
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING 3D-GAUSSIAN SIMULATORS
FROM RGB VIDEOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Realistic simulation is critical for applications ranging from robotics to animation.
Video generation models have emerged as a way to capture real-world physics from
data, but they often face challenges in maintaining spatial consistency and object
permanence, relying on memory mechanisms to compensate. As a complementary
direction, we present 3DGSim, a learned 3D simulator that directly learns physical
interactions from multi-view RGB videos. 3DGSim adopts MVSplat to learn
a latent particle-based representation of 3D scenes, a Point Transformer for the
particle dynamics, a Temporal Merging module for consistent temporal aggregation,
and Gaussian Splatting to produce novel view renderings. By jointly training
inverse rendering and dynamics forecasting, 3DGSim embeds physical properties
into point-wise latent features. This enables the model to capture diverse behaviors,
from rigid and elastic to cloth-like dynamics and boundary conditions (e.g., fixed
cloth corners), while producing realistic lighting effects. We show that 3DGSim can
generate physically plausible results even in out-of-distribution cases, e.g. ground
removal or multi-object interactions, despite being trained only on single-body
collisions.

1 INTRODUCTION

Simulating visually and physically realistic environments is a cornerstone for embodied intelligence.
Robots must soon tackle tasks such as opening washing machines, folding laundry, or tending plants.
Traditional analytical simulators demand exact geometry, poses, and material parameters, making
arbitrary scene simulation impractical. An alternative is to learn models that predict future states of a
scene in large-scale observations, as evidenced by the striking visual realism of 2D video generation
methods (Li et al., 2022; NVIDIA et al., 2025; Wu et al., 2023). However, pure 2D approaches lack
3D structure awareness, leading to failures in occlusion handling, object permanence, and physical
plausibility (Motamed et al., 2025).

3D-based representations address many of these shortcomings, as shown by recent learned particle-
based simulators (Allen et al., 2023; Li et al., 2019) which model a wide range of physical phenomena,
from fluids and soft materials to articulated and rigid body dynamics. Yet, scaling such methods
to data-rich regimes remains challenging, as most methods require privileged signals (object-level
tracks, depth sensors, physics prior) or hand-crafted graph constructions.

To bridge this gap, we identify three pillars for generalizable, scalable visuo-physical simulation from
videos: (1) 3D visuo-physical reconstruction from raw RGB observations; (2) Imposing minimal
physical biases that can capture diverse physics; (3) Efficient, differentiable decoding back to image
space for supervision via reconstruction loss.

Graph neural networks (GNNs) (Sanchez-Gonzalez et al., 2020; Shi et al., 2024; Wang et al., 2024;
Whitney et al., 2023; 2024; Xue et al., 2023) have shown great promise in introducing relational
inductive biases to handle the unstructured nature of particle sets. This has allowed GNN-based
particle simulators to make major progress on all three pillars. In particular, Whitney et al. (2023)
jointly train an encoder and dynamics model to learn visuo-physical pixel features from RGBD, and in
the follow-up work Whitney et al. (2024) eliminate point correspondences via abstract temporal nodes
or per-step models with merging. Driess et al. (2023) demonstrate end-to-end dynamics training
of composable NeRF fields from raw RGB images. These advances, in combination with recent
advances in feed-forward inverse rendering (Chen et al., 2024) and fast differentiable rendering of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Overview on recently proposed particle-based simulators. While most works resort to a combination of
kNN and GNNs, our work distinguishes itself by resorting to 3D Gaussian Splatting, space filling curves (SFC)
for point cloud serialization, and training the inverse rendering encoder alongside a dynamics transformer.

Method
(: No data / code)

Scene
representation

Inverse renderer
(: Pretrained)

Graph
synthesis

Dynamics model
(: Uses privileged info)

Forward
rendering

SDF-Sim Rubanova et al. Rubanova et al. (2024) Mesh n.a. SDF GNN n.a.
PGNN. Saleh et al. Saleh et al. (2024) Mesh n.a. Mesh GNN + Attention n.a
FIGNet Allen et al. Allen et al. (2022a) Mesh faces n.a. BVH GNN n.a.
Robocraft Shi et al. Shi et al. (2024) Point clouds n.a. (RGB-D) kNN GNN NeRF
3DIntphys Xue et al. Xue et al. (2023) Point clouds NeRF (Point sampl.) kNN GNN NeRF
VPD Whitney et al. Whitney et al. (2023) Point clouds n.a. (RGB-D + UNet) kNN GNN NeRF
HD-VPD Whitney et al. Whitney et al. (2024) Point clouds n.a. (RGB-D + UNet) kNN GNN + Transformer NeRF
DEL Wang et al. Wang et al. (2024) Point clouds NeRF (GPF) kNN GNN + DEM NeRF
3DGSim (Ours) Gaussian splats MVSplat SFC Transformer 3DGS

particles (Kerbl et al., 2023), encourage us to ask the question: can we give up the inductive bias
arising from locally connected graphs and still learn 3D particle-based simulators?

Past Gaussian
point clouds

unseen viewpoints

Predicted Gaussian
point cloud for

unseen viewpoints

Render Render

Mult
i-v

iew
 im

ag
es

Dynamics
Model

Image reconstruction loss
time

Past
images Inverse

Renderer

Latent
particle
features

Camera-dep.
pixel-wise
features

Figure 1: 3DGSim works directly on multi-view RGB videos
and is trained end-to-end on next image prediction. The
dynamics model (transformer) operates on particles with
latent feature. A learned mapping transforms them into 3D
Gaussian Splats for novel view rendering.

