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ABSTRACT

Realistic simulation is critical for applications ranging from robotics to animation.
Video generation models have emerged as a way to capture real-world physics from
data, but they often face challenges in maintaining spatial consistency and object
permanence, relying on memory mechanisms to compensate. As a complementary
direction, we present 3DGSim, a learned 3D simulator that directly learns physical
interactions from multi-view RGB videos. 3DGSim adopts MVSplat to learn
a latent particle-based representation of 3D scenes, a Point Transformer for the
particle dynamics, a Temporal Merging module for consistent temporal aggregation,
and Gaussian Splatting to produce novel view renderings. By jointly training
inverse rendering and dynamics forecasting, 3DGSim embeds physical properties
into point-wise latent features. This enables the model to capture diverse behaviors,
from rigid and elastic to cloth-like dynamics and boundary conditions (e.g., fixed
cloth corners), while producing realistic lighting effects. We show that 3DGSim can
generate physically plausible results even in out-of-distribution cases, e.g. ground
removal or multi-object interactions, despite being trained only on single-body
collisions.

1 INTRODUCTION

Simulating visually and physically realistic environments is a cornerstone for embodied intelligence.
Robots must soon tackle tasks such as opening washing machines, folding laundry, or tending plants.
Traditional analytical simulators demand exact geometry, poses, and material parameters, making
arbitrary scene simulation impractical. An alternative is to learn models that predict future states of a
scene in large-scale observations, as evidenced by the striking visual realism of 2D video generation
methods (Li et al., 2022; NVIDIA et al., 2025; Wu et al., 2023). However, pure 2D approaches lack
3D structure awareness, leading to failures in occlusion handling, object permanence, and physical
plausibility (Motamed et al., 2025).

3D-based representations address many of these shortcomings, as shown by recent learned particle-
based simulators (Allen et al., 2023; Li et al., 2019) which model a wide range of physical phenomena,
from fluids and soft materials to articulated and rigid body dynamics. Yet, scaling such methods
to data-rich regimes remains challenging, as most methods require privileged signals (object-level
tracks, depth sensors, physics prior) or hand-crafted graph constructions.

To bridge this gap, we identify three pillars for generalizable, scalable visuo-physical simulation from
videos: (1) 3D visuo-physical reconstruction from raw RGB observations; (2) Imposing minimal
physical biases that can capture diverse physics; (3) Efficient, differentiable decoding back to image
space for supervision via reconstruction loss.

Graph neural networks (GNNs) (Sanchez-Gonzalez et al., 2020; Shi et al., 2024; Wang et al., 2024;
Whitney et al., 2023; 2024; Xue et al., 2023) have shown great promise in introducing relational
inductive biases to handle the unstructured nature of particle sets. This has allowed GNN-based
particle simulators to make major progress on all three pillars. In particular, Whitney et al. (2023)
jointly train an encoder and dynamics model to learn visuo-physical pixel features from RGBD, and in
the follow-up work Whitney et al. (2024) eliminate point correspondences via abstract temporal nodes
or per-step models with merging. Driess et al. (2023) demonstrate end-to-end dynamics training
of composable NeRF fields from raw RGB images. These advances, in combination with recent
advances in feed-forward inverse rendering (Chen et al., 2024) and fast differentiable rendering of
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Table 1: Overview on recently proposed particle-based simulators. While most works resort to a combination of
kNN and GNNs, our work distinguishes itself by resorting to 3D Gaussian Splatting, space filling curves (SFC)
for point cloud serialization, and training the inverse rendering encoder alongside a dynamics transformer.

Method
( : No data / code)

Scene
representation

Inverse renderer
( : Pretrained)

Graph
synthesis

Dynamics model
( : Uses privileged info)

Forward
rendering

SDF-Sim Rubanova et al. Rubanova et al. (2024) Mesh n.a. SDF GNN n.a.
PGNN. Saleh et al. Saleh et al. (2024) Mesh n.a. Mesh GNN + Attention n.a
FIGNet Allen et al. Allen et al. (2022a) Mesh faces n.a. BVH GNN n.a.
Robocraft Shi et al. Shi et al. (2024) Point clouds n.a. (RGB-D) kNN GNN NeRF
3DIntphys Xue et al. Xue et al. (2023) Point clouds NeRF (Point sampl.) kNN GNN NeRF
VPD Whitney et al. Whitney et al. (2023) Point clouds n.a. (RGB-D + UNet) kNN GNN NeRF
HD-VPD Whitney et al. Whitney et al. (2024) Point clouds n.a. (RGB-D + UNet) kNN GNN + Transformer NeRF
DEL Wang et al. Wang et al. (2024) Point clouds NeRF (GPF) kNN GNN + DEM NeRF
3DGSim (Ours) Gaussian splats MVSplat SFC Transformer 3DGS

