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Abstract—Dynamic Music Emotion Recognition (DMER) aims
to track continuous emotional variations in music, yet machine
predictions still lag behind human perception, which stems from
a fundamental scientific issue: conventional acoustic features
such as Mel spectrograms obscure spectral details critical for
psychoacoustic cues like sensory dissonance and temporal fine
structure. In addition, prevalent RNN-based models struggle
to capture the long-range dependencies of musical narratives.
To bridge this gap, we propose the Psychoacoustic-Informed
Dual-Stream Transformer (PD-Former). The method introduces
Cochleogram features to simulate basilar-membrane responses,
capturing physiological texture cues that complement the acoustic
structure information provided by Mel spectrograms. A dual-
stream convolutional architecture processes these heterogeneous
features independently before synergistic fusion, and a Trans-
former further models long-range temporal dependencies. Ex-
periments on the DEAM dataset show that PD-Former achieves
state-of-the-art performance while remaining lightweight. Abla-
tion studies further validate the complementarity of psychoa-
coustic and acoustic features, the necessity of dual-stream fusion,
and the superiority of the Transformer in capturing long-range
dependencies. Our model achieves notable RMSE reductions—
12.5% in Valence and 15.8% in Arousal over the acoustic-only
baseline, and 5.6% and 2.1% respectively over state-of-the-art
benchmarks on the DEAM dataset.

Index Terms—Dynamic Music Emotion Recognition, Psychoa-
coustics, Cochleogram, Transformer

I. INTRODUCTION

Music is a universal medium for emotional expression,
yet machine understanding of musical emotion lags behind
human perception. Music Emotion Recognition (MER) seeks
to enable machines to comprehend complex musical affect,
promising transformative applications in recommendation sys-
tems, music therapy, and human-computer interaction.

However, musical emotion is inherently dynamic. Unlike
static music emotion recognition, which reduces complexity
by assigning a single label to an entire track, dynamic music
emotion recognition tracks continuous emotional evolution
within the Valence-Arousal (VA) space [1]. This frame-level
granularity is essential for applications requiring real-time
affective feedback.

Despite progress, high-precision continuous prediction re-
mains challenging due to the complexity of auditory cognition.
We identify three critical limitations in existing approaches: (1)

2" Qin Zhang
State Key Laboratory of Media
Convergence and Communication
Communication University of China
Beijing, China
zhanggin@cuc.edu.cn

Feature Representation Gap. Most works rely on acoustic
features such as Mel Spectrograms [2]. While acoustic features
scale approximate pitch perception, they fundamentally lack
the biophysical fidelity to model the basilar membrane’s non-
linear compression and temporal fine structure [3]. Conse-
quently, they obscure critical psychoacoustic cues such as
sensory dissonance (roughness), a primary physiological driver
of emotional arousal. In contrast, these cues are explicitly pre-
served by the Cochleogram’s auditory nerve simulation. Since
emotion perception relies on these psychoacoustic mechanisms
[4], standard engineered features fail to fully characterize the
underlying neural responses [5]. (2) Feature Fusion Gap. Ap-
proaches often fuse heterogeneous features via simple concate-
nation. This ignores differing physical scales and abstraction
levels, often causing dominant features to overshadow com-
plementary information and increasing optimization difficulty.
(3) Temporal Modeling Gap. Musical emotion depends on
long-range contextual contrasts. Traditional Recurrent Neu-
ral Networks (RNNs), including Long Short-Term Memory
(LSTM) networks, struggle to capture these dependencies due
to inherent sequential processing limitations.

To address these gaps, we propose the Psychoacoustic-
Informed Dual-Stream Transformer (PD-Former), designed
to emulate hierarchical auditory processing. Our contribu-
tions are: (1) Psychoacoustic-Informed Feature Extrac-
tion. We introduce the Cochleogram to MER. Extracted
alongside Mel Spectrograms, this simulates basilar membrane
responses via Gammatone filterbanks, creating a bimodal
space that captures both engineered acoustic patterns and
physiological cues. (2) Dual-Stream Architecture. We pro-
pose a Dual-Stream Convolutional Neural Network (CNN)
where features are processed through independent encoders.
This preserves modality-specific characteristics and promotes
deeper mining of complementary information before fusion.
(3) Transformer-Based Temporal Modeling. Replacing tra-
ditional RNNs, we employ a Transformer encoder [6]. Its self-
attention mechanism efficiently captures long-range emotional
dependencies across distant musical events.

