LEARNING 3D-GAUSSIAN SIMULATORS
FROM RGB VIDEOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Realistic simulation is critical for applications ranging from robotics to animation.
Video generation models have emerged as a way to capture real-world physics from
data, but they often face challenges in maintaining spatial consistency and object
permanence, relying on memory mechanisms to compensate. As a complementary
direction, we present 3DGSim, a learned 3D simulator that directly learns physical
interactions from multi-view RGB videos. 3DGSim adopts MVSplat to learn
a latent particle-based representation of 3D scenes, a Point Transformer for the
particle dynamics, a Temporal Merging module for consistent temporal aggregation,
and Gaussian Splatting to produce novel view renderings. By jointly training
inverse rendering and dynamics forecasting, 3DGSim embeds physical properties
into point-wise latent features. This enables the model to capture diverse behaviors,
from rigid and elastic to cloth-like dynamics and boundary conditions (e.g., fixed
cloth corners), while producing realistic lighting effects. We show that 3DGSim can
generate physically plausible results even in out-of-distribution cases, e.g. ground
removal or multi-object interactions, despite being trained only on single-body
collisions.

1 INTRODUCTION

Simulating visually and physically realistic environments is a cornerstone for embodied intelligence.
Robots must soon tackle tasks such as opening washing machines, folding laundry, or tending plants.
Traditional analytical simulators demand exact geometry, poses, and material parameters, making
arbitrary scene simulation impractical. An alternative is to learn models that predict future states of a
scene in large-scale observations, as evidenced by the striking visual realism of 2D video generation
methods (Li et al., 2022; NVIDIA et al., 2025; Wu et al., 2023). However, pure 2D approaches lack
3D structure awareness, leading to failures in occlusion handling, object permanence, and physical
plausibility (Motamed et al., 2025).

3D-based representations address many of these shortcomings, as shown by recent learned particle-
based simulators (Allen et al., 2023; Li et al., 2019) which model a wide range of physical phenomena,
from fluids and soft materials to articulated and rigid body dynamics. Yet, scaling such methods
to data-rich regimes remains challenging, as most methods require privileged signals (object-level
tracks, depth sensors, physics prior) or hand-crafted graph constructions.

To bridge this gap, we identify three pillars for generalizable, scalable visuo-physical simulation from
videos: (1) 3D visuo-physical reconstruction from raw RGB observations; (2) Imposing minimal
physical biases that can capture diverse physics; (3) Efficient, differentiable decoding back to image
space for supervision via reconstruction loss.

Graph neural networks (GNNs) (Sanchez-Gonzalez et al., 2020; Shi et al., 2024; Wang et al., 2024;
Whitney et al., 2023; 2024; Xue et al., 2023) have shown great promise in introducing relational
inductive biases to handle the unstructured nature of particle sets. This has allowed GNN-based
particle simulators to make major progress on all three pillars. In particular, Whitney et al. (2023)
jointly train an encoder and dynamics model to learn visuo-physical pixel features from RGBD, and in
the follow-up work Whitney et al. (2024) eliminate point correspondences via abstract temporal nodes
or per-step models with merging. Driess et al. (2023) demonstrate end-to-end dynamics training
of composable NeRF fields from raw RGB images. These advances, in combination with recent
advances in feed-forward inverse rendering (Chen et al., 2024) and fast differentiable rendering of

Table 1: Overview on recently proposed particle-based simulators. While most works resort to a combination of
kNN and GNNs, our work distinguishes itself by resorting to 3D Gaussian Splatting, space filling curves (SFC)
for point cloud serialization, and training the inverse rendering encoder alongside a dynamics transformer.

Method Scene Inverse renderer Graph Dynamics model Forward
(“*: No data / code) representation (- : Pretrained) synthesis (¥9: Uses privileged info) rendering
SDF-Sim ¥ Rubanova et al. Rubanova et al. (2024) Mesh n.a. SDF GNN © n.a.
PGNN. Saleh et al. Saleh et al. (2024) Mesh n.a. Mesh GNN + Attention ¢ n.a
FIGNet Allen et al. Allen et al. (2022a) Mesh faces n.a. BVH GNN © n.a.
Robocraft Shi et al. Shi et al. (2024) Point clouds n.a. (RGB-D) kNN GNN © NeRF
3DIntphys ¥ Xue et al. Xue et al. (2023) Point clouds NeRF (Point sampl.) kNN GNN © NeRF
VPD ¢ Whitney et al. Whitney et al. (2023) Point clouds n.a. (RGB-D + UNet) kNN GNN NeRF
HD-VPD ¢ Whitney et al. Whitney et al. (2024) Point clouds n.a. (RGB-D + UNet) kNN GNN + Transformer NeRF
DEL ¢ Wang et al. Wang et al. (2024) Point clouds NeRF (GPF) kNN GNN + DEM NeRF
3DGSim (Ours) Gaussian splats ~ MVSplat SFC Transformer 3DGS

particles (Kerbl et al., 2023), encourage us to ask the question: can we give up the inductive bias
arising from locally connected graphs and still learn 3D particle-based simulators?