particles (Kerbl et al., 2023), encourage us to ask the question: can we give up the inductive bias
arising from locally connected graphs and still learn 3D particle-based simulators?
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Figure 1: 3DGSim works directly on multi-view RGB videos
and is trained end-to-end on next image prediction. The
dynamics model (transformer) operates on particles with
latent feature. A learned mapping transforms them into 3D
Gaussian Splats for novel view rendering.

To this end, we build 3DGSim, a fully
end-to-end differentiable framework that
embraces the power of scalable computa-
tion over hand-crafted biases. 3DGSim be-
gins by inferring 3D visuo-physical fea-
tures from raw multi-view RGB images
through a feed-forward inverse renderer
based on MVSplat. We then introduce a
transformer-only dynamics engine, avoid-
ing kNN-based graph construction and
manually designed edge features in favor
of learned spatiotemporal embeddings. Fi-
nally, a Gaussian Splatting head enables
training on an image reconstruction loss
from multi-view videos.

Specifically, 3DGSim introduces the following key contributions:

• Inverse Renderer: Extends MVSplat with a feature extraction module fusing pixel-aligned
features into a particle visuo-physical latent representation.

• Temporal Encoding & Merging Layer: Discards abstract temporal nodes in favor of a
hierarchical module that processes an arbitrary number of timesteps.

• Transformer-Only Dynamics Engine: Removes graph biases and instead uses space-filling
curves and learned embeddings for particle-based simulation.

• End-to-End Differentiable Framework: Connects inverse rendering, transformer dynamics,
and Gaussian splatting-based decoding to training for next-frame image reconstruction.

• Open Source Release: We release the code and dataset to establish a reproducible baseline
for future visuo-physical simulation research.

2 RELATED WORK

Encoding and rendering scene representations Common 3D scene representations include
point clouds (particles), meshes, signed distance functions (SDFs), neural radiance fields (NeRFs)
(Mildenhall et al., 2021), and 3D Gaussians (splats) (Kerbl et al., 2023). Point clouds, which
approximate object surfaces, can be obtained from RGB-D sensors (Shi et al., 2024; Whitney et al.,
2023; 2024) or via inverse rendering (Chen et al., 2024; Murai et al., 2024; Wang et al., 2025).
Works, such as Whitney et al. (2023; 2024), use U-Net–style encoders trained jointly with the
dynamics model, allowing the extracted features to be optimized for physical prediction, a strategy
shown to outperform independently trained encoders (Li et al., 2022). We adopt this joint training
approach using MVSplat (Chen et al., 2024), where the encoded features are initially bound to camera
parameters. To unify these visuo-physical latents in a global frame, we introduce a learned feature
transformation module that maps them into a consistent 3D representation. While many PBS methods
render from NeRFs (Driess et al., 2023; Shi et al., 2024; Wang et al., 2024; Whitney et al., 2023;
2024; Xue et al., 2023), we instead encode visual appearance directly in the particle cloud using
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3D Gaussians. This explicit representation offers high rendering fidelity and significantly improved
efficiency over NeRF-based rendering (Kerbl et al., 2023), supporting scalability.

GNN based particle-based simulators (PBS) Graph neural networks (GNNs) introduce relational
inductive biases well-suited for modeling the unstructured nature of particle systems. Early work
(Li et al., 2019; Sanchez-Gonzalez et al., 2020) demonstrated that GNN-based PBS can fit trajec-
tories across a range of physical phenomena. However, GNNs struggle with rigid bodies, where
instantaneous velocity changes require long-range message passing across the entire graph in a
single step. To address this, later works incorporate mesh structures (Allen et al., 2022b; Pfaff et al.,
2021) or signed distance functions (SDFs) (Rubanova et al., 2024) to enforce object-level coherence.
Although effective in rigid-body settings, these methods do not generalize to deformable or fluid
systems. Recent works (Saleh et al., 2024; Whitney et al., 2024) suggest adding attention layers to
efficiently pass information through the graph. Wang et al. (2024) move toward greater data efficiency
by incorporating physics-inspired biases such as the Material Point Method, though limiting broad
applicability and requiring small simulation timesteps. To address temporal correspondence, Whitney
et al. (2023) introduces abstract temporal nodes, while Whitney et al. (2024) combines GNNs with
transformers to improve memory efficiency by processing and merging pairs of timesteps. However,
the method is restricted to two-step horizons, as it requires training a separate model for each addi-
tional timestep. Methods based on GNNs rely on kNN to define point connectivities within a fixed
radius and hand-crafted features based on object associations and distances to define graph features.
Message passing and spatial pooling via furthest-point-sampling (FPS) are then used to aggregate
information for dynamics prediction. However, kNN and distance computations are expensive and
take up 54% of the forward time (Wu et al., 2024b), which limits scalability and prevents real-time
forecasting. In contrast, we follow the design of PTv3 (Wu et al., 2024b). In 3DGSim, we trade
off exact KNN neighborhood computation with space-filling curve–based ordering of particles and
use sparse convolutions to encode relative positions, avoiding distance calculations. To enable the
processing of temporal point clouds, we propose Temporal Merging with Grid Pooling to construct a
hierarchical spatiotemporal, UNet-style Point Transformer for dynamics prediction.

