum for approximate inference that is often over-
looked is the extent to which it is compatible with existing deep learning frameworks
and implementations, which may be supported by multiple years of model selection,
tuning, and vast training budgets. The MAP point estimate is the most practical in
this sense, and is the basis of the Laplace approximation.

• Posterior Predictive The posterior predictive p(y | D, x) is the expected predictive
density, involving complex function fθ, under averages of the approximate posterior,
meaning that the integral cannot be further simplified. Monte Carlo estimation using
samples from the posterior is used to address this intractability.

Laplace Approximation Let q be the Laplace approximation of the posterior, defined
as the second-order Taylor expansion around θ̂,

log q(θ) = log p(θ̂ | D)− 1

2
(θ − θ̂)>P (θ − θ̂), (5)

where P =
∧ −∇∇θ log p(θ | D). The first derivative does not appear in Eq. 5 because θ̂ is

defined as a local optimum of the posterior, where it exists.

By inspection of Eq. 5, we see that,

q(θ) ∝ exp

{
−1

2
(θ − θ̂)>P (θ − θ̂)

}
(6)

=⇒ q(θ) = N (θ̂, P−1). (7)

If precision matrix P can be calculated and inverted, then the first intractability of approx-
imating the posterior is addressed. In addition, Eq. 7 also provides a closed-form solution
to the model evidence, supporting model and hyperparameter selection (MacKay, 1992).
We next discuss precision calculation in more detail.

Precision Matrix Eq. 7 depends on calculating the covariance matrix, i.e. inverting the
precision matrix P which can be decomposed as,

P = −∇∇θ log p(θ | D)

= −∇∇θ log p(θ)︸ ︷︷ ︸
Gaussian prior =⇒ scalar matrix

−∇∇θ log p(D | θ)︸ ︷︷ ︸
Hessian H

. (8)

The prior term in Eq. 8 usually takes a simple form, e.g. constant scalar for Gaussian prior,
so our focus from this point will be on H, the Hessian of the likelihood.
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The Hessian of the likelihood term may be further decomposed as,

H = ∇∇θ log p(y | fθ(x))

= ∇f log p(y | fθ(x))︸ ︷︷ ︸
residual

∇∇θfθ(x) +∇∇f log p(y | fθ(x))︸ ︷︷ ︸
observation precision

∇θfθ(x)∇θfθ(x)>. (9)

In practice, the precision calculation of the Laplace approximation drops the first term –
the network Hessian – in Eq. 9 due to computational constraints. This is known as general-
ized Gauss-Newton (GGN) and is proportional to the outer product of the network Jacobian
(second term in Eq. 9). Beyond expediency, there are two arguments motivating GGN:

1. When fitting highly flexible models, as in BDL, the residual error is expected to be≈ 0.

2. The residual is a zero-mean random variable uncorrelated with the network Hessian,
so the first term is approximately zero as the number of data points grows.

Immer et al. (2021) observed that when GGN is used in approximate inference, it assumes
the network takes the form of a generalized linear model. In Laplace, this is equivalent to
a local linearization of the network prediction around θ̂,

f̃θ(x) =
∧
fθ̂(x) +∇θfθ(x)

∣∣∣∣>
θ̂

(θ − θ̂), (10)

which experimentally results in more accurate predictions than the original network fθ̂ when
used in the Monte Carlo average for evaluation (Foong et al., 2019). However, the Hessian,
even after simplifying with GGN, is still unwieldy or prohibitive to compute, store, and
invert for large networks with high dimensional θ.

Hessian-free Laplace (HFL) Against this background, we target the same mathemat-
ical object as the Laplace approximation, requiring the Hessian to exist but avoiding the
need to calculate or invert it. To start, notice that an immediate consequence of Eq. 10 is,

f̃θ ∼ N (fθ̂(x),∇θfθ̂(x)>P−1∇θfθ̂(x)), (11)

where ∇θfθ̂ =
∧ ∇θfθ

∣∣∣∣
θ̂

is used for more compact notation. This is an instance of the Bayesian

delta method (Wasserman, 2006), differing from the classic delta method by the inclusion
of the prior term in P in Eq. 8.

The posterior predictive depends on the form of the observation likelihood function.
For regression tasks, Gaussian observation noise with fixed standard deviation σ is the
standard, resulting in posterior predictive equal to Eq. 11 plus additional variance term σ2.
For classification tasks, the posterior predictive is non-analytical, requiring Monte Carlo
averaging over posterior samples. Notwithstanding the particular form of the posterior
predictive distribution, the epistemic uncertainty of the network predictions – meaning, the
error due to lack of knowledge – is represented by Eq. 11 and has considerable value in
active learning, experimental design, and exploration-exploitation.
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We set up the prediction-regularized joint distribution as equal to the joint distribution
(Eq. 2) with an additional term proportional to the prediction at query point x,

Lθ(x,λ) =
n∑
i=1

log p(yi | fθ(xi)) + log p(θ) + λfθ(x), (12)

for some constant λ ∈ R. The prediction-regularized MAP is defined as,

θ̂(x,λ) ∈ argθ maxLθ(x,λ). (13)

Theorem 1 The derivative of the prediction under the prediction-regularized MAP w.r.t.
λ recovers the variance term in Eq. 11,

∇λfθ̂(x,λ)(x)

∣∣∣∣
λ=0

= ∇θfθ̂(x)>P−1∇θfθ̂(x). (14)

Proof The result is derived using the implicit delta method as detailed in Kallus and
McInerney (2022). The relationship can also be understood as an application of the im-
plicit function theorem (IFT) by Cauchy, e.g. see Lorraine et al. (2020) for a modern
treatment of IFT.