To this end, we build 3DGSim, a fully Cameradep. Laen
. . prim e
end-to-end differentiable framework that oast featyres features]
9 Inverse __, > —> Dynamics —
embraces the power of scalable computa- Renderer Model
tion over hand-crafted biases. 3DGSim be- C C
gins by lnferr]ng 3D V].Sl'lo_phySl(.:a] fea- - K Past Gaussian Predicted Gaussian
tures from raw multi-view RGB images unsee i o ottt
through a feed-forward inverse renderer A Renderl Renderl
based on MVSplat. We then introduce a & :
. . . &5 Image reconstruction loss
transformer-only dynamics engine, avoid- $

ing kNN-based graph construction and
manually designed edge features in favor Figure 1: 3DGSim works directly on multi-view RGB videos
of learned spatiotemporal embeddings. Fi- and is trained end-to-end on next image prediction. The

nally, a Gaussian Splatting head enables dynamics model (transformer) operates on ¢
training on an image reconstruction 1oss . A learned mapping transforms them into 3D
from multi-view videos Gaussian Splats for novel view rendering.

Specifically, 3DGSim introduces the following key contributions:

* Inverse Renderer: Extends MV Splat with a feature extraction module fusing pixel-aligned
features into a particle visuo-physical latent representation.

* Temporal Encoding & Merging Layer: Discards abstract temporal nodes in favor of a
hierarchical module that processes an arbitrary number of timesteps.

* Transformer-Only Dynamics Engine: Removes graph biases and instead uses space-filling
curves and learned embeddings for particle-based simulation.

* End-to-End Differentiable Framework: Connects inverse rendering, transformer dynamics,
and Gaussian splatting-based decoding to training for next-frame image reconstruction.

* Open Source Release: We release the code and dataset to establish a reproducible baseline
for future visuo-physical simulation research.

2 RELATED WORK

Encoding and rendering scene representations Common 3D scene representations include
point clouds (particles), meshes, signed distance functions (SDFs), neural radiance fields (NeRFs)
(Mildenhall et al., 2021), and 3D Gaussians (splats) (Kerbl et al., 2023). Point clouds, which
approximate object surfaces, can be obtained from RGB-D sensors (Shi et al., 2024; Whitney et al.,
2023; 2024) or via inverse rendering (Chen et al., 2024; Murai et al., 2024; Wang et al., 2025).
Works, such as Whitney et al. (2023; 2024), use U-Net—style encoders trained jointly with the
dynamics model, allowing the extracted features to be optimized for physical prediction, a strategy
shown to outperform independently trained encoders (Li et al., 2022). We adopt this joint training
approach using MVSplat (Chen et al., 2024), where the encoded features are initially bound to camera
parameters. To unify these visuo-physical latents in a global frame, we introduce a learned feature
transformation module that maps them into a consistent 3D representation. While many PBS methods
render from NeRFs (Driess et al., 2023; Shi et al., 2024; Wang et al., 2024; Whitney et al., 2023;
2024; Xue et al., 2023), we instead encode visual appearance directly in the particle cloud using

3D Gaussians. This explicit representation offers high rendering fidelity and significantly improved
efficiency over NeRF-based rendering (Kerbl et al., 2023), supporting scalability.

GNN based particle-based simulators (PBS) Graph neural networks (GNN5s) introduce relational
inductive biases well-suited for modeling the unstructured nature of particle systems. Early work
(Li et al., 2019; Sanchez-Gonzalez et al., 2020) demonstrated that GNN-based PBS can fit trajec-
tories across a range of physical phenomena. However, GNNs struggle with rigid bodies, where
instantaneous velocity changes require long-range message passing across the entire graph in a
single step. To address this, later works incorporate mesh structures (Allen et al., 2022b; Pfaff et al.,
2021) or signed distance functions (SDFs) (Rubanova et al., 2024) to enforce object-level coherence.
Although effective in rigid-body settings, these methods do not generalize to deformable or fluid
systems. Recent works (Saleh et al., 2024; Whitney et al., 2024) suggest adding attention layers to
efficiently pass information through the graph. Wang et al. (2024) move toward greater data efficiency
by incorporating physics-inspired biases such as the Material Point Method, though limiting broad
applicability and requiring small simulation timesteps. To address temporal correspondence, Whitney
et al. (2023) introduces abstract temporal nodes, while Whitney et al. (2024) combines GNNs with
transformers to improve memory efficiency by processing and merging pairs of timesteps. However,
the method is restricted to two-step horizons, as it requires training a separate model for each addi-
tional timestep. Methods based on GNN rely on kNN to define point connectivities within a fixed
radius and hand-crafted features based on object associations and distances to define graph features.
Message passing and spatial pooling via furthest-point-sampling (FPS) are then used to aggregate
information for dynamics prediction. However, kNN and distance computations are expensive and
take up 54% of the forward time (Wu et al., 2024b), which limits scalability and prevents real-time
forecasting. In contrast, we follow the design of PTv3 (Wu et al., 2024b). In 3DGSim, we trade
off exact KNN neighborhood computation with space-filling curve—based ordering of particles and
use sparse convolutions to encode relative positions, avoiding distance calculations. To enable the
processing of temporal point clouds, we propose Temporal Merging with Grid Pooling to construct a
hierarchical spatiotemporal, UNet-style Point Transformer for dynamics prediction.

Analytical particle simulators as physical prior Our work differs in purpose from applications
which use Gaussian Splatting particles and analytical PBS as physical prior (e.g. off-the-shelf
differentiable MPM simulator) to accomplish a series of tasks such as tracking (Abou-Chakra et al.,
2024; Keetha et al., 2024; Luiten et al., 2024; Zhang et al., 2024a), dynamic scene reconstruction
(Huang et al., 2023; Wu et al., 2024a; Yu et al., 2023), or animation (Lin et al., 2025; Xie et al., 2023;
Zhang et al., 2024b). While analytical PBS can be used for parameter identification (Abou-Chakra
et al., 2024), they are tailored to specific simulation scenarios. For a detailed comparison, refer to the
supplementary material (see Appendix C.2).