Analytical particle simulators as physical prior Our work differs in purpose from applications
which use Gaussian Splatting particles and analytical PBS as physical prior (e.g. off-the-shelf
differentiable MPM simulator) to accomplish a series of tasks such as tracking (Abou-Chakra et al.,
2024; Keetha et al., 2024; Luiten et al., 2024; Zhang et al., 2024a), dynamic scene reconstruction
(Huang et al., 2023; Wu et al., 2024a; Yu et al., 2023), or animation (Lin et al., 2025; Xie et al., 2023;
Zhang et al., 2024b). While analytical PBS can be used for parameter identification (Abou-Chakra
et al., 2024), they are tailored to specific simulation scenarios. For a detailed comparison, refer to the
supplementary material (see Appendix C.2).

3 PRELIMINARIES

3DGSim is build atop several prior works, namely: 3D-Gaussian splatting which enables fast
rendering, MVSplat which yields 3D Gaussian point clouds from multi-view images, and PTv3 which
enables efficient neural processing of 3D point clouds.

Gaussian Splatting 3D Gaussian splatting (3DGS) (Kerbl et al., 2023) is an effective framework
for multi-view 3D image reconstruction, representation, and fast image rendering and has gained
rapid popularity due to its support for rapid inference, high fidelity, and editability of scenes. Gaussian
splatting uses a collection of 3D Gaussian primitives, each parameterized by

gi = (pi, ci, ri, si,ωi), (1)

with the Gaussian’s mean pi (particle position), its rotation ri, spherical harmonics ci (defines
coloring), scale si, and opacity ωi. To render novel views, these primitives are projected onto a 2D
image plane using differential tile-based rasterization. The color value at pixel p is calculated via
alpha-blend rendering: I(p) =

∑
N

i=1 εici
∏

i→1
j=1(1 → εj) where εi = ωie→

1
2 (p→pi)

→
!↑1

i (p→pi) is
the 2D density, I is the rendered image, N is the number of primitives in the image and !i is the
covariance matrix given by !i = risir

→

i
for improved computational stability.
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Ground

(1,2)

(5,5)

(2,1)

Figure 2: MVSplat uses a cost volume
with plane sweeping to regress pixel-wise
3D Gaussians, which are unprojected to
world frame using camera parameters.

MVSplat: Multi-view feed-forward 3D reconstruction
MVSplat deploys a feed-forward network fω with parameters
ϑ that maps M images I = {Im}M

i=m
with Im ↑ R(H↑W↑3)

to a set of pixel-aligned 3D Gaussian primitives (Fig. 2)

fω : {(Im, Pm)}M
m=1 ↓↔ {gi}M↑H↑W

i=1 .

At each time step, MVSplat localizes Gaussian centers using
a cost volume representation through plane-sweeping and
cross-view feature similarities. To do so, it requires the corre-
sponding camera projection matrices P = {Pm}M

m=1 that are
calculated as Pm = Km[Rm|tm] via the camera intrinsics
Km, rotation Rm, and translation tm.

4 3DGSIM

3DGSim is a fully differentiable pipeline that, given T past multi-view RGB frames, reconstructs 3D
particles with latent features, simulates their motion, and renders the next frames. It consists of three
jointly trained modules (Fig.1): (i) an encoder that maps multi-view RGB images to 3D particles, (ii)
a dynamics model that simulates the motion of these particles through time, and (iii) a renderer that
yields images by first mapping the particles to Gaussian splats.