Extensive evaluations on the DEAM benchmark [7] demon-
strate that PD-Former achieves state-of-the-art performance.
Ablation studies further validate the synergy of cochlear



features, dual-stream fusion, and Transformer modeling.

II. RELATED WORK
A. Feature Representation Methods

Effective feature representation is critical for MER. While
the Mel spectrogram is the de facto standard, used effectively
by CNNs (e.g., VGG, ResNet), it is an engineered represen-
tation based on logarithmic scales that does not model the
nonlinear perceptual characteristics of the Human Auditory
System (HAS). The Cochleogram addresses this by simulating
basilar membrane responses via Gammatone filterbanks, which
match auditory nerve tuning curves and capture nonlinear
frequency decomposition on the Equivalent Rectangular Band-
width (ERB) scale. Russo et al. first showed its superiority over
traditional features in music classification [8], with similar
gains observed in Speech Emotion Recognition (SER).

Psychoacoustic features have recently entered DMER.
Zhang et al.’s DAMFF combined MFCCs and Cochleograms
using multi-scale fusion, achieving RMSE scores of 0.340 (va-
lence) and 0.240 (arousal) on DEAM [9]. However, DAMFF
employs early fusion strategy (concatenation), which ignores
the features’ different structures (log vs. ERB scale) and forces
generic, suboptimal kernels, thus limiting the exploitation
of complementary information. In contrast, computer vision
domains use dual-stream networks (e.g., for RGB and optical
flow) with parallel branches and high-level fusion [10]. This
allows modality-specific learning but remains underexplored
in MER.

B. Temporal Dependency Modeling

Modeling temporal dependencies in DMER has been dom-
inated by RNN-based approaches, especially LSTM and BilL.-
STM, often in CNN-RNN hybrids [11]. Coutinho’s deep
LSTM achieved a 0.372 (V) / 0.234 (A) RMSE baseline on
DEAM [12], and Malik et al. used stacked CNN-BiLSTMs
[13]. However, RNNs’ sequential processing struggles to cap-
ture the critical long-range dependencies inherent in music.

The Transformer offers a compelling alternative, using its
self-attention mechanism to create direct connections between
all sequence positions, regardless of temporal distance. Its
success in NLP, SER, and physiological signal analysis has led
to its adoption in MER [14]. Zhang et al. used a dual-scale
attention Transformer [15], while Chen et al.’s Transformer
encoder achieved a 0.247 (V) / 0.224 (A) RMSE on DEAM
[16], substantially improving on RNN baselines.

Despite this progress, current Transformer-based DMER
models suffer from two limitations: (1) they rely almost exclu-
sively on single Mel spectrogram inputs, neglecting valuable
psychoacoustic features, and (2) effective fusion of hetero-
geneous feature streams within the Transformer architecture
remains underexplored [17].

III. PD-FORMER

We propose the Psychoacoustic-Informed Dual-Stream
Transformer (PD-Former), an end-to-end deep learning archi-
tecture designed to learn dynamic music emotion from parallel

acoustic and psychoacoustic-informed features. This section
details the model’s architecture and constituent components.

A. Overall Architecture

The overall architecture of PD-Former (see Fig. 1) is an
end-to-end dual-stream temporal network consisting of five
stages:
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Fig. 1. The overall architecture of the proposed PD-Former.

Mel-CNN Coch-CNN

Mel-spectrogram

Pool Layer

1) Parallel Feature Extraction. We extract two paral-
lel time-frequency representations from the raw audio:
the standard Mel spectrogram and the psychoacoustic-
informed cochleogram.

2) Dual-Stream CNN Encoding. We segment both feature
maps into fixed-length (0.5s) clips and process each
clip through a TimeDistributed wrapper before feed-
ing it into its respective CNN encoder. The Mel-CNN
and Coch-CNN streams operate independently without
weight sharing, which preserves each modality’s unique
characteristics while learning high-dimensional feature
representations.

3) Temporal Feature Fusion. After CNN encoding, we
concatenate the feature vectors from both streams at each
time step to form a unified temporal feature sequence.

4) Transformer-based Temporal Modeling. We augment
the fused sequence with positional encoding before pass-
ing it to a Transformer encoder stack, whose self-attention
mechanism captures long-range temporal dependencies.