3 PRELIMINARIES

3DGSim is build atop several prior works, namely: 3D-Gaussian splatting which enables fast
rendering, MVSplat which yields 3D Gaussian point clouds from multi-view images, and PTv3 which
enables efficient neural processing of 3D point clouds.

Gaussian Splatting 3D Gaussian splatting (3DGS) (Kerbl et al., 2023) is an effective framework
for multi-view 3D image reconstruction, representation, and fast image rendering and has gained
rapid popularity due to its support for rapid inference, high fidelity, and editability of scenes. Gaussian
splatting uses a collection of 3D Gaussian primitives, each parameterized by

9i = (pis i, 13, Si,04) (D

with the Gaussian’s mean p; (particle position), its rotation r;, spherical harmonics ¢; (defines
coloring), scale s;, and opacity o;. To render novel views, these primitives are projected onto a 2D
image plane using differential tile-based rasterization. The color value at pixel p is calculated via
. I — . T -1 . .
alpha-blend rendering: I(p) = Zfil ;¢ H;zll(l — «;) where o; = oiem2(P=pi) I (Ppi) jg
the 2D density, [is the rendered image, N is the number of primitives in the image and X; is the

covariance matrix given by »; = r;s;r; for improved computational stability.

«@—3D Gaussians __Object
MVSplat: Multi-view feed-forward 3D reconstruction Depths,

MVSplat deploys a feed-forward network f4 with parameters
¢ that maps M images Z = {I"}M ~ with [€ RUIXWx3)
to a set of pixel-aligned 3D Gaussian primitives (Fig. 2)

(/}round

fo {I™, P™YM_ s {g MW

Cameﬁ o

| L
St) C
. . . . ct
At each time step, MV Splat localizes Gaussian centers using 2

a cost volume representation through plane-sweeping and Figure 2: MVSplat uses a cost volume
cross-view feature similarities. To do so, it requires the corre- with plane sweeping to regress pixel-wise
sponding camera projection matrices P = { P }*_, thatare 3D Gaussians, which are unprojected to
calculated as P"™ = K™ [R™|t™] via the camera intrinsics ~world frame using camera parameters.
K™ rotation R™, and translation ¢t"".

4 3DGSIM

3DGSim is a fully differentiable pipeline that, given T" past multi-view RGB frames, reconstructs 3D
particles with latent features, simulates their motion, and renders the next frames. It consists of three
jointly trained modules (Fig.1): (i) an encoder that maps multi-view RGB images to 3D particles, (ii)
a dynamics model that simulates the motion of these particles through time, and (iii) a renderer that
yields images by first mapping the particles to Gaussian splats.

4.1 STATE REPRESENTATION

To simulate physical scenes from vision, we require a state representation that is both expressive
enough to capture fine-grained 3D and physical properties, and compact enough to enable efficient
learning and prediction. Although an explicit 3DGS representation g; () offers geometric and visual
completeness, it is insufficient for dynamics modeling. Instead, we distill the state of each particle
into a more compact representation:

Gi(tr) = (pi(te), fi(tr)) 2

where), denotes the k-th timestep and f; € R? the visuo-physical latent particle feature, encoding
shape, appearance, and dynamic properties. Unless otherwise stated, we omit the timestep ¢; and the
particle index ¢ when the statement applies to all timesteps or particles, respectively.

Optional: Masking and Freezing of Particles At each timestep ¢, the encoder yields pixel-
aligned features for each input image. As an optional step, one can apply a foreground mask to
discard particles likely belonging to the static background, retaining a reduced set of N, particles
per time step (Fig. 2). Additionally, as originally suggested by Whitney et al. (2023), static particles
can optionally be “frozen”, i.e. act as input to the dynamics model but are excluded from position
updates. These optional strategies improve efficiency without being necessary for successful training,
as shown in Section 5 and Appendix B.

Invariant and dynamic feature decomposition We decompose

each particle’s visuo-physical feature into an invariant and a dynamic v '
part as shown in Fig. 3, writing Dynamics
model

in dyn
fi:fiv®fiy7

v
Ap|A dyn | ginv
where & denotes concatenation. The dynamics model updates only
Ifl

ff " while leaving fI™ unchanged. For clarity, we will refer to
the dynamics update as “updating f;”, though only the dynamic

component " is altered.

)
Figure 3: Position p and dynamic
features o are updated while
/™ remain constant.

4.2 VIEW-INDEPENDENT INVERSE RENDERER

In MVSplat, pixel-aligned features fl’ are tied to the specific camera view from which they were
extracted. While Gaussian primitives (e.g. depth, scale, rotation, harmonics) can be directly unpro-
jected or transformed into the world frame using camera parameters, latent features remain bound to
the camera-centric frame. Since dynamics predictions are invariant to the observer’s viewpoint, such
a dependence on view-dependent encodings hampers generalization.

To overcome this, 3DGSim introduces a feature encoding network that maps pixel-aligned features
f{ into view-independent latent representations f;. The encoder employs FiLM conditioning (Perez
et al., 2017) on pixel depth, pixel shift, density, and ray geometry (parameterized via Pliicker
coordinates (Pliicker, 1868-1869)) to infer spatially consistent 3D features. As a result, the inverse
rendering module produces canonically anchored particle states, providing a unified representation
for downstream dynamics learning. Further architectural details are described in Appendix A.1.