4.1 STATE REPRESENTATION

To simulate physical scenes from vision, we require a state representation that is both expressive
enough to capture fine-grained 3D and physical properties, and compact enough to enable efficient
learning and prediction. Although an explicit 3DGS representation gi(tk) offers geometric and visual
completeness, it is insufficient for dynamics modeling. Instead, we distill the state of each particle
into a more compact representation:

g̃i(tk) =
(
pi(tk), fi(tk)

)
(2)

where tk denotes the k-th timestep and fi ↑ Rd the visuo-physical latent particle feature, encoding
shape, appearance, and dynamic properties. Unless otherwise stated, we omit the timestep tk and the
particle index i when the statement applies to all timesteps or particles, respectively.

Optional: Masking and Freezing of Particles At each timestep tk, the encoder yields pixel-
aligned features for each input image. As an optional step, one can apply a foreground mask to
discard particles likely belonging to the static background, retaining a reduced set of Nk particles
per time step (Fig. 2). Additionally, as originally suggested by Whitney et al. (2023), static particles
can optionally be “frozen”, i.e. act as input to the dynamics model but are excluded from position
updates. These optional strategies improve efficiency without being necessary for successful training,
as shown in Section 5 and Appendix B.

Dynamics 
model

Figure 3: Position p and dynamic
features f dyn are updated while
f inv remain constant.

Invariant and dynamic feature decomposition We decompose
each particle’s visuo-physical feature into an invariant and a dynamic
part as shown in Fig. 3, writing

fi = f inv
i

↗ f dyn
i

,

where ↗ denotes concatenation. The dynamics model updates only
f dyn
i

, while leaving f inv
i

unchanged. For clarity, we will refer to
the dynamics update as “updating fi”, though only the dynamic
component f dyn

i
is altered.
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4.2 VIEW-INDEPENDENT INVERSE RENDERER

In MVSplat, pixel-aligned features f̂ ↓
i

are tied to the specific camera view from which they were
extracted. While Gaussian primitives (e.g. depth, scale, rotation, harmonics) can be directly unpro-
jected or transformed into the world frame using camera parameters, latent features remain bound to
the camera-centric frame. Since dynamics predictions are invariant to the observer’s viewpoint, such
a dependence on view-dependent encodings hampers generalization.

To overcome this, 3DGSim introduces a feature encoding network that maps pixel-aligned features
f̂ ↓
i

into view-independent latent representations fi. The encoder employs FiLM conditioning (Perez
et al., 2017) on pixel depth, pixel shift, density, and ray geometry (parameterized via Plücker
coordinates (Plücker, 1868-1869)) to infer spatially consistent 3D features. As a result, the inverse
rendering module produces canonically anchored particle states, providing a unified representation
for downstream dynamics learning. Further architectural details are described in Appendix A.1.

4.3 DYNAMICS MODEL

At the core of our method is the dynamics model, a transformer architecture operating on particle
sets in space and time. The dynamics model receives as input T past particle sets,

{
{g̃i(tk)}Nk

i=1

}T

k=1
, where g̃i(tk) =

(
pi(tk), f

inv
i

(tk), f
dyn
i

(tk)
)
, (3)

and predicts the updated dynamic features at the next timestep

”p(tT ),”f dyn(tT ) = DynamicsModel
(
{{g̃i(tk)}Nk

i=1}
T

k=1

)
, (4)

such that pi(tT+1) = pi(tT ) +”pi(tT ) and f dyn
i

(tT+1) = f dyn
i

(tT ) +”f dyn
i

(tT ). As these point
clouds are unstructured and potentially vary in size at each time step due to masking, a fundamental
challenge arises: How can a network efficiently propagate the embedded physics information both
spatially and temporally?

We tackle this question by building on PTv3 Wu et al. (2024b), which has recently achieved state-
of-the-art performance in representation learning for unstructured point clouds Wu et al. (2025).
As discussed in Appendix A.2, PTv3 operates by serializing the input point cloud and applying
patch-wise attention. However, the original design of PTv3 is limited to point clouds that do not
exhibit temporal variation. In this section, we extend PTv3 to predict dynamics from temporally
evolving point clouds. First, we extend serialization to equip point cloud encodings with a timestamp.
Then, we equip features with temporal embeddings that allow attention to distinguish timestamps.
Lastly, we use the timestamps to merge neighboring latent particle sets, enabling PTv3’s patch-wise
attention blocks to aggregate information across time.