To this end, we build 3DGSim, a fully
end-to-end differentiable framework that
embraces the power of scalable computa-
tion over hand-crafted biases. 3DGSim be-
gins by inferring 3D visuo-physical fea-
tures from raw multi-view RGB images
through a feed-forward inverse renderer
based on MVSplat. We then introduce a
transformer-only dynamics engine, avoid-
ing kNN-based graph construction and
manually designed edge features in favor
of learned spatiotemporal embeddings. Fi-
nally, a Gaussian Splatting head enables
training on an image reconstruction loss
from multi-view videos.

Specifically, 3DGSim introduces the following key contributions:

• Inverse Renderer: Extends MVSplat with a feature extraction module fusing pixel-aligned
features into a particle visuo-physical latent representation.

• Temporal Encoding & Merging Layer: Discards abstract temporal nodes in favor of a
hierarchical module that processes an arbitrary number of timesteps.

• Transformer-Only Dynamics Engine: Removes graph biases and instead uses space-filling
curves and learned embeddings for particle-based simulation.

• End-to-End Differentiable Framework: Connects inverse rendering, transformer dynamics,
and Gaussian splatting-based decoding to training for next-frame image reconstruction.

• Open Source Release: We release the code and dataset to establish a reproducible baseline
for future visuo-physical simulation research.

2 RELATED WORK

Encoding and rendering scene representations Common 3D scene representations include
point clouds (particles), meshes, signed distance functions (SDFs), neural radiance fields (NeRFs)
(Mildenhall et al., 2021), and 3D Gaussians (splats) (Kerbl et al., 2023). Point clouds, which
approximate object surfaces, can be obtained from RGB-D sensors (Shi et al., 2024; Whitney et al.,
2023; 2024) or via inverse rendering (Chen et al., 2024; Murai et al., 2024; Wang et al., 2025).
Works, such as Whitney et al. (2023; 2024), use U-Net–style encoders trained jointly with the
dynamics model, allowing the extracted features to be optimized for physical prediction, a strategy
shown to outperform independently trained encoders (Li et al., 2022). We adopt this joint training
approach using MVSplat (Chen et al., 2024), where the encoded features are initially bound to camera
parameters. To unify these visuo-physical latents in a global frame, we introduce a learned feature
transformation module that maps them into a consistent 3D representation. While many PBS methods
render from NeRFs (Driess et al., 2023; Shi et al., 2024; Wang et al., 2024; Whitney et al., 2023;
2024; Xue et al., 2023), we instead encode visual appearance directly in the particle cloud using

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3D Gaussians. This explicit representation offers high rendering fidelity and significantly improved
efficiency over NeRF-based rendering (Kerbl et al., 2023), supporting scalability.

GNN based particle-based simulators (PBS) Graph neural networks (GNNs) introduce relational
inductive biases well-suited for modeling the unstructured nature of particle systems. Early work
(Li et al., 2019; Sanchez-Gonzalez et al., 2020) demonstrated that GNN-based PBS can fit trajec-
tories across a range of physical phenomena. However, GNNs struggle with rigid bodies, where
instantaneous velocity changes require long-range message passing across the entire graph in a
single step. To address this, later works incorporate mesh structures (Allen et al., 2022b; Pfaff et al.,
2021) or signed distance functions (SDFs) (Rubanova et al., 2024) to enforce object-level coherence.
Although effective in rigid-body settings, these methods do not generalize to deformable or fluid
systems. Recent works (Saleh et al., 2024; Whitney et al., 2024) suggest adding attention layers to
efficiently pass information through the graph. Wang et al. (2024) move toward greater data efficiency
by incorporating physics-inspired biases such as the Material Point Method, though limiting broad
applicability and requiring small simulation timesteps. To address temporal correspondence, Whitney
et al. (2023) introduces abstract temporal nodes, while Whitney et al. (2024) combines GNNs with
transformers to improve memory efficiency by processing and merging pairs of timesteps. However,
the method is restricted to two-step horizons, as it requires training a separate model for each addi-
tional timestep. Methods based on GNNs rely on kNN to define point connectivities within a fixed
radius and hand-crafted features based on object associations and distances to define graph features.
Message passing and spatial pooling via furthest-point-sampling (FPS) are then used to aggregate
information for dynamics prediction. However, kNN and distance computations are expensive and
take up 54% of the forward time (Wu et al., 2024b), which limits scalability and prevents real-time
forecasting. In contrast, we follow the design of PTv3 (Wu et al., 2024b). In 3DGSim, we trade
off exact KNN neighborhood computation with space-filling curve–based ordering of particles and
use sparse convolutions to encode relative positions, avoiding distance calculations. To enable the
processing of temporal point clouds, we propose Temporal Merging with Grid Pooling to construct a
hierarchical spatiotemporal, UNet-style Point Transformer for dynamics prediction.

Analytical particle simulators as physical prior Our work differs in purpose from applications
which use Gaussian Splatting particles and analytical PBS as physical prior (e.g. off-the-shelf
differentiable MPM simulator) to accomplish a series of tasks such as tracking (Abou-Chakra et al.,
2024; Keetha et al., 2024; Luiten et al., 2024; Zhang et al., 2024a), dynamic scene reconstruction
(Huang et al., 2023; Wu et al., 2024a; Yu et al., 2023), or animation (Lin et al., 2025; Xie et al., 2023;
Zhang et al., 2024b). While analytical PBS can be used for parameter identification (Abou-Chakra
et al., 2024), they are tailored to specific simulation scenarios. For a detailed comparison, refer to the
supplementary material (see Appendix C.2).