5) VA Regression Output. A fully connected regression
head processes the Transformer output to predict frame-
by-frame Valence-Arousal (VA) values. We optimize the
model by minimizing 1-CCC loss, which maximizes the
Concordance Correlation Coefficient between predictions
and ground truth.

B. Psychoacoustic-Informed Feature Extraction

As shown in Fig. 2, PD-Former employs dual-stream inputs
to capture both standard acoustic patterns and psychoacoustic-
informed non-linear responses. We now detail the extraction
and preprocessing procedures for each feature type.
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Fig. 2. Overview of the PD-Former’s dual-stream feature encoding.

1) Mel Spectrogram: The Mel spectrogram provides a time-
frequency representation that models the human ear’s non-
linear frequency perception [18].

We first frame and window the input audio signal z(n) to
compute the power spectrum:
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where m is the frame index, w(n) is the Hann window, Ny =
2048 is the FFT size, H = | f,/88] is the hop length, and
fs = 44.1 kHz is the sampling rate. This hop length yields a
temporal resolution of 88 Hz.

Next, we convert from the linear frequency scale to the
perceptually-motivated Mel scale:

/
fmer = 259510g, (1 + 700 - 2)

We then apply a triangular filter bank Mgy, (4, k) with 96
filters to map the power spectrum onto Mel-frequency bands:

Niii /2
S(m,i) = > Minecli, k)X (m, k), 3)
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where ¢ € {1,...,96} indexes the Mel bands.
Finally, to model the ear’s logarithmic intensity response,
we convert to decibels:

Sag(m, i) = 10log,, (S(m, i) +€), )

where € = 1078 ensures numerical stability.

2) Cochleogram: The cochleogram employs an auditory
periphery model based on a Gammatone filterbank to simulate
the basilar membrane’s frequency decomposition mechanism
[19].

The cochleogram stream is designed to serve as a
lightweight, psychoacoustic-informed complement [20] to the

dense acoustic representation of the Mel spectrogram. In con-
trast to the 96 bands used for the Mel spectrogram, we design
11 Gammatone filters with center frequencies distributed on
the Equivalent Rectangular Bandwidth (ERB) scale, spanning
20 Hz to 22,050 Hz. This 11-band psychoacoustic representa-
tion is consistent with prior successful work, such as Du et al.
[21], which demonstrated the efficacy of modulation-filtered
cochleograms for emotion recognition. The time-domain im-
pulse response of the ¢-th filter is:

gi(t) = e 2mbit cos(27 fit + ¢d;)u(t), 5)

where f; is the center frequency, b; = 1.019 x ERB(f;) is the
bandwidth parameter, ERB(f) = 24.7(4.37f/1000+ 1) is the
Equivalent Rectangular Bandwidth, and w(t) is the unit step
function.

We filter the input signal z(¢) through the Gammatone
filterbank and extract the envelope of each channel using the
Hilbert transform:

yi(t) = (1) * gi(1),
envi(t) = /U2 (1) + H{u:(1))2,

where * denotes convolution and H represents the Hilbert
transform.

To maintain temporal consistency with the Mel spectrogram,
we downsample the envelope signals to 88 Hz:

(6)

88
envi®™(n) = Resample <envi(t), f) , 7

where f; = 44.1 kHz is the sampling rate.

To model the compressive non-linearity of inner hair cells,
we apply logarithmic scaling:

C(n,i) = 20log,, (max(env{®*"(n), €), (8)
where € = 10~® ensures numerical stability.

3) Feature Segmentation: The extraction pipelines produce
two time-frequency feature maps: a (96 x 2640) Mel spectro-
gram and an (11 x 2640) cochleogram. Following the DEAM
dataset protocol, we extract a 30-second segment (15-45 s)
from each 60-second audio clip, corresponding to 2640 frames
at 88 Hz. We then segment each feature map into a sequence
of 60 time steps, where each step contains a 2D patch spanning
0.5 seconds (44 frames). This yields input shapes of (96, 44, 1)
for Mel spectrograms and (11,44, 1) for cochleograms.

This segmentation produces a 5D tensor of shape
(Batch, 60, Fyins, 44, 1), where Fyps € {96,11} denotes the
number of frequency channels. This design enables us to
apply 2D CNNs independently to each spatial patch via a
TimeDistributed wrapper, extracting local spectrotem-
poral features, before the Transformer models long-range
temporal dependencies across the 60-step sequence.