Temporally serialized point cloud (t-SPC) To enable spatio-temporal reasoning over multiple
timesteps, we extend PTv3’s point serialization scheme by encoding both spatial and temporal
structure into a single key. Specifically, for each particle i at timestep tk in batch b, we define a 64-bit
serialization code:

s̃i(tk, b) =
[

b︸︷︷︸
(64 - ε - ϑ) Bits

| stk︸︷︷︸
ε Bits

| si︸︷︷︸
ϑBits

]
(5)

Here, stk is the temporal code and si is a spatial code obtained by projecting pi onto a space-filling
curve (SFC). We set ϖ = 48 and allocate ϱ = log2(T ) bits for time. With 16 bits per dimension and
a grid resolution of G = 0.004m, the spatial encoding spans up to 216m per axis.

Temporal encoding As shown in Fig. 6, before merging t-SPCs across timesteps, we inject a
learned, timestep-specific positional encoding Etk as

fi(tk) ↘ fi(tk) + Etk . (6)

This temporal encoding ensures that the attention mechanism can distinguish points across different
temporal instances, enabling the model to reason about dynamics over time. Similar positional
encoding methods have previously been applied in transformer architectures to differentiate positions
within sequences (Vaswani et al., 2017).
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Figure 4: The dynamics model encodes the time step
into each embedding and merges embeddings from adja-
cent timesteps. The TEM and PTv3 blocks are applied
repeatedly until all embeddings are merged. Our exten-
sions to PTv3 are highlighted in red.
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Figure 5: Spatio-temporal point cloud serialization.

0 1

0 0

0 0

0 0

0 1

0 1

0 1

Temporal merging Temporal encoding

0 0 0

0 0 1

0 1 0

0 0 0

0 0 1

1 0 0

0 0

0 0

0 0

0 0

0 0

0 0

Patch grouping

patch 1

patch 2

Padding

Sort 0 0 0

0 0 1

0 1 0

0 0 0

0 0 1

1 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 1 1 0

0 0 1 1 0

+

+

0 0 1 1 0
(k >> 1)

Figure 6: Temporal merging and embedding followed
by patch grouping for applying patch-wise attention.

Temporal merging Unlike PTv3, which restricts attention exclusively to patches composed of
points from the same time step, our method enables a wider receptive field across time. To do so, we
propose temporal merging which applies a one-bit right shift to the temporal codes stk :

Merge(s̃i) = [b | (stk ≃ 1) | si]. (7)
For instance, points from time steps st1 = 0 and st2 = 1 are merged by shifting their codes, so they
both become 0, as depicted in Fig. 6. By grouping points from separate time steps into a single patch,
the attention module can model relationships across time.

Importantly, while Whitney et al. (2024) deploy a dedicated transformer module for each time step,
our proposition of temporal merging enables the reuse of the same attention block across time steps,
which significantly reduces memory consumption and promotes knowledge transfer.

Patch-wise attention and particle-wise MLP After each temporal encoding and merging (TEM)
block, the cloud embeddings are processed by PTv3’s patch-wise attention block. First, the embed-
dings are equipped with a position encoding via a sparseCNN with skip connection (xCPE in Fig. 4).
Then, the embeddings are fed to a patch-wise attention layer. Finally, at the end of the dynamics
model, each particle alongside its embedding is mapped by a particle-wise MLP to ”pT and ”fT .

4.4 RENDERING FEATURES FOR THE IMAGE RECONSTRUCTION LOSS

To render images with 3DGS, particle states g̃i = (pi, fi) are transformed into Gaussian splat
parameters gi via a learned head, materialized only at the final stage to supervise the training with
image reconstruction.

3DGSim is trained solely on an image reconstruction loss L. This loss is computed from ras-
terized multi-view images, generated based on both the encoder predictions of past point clouds
{{gi(tk)}Nk

i=1}Tk=0 and the simulated future point cloud trajectory {{gi(tk)}Nk
i=1}

T+T
↓

k=T+1. Specifically,
the loss reads

L = (1→ ς)
1

T

T∑

k=0

Lk + ς
T+T

↓∑

k=T+1

φk→T→1Lk and Lk = L2(I
gt
k
, Ik) + ↼ LLPIPS(I

gt
k
, Ik), (8)

with ς = 0.5, temporal decay factor φ = 0.87, T ↑ {2, 4} and T ↓ = 12. The per-frame reconstruction
loss Lk measures the discrepancy between ground-truth (Igt

k
) and predicted (Ik) multi-view images

using a weighted combination of pixel-wise ↽2 and LPIPS Zhang et al. (2018) terms with hyper-
parameter ↼ = 0.05.
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5 EXPERIMENTS

In what follows, we train 3DGSim on different datasets and test the model’s ability to generalize.