3 PRELIMINARIES

3DGSim is build atop several prior works, namely: 3D-Gaussian splatting which enables fast
rendering, MVSplat which yields 3D Gaussian point clouds from multi-view images, and PTv3 which
enables efficient neural processing of 3D point clouds.

Gaussian Splatting 3D Gaussian splatting (3DGS) (Kerbl et al., 2023) is an effective framework
for multi-view 3D image reconstruction, representation, and fast image rendering and has gained
rapid popularity due to its support for rapid inference, high fidelity, and editability of scenes. Gaussian
splatting uses a collection of 3D Gaussian primitives, each parameterized by

gi = (pi, ci, ri, si,ωi), (1)

with the Gaussian’s mean pi (particle position), its rotation ri, spherical harmonics ci (defines
coloring), scale si, and opacity ωi. To render novel views, these primitives are projected onto a 2D
image plane using differential tile-based rasterization. The color value at pixel p is calculated via
alpha-blend rendering: I(p) =

∑
N

i=1 εici
∏

i→1
j=1(1 → εj) where εi = ωie→

1
2 (p→pi)

→
!↑1

i (p→pi) is
the 2D density, I is the rendered image, N is the number of primitives in the image and !i is the
covariance matrix given by !i = risir

→

i
for improved computational stability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Camera of Set 1 Camera of Set 2

Rendered image

Depths
3D Gaussians Object

Ground

(1,2)

(5,5)

(2,1)

Figure 2: MVSplat uses a cost volume
with plane sweeping to regress pixel-wise
3D Gaussians, which are unprojected to
world frame using camera parameters.

MVSplat: Multi-view feed-forward 3D reconstruction
MVSplat deploys a feed-forward network fω with parameters
ϑ that maps M images I = {Im}M

i=m
with Im ↑ R(H↑W↑3)

to a set of pixel-aligned 3D Gaussian primitives (Fig. 2)

fω : {(Im, Pm)}M
m=1 ↓↔ {gi}M↑H↑W

i=1 .

At each time step, MVSplat localizes Gaussian centers using
a cost volume representation through plane-sweeping and
cross-view feature similarities. To do so, it requires the corre-
sponding camera projection matrices P = {Pm}M

m=1 that are
calculated as Pm = Km[Rm|tm] via the camera intrinsics
Km, rotation Rm, and translation tm.

4 3DGSIM

3DGSim is a fully differentiable pipeline that, given T past multi-view RGB frames, reconstructs 3D
particles with latent features, simulates their motion, and renders the next frames. It consists of three
jointly trained modules (Fig.1): (i) an encoder that maps multi-view RGB images to 3D particles, (ii)
a dynamics model that simulates the motion of these particles through time, and (iii) a renderer that
yields images by first mapping the particles to Gaussian splats.

4.1 STATE REPRESENTATION

To simulate physical scenes from vision, we require a state representation that is both expressive
enough to capture fine-grained 3D and physical properties, and compact enough to enable efficient
learning and prediction. Although an explicit 3DGS representation gi(tk) offers geometric and visual
completeness, it is insufficient for dynamics modeling. Instead, we distill the state of each particle
into a more compact representation:

g̃i(tk) =
(
pi(tk), fi(tk)

)
(2)

where tk denotes the k-th timestep and fi ↑ Rd the visuo-physical latent particle feature, encoding
shape, appearance, and dynamic properties. Unless otherwise stated, we omit the timestep tk and the
particle index i when the statement applies to all timesteps or particles, respectively.

Optional: Masking and Freezing of Particles At each timestep tk, the encoder yields pixel-
aligned features for each input image. As an optional step, one can apply a foreground mask to
discard particles likely belonging to the static background, retaining a reduced set of Nk particles
per time step (Fig. 2). Additionally, as originally suggested by Whitney et al. (2023), static particles
can optionally be “frozen”, i.e. act as input to the dynamics model but are excluded from position
updates. These optional strategies improve efficiency without being necessary for successful training,
as shown in Section 5 and Appendix B.

Dynamics
model

Figure 3: Position p and dynamic
features f dyn are updated while
f inv remain constant.

Invariant and dynamic feature decomposition We decompose
each particle’s visuo-physical feature into an invariant and a dynamic
part as shown in Fig. 3, writing

fi = f inv
i

↗ f dyn
i

,

where ↗ denotes concatenation. The dynamics model updates only
f dyn
i

, while leaving f inv
i

unchanged. For clarity, we will refer to
the dynamics update as “updating fi”, though only the dynamic
component f dyn

i
is altered.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4.2 VIEW-INDEPENDENT INVERSE RENDERER

In MVSplat, pixel-aligned features f̂ ↓
i

are tied to the specific camera view from which they were
extracted. While Gaussian primitives (e.g. depth, scale, rotation, harmonics) can be directly unpro-
jected or transformed into the world frame using camera parameters, latent features remain bound to
the camera-centric frame. Since dynamics predictions are invariant to the observer’s viewpoint, such
a dependence on view-dependent encodings hampers generalization.

To overcome this, 3DGSim introduces a feature encoding network that maps pixel-aligned features
f̂ ↓
i

into view-independent latent representations fi. The encoder employs FiLM conditioning (Perez
et al., 2017) on pixel depth, pixel shift, density, and ray geometry (parameterized via Plücker
coordinates (Plücker, 1868-1869)) to infer spatially consistent 3D features. As a result, the inverse
rendering module produces canonically anchored particle states, providing a unified representation
for downstream dynamics learning. Further architectural details are described in Appendix A.1.