C. Dual-Stream CNN Feature Encoder

To effectively process two heterogeneous feature repre-
sentations—standard acoustic features (Mel spectrogram) and
psychoacoustic-informed features (Cochleogram)—we design



a Dual-Stream Convolutional Neural Network (CNN) en-
coder. Rather than directly concatenating features at the in-
put stage—which would force a single CNN to learn two
fundamentally different data distributions simultaneously—we
employ parallel processing streams.

Our dual-stream design enables two parallel CNN branches
(CNNp, and CNNg.h) to independently extract modality-
specific representations. CNNp, extracts standard time-
frequency energy patterns from the Mel spectrogram, while
CNNoeh decodes non-linear auditory information embedded
in the Cochleogram that simulates human perceptual charac-
teristics. This specialized processing more effectively captures
complementary information from both modalities.

To preserve temporal information during spatial fea-
ture extraction, we wrap both CNN encoders with a
TimeDistributed layer. The TimeDistributed layer
applies the same CNN operation independently to each time
step in the sequence. Each block comprises a Conv2D
layer, a BatchNormalization layer for training stabil-
ity, and a MaxPooling2D layer for spatial dimensional-
ity reduction. Subsequently, GlobalAveragePooling2D
compresses each 2D feature map into a 1D vector at every
time step. Finally, a feed-forward layer projects each vector
into a compact 32-dimensional embedding space. The outputs
from both CNN encoders are then concatenated to form a
unified feature sequence. This sequence serves as input to
the Transformer module for temporal modeling and affective
information fusion.

D. Transformer-based Temporal Fusion

The Dual-Stream CNN encoder produces a fused feature
sequence. Each feature vector at time step ¢ represents only
the instantaneous state, lacking global musical context. Music
emotion is inherently time-dependent: the current emotional
state results from the interplay between past melodic evolution
and anticipated future events (e.g., an impending climax).

Unlike RNNs or LSTMs, the Transformer’s self-attention
mechanism computes dependencies between arbitrary time
steps in parallel, regardless of temporal distance. This property
is particularly advantageous for modeling complex musical
structures.

The feature sequence is then processed by a stack of two
Transformer encoder blocks. Each encoder block comprises
two core sub-layers:

1) Multi-Head Self-Attention (MHSA): This mechanism
forms the core of the Transformer architecture. The
MHSA layer enables each position in the sequence to
simultaneously attend to all other positions. This is
achieved using eight parallel attention heads. Each head
independently computes query (Q), key (K), and value
(V') matrices to generate weighted context vectors. This
enables learning different types of temporal dependencies
across distinct representation subspaces (e.g., rhythmic
patterns in one head, melodic contours in another).

2) Position-wise Feed-Forward Network (FFN): Follow-
ing the attention sub-layer, each time step’s output inde-

pendently passes through an FFN. This FFN comprises
two linear transformations with a ReLU activation. This
provides non-linear processing capability to further refine
features.

After each sub-layer (MHSA and FFN), we apply residual
connections and layer normalization. These components are
crucial for training deep Transformer models and mitigating
vanishing gradient problems.

After passing through two encoder layers, we obtain the
final context-aware sequence Fp,, € RT> Pl Finally, a dense
layer is applied independently to each time step, projecting
from 64 dimensions to the two-dimensional valence—arousal
(V-A) emotion space with linear activation:

Yprea = Linear(Foy) € RT*2, ©)

where Yeq represents the predicted dynamic V-A emotion
sequence for the entire music segment.

E. Optimization Objective

The ultimate objective of our model is to predict a dynamic
valence-arousal (V-A) emotion sequence that exhibits high
concordance with human-annotated ground truth. For such
continuous time-series regression tasks, standard L1 (MAE)
or L2 (MSE) loss functions have inherent drawbacks. They
solely penalize the magnitude of point-wise errors, completely
disregarding the dynamic trends and correlation within the
sequence. A model optimized solely on MSE may produce an
overly “flat” prediction curve; while the average error might
be low, it fails to capture the critical emotional fluctuations
inherent in the music.

To address this limitation, we adopt the Concordance
Correlation Coefficient (CCC) [22] as our primary optimiza-
tion objective. The CCC is the gold standard for assessing
the agreement between two sequences (ground truth Y and
prediction Y), as it simultaneously penalizes deviations in
correlation, mean, and variance.