Model setup Unless stated otherwise, the following training and parameter settings serve as
defaults in the experiments. The state consists of dynamic f dyn and invariant features f inv of size
(32, 32) for the implicit- and (nf , 16) for the explicit 3D Gaussian particle representation. In
the explicit representation, f dyn corresponds to explicit Gaussian primitives of size nf which are
directly used for rendering. The inverse rendering encoder follows MVSplat, reducing candidate
depths from 128 to 64 due to smaller scene distances. Default near-far depth ranges are [0.2, 4]
for rigid bodies and [1.5, 8] for the other datasets, as the scene has a larger scale. The dynamics
transformer defaults to PTv3 with a 5-stage encoder (block depths [2, 2, 2, 6, 2]) and a 4-stage decoder
([2, 2, 2, 2]). Grid pooling and temporal merging strides default to [1, 4, 2, 2, 2] and [1, 2, 2, 2, 2],
respectively, with grid size G=0.004m. Attention blocks use patches of size 1024, encoder feature
dimensions [32, 64, 128, 256, 512], decoder dimensions [64, 128, 256], encoder heads [2, 4, 8, 16, 32],
and decoder heads [4, 4, 8, 16]. For the camera setup, we select 4 uniformly distributed views at
random and an additional 5 target cameras from the remaining cameras (out of 12 total) to compute
the reconstruction loss.

Training Our models are trained with AdamW for ⇐120,000 steps using a cosine annealing warm-
up and a learning rate of 2⇒10→4, with batch sizes of 6 and 4 for 2-step and 4-step states, respectively.
To optimize memory and speed, we use gradient checkpointing and flash attention v2 (Dao, 2024).
Training is performed on a single H100 GPU and typically takes around six days.

Datasets To evaluate 3DGSim’s robustness in learning dynamics from videos, we introduce three
challenging datasets: rigid body, elastic, and cloth.

The rigid body dataset consists of 1,000 simulated trajectories from the MOVI dataset, involving
six rigid objects (turtle, sonny school bus, squirrel, basket, lacing sheep, and turboprop airplane)
from the GSO dataset (Downs et al., 2022). Each trajectory spans 32 frames at 12FPS, providing
controlled dynamics characteristic of rigid body motion. The elastic dataset, aimed at capturing
plastic deformable object dynamics, includes six objects (dragon, duck, kawaii demon, pig, spot,
and worm) simulated using the Genesis MPM elastoplastic simulator (Authors, 2024). Each object
undergoes deformation upon collision with a circular gray ground, offering scenarios of complex
elastic behavior. The cloth dataset includes the same set of objects as the elastic dataset. Here, the
cloth is fixed at four corners, posing the challenge to infer implicit constraints and modeling dynamic
cloth-like deformations.

Both elastic and cloth datasets include 200 trajectories per object, simulated with a 0.001 time step
and 20 substeps. Each two second sequence is recorded at 42 FPS resulting in 84 frames per trajectory
and less than 6 minutes of footage per object.

Groundtruth (Start) Groundtruth (End)
0

Step 1

Step 1

Step 1 Step 1

Step 1 Step 7 Step 19 Step 19Step 13

Step 1 Step 10 Step 20 Step 40 Step 40

Step 4 Step 7 Step 10 Step 10

3DGSim prediction steps * Images upsampled via super resolution

Rigid

Elastic

Cloth

Figure 7: Qualitative examples of 3DGSim’s dynamic predictions. After training on less than 6 minutes of video
per object across 6 objects, 3DGSim accurately predicts motion of elasto-plastic deformations, rigid bodies,
cloth.
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Figure 8: Trajectory PSNR of 3DGSim, Cosmos and CosmosFT is shown for both past and future predictions.
The Cosmos models are conditioned on past frames and appropriate language prompts.

Figure 9: 3DGSim’s prediction of a rigid plane cap-
tures shadows by altering ground particle appearance.

Figure 10: Although not trained on this specific elastic
object or multiple objects, 3DGSim predicts physi-
cally plausible deformations.

3D
G

Si
m

C
os

m
os

FT

Figure 11: When the ground is removed, 3DGSim
predicts the freefall, while CosmosFT hallucinates a
levitating object at ground level.