4.3 DYNAMICS MODEL

At the core of our method is the dynamics model, a transformer architecture operating on particle
sets in space and time. The dynamics model receives as input T past particle sets,

{
{g̃i(tk)}Nk

i=1

}T

k=1
, where g̃i(tk) =

(
pi(tk), f

inv
i

(tk), f
dyn
i

(tk)
)
, (3)

and predicts the updated dynamic features at the next timestep

”p(tT),”f dyn(tT) = DynamicsModel
(
{{g̃i(tk)}Nk

i=1}
T

k=1

)
, (4)

such that pi(tT+1) = pi(tT) +”pi(tT) and f dyn
i

(tT+1) = f dyn
i

(tT) +”f dyn
i

(tT). As these point
clouds are unstructured and potentially vary in size at each time step due to masking, a fundamental
challenge arises: How can a network efficiently propagate the embedded physics information both
spatially and temporally?

We tackle this question by building on PTv3 Wu et al. (2024b), which has recently achieved state-
of-the-art performance in representation learning for unstructured point clouds Wu et al. (2025).
As discussed in Appendix A.2, PTv3 operates by serializing the input point cloud and applying
patch-wise attention. However, the original design of PTv3 is limited to point clouds that do not
exhibit temporal variation. In this section, we extend PTv3 to predict dynamics from temporally
evolving point clouds. First, we extend serialization to equip point cloud encodings with a timestamp.
Then, we equip features with temporal embeddings that allow attention to distinguish timestamps.
Lastly, we use the timestamps to merge neighboring latent particle sets, enabling PTv3’s patch-wise
attention blocks to aggregate information across time.

Temporally serialized point cloud (t-SPC) To enable spatio-temporal reasoning over multiple
timesteps, we extend PTv3’s point serialization scheme by encoding both spatial and temporal
structure into a single key. Specifically, for each particle i at timestep tk in batch b, we define a 64-bit
serialization code:

s̃i(tk, b) =
[

b︸︷︷︸
(64 - ε - ϑ) Bits

| stk︸︷︷︸
ε Bits

| si︸︷︷︸
ϑBits

]
(5)

Here, stk is the temporal code and si is a spatial code obtained by projecting pi onto a space-filling
curve (SFC). We set ϖ = 48 and allocate ϱ = log2(T) bits for time. With 16 bits per dimension and
a grid resolution of G = 0.004m, the spatial encoding spans up to 216m per axis.

Temporal encoding As shown in Fig. 6, before merging t-SPCs across timesteps, we inject a
learned, timestep-specific positional encoding Etk as

fi(tk) ↘ fi(tk) + Etk . (6)

This temporal encoding ensures that the attention mechanism can distinguish points across different
temporal instances, enabling the model to reason about dynamics over time. Similar positional
encoding methods have previously been applied in transformer architectures to differentiate positions
within sequences (Vaswani et al., 2017).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Point cloud

Serialization

Sparse CNN

Cloud embedding

Cloud embedding

Cloud embedding

GridPool

Shuffle Orders

Time step encoding

PTv3 initilization PTv3 blockTemporal encoding and merging (TEM)

Point clouds

Cloud embedding Cloud embedding

GridPool

Shuffle Orders

Time step encoding

Merging

LayerNorm

Attention

xCPE

LayerNorm

MLP

Particle-wise MLP

Cloud embedding

TEM

TEM

TEMDynamics
encoder

Dynamics
decoder

×S

×S

×S

Figure 4: The dynamics model encodes the time step
into each embedding and merges embeddings from adja-
cent timesteps. The TEM and PTv3 blocks are applied
repeatedly until all embeddings are merged. Our exten-
sions to PTv3 are highlighted in red.

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 1 0 0 0

0 1 0 0 1

0 1 1 0 0

0 1 1 1 0
Serialized point cloud3D Gaussian point cloud

Space filling curve
0 0

0 0

0 0

0 0

0 0

0 0

0 0

b Sparse CNN

Figure 5: Spatio-temporal point cloud serialization.

0 1

0 0

0 0

0 0

0 1

0 1

0 1

Temporal merging Temporal encoding

0 0 0

0 0 1

0 1 0

0 0 0

0 0 1

1 0 0

0 0

0 0

0 0

0 0

0 0

0 0

Patch grouping

patch 1

patch 2

Padding

Sort 0 0 0

0 0 1

0 1 0

0 0 0

0 0 1

1 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 1 1 0

0 0 1 1 0

+

+

0 0 1 1 0
(k >> 1)

Figure 6: Temporal merging and embedding followed
by patch grouping for applying patch-wise attention.

Temporal merging Unlike PTv3, which restricts attention exclusively to patches composed of
points from the same time step, our method enables a wider receptive field across time. To do so, we
propose temporal merging which applies a one-bit right shift to the temporal codes stk :

Merge(s̃i) = [b | (stk ≃ 1) | si]. (7)
For instance, points from time steps st1 = 0 and st2 = 1 are merged by shifting their codes, so they
both become 0, as depicted in Fig. 6. By grouping points from separate time steps into a single patch,
the attention module can model relationships across time.

Importantly, while Whitney et al. (2024) deploy a dedicated transformer module for each time step,
our proposition of temporal merging enables the reuse of the same attention block across time steps,
which significantly reduces memory consumption and promotes knowledge transfer.

Patch-wise attention and particle-wise MLP After each temporal encoding and merging (TEM)
block, the cloud embeddings are processed by PTv3’s patch-wise attention block. First, the embed-
dings are equipped with a position encoding via a sparseCNN with skip connection (xCPE in Fig. 4).
Then, the embeddings are fed to a patch-wise attention layer. Finally, at the end of the dynamics
model, each particle alongside its embedding is mapped by a particle-wise MLP to ”pT and ”fT .