4.3 DYNAMICS MODEL

At the core of our method is the dynamics model, a transformer architecture operating on particle
sets in space and time. The dynamics model receives as input 7" past particle sets,

~ T ~ inv
{{ai(te) X}, _,, where Gi(tr) = (piltn), fI™ (), F2" (1)), 3)
and predicts the updated dynamic features at the next timestep
Apltr), A7 (tx) = Dynamies Model ({{3:(14)})11 @

such that p;(tr41) = pi(tr) + Api(tr) and f*"(tr11) = f*"(t7) + Af*" (7). As these point
clouds are unstructured and potentially vary in size at each time step due to masking, a fundamental
challenge arises: How can a network efficiently propagate the embedded physics information both
spatially and temporally?

We tackle this question by building on PTv3 Wu et al. (2024b), which has recently achieved state-
of-the-art performance in representation learning for unstructured point clouds Wu et al. (2025).
As discussed in Appendix A.2, PTv3 operates by serializing the input point cloud and applying
patch-wise attention. However, the original design of PTv3 is limited to point clouds that do not
exhibit temporal variation. In this section, we extend PTv3 to predict dynamics from temporally
evolving point clouds. First, we extend serialization to equip point cloud encodings with a timestamp.
Then, we equip features with temporal embeddings that allow attention to distinguish timestamps.
Lastly, we use the timestamps to merge neighboring latent particle sets, enabling PTv3’s patch-wise
attention blocks to aggregate information across time.

Temporally serialized point cloud (t-SPC) To enable spatio-temporal reasoning over multiple
timesteps, we extend PTv3’s point serialization scheme by encoding both spatial and temporal
structure into a single key. Specifically, for each particle 7 at timestep ¢, in batch b, we define a 64-bit
serialization code:
Steb)=[b s | 5] ©)
(64-7-K)Bits _pjs kBits

Here, s;, is the temporal code and s; is a spatial code obtained by projecting p; onto a space-filling
curve (SFC). We set x = 48 and allocate 7 = log,(T") bits for time. With 16 bits per dimension and
a grid resolution of G = 0.004 m, the spatial encoding spans up to 216 m per axis.

Temporal encoding As shown in Fig. 6, before merging t-SPCs across timesteps, we inject a
learned, timestep-specific positional encoding E}, as

fi(ty) < fi(te) + Ex,. (6)

This temporal encoding ensures that the attention mechanism can distinguish points across different
temporal instances, enabling the model to reason about dynamics over time. Similar positional
encoding methods have previously been applied in transformer architectures to differentiate positions
within sequences (Vaswani et al., 2017).

PTv3 initilization Temporal encoding and merging (TEM) PTv3 block

[Sparse CNN |

[_pointcloud_) [Cloud cmbodeing] [Clovd embediing] [Glond exbeding] b I e T
i[Serialjzation } i [Grid'PooI][Gﬁd'PooI 00 11 S{ace filling curve- \ — nnnnn :J
i sparse CNN_J {{ Shuffle Orders][_Shuffle Orders oo []] ———» ™ ~[ooTool+][]
—————— i ey : N e | F N S =S B o v [
[Cloud embedding] | [ime step di][Time step di 1 e /“7 BREEE
] 1 00 _-t; [] — _
el Mewing JERNR SOOI o | ONDD]—
. [L AN ' N | P [T olo]]
Point clouds ‘ P oo BT < | P
P, fl | 4] 3D Gaussian point cloud Serialized point cloud
Pl . . | o
Tem| > [T = Figure 5: Spatio-temporal point cloud serialization.
. /s (I
_—V —> xS Temporal merging Temporal encoding Patch grouping
~ Dynamics | qp _’}HHHH}_> Dynamics Sty St Si E; Sty Si E;
D3, f3 00T WUy~ decoder ~{ofofoolo][] St [ofolo ool]
-+ > s iy L CYC T) S 41 s (O
| s T v ~fofofo[1]o][] [eToTofo[][]
-~ [Fave] BI--BRGEO e _ > (BRI]
] ~+[ofofoJo[1][] . [oTofo[i o]]
— Apr, Afr ~[oJe[Tolo]] ’ [Tl ool | ,nz
Y K e) Y K K | I ﬂﬂﬂ 1
Figure 4: The dynamics model encodes the time step =0 Pacaing (01O T[T 0] [

into each embedding and merges embeddings from adja-))
cent timesteps. The TEM and PTv3 blocks are applied Figure 6: Temporal merging and embedding followed
repeatedly until all embeddings are merged. Our exten- bY Patch grouping for applying patch-wise attention.

sions to PTv3 are highlighted in red.

Temporal merging Unlike PTv3, which restricts attention exclusively to patches composed of
points from the same time step, our method enables a wider receptive field across time. To do so, we
propose temporal merging which applies a one-bit right shift to the temporal codes s, :

Merge([éi) = [b | (Stk > 1) | Si}. @)
For instance, points from time steps s;, = 0 and s;, = 1 are merged by shifting their codes, so they

both become 0, as depicted in Fig. 6. By grouping points from separate time steps into a single patch,
the attention module can model relationships across time.

Importantly, while Whitney et al. (2024) deploy a dedicated transformer module for each time step,
our proposition of temporal merging enables the reuse of the same attention block across time steps,
which significantly reduces memory consumption and promotes knowledge transfer.