For a ground truth sequence Y and a predicted sequence Y,
the CCC is defined as:

2p0y 0y

CCC =
oy + ol + (uy — py)’?

; (10)

where py and py are the respective means of ¥ and Y; o3
and 0327 are their variances; and p is the Pearson correlation
coefficient between them.

The CCC ranges from —1 to 1, where +1 signifies perfect
concordance. Our objective is to maximize the CCC. Conse-
quently, we define our loss function Lccc as:

Lece = 1—CCC. (11)

Our model is required to predict both valence and arousal
dimensions simultaneously. Thus, we compute CCCy for
valence and CCCy for arousal independently and define the
final loss as their average:

Lo = 1 — %(CCCV +CCCh). (12)



By minimizing this loss function, we compel the model to
learn not only the absolute values of the valence and arousal
dimensions (governed by the p and o terms), but also their
correct temporal dynamics (governed by the p term).

IV. EXPERIMENTS

To systematically evaluate PD-Former, we conduct com-
prehensive experiments on the DEAM benchmark to ad-
dress three key questions: (1) Does our model achieve state-
of-the-art performance? (2) Can it effectively capture dy-
namic emotional trajectories? (3) Are the proposed compo-
nents—psychoacoustic features, dual-stream architecture, and
Transformer modeling—necessary and synergistic? We present
dataset details and implementation, experimental results and
visualization, comparison with state-of-the-art methods, and
ablation studies.

A. Dataset and Metrics

1) Dataset: All our experiments were conducted on the
DEAM (Dynamic Emotion in Music) dataset. DEAM is one
of the most authoritative and widely used public datasets in the
DMER field. It contains 1,802 music clips of diverse styles.
Each track is provided with continuous Valence and Arousal
annotations (every 0.5 seconds), with values ranging from —1
to 1. These dynamic annotations were provided by multiple
annotators using the JOPS (joystick) tool and were averaged
to reflect the collective group perception.

Following standard practice in previous DMER work, we
segmented the features and corresponding annotations of each
song into fixed-length sequences of 60 time steps. If the
remaining part of a song was shorter than 60 time steps,
padding was applied. We split the 1,802 tracks into training
(80%), validation (10%), and test (10%) sets at the song level,
ensuring a fair comparison with SOTA methods.

2) Evaluation Metrics: Besides CCC, following the stan-
dard practice in DMER, we selected the Root Mean Square
Error (RMSE) as the primary metric for evaluation and com-
parison. RMSE measures the magnitude of the differences
between predicted values (¢;) and ground truth values (y;). It
is a standard metric for evaluating regression accuracy and is
particularly sensitive to larger errors. A lower RMSE indicates
better model performance. The formula is:

N

% Z(yz — i),

i=1

RMSE = (13)

where N is the total number of samples, y; is the ground truth
value, and g; is the predicted value.

B. Implementation Details

We implemented the model using TensorFlow 2.5.0. Fea-
tures were extracted using 1ibrosa (for Mel spectrograms)
[23] and pycochleagram (for Cochleograms), consistent
with the parameters detailed in Section III. Each feature
map was normalized per-sample using Min-Max normalization
before being fed into the model. We used the Adam optimizer

with an initial learning rate of 1 x 10~* and applied gradient
clipping (clipnorm = 1.0) for training stability. The model
was trained with a batch size of 32, optimizing the 1 — CCC
loss function. All Dropout layers in the architecture were set
to a rate of 0.2 to mitigate overfitting.

C. Training Dynamics and Stability

Figure 3 illustrates the convergence process of the PD-
Former model over 70 epochs. The validation loss curve
closely tracks the training loss curve throughout the process,
indicating that the model generalizes well and does not suffer
from significant overfitting. Based on the minimum validation
loss, we selected the model from Epoch 56 as the best-
performing model for final evaluation. When evaluated on the
independent test set, this final model achieved a CCC of 0.663
for Valence and 0.715 for Arousal.

Fig. 3. Model convergence plot showing training loss and validation loss
(1 — CCC) over 70 epochs. The best model was selected at Epoch 56.

To explore the model’s robustness boundaries and validate
the chosen parameters, we conducted a stability analysis on
key hyperparameters, with results shown in Table I.