4.4 RENDERING FEATURES FOR THE IMAGE RECONSTRUCTION LOSS

To render images with 3DGS, particle states g̃i = (pi, fi) are transformed into Gaussian splat
parameters gi via a learned head, materialized only at the final stage to supervise the training with
image reconstruction.

3DGSim is trained solely on an image reconstruction loss L. This loss is computed from ras-
terized multi-view images, generated based on both the encoder predictions of past point clouds
{{gi(tk)}Nk

i=1}Tk=0 and the simulated future point cloud trajectory {{gi(tk)}Nk
i=1}

T+T
↓

k=T+1. Specifically,
the loss reads

L = (1→ ς)
1

T

T∑

k=0

Lk + ς
T+T

↓∑

k=T+1

φk→T→1Lk and Lk = L2(I
gt
k
, Ik) + ↼ LLPIPS(I

gt
k
, Ik), (8)

with ς = 0.5, temporal decay factor φ = 0.87, T ↑ {2, 4} and T ↓ = 12. The per-frame reconstruction
loss Lk measures the discrepancy between ground-truth (Igt

k
) and predicted (Ik) multi-view images

using a weighted combination of pixel-wise ↽2 and LPIPS Zhang et al. (2018) terms with hyper-
parameter ↼ = 0.05.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

5 EXPERIMENTS

In what follows, we train 3DGSim on different datasets and test the model’s ability to generalize.

Model setup Unless stated otherwise, the following training and parameter settings serve as
defaults in the experiments. The state consists of dynamic f dyn and invariant features f inv of size
(32, 32) for the implicit- and (nf , 16) for the explicit 3D Gaussian particle representation. In
the explicit representation, f dyn corresponds to explicit Gaussian primitives of size nf which are
directly used for rendering. The inverse rendering encoder follows MVSplat, reducing candidate
depths from 128 to 64 due to smaller scene distances. Default near-far depth ranges are [0.2, 4]
for rigid bodies and [1.5, 8] for the other datasets, as the scene has a larger scale. The dynamics
transformer defaults to PTv3 with a 5-stage encoder (block depths [2, 2, 2, 6, 2]) and a 4-stage decoder
([2, 2, 2, 2]). Grid pooling and temporal merging strides default to [1, 4, 2, 2, 2] and [1, 2, 2, 2, 2],
respectively, with grid size G=0.004m. Attention blocks use patches of size 1024, encoder feature
dimensions [32, 64, 128, 256, 512], decoder dimensions [64, 128, 256], encoder heads [2, 4, 8, 16, 32],
and decoder heads [4, 4, 8, 16]. For the camera setup, we select 4 uniformly distributed views at
random and an additional 5 target cameras from the remaining cameras (out of 12 total) to compute
the reconstruction loss.

Training Our models are trained with AdamW for ⇐120,000 steps using a cosine annealing warm-
up and a learning rate of 2⇒10→4, with batch sizes of 6 and 4 for 2-step and 4-step states, respectively.
To optimize memory and speed, we use gradient checkpointing and flash attention v2 (Dao, 2024).
Training is performed on a single H100 GPU and typically takes around six days.

Datasets To evaluate 3DGSim’s robustness in learning dynamics from videos, we introduce three
challenging datasets: rigid body, elastic, and cloth.

The rigid body dataset consists of 1,000 simulated trajectories from the MOVI dataset, involving
six rigid objects (turtle, sonny school bus, squirrel, basket, lacing sheep, and turboprop airplane)
from the GSO dataset (Downs et al., 2022). Each trajectory spans 32 frames at 12FPS, providing
controlled dynamics characteristic of rigid body motion. The elastic dataset, aimed at capturing
plastic deformable object dynamics, includes six objects (dragon, duck, kawaii demon, pig, spot,
and worm) simulated using the Genesis MPM elastoplastic simulator (Authors, 2024). Each object
undergoes deformation upon collision with a circular gray ground, offering scenarios of complex
elastic behavior. The cloth dataset includes the same set of objects as the elastic dataset. Here, the
cloth is fixed at four corners, posing the challenge to infer implicit constraints and modeling dynamic
cloth-like deformations.

Both elastic and cloth datasets include 200 trajectories per object, simulated with a 0.001 time step
and 20 substeps. Each two second sequence is recorded at 42 FPS resulting in 84 frames per trajectory
and less than 6 minutes of footage per object.

Groundtruth (Start) Groundtruth (End)
0

Step 1

Step 1

Step 1 Step 1

Step 1 Step 7 Step 19 Step 19Step 13

Step 1 Step 10 Step 20 Step 40 Step 40

Step 4 Step 7 Step 10 Step 10

3DGSim prediction steps * Images upsampled via super resolution

Rigid

Elastic

Cloth

Figure 7: Qualitative examples of 3DGSim’s dynamic predictions. After training on less than 6 minutes of video
per object across 6 objects, 3DGSim accurately predicts motion of elasto-plastic deformations, rigid bodies,
cloth.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Rigid dataset

Tr
aj

ec
to

ry
 P

S
N

R

Time stepsTime steps

Elastic dataset Cloth datasetpast future

Time steps

3DGSim (4 past steps)
3DGSim (2 past steps)

4020

20

30

40

00 5 10 15 20

20

25

60 4020

20

25

0 60

past futurepast future

30

35

25

30

35

Cosmos (w. FT)
Cosmos (w/o. FT)

Figure 8: Trajectory PSNR of 3DGSim, Cosmos and CosmosFT is shown for both past and future predictions.
The Cosmos models are conditioned on past frames and appropriate language prompts.