Patch-wise attention and particle-wise MLP After each temporal encoding and merging (TEM)
block, the cloud embeddings are processed by PTv3’s patch-wise attention block. First, the embed-
dings are equipped with a position encoding via a sparseCNN with skip connection (xCPE in Fig. 4).
Then, the embeddings are fed to a patch-wise attention layer. Finally, at the end of the dynamics
model, each particle alongside its embedding is mapped by a particle-wise MLP to App and A fr.

4.4 RENDERING FEATURES FOR THE IMAGE RECONSTRUCTION LOSS

To render images with 3DGS, particle states g; = (p;, f;) are transformed into Gaussian splat
parameters g; via a learned head, materialized only at the final stage to supervise the training with
image reconstruction.

3DGSim is trained solely on an image reconstruction loss £. This loss is computed from ras-

terized multi-view images, generated based on both the encoder predictions of past point clouds

{{gi(tx) } % }T_, and the simulated future point cloud trajectory {{gi(t)} %, }gig;l . Specifically,

the loss reads

T T+T'
1 7
£=(1—A>T§£k+Ak;+lv’“ =1, and Ly = Lo(I¥, 1) + B Lopws (I8, 1), (8)

with A = 0.5, temporal decay factor v = 0.87,T € {2,4} and T” = 12. The per-frame reconstruction
loss L measures the discrepancy between ground-truth (/ ,ft) and predicted (/) multi-view images
using a weighted combination of pixel-wise ¢ and LPIPS Zhang et al. (2018) terms with hyper-
parameter 3 = 0.05.

5 EXPERIMENTS
In what follows, we train 3DGSim on different datasets and test the model’s ability to generalize.

Model setup Unless stated otherwise, the following training and parameter settings serve as
defaults in the experiments. The state consists of dynamic f%" and invariant features ™ of size
(32,32) for the implicit- and (ns,16) for the explicit 3D Gaussian particle representation. In
the explicit representation, f®" corresponds to explicit Gaussian primitives of size n; which are
directly used for rendering. The inverse rendering encoder follows MV Splat, reducing candidate
depths from 128 to 64 due to smaller scene distances. Default near-far depth ranges are [0.2, 4]
for rigid bodies and [1.5, 8] for the other datasets, as the scene has a larger scale. The dynamics
transformer defaults to PTv3 with a 5-stage encoder (block depths [2, 2, 2, 6, 2]) and a 4-stage decoder
([2,2,2,2]). Grid pooling and temporal merging strides default to [1,4,2,2,2] and [1,2,2,2,2],
respectively, with grid size G=0.004 m. Attention blocks use patches of size 1024, encoder feature
dimensions [32, 64, 128, 256, 512], decoder dimensions [64, 128, 256], encoder heads [2, 4, 8, 16, 32],
and decoder heads [4, 4,8, 16]. For the camera setup, we select 4 uniformly distributed views at
random and an additional 5 target cameras from the remaining cameras (out of 12 total) to compute
the reconstruction loss.

Training Our models are trained with AdamW for ~120,000 steps using a cosine annealing warm-
up and a learning rate of 2 x 10~%, with batch sizes of 6 and 4 for 2-step and 4-step states, respectively.
To optimize memory and speed, we use gradient checkpointing and flash attention v2 (Dao, 2024).
Training is performed on a single H100 GPU and typically takes around six days.

Datasets To evaluate 3DGSim’s robustness in learning dynamics from videos, we introduce three
challenging datasets: rigid body, elastic, and cloth.

The rigid body dataset consists of 1,000 simulated trajectories from the MOVI dataset, involving
six rigid objects (turtle, sonny school bus, squirrel, basket, lacing sheep, and turboprop airplane)
from the GSO dataset (Downs et al., 2022). Each trajectory spans 32 frames at 12 FPS, providing
controlled dynamics characteristic of rigid body motion. The elastic dataset, aimed at capturing
plastic deformable object dynamics, includes six objects (dragon, duck, kawaii demon, pig, spot,
and worm) simulated using the Genesis MPM elastoplastic simulator (Authors, 2024). Each object
undergoes deformation upon collision with a circular gray ground, offering scenarios of complex
elastic behavior. The cloth dataset includes the same set of objects as the elastic dataset. Here, the
cloth is fixed at four corners, posing the challenge to infer implicit constraints and modeling dynamic
cloth-like deformations.

Both elastic and cloth datasets include 200 trajectories per object, simulated with a 0.001 time step
and 20 substeps. Each two second sequence is recorded at 42 FPS resulting in 84 frames per trajectory
and less than 6 minutes of footage per object.

Step 1 Step 10

Step 1 Step 4 Step 7 Step 10
Elastic

Step 1 Step 1 Step 7 Step 13 Step 19 Step 19

Cloth

Step 1 Step 1 I Slepm*&epm* Step 40 - Step 40 .

Groundtruth (Start) Groundtruth (End)
3DG51m prediction steps * Images upsampled via super resolution

Figure 7: Qualitative examples of 3DGSim’s dynamic predictions. After training on less than 6 minutes of video
per object across 6 objects, 3DGSim accurately predicts motion of elasto-plastic deformations, rigid bodies,
cloth.