TABLE I
HYPERPARAMETER STABILITY ANALYSIS (RMSE).

Parameter Value Valence (RMSE) | Arousal (RMSE) |
Learning Rate 1x 10=3  0.241 (Unstable) 0.198 (Unstable)
1x10~4 0.168 0.139
1x107%  0.195 (Slow) 0.169 (Slow)
Transformer Layers 1 0.179 0.150
2 0.168 0.139
3 0.173 0.145
6 0.177 (Overfit) 0.149 (Overfit)

The results demonstrate that PD-Former is robust and not
overly sensitive to hyperparameter fluctuations. The model
maintains consistent performance across moderate settings
(e.g., comparing N7 = 2 and 3), confirming its stability.
Performance only degrades at distinct logical boundaries: op-
timization instability occurs at excessive learning rates (10~3),
and overfitting emerges only when model depth is significantly
increased (N7 = 6).

D. Qualitative Analysis

To intuitively evaluate PD-Former’s capability to capture
emotional dynamics, we selected a representative instrumental
music sample (DEAM track ID = 131) for visual analysis. As
shown in Figure 4, our model’s predictions effectively fit the



overall trends of the ground truth annotations for both Valence
and Arousal dimensions. For instance, around Time Step 6, as
the music transitions to a new theme with increased percussion
and loudness, the model accurately predicts the sharp increase
in VA values. Similarly, after Time Step 36, as the music
enters a calm coda, the model’s predictions correctly track
the gradual decrease.

(a) Valence (b) Arousal
40

Valence

0 10 20 30 0 50 0
Time Step

10 20 30 0 50 50
Time Step

Fig. 4. Visualization of dynamic emotion prediction for a test sample from the
DEAM dataset (track ID = 131). The plots compare the model’s (a) Valence
and (b) Arousal predictions (dashed line) against the ground truth (solid line)
over 60 time steps.

Discrepancy analysis reveals key model characteristics.
First, at Time Step 6, a new musical theme was introduced
in the original audio. The model’s rapid response at Time
Step 8 is faster than the annotation, which likely reflecting the
inherent perceptual-motor latency of human annotation rather
than a model error. Second, the transient fluctuation at Time
Step 20 is a genuine model error, indicating over-sensitivity
to minor acoustic features (at time step 20, the original audio
undergoes a chord change), whereas human hearing possesses
stronger emotional inertia. Therefore, we assess the model’s
predictions as highly credible for tracking emotional trends,
but its transient errors suggest future correction methods,
such as introducing temporal smoothing or explicitly modeling
emotional inertia.

E. Robustness to Temporal Scales

While DMER typically focuses on fine-grained tracking
(e.g., 0.5s in DEAM), practical applications often require
diverse temporal resolutions. For instance, music therapy
playlist generation relies on longer-term emotional stability.
To evaluate PD-Former’s robustness across different temporal
scales, we conducted experiments with varying observation
windows: 5s, 10s, and 15s. The results are shown in table II.

TABLE I
PERFORMANCE COMPARISON ACROSS DIFFERENT TEMPORAL WINDOWS
(RMSE). AGGREGATED VIA MEAN POOLING.

Window Size Valence (RMSE) | Arousal (RMSE) |

0.5s (Original) 0.168 0.139
5.0s 0.142 0.112
10.0s 0.125 0.098
15.0s 0.118 0.091

Since the DEAM dataset is annotated at 0.5s intervals,
we generated ground truth labels for longer windows by
computing the arithmetic mean of the corresponding 0.5s
annotations. This averaging process aligns with the concept

of emotional inertia, filtering out transient annotation noise
to reflect the dominant emotional state of a musical phrase.
Similarly, we aggregated the model’s frame-level predictions
using the same non-overlapping window averaging strategy
before calculating the RMSE.

F. Comparison with SOTA Methods

To comprehensively and objectively evaluate the effective-
ness of our proposed PD-Former, this section presents a
quantitative comparison with both baseline and state-of-the-art
(SOTA) models on the DEAM dataset. The compared models
include both classical RNN-based architectures and advanced
attention-based frameworks, as follows:

e Deep LSTM-RNN (Baseline): A foundational DMER
model [12] employing stacked LSTMs to capture emo-
tional temporal dependencies in music.