Figure 9: 3DGSim’s prediction of a rigid plane cap-
tures shadows by altering ground particle appearance.

Figure 10: Although not trained on this specific elastic
object or multiple objects, 3DGSim predicts physi-
cally plausible deformations.

3D
G

Si
m

C
os

m
os

FT

Figure 11: When the ground is removed, 3DGSim
predicts the freefall, while CosmosFT hallucinates a
levitating object at ground level.

Figure 12: Comparison of 3DGSim to Cosmos. Ex-
plicit models use 3DGS parameters and a static latent
feature as inputs to the dynamics model, while latent
models use only latent features mapped to Gaussians
after dynamics. The †-model uses only 6 camera views
(3 input + 3 reconstruction) instead of 12 (4+5); the
‡-model omits segmentation masks for static elements.
Metrics future and past are means over all timesteps.
"4-12" means 4 past steps predicting 12 future steps.

Dataset Model PSNR (future) ⇑ PSNR (past) ⇑ SSIM ⇑ LPIPS ⇓
3DGSim 4-12 latent 28.28 ± 2.52 32.93 ± 1.56 0.90 ± 0.03 0.09 ± 0.03
3DGSim 2-12 latent 28.08 ± 2.46 33.00 ± 1.62 0.90 ± 0.03 0.09 ± 0.03
3DGSim 4-12 explicit 27.88 ± 2.43 32.77 ± 1.57 0.90 ± 0.03 0.09 ± 0.03
3DGSim 2-12 explicit 27.07 ± 2.27 32.67 ± 1.65 0.90 ± 0.03 0.09 ± 0.03
CosmosFT 26.44 ± 2.26 – 0.68 ± 0.05 0.10 ± 0.03
Cosmos 22.35 ± 3.82 – 0.83 ± 0.08 0.24 ± 0.08

3DGSim 4-12 latent 33.15 ± 3.51 34.55 ± 2.26 0.97 ± 0.02 0.02 ± 0.01
3DGSim 2-12 latent 32.05 ± 3.48 35.99 ± 1.88 0.96 ± 0.02 0.03 ± 0.02
3DGSim 2-12 explicit 29.92 ± 1.72 40.85 ± 2.94 0.96 ± 0.02 0.03 ± 0.02
3DGSim 4-12 explicit 29.69 ± 1.75 40.16 ± 3.07 0.97 ± 0.02 0.02 ± 0.01
3DGSim 4-12 latent † 31.60 ± 3.09 32.55 ± 2.12 0.97 ± 0.02 0.02 ± 0.01
3DGSim 4-12 latent ‡ 32.66 ± 3.43 34.45 ± 2.44 0.96 ± 0.02 0.03 ± 0.02
CosmosFT 26.50 ± 5.21 – 0.82 ± 0.02 0.07 ± 0.03
Cosmos 18.87 ± 3.99 – 0.79 ± 0.08 0.23 ± 0.08

3DGSim 4-8 latent 26.98 ± 2.63 34.81 ± 2.28 0.89 ± 0.03 0.08 ± 0.03
3DGSim 2-8 latent 26.25 ± 2.38 35.22 ± 1.97 0.88 ± 0.03 0.08 ± 0.02
3DGSim 4-8 explicit 23.72 ± 1.52 39.75 ± 2.32 0.89 ± 0.03 0.08 ± 0.03
3DGSim 2-8 explicit 17.97 ± 2.02 35.47 ± 1.68 0.88 ± 0.03 0.08 ± 0.02
CosmosFT 22.49 ± 0.99 – 0.73 ± 0.03 0.14 ± 0.04
Cosmos 21.10 ± 3.56 – 0.86 ± 0.06 0.19 ± 0.06

Rigid

Elastic

Cloth

Figure 13: CosmosFT merges distinct worms into one
before ground contact, even on in-distribution cases.

Benchmarking Existing 3D baselines do not allow direct comparison without substantial reimple-
mentation. Key methods – VPD, HD-VPD, DEL, and 3D-IntPhys (Wang et al., 2024; Whitney et al.,
2023; 2024; Xue et al., 2023) – lack public code and data, also unavailable upon contacting authors.
Without published datasets, any reimplementation would lack verifiability, limiting reproducibility
and fair evaluation. To address this, we will release our code and datasets. DPI-Net and VGPLDP
(Li et al., 2019; 2020) are open-source but rely on ground-truth particle trajectories and require
major adaptation to fit our setting. For 2D baselines, we provide quantitative comparison to Cosmos
(NVIDIA et al., 2025). Note that Cosmos differs from our multi-view setup as it is pretrained on
multiple past frames from a single view. For fair comparison, we evaluated both the base model and
a LoRA-finetuned variant of Cosmos-Predict2 (CosmosFT) trained for 6,000 iterations on our data
set using recommended parameters. The Cosmos models are conditioned on the prompts detailed in
Table S7). For evaluation, 12% of trajectories are chosen at random and held out from each dataset,
and we report each model’s PSNR, LPIPS and SSIM.