Figure 12: Comparison of 3DGSim to Cosmos. Ex-
plicit models use 3DGS parameters and a static latent
feature as inputs to the dynamics model, while latent
models use only latent features mapped to Gaussians
after dynamics. The †-model uses only 6 camera views
(3 input + 3 reconstruction) instead of 12 (4+5); the
‡-model omits segmentation masks for static elements.
Metrics future and past are means over all timesteps.
"4-12" means 4 past steps predicting 12 future steps.

Dataset Model PSNR (future) ⇑ PSNR (past) ⇑ SSIM ⇑ LPIPS ⇓
3DGSim 4-12 latent 28.28 ± 2.52 32.93 ± 1.56 0.90 ± 0.03 0.09 ± 0.03
3DGSim 2-12 latent 28.08 ± 2.46 33.00 ± 1.62 0.90 ± 0.03 0.09 ± 0.03
3DGSim 4-12 explicit 27.88 ± 2.43 32.77 ± 1.57 0.90 ± 0.03 0.09 ± 0.03
3DGSim 2-12 explicit 27.07 ± 2.27 32.67 ± 1.65 0.90 ± 0.03 0.09 ± 0.03
CosmosFT 26.44 ± 2.26 – 0.68 ± 0.05 0.10 ± 0.03
Cosmos 22.35 ± 3.82 – 0.83 ± 0.08 0.24 ± 0.08

3DGSim 4-12 latent 33.15 ± 3.51 34.55 ± 2.26 0.97 ± 0.02 0.02 ± 0.01
3DGSim 2-12 latent 32.05 ± 3.48 35.99 ± 1.88 0.96 ± 0.02 0.03 ± 0.02
3DGSim 2-12 explicit 29.92 ± 1.72 40.85 ± 2.94 0.96 ± 0.02 0.03 ± 0.02
3DGSim 4-12 explicit 29.69 ± 1.75 40.16 ± 3.07 0.97 ± 0.02 0.02 ± 0.01
3DGSim 4-12 latent † 31.60 ± 3.09 32.55 ± 2.12 0.97 ± 0.02 0.02 ± 0.01
3DGSim 4-12 latent ‡ 32.66 ± 3.43 34.45 ± 2.44 0.96 ± 0.02 0.03 ± 0.02
CosmosFT 26.50 ± 5.21 – 0.82 ± 0.02 0.07 ± 0.03
Cosmos 18.87 ± 3.99 – 0.79 ± 0.08 0.23 ± 0.08

3DGSim 4-8 latent 26.98 ± 2.63 34.81 ± 2.28 0.89 ± 0.03 0.08 ± 0.03
3DGSim 2-8 latent 26.25 ± 2.38 35.22 ± 1.97 0.88 ± 0.03 0.08 ± 0.02
3DGSim 4-8 explicit 23.72 ± 1.52 39.75 ± 2.32 0.89 ± 0.03 0.08 ± 0.03
3DGSim 2-8 explicit 17.97 ± 2.02 35.47 ± 1.68 0.88 ± 0.03 0.08 ± 0.02
CosmosFT 22.49 ± 0.99 – 0.73 ± 0.03 0.14 ± 0.04
Cosmos 21.10 ± 3.56 – 0.86 ± 0.06 0.19 ± 0.06

Rigid

Elastic

Cloth

Figure 13: CosmosFT merges distinct worms into one
before ground contact, even on in-distribution cases.

Benchmarking Existing 3D baselines do not allow direct comparison without substantial reimple-
mentation. Key methods – VPD, HD-VPD, DEL, and 3D-IntPhys (Wang et al., 2024; Whitney et al.,
2023; 2024; Xue et al., 2023) – lack public code and data, also unavailable upon contacting authors.
Without published datasets, any reimplementation would lack verifiability, limiting reproducibility
and fair evaluation. To address this, we will release our code and datasets. DPI-Net and VGPLDP
(Li et al., 2019; 2020) are open-source but rely on ground-truth particle trajectories and require
major adaptation to fit our setting. For 2D baselines, we provide quantitative comparison to Cosmos
(NVIDIA et al., 2025). Note that Cosmos differs from our multi-view setup as it is pretrained on
multiple past frames from a single view. For fair comparison, we evaluated both the base model and
a LoRA-finetuned variant of Cosmos-Predict2 (CosmosFT) trained for 6,000 iterations on our data
set using recommended parameters. The Cosmos models are conditioned on the prompts detailed in
Table S7). For evaluation, 12% of trajectories are chosen at random and held out from each dataset,
and we report each model’s PSNR, LPIPS and SSIM.