« DAMFF (SOTA-1): A Dual Attention-based Multi-scale
Feature Fusion model [9] designed to aggregate emotional
features across multiple scales.

o Transformer Encoder (SOTA-2): A Transformer-based
architecture [16] that replaces traditional RNNs for se-
quence modeling in MER.

« BCRSN (SOTA-3): A Bidirectional Convolutional Re-
current Sparse Network [24], representing one of the
strongest published results on the DEAM dataset.

1) Performance Comparison and Analysis: Table III reports
the RMSE performance of all models on the DEAM dataset.

TABLE III
RMSE PERFORMANCE COMPARISON ON THE DEAM DATASET. LOWER IS
BETTER.

Model Valence (RMSE) | Arousal (RMSE) |
Deep LSTM-RNN (Baseline) 0.372 0.234
DAMFF (SOTA-1) 0.340 0.240
Transformer Encoder (SOTA-2) 0.247 0.224
BCRSN (SOTA-3) 0.178 0.142
PD-Former (Ours) 0.168 0.139

Our PD-Former achieves the lowest RMSE on both Valence
and Arousal, clearly outperforming the Baseline and SOTA-1.
This demonstrates the superior feature extraction and temporal
modeling capability of our framework. Although both PD-
Former and SOTA-2 adopt Transformer architectures, our
model significantly surpasses SOTA-2, primarily due to the
proposed dual-stream feature input. Unlike SOTA-2, which
relies solely on acoustic features, PD-Former introduces the
Cochleogram, simulating the human auditory system’s non-
linear perception. This psychoacoustic feature complements
the Mel spectrogram and provides richer, more discriminative
representations for the Transformer. SOTA-3 is a highly opti-
mized RNN-based model that achieves remarkable efficiency
through sparse encoding. However, our self-attention—based
PD-Former achieves comparable or better accuracy without
any recurrent structure, showing that Transformer-based mod-
eling—when paired with psychoacoustic front-ends—can ef-
fectively capture long-range emotional dependencies in music.



2) Model Complexity and Efficiency Analysis: To further
evaluate computational efficiency, we analyze PD-Former’s pa-
rameter count and architectural balance. PD-Former contains
only 95,234 trainable parameters. The CNN-based feature
extraction modules (Mel-CNN and Coch-CNN) contribute
52,928 parameters (55.6%), while the Transformer temporal
module accounts for 42,306 parameters (44.4%). Our 95K
parameter model is highly efficient. Compared to SOTA, it
avoids the heavy BPTT costs of LSTMs (Baseline) and the
sparse regularization of BCRSN (SOTA-3). Furthermore, its
CNN front-end (53K params) effectively prepares features for
the lightweight Transformer module (42K params), enhancing
efficiency over standard Transformer encoders (SOTA-2) and
redundant multi-scale architectures (SOTA-1).

In summary, PD-Former achieves SOTA-level accuracy
while maintaining exceptional computational efficiency, val-
idating the effectiveness of our proposed Psychoacoustic-
Informed Dual-Stream architecture for efficient and high-
performance DMER.

G. Ablation Study

We designed a series of rigorous ablation studies to thor-
oughly investigate the necessity and effectiveness of each key
component within our proposed PD-Former.

1) Experimental Setup: We designed the following four
variant models to compare against our full model:

« Replacing the Temporal Module (PD-BiLSTM): This
variant replaces the complete Transformer temporal fu-
sion module with a Bidirectional Long Short-Term Mem-
ory (BiLSTM) network. This is intended to validate the
superiority of the Transformer in capturing long-range
dependencies.

o Mel-Spectrogram Only (Mel-Former): This variant re-
moves the Cochleogram feature stream, using only the
Mel spectrogram as input, which is then processed by a
single-stream CNN encoder and the Transformer.

¢ Cochleogram Only (Coch-Former): Contrary to Mel-
Former, this variant removes the Mel spectrogram stream,
using only the Cochleogram feature stream. These two
variants together are used to validate the complementarity
and necessity of the dual-stream features.

o Early Fusion (PD-EarlyFusion): This variant removes
the two parallel CNN encoders. The Mel spectrogram and
Cochleogram are simply concatenated at the input stage
and then fed directly into the Transformer. This simulates
an “early fusion” strategy and is used to demonstrate the
effectiveness of our designed CNN encoders.

2) Results and Analysis: Table IV presents the RMSE

results of the ablation