5.1 TRAJECTORY SIMULATION

3DGSim achieves competitive long-horizon simulation accuracy; up to 80 steps; compared with
state-of-the-art baselines such as Cosmos-1.0-Autoregressive-5B-Video2World and a LoRA-finetuned
Cosmos-Predict2 (NVIDIA et al., 2025). Performance curves are shown in Fig. 8. Ablation studies
(Tab. 12) reveal that keeping 3DGS primitives explicit in the representation yields similar short-term
performance but generalizes poorly, especially with fewer cameras (see Appendix B). By contrast,
using a latent implicit representation leads to more robust generalization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5.2 SCENE EDITING AND MODEL GENERALIZATION

With its explicit 3D state, 3DGSim supports direct scene editing, providing a natural testbed for
generalization. When the ground is raised or removed, conditions never seen during training, the
model continues to generate stable, physically consistent rollouts (Fig. 11). This suggests a robust
grasp of underlying dynamics that extends beyond the training distribution.

We further test generalization by duplicating objects and running long-horizon simulations (Fig. 10),
Appendix D.1). Although trained only on single object–ground collisions, 3DGSim accurately
captures realistic multi-body interactions, with objects retaining integrity rather than collapsing into
chaotic overlaps. Beyond interactions, it even models emergent properties such as shadows (Fig. 9),
indicating a holistic understanding of lighting and geometry alongside physics.

In contrast, CosmosFT struggles under similar 2D-edits. When the ground is removed, objects
often remain suspended (Fig. 11), and when multiple objects are introduced, they morph into a
single mass before contact (Fig. 13). These hallucinations reflect the limits of 2D image-based
reasoning, underscoring the advantages of an explicit 3D representation for robust and interpretable
generalization. Further examples are shown in the supplementary.

5.3 SIMULATION SPEED

FP
S

Rigid data FPS

Cloth data FPS

4 2
past steps

10

20

30

40

Figure 14: Prediction speed of
3DGSim versus simulation FPS.

Simulation speed is critical for robotics applications. Traditional
simulators (FEM, MPM, PBD) typically employ small integration
timesteps. Learned approaches enable larger timesteps, allowing
3DGSim to simulate elastic cloth at 42FPS and rigid dynamics
at 12FPS, with inference speeds of ⇐16FPS (4 past steps) and
⇐20.1FPS (2 past steps), using under 20GB VRAM on an H100
GPU and achieving near real-time speeds as illustrated in Fig. 14.

6 DISCUSSION

We introduced 3DGSim, a fully differentiable 3D Gaussian simulator that learns directly from multi-
view RGB video. 3DGSim integrates inverse rendering, dynamics prediction, and novel-view video
synthesis within a single end-to-end learnable system. Given that 3DGSim pioneers an unexplored
direction for 3D particle-based simulation, future work will explore action conditioning, a natural
next step that provides essential supervision signals for forecasting. This will also enable large-scale
validation on real-world multi-view datasets, which are currently unavailable for passive phenomena.
Our dependence on multi-view inputs could be further mitigated by recent advances in monocular
inverse rendering (Murai et al., 2024; Wang et al., 2025). Additionally, while occlusions are not
explicitly modeled, they are partially addressed by the dynamics module and may be further improved
through point completion techniques.

Spatial Causality In 3DGSim, interactions are restricted to those between spatially grounded
particles, which ensures that the simulation adheres to realistic physical dynamics. This contrasts with
2D pixel-based video generation models, where apparent dynamics often emerge from the generative
flexibility of image-space synthesis. The 3D formulation thus brings advantages such as spatial
consistency, object permanence, and robustness to out-of-distribution inputs, as exemplified by our
generalization tests. However, it introduces certain compromises: while 2D predictors can effortlessly
repurpose pixels to synthesize novel content, e.g., fabricating unseen objects from generative priors,
3D particle models inherit stricter structural constraints, making it difficult to dynamically create
or destroy particles in a learnable manner. This highlights a tradeoff between the stability and
interpretability provided by 3D spatial causality and the generative freedom unlocked by 2D video
models.

Toward Vision-Language Simulation Integrating language embeddings offers a promising avenue
for enriching particle-based simulations. Terms such as “liquid” or “mirror” provide informative
priors about object properties, enabling more structured and semantically aware predictions. We
envision 3DGSim as a step toward scalable simulators that can learn physical interactions from both
visual and textual modalities, ultimately supporting a more nuanced robotic understanding of complex
real-world dynamics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Jad Abou-Chakra, Krishan Rana, Feras Dayoub, and Niko Sünderhauf. Physically Embodied
Gaussian Splatting: A Realtime Correctable World Model for Robotics, 2024.

Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks, 2022a.

Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks, 2022b.

Kelsey R Allen, Tatiana Lopez Guevara, Yulia Rubanova, Kim Stachenfeld, Alvaro Sanchez-Gonzalez,
Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn discontinuous, rigid contact
dynamics. In Conference on Robot Learning, pp. 1157–1167. PMLR, 2023.

Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond, 2024.

Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-gaussian
embedding-based deformation for deformable 3d gaussian splatting. In European Conference on
Computer Vision (ECCV), 2024.

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images.
arXiv preprint arXiv:2403.14627, 2024.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B. McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of
3d scanned household items, 2022.

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. In Proceedings of The 6th Conference on
Robot Learning, volume 205 of Proceedings of Machine Learning Research, pp. 1755–1768, 2023.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs:
Sparse-controlled gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937,
2023.

Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track and map 3d gaussians for dense rgb-d
slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In ICLR, 2019.

Yunzhu Li, Toru Lin, Kexin Yi, Daniel Bear, Daniel L.K. Yamins, Jiajun Wu, Joshua B. Tenenbaum,
and Antonio Torralba. Visual grounding of learned physical models. In International Conference
on Machine Learning, 2020.

Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba. 3d neural scene
representations for visuomotor control. In Conference on Robot Learning, pp. 112–123. PMLR,
2022.