Rigid dataset

past future Elastic dataset past future Cloth dataset
o “* ~—— 3DGSim (4 past steps)

—— 3DGSim (2 past steps)
—————— Cosmos (w. FT)
301 ih T AN e Cosmos (w/o. FT)

past future
>

w
a

w
S

Trajectory PSNR
N
X

N

=)
N
=}

0 5 10 15 20 25 20 40 60 20 40 60
Time steps Time steps Time steps

Figure 8: Trajectory PSNR of 3DGSim, Cosmos and CosmosFT is shown for both past and future predictions.
The Cosmos models are conditioned on past frames and appropriate language prompts.

Figure 12: Comparison of 3DGSim to Cosmos. Ex-

plicit models use 3DGS parameters and a static latent

s : . ‘ feature as inputs to the dynamics model, while latent
models use only latent features mapped to Gaussians

after dynamics. The T-model uses only 6 camera views
(3 input + 3 reconstruction) instead of 12 (4+5); the

f-model omits segmentation masks for static elements.
Metrics future and past are means over all timesteps.

-iil & & ‘ "4-12" means 4 past steps predicting 12 future steps.

Figure 9: 3DGSim’s prediction of a rigid plane cap-
tures shadows by altering ground particle appearance.

J Dataset Model PSNR (future) 1 PSNR (pas) T SSIM7 LPIPS |
3DGSim 4-12 latent 2828+252 3293156 090003 0.09£0.03
b 3DGSim 2-12 latent 2808+246 3300162 090003 0.090.03
Rigid 3DGSIm4-12explicit 27.884243 3277157 090£0.03 0.09+0.03
& 3DGSim 2-12 explicit 2707227 32.67+1.65 090+0.03 0.090.03
CosmosFT 2644 £2.26 - 0.68+005 0.10%0.03
Cosmos 2235382 - 083008 024+0.08
. . : H 3 3 3DGSim 4-12 latent 3315£351 3455£226 097002 0.02%0.01
Flgure 10: A]thOUgh not trained on this SpeC1ﬁC elastic 3DGSim 2-12 latent 3205+348 3599+ 188 0.96+0.02 0.03+0.02
i 1 i i 1 i- 3DGSim 2-12explicit 29.92+1.72 4085294 096002 0.03%0.02
Ob-] ect or multlp le Ob] ects, 3DGSim predlcts p hySI Elasic 3DGSim4-12explicit 29.69£175 40.16£3.07 097£0.02 002001
: i 3DGSim4-12latent 31.60£3.09 32.55£2.12 097+0.02 0.02%0.01
Ca“y plau51ble deformations. 3DGSim4-12 latent} 3266343 34.45:244 096£0.02 0.030.02
CosmosFT 26.50£5.21 - 082002 007003
£ Cosmos 18.87 +3.99 - 079008 023008
A 3DGSim 4-8 latent 2698+2.63 3481£228 0.89:0.03 0.08%0.03
Q 3DGSim 2-8 latent 2625+238 3522£197 0.88:0.03 0.08%0.02
2 G Clotn 3DGSim4-8explicit 2372+152 3975£232 089003 008003
—_ 3DGSim 2-8 explicit ~ 17.97£202 3547+1.68 0.88+0.03 0.08+0.02

CosmosFT 22.49+0.99 - 0.73£0.03 0.14£0.04

w Q w ‘ Cosmos 21.10+3.56 - 0.86+0.06 0.19 +0.06
] 4 4
Figure 11: When the ground is removed, 3DGSim e ‘ 4 é

predicts the freefall, while CosmosFT hallucinates a Figure 13: CosmosFT merges distinct worms into one
levitating object at ground level. before ground contact, even on in-distribution cases.

osmosFT

Benchmarking Existing 3D baselines do not allow direct comparison without substantial reimple-
mentation. Key methods — VPD, HD-VPD, DEL, and 3D-IntPhys (Wang et al., 2024; Whitney et al.,
2023; 2024; Xue et al., 2023) — lack public code and data, also unavailable upon contacting authors.
Without published datasets, any reimplementation would lack verifiability, limiting reproducibility
and fair evaluation. To address this, we will release our code and datasets. DPI-Net and VGPLDP
(Li et al., 2019; 2020) are open-source but rely on ground-truth particle trajectories and require
major adaptation to fit our setting. For 2D baselines, we provide quantitative comparison to Cosmos
(NVIDIA et al., 2025). Note that Cosmos differs from our multi-view setup as it is pretrained on
multiple past frames from a single view. For fair comparison, we evaluated both the base model and
a LoRA-finetuned variant of Cosmos-Predict2 (CosmosFT) trained for 6,000 iterations on our data
set using recommended parameters. The Cosmos models are conditioned on the prompts detailed in
Table S7). For evaluation, 12% of trajectories are chosen at random and held out from each dataset,
and we report each model’s PSNR, LPIPS and SSIM.

5.1 TRAJECTORY SIMULATION

3DGSim achieves competitive long-horizon simulation accuracy; up to 80 steps; compared with
state-of-the-art baselines such as Cosmos-1.0-Autoregressive-5B-Video2World and a LoRA-finetuned
Cosmos-Predict2 (NVIDIA et al., 2025). Performance curves are shown in Fig. 8. Ablation studies
(Tab. 12) reveal that keeping 3DGS primitives explicit in the representation yields similar short-term
performance but generalizes poorly, especially with fewer cameras (see Appendix B). By contrast,
using a latent implicit representation leads to more robust generalization.

5.2 SCENE EDITING AND MODEL GENERALIZATION

With its explicit 3D state, 3DGSim supports direct scene editing, providing a natural testbed for
generalization. When the ground is raised or removed, conditions never seen during training, the
model continues to generate stable, physically consistent rollouts (Fig. 11). This suggests a robust
grasp of underlying dynamics that extends beyond the training distribution.

We further test generalization by duplicating objects and running long-horizon simulations (Fig. 10),
Appendix D.1). Although trained only on single object—ground collisions, 3DGSim accurately
captures realistic multi-body interactions, with objects retaining integrity rather than collapsing into
chaotic overlaps. Beyond interactions, it even models emergent properties such as shadows (Fig. 9),
indicating a holistic understanding of lighting and geometry alongside physics.

In contrast, CosmosFT struggles under similar 2D-edits. When the ground is removed, objects
often remain suspended (Fig. 11), and when multiple objects are introduced, they morph into a
single mass before contact (Fig. 13). These hallucinations reflect the limits of 2D image-based
reasoning, underscoring the advantages of an explicit 3D representation for robust and interpretable

generalization. Further examples are shown in the supplementary. 201 Gt daia EPS
5.3 SIMULATION SPEED o 2

o

L 20

Simulation speed is critical for robotics applications. Traditional
simulators (FEM, MPM, PBD) typically employ small integration oA

. h . Rigid data FPS
timesteps. Learned approaches enable larger timesteps, allowing

3DGSim to simulate elastic cloth at 42 FPS and rigid dynamics 4 2

at 12FPS, with inference speeds of ~16 FPS (4 past steps) and past steps
~20.1FPS (2 past steps), using under 20 GB VRAM on an H100 Figure 14: Prediction speed of
GPU and achieving near real-time speeds as illustrated in Fig. 14. 3DGSim versus simulation FPS.

6 DISCUSSION

We introduced 3DGSim, a fully differentiable 3D Gaussian simulator that learns directly from multi-
view RGB video. 3DGSim integrates inverse rendering, dynamics prediction, and novel-view video
synthesis within a single end-to-end learnable system. Given that 3DGSim pioneers an unexplored
direction for 3D particle-based simulation, future work will explore action conditioning, a natural
next step that provides essential supervision signals for forecasting. This will also enable large-scale
validation on real-world multi-view datasets, which are currently unavailable for passive phenomena.
Our dependence on multi-view inputs could be further mitigated by recent advances in monocular
inverse rendering (Murai et al., 2024; Wang et al., 2025). Additionally, while occlusions are not
explicitly modeled, they are partially addressed by the dynamics module and may be further improved
through point completion techniques.

Spatial Causality In 3DGSim, interactions are restricted to those between spatially grounded
particles, which ensures that the simulation adheres to realistic physical dynamics. This contrasts with
2D pixel-based video generation models, where apparent dynamics often emerge from the generative
flexibility of image-space synthesis. The 3D formulation thus brings advantages such as spatial
consistency, object permanence, and robustness to out-of-distribution inputs, as exemplified by our
generalization tests. However, it introduces certain compromises: while 2D predictors can effortlessly
repurpose pixels to synthesize novel content, e.g., fabricating unseen objects from generative priors,
3D particle models inherit stricter structural constraints, making it difficult to dynamically create
or destroy particles in a learnable manner. This highlights a tradeoff between the stability and
interpretability provided by 3D spatial causality and the generative freedom unlocked by 2D video
models.

Toward Vision-Language Simulation Integrating language embeddings offers a promising avenue
for enriching particle-based simulations. Terms such as “liquid” or “mirror” provide informative
priors about object properties, enabling more structured and semantically aware predictions. We
envision 3DGSim as a step toward scalable simulators that can learn physical interactions from both
visual and textual modalities, ultimately supporting a more nuanced robotic understanding of complex
real-world dynamics.

REFERENCES

Jad Abou-Chakra, Krishan Rana, Feras Dayoub, and Niko Siinderhauf. Physically Embodied
Gaussian Splatting: A Realtime Correctable World Model for Robotics, 2024.

Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks, 2022a.

Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks, 2022b.

Kelsey R Allen, Tatiana Lopez Guevara, Yulia Rubanova, Kim Stachenfeld, Alvaro Sanchez-Gonzalez,
Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn discontinuous, rigid contact
dynamics. In Conference on Robot Learning, pp. 1157-1167. PMLR, 2023.

Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond, 2024.

Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-gaussian
embedding-based deformation for deformable 3d gaussian splatting. In European Conference on
Computer Vision (ECCV), 2024.

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images.
arXiv preprint arXiv:2403.14627, 2024.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B. McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of
3d scanned household items, 2022.

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. In Proceedings of The 6th Conference on
Robot Learning, volume 205 of Proceedings of Machine Learning Research, pp. 1755-1768, 2023.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs:
Sparse-controlled gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937,
2023.

Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track and map 3d gaussians for dense rgb-d
slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In /CLR, 2019.

Yunzhu Li, Toru Lin, Kexin Yi, Daniel Bear, Daniel L.K. Yamins, Jiajun Wu, Joshua B. Tenenbaum,
and Antonio Torralba. Visual grounding of learned physical models. In International Conference
on Machine Learning, 2020.

Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba. 3d neural scene
representations for visuomotor control. In Conference on Robot Learning, pp. 112-123. PMLR,
2022.

Yuchen Lin, Chenguo Lin, Jianjin Xu, and Yadong Mu. OmniPhysGS: 3D Constitutive Gaussians
for General Physics-Based Dynamics Generation, January 2025. URL http://arxiv.org/
abs/2501.18982. arXiv:2501.18982 [cs].

10

http://arxiv.org/abs/2501.18982
http://arxiv.org/abs/2501.18982

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 3DV, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, and Robert Geirhos. Do generative
video models understand physical principles? arXiv preprint arXiv:2501.09038, 2025.

Riku Murai, Eric Dexheimer, and Andrew J. Davison. MASt3R-SLAM: Real-Time Dense SLAM with
3D Reconstruction Priors, December 2024. URL http://arxiv.org/abs/2412.12392.
arXiv:2412.12392 [cs].

NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, et al. Cosmos world foundation model platform
for physical ai, 2025.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. CoRR, 2017.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.

Julius Pliicker. Neue Geometrie des Raumes gegriindet auf die Betrachtung der geraden Linie als
Raumelement. Teubner, Leipzig, 1868-1869.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention—-MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part 111
18, pp. 234-241. Springer, 2015.

Yulia Rubanova, Tatiana Lopez-Guevara, Kelsey R. Allen, William F. Whitney, Kimberly Stachenfeld,
and Tobias Pfaff. Learning rigid-body simulators over implicit shapes for large-scale scenes and
vision, 2024.

Mahdi Saleh, Michael Sommersperger, Nassir Navab, and Federico Tombari. Physics-encoded graph
neural networks for deformation prediction under contact. arXiv preprint arXiv:2402.03466, 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to Simulate Complex Physics with Graph Networks, 2020.

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects in 3d with graph networks. The International Journal of
Robotics Research, 43(4):533-549, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, . ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2017.

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. VGGT: Visual Geometry Grounded Transformer, March 2025. URL http://arxiv.
org/abs/2503.11651. arXiv:2503.11651 [cs]version: 1.

Jiaxu Wang, Jingkai Sun, Junhao He, Ziyi Zhang, Qiang Zhang, Mingyuan Sun, and Renjing Xu.
DEL: Discrete Element Learner for Learning 3D Particle Dynamics with Neural Rendering, 2024.

William F. Whitney, Tatiana Lopez-Guevara, Tobias Pfaff, Yulia Rubanova, Thomas Kipf, Kimberly
Stachenfeld, and Kelsey R. Allen. Learning 3d particle-based simulators from rgb-d videos, 2023.

William F. Whitney, Jacob Varley, Deepali Jain, Krzysztof Choromanski, Sumeet Singh, and Vikas
Sindhwani. Modeling the real world with high-density visual particle dynamics, 2024.

11

http://arxiv.org/abs/2412.12392
http://arxiv.org/abs/2503.11651
http://arxiv.org/abs/2503.11651

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20310—
20320, 2024a.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He,
and Hengshuang Zhao. Point transformer v3: Simpler, faster, stronger. In CVPR, 2024b.

Xiaoyang Wu, Daniel DeTone, Duncan Frost, Tianwei Shen, Chris Xie, Nan Yang, Jakob Engel,
Richard Newcombe, Hengshuang Zhao, and Julian Straub. Sonata: Self-Supervised Learning of
Reliable Point Representations, March 2025. URL http://arxiv.org/abs/2503.16429.
arXiv:2503.16429 [cs].

Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsupervised
visual dynamics simulation with object-centric models, 2023.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. arXiv preprint
arXiv:2311.12198, 2023.

Haotian Xue, Antonio Torralba, Josh Tenenbaum, Dan Yamins, Yunzhu Li, and Hsiao-Yu Tung.
3d-intphys: Towards more generalized 3d-grounded visual intuitive physics under challenging
scenes. Advances in Neural Information Processing Systems, 36:7116-7136, 2023.

Heng Yu, Joel Julin, Zoltin A Milacski, Koichiro Niinuma, and Laszlé A. Jeni. CoGS: Controllable
Gaussian Splatting, 2023.

Mingtong Zhang, Kaifeng Zhang, and Yunzhu Li. Dynamic 3d gaussian tracking for graph-based
neural dynamics modeling. In 8th Annual Conference on Robot Learning, 2024a.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric, 2018.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely, Jiajun
Wu, and William T. Freeman. PhysDreamer: Physics-Based Interaction with 3D Objects via Video
Generation, April 2024b. URL http://arxiv.org/abs/2404.13026. arXiv:2404.13026
[cs].

12

http://arxiv.org/abs/2503.16429
http://arxiv.org/abs/2404.13026

	Introduction
	Related work
	Preliminaries
	3DGSim
	State Representation
	View-Independent Inverse Renderer
	Dynamics Model
	Rendering Features for the Image Reconstruction Loss

	Experiments
	Trajectory Simulation
	Scene Editing and Model Generalization
	Simulation Speed

	Discussion
	3DGSim additional details
	Unprojecting Pixel-Aligned Features via FiLM Conditioning
	PTv3: Scalable point cloud transformations
	Architectures

	Ablations
	Rollout Length.
	Camera Setup.
	Segmentation Masks.
	Modality Configurations
	Grid Resolution
	Temporal Merger.

	Positioning 3DGSim Among Existing Approaches
	Clarification on the Distinction between 3DGSim and Dynamic Scene Reconstruction Methods
	Comparison to PhysGaussian and PhysDreamer
	Summary:

	Visualizations
	Scene editability
	3DGSim
	CosmosFT

	Generalization to multiple bodies
	3DGSim
	CosmosFT

	Visualization of cloth simulations
	3DGSim
	CosmosFT

	Visualization for elastic dynamics
	3DGSim
	CosmosFT

	Visualization for rigid body dynamics
	3DGSim
	CosmosFT