A corollary of Theorem 1 is that detecting the local change in prediction as λ is increased
(or decreased) from 0 yields the variance term of the linearized Laplace approximation
in Eq. 11. The local change, i.e. the LHS of Eq. 14, may be calculated by finite differences
for some suitably small λ,

1

λ
(fθ̂(x,λ)(x)− fθ̂(x)) →

λ→0
∇λfθ̂(x,λ)(x)

∣∣∣∣
λ=0

. (15)

It is natural to consider auto-differentiation to calculate the LHS of Eq. 14. From the fact
that the optimum θ̂(x,λ) also changes with λ it can be seen that auto-differentiation must
deal with complex operations on optima, resulting in no computational advantage.

Putting it together, the Hessian-free Laplace (HFL) approximation is,

f̃θ ∼ N
(
fθ̂(x),

1

λ
(fθ̂(x,λ)(x)− fθ̂(x))

)
, (16)

and differs from linearized Laplace (Eq. 11) by the lack of an explicit Hessian. It is apparent
by this comparison that HFL trades the computational and storage expense of dealing with
the Hessian for that of a point-wise approximation for each query x. There are strong
arguments in favor of the latter. First, for suitably small λ, the prediction-regularized
MAP is close to the MAP for any choice of x, and so is not expensive to obtain with
stochastic gradient descent. By comparison, matrix inversion takes O(K3) computations in
the number of network parameters K. Second, HFL sidesteps the issue of which Hessian
approximation to use, a problem analogous to hyperparameter selection in that it depends
on several factors including network architecture, likelihood function, and dataset.
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3. Experiments

We explore the following data generating distributions:

• Quadratic Draw 32 data points x ∼ N (0, 1) and let y = 1
10x

2 − 1
2x + 5 + 1

10ε,
where ε ∼ N (0, 1).

• Sine Fix 160 data points evenly spaced in ranges [−1.5,−0.7) and [0.35, 1.15) and let
y = − sin(3x − 3

10) + 1
10ε, where ε ∼ N (0, 1). This example closely follows Foong et

al. and tests the ability to extrapolate “in-between” uncertainty (Foong et al., 2019).

A two-layer feedforward neural architecture is used with 10 hidden units used in each layer
with tanh activations to ensure that the Hessian exists. For both datasets, the epistemic
uncertainty of the network predicted means is plotted in 1D feature space along with the
covariance matrix of predicted means in Figures 1 and 2. Four methods are compared,

• Exact Hessian using Eq. 8 and both terms in the likelihood Hessian (Eq. 9).

• HFL (this paper), using Eq. 16.

• GGN using Eq. 8 with only the second term in likelihood Hessian (Eq. 9).

• Eigenvector approximation of the GGN for P−1 ≈ AΛ−1A> using the top k eigen-
vectors A of P (with corresponding eigenvalues Λ) where k = loge(dim(θ)) rounded
to the nearest positive integer. The GGN is chosen because it only makes sense to
use the eigenvector approximation when the Hessian is large.

We find that, for the small-scale datasets explored, there is a noticeable difference between
the exact Hessian and GGN, and this is reflected in the eigenvector approximation. This
may be explained by the fact that the network clearly has not reduced the residual to near
zero by fitting every data point. One would expect these characteristics to change for high
dimensional features and large data sets. Interestingly, the variances from HFL are closer
to the full Hessian than to GGN, running contrary to expectations given that HFL uses
the linearization in Eq. 10. Finally, Figures 3 and 4 visualize the Hessians given by the
the explicit Hessian methods. While the eigenvector approximation recovers some of the
structure it does noticeably miss the strong diagonal variances in the parameters.

4. Conclusions & Future Work

In this paper we developed the technical direction toward performing the Laplace approx-
imation without explicit Hessian evaluation and inversion (HFL). Instead, two point es-
timates are used, the usual MAP estimate and a regularized form of the MAP. Initial
experiments show early potential of HFL in the context of Bayesian deep learning. An
important step in future work is to scale up the number of parameters and neural architec-
ture sizes along with number of features and data points to demonstrate the value of the
approximation.
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(d) Eigenvector Approx.

Figure 1: Fits along with uncertainty bounds and estimated prediction-covariance matrix
for data generated from y = 1
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(b) HFL (this paper)
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Figure 2: Fits along with uncertainty bounds and estimated prediction-covariance matrix
for data generated from y = − sin(3x− 3

10) + 1
10ε, where ε ∼ N (0, 1)
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(c) Eigenvector Approx.

Figure 3: Covariance matrix in Laplace approx. and its approximations in quadratic task.
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Figure 4: Covariance matrix in Laplace approximation and its approximations in sine task.
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