Yuchen Lin, Chenguo Lin, Jianjin Xu, and Yadong Mu. OmniPhysGS: 3D Constitutive Gaussians
for General Physics-Based Dynamics Generation, January 2025. URL http://arxiv.org/
abs/2501.18982. arXiv:2501.18982 [cs].

10

http://arxiv.org/abs/2501.18982
http://arxiv.org/abs/2501.18982

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 3DV, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, and Robert Geirhos. Do generative
video models understand physical principles? arXiv preprint arXiv:2501.09038, 2025.

Riku Murai, Eric Dexheimer, and Andrew J. Davison. MASt3R-SLAM: Real-Time Dense SLAM with
3D Reconstruction Priors, December 2024. URL http://arxiv.org/abs/2412.12392.
arXiv:2412.12392 [cs].

NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, et al. Cosmos world foundation model platform
for physical ai, 2025.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. CoRR, 2017.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.

Julius Plücker. Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als
Raumelement. Teubner, Leipzig, 1868-1869.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

Yulia Rubanova, Tatiana Lopez-Guevara, Kelsey R. Allen, William F. Whitney, Kimberly Stachenfeld,
and Tobias Pfaff. Learning rigid-body simulators over implicit shapes for large-scale scenes and
vision, 2024.

Mahdi Saleh, Michael Sommersperger, Nassir Navab, and Federico Tombari. Physics-encoded graph
neural networks for deformation prediction under contact. arXiv preprint arXiv:2402.03466, 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to Simulate Complex Physics with Graph Networks, 2020.

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects in 3d with graph networks. The International Journal of
Robotics Research, 43(4):533–549, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ! ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2017.

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. VGGT: Visual Geometry Grounded Transformer, March 2025. URL http://arxiv.
org/abs/2503.11651. arXiv:2503.11651 [cs]version: 1.

Jiaxu Wang, Jingkai Sun, Junhao He, Ziyi Zhang, Qiang Zhang, Mingyuan Sun, and Renjing Xu.
DEL: Discrete Element Learner for Learning 3D Particle Dynamics with Neural Rendering, 2024.

William F. Whitney, Tatiana Lopez-Guevara, Tobias Pfaff, Yulia Rubanova, Thomas Kipf, Kimberly
Stachenfeld, and Kelsey R. Allen. Learning 3d particle-based simulators from rgb-d videos, 2023.

William F. Whitney, Jacob Varley, Deepali Jain, Krzysztof Choromanski, Sumeet Singh, and Vikas
Sindhwani. Modeling the real world with high-density visual particle dynamics, 2024.

11

http://arxiv.org/abs/2412.12392
http://arxiv.org/abs/2503.11651
http://arxiv.org/abs/2503.11651

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20310–
20320, 2024a.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He,
and Hengshuang Zhao. Point transformer v3: Simpler, faster, stronger. In CVPR, 2024b.

Xiaoyang Wu, Daniel DeTone, Duncan Frost, Tianwei Shen, Chris Xie, Nan Yang, Jakob Engel,
Richard Newcombe, Hengshuang Zhao, and Julian Straub. Sonata: Self-Supervised Learning of
Reliable Point Representations, March 2025. URL http://arxiv.org/abs/2503.16429.
arXiv:2503.16429 [cs].

Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsupervised
visual dynamics simulation with object-centric models, 2023.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. arXiv preprint
arXiv:2311.12198, 2023.

Haotian Xue, Antonio Torralba, Josh Tenenbaum, Dan Yamins, Yunzhu Li, and Hsiao-Yu Tung.
3d-intphys: Towards more generalized 3d-grounded visual intuitive physics under challenging
scenes. Advances in Neural Information Processing Systems, 36:7116–7136, 2023.

Heng Yu, Joel Julin, Zoltán Á Milacski, Koichiro Niinuma, and László A. Jeni. CoGS: Controllable
Gaussian Splatting, 2023.

Mingtong Zhang, Kaifeng Zhang, and Yunzhu Li. Dynamic 3d gaussian tracking for graph-based
neural dynamics modeling. In 8th Annual Conference on Robot Learning, 2024a.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric, 2018.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely, Jiajun
Wu, and William T. Freeman. PhysDreamer: Physics-Based Interaction with 3D Objects via Video
Generation, April 2024b. URL http://arxiv.org/abs/2404.13026. arXiv:2404.13026
[cs].

12

http://arxiv.org/abs/2503.16429
http://arxiv.org/abs/2404.13026

	Introduction
	Related work
	Preliminaries
	3DGSim
	State Representation
	View-Independent Inverse Renderer
	Dynamics Model
	Rendering Features for the Image Reconstruction Loss

	Experiments
	Trajectory Simulation
	Scene Editing and Model Generalization
	Simulation Speed

	Discussion
	3DGSim additional details
	Unprojecting Pixel-Aligned Features via FiLM Conditioning
	PTv3: Scalable point cloud transformations
	Architectures

	Ablations
	Rollout Length.
	Camera Setup.
	Segmentation Masks.
	Modality Configurations
	Grid Resolution
	Temporal Merger.

	Positioning 3DGSim Among Existing Approaches
	Clarification on the Distinction between 3DGSim and Dynamic Scene Reconstruction Methods
	Comparison to PhysGaussian and PhysDreamer
	Summary:

	Visualizations
	Scene editability
	3DGSim
	CosmosFT

	Generalization to multiple bodies
	3DGSim
	CosmosFT

	Visualization of cloth simulations
	3DGSim
	CosmosFT

	Visualization for elastic dynamics
	3DGSim
	CosmosFT

	Visualization for rigid body dynamics
	3DGSim
	CosmosFT