5.1 TRAJECTORY SIMULATION

3DGSim achieves competitive long-horizon simulation accuracy; up to 80 steps; compared with
state-of-the-art baselines such as Cosmos-1.0-Autoregressive-5B-Video2World and a LoRA-finetuned
Cosmos-Predict2 (NVIDIA et al., 2025). Performance curves are shown in Fig. 8. Ablation studies
(Tab. 12) reveal that keeping 3DGS primitives explicit in the representation yields similar short-term
performance but generalizes poorly, especially with fewer cameras (see Appendix B). By contrast,
using a latent implicit representation leads to more robust generalization.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5.2 SCENE EDITING AND MODEL GENERALIZATION

With its explicit 3D state, 3DGSim supports direct scene editing, providing a natural testbed for
generalization. When the ground is raised or removed, conditions never seen during training, the
model continues to generate stable, physically consistent rollouts (Fig. 11). This suggests a robust
grasp of underlying dynamics that extends beyond the training distribution.

We further test generalization by duplicating objects and running long-horizon simulations (Fig. 10),
Appendix D.1). Although trained only on single object–ground collisions, 3DGSim accurately
captures realistic multi-body interactions, with objects retaining integrity rather than collapsing into
chaotic overlaps. Beyond interactions, it even models emergent properties such as shadows (Fig. 9),
indicating a holistic understanding of lighting and geometry alongside physics.

In contrast, CosmosFT struggles under similar 2D-edits. When the ground is removed, objects
often remain suspended (Fig. 11), and when multiple objects are introduced, they morph into a
single mass before contact (Fig. 13). These hallucinations reflect the limits of 2D image-based
reasoning, underscoring the advantages of an explicit 3D representation for robust and interpretable
generalization. Further examples are shown in the supplementary.

5.3 SIMULATION SPEED

FP
S

Rigid data FPS

Cloth data FPS

4 2
past steps

10

20

30

40

Figure 14: Prediction speed of
3DGSim versus simulation FPS.

Simulation speed is critical for robotics applications. Traditional
simulators (FEM, MPM, PBD) typically employ small integration
timesteps. Learned approaches enable larger timesteps, allowing
3DGSim to simulate elastic cloth at 42FPS and rigid dynamics
at 12FPS, with inference speeds of ⇐16FPS (4 past steps) and
⇐20.1FPS (2 past steps), using under 20GB VRAM on an H100
GPU and achieving near real-time speeds as illustrated in Fig. 14.

6 DISCUSSION

We introduced 3DGSim, a fully differentiable 3D Gaussian simulator that learns directly from multi-
view RGB video. 3DGSim integrates inverse rendering, dynamics prediction, and novel-view video
synthesis within a single end-to-end learnable system. Given that 3DGSim pioneers an unexplored
direction for 3D particle-based simulation, future work will explore action conditioning, a natural
next step that provides essential supervision signals for forecasting. This will also enable large-scale
validation on real-world multi-view datasets, which are currently unavailable for passive phenomena.
Our dependence on multi-view inputs could be further mitigated by recent advances in monocular
inverse rendering (Murai et al., 2024; Wang et al., 2025). Additionally, while occlusions are not
explicitly modeled, they are partially addressed by the dynamics module and may be further improved
through point completion techniques.

Spatial Causality In 3DGSim, interactions are restricted to those between spatially grounded
particles, which ensures that the simulation adheres to realistic physical dynamics. This contrasts with
2D pixel-based video generation models, where apparent dynamics often emerge from the generative
flexibility of image-space synthesis. The 3D formulation thus brings advantages such as spatial
consistency, object permanence, and robustness to out-of-distribution inputs, as exemplified by our
generalization tests. However, it introduces certain compromises: while 2D predictors can effortlessly
repurpose pixels to synthesize novel content, e.g., fabricating unseen objects from generative priors,
3D particle models inherit stricter structural constraints, making it difficult to dynamically create
or destroy particles in a learnable manner. This highlights a tradeoff between the stability and
interpretability provided by 3D spatial causality and the generative freedom unlocked by 2D video
models.

Toward Vision-Language Simulation Integrating language embeddings offers a promising avenue
for enriching particle-based simulations. Terms such as “liquid” or “mirror” provide informative
priors about object properties, enabling more structured and semantically aware predictions. We
envision 3DGSim as a step toward scalable simulators that can learn physical interactions from both
visual and textual modalities, ultimately supporting a more nuanced robotic understanding of complex
real-world dynamics.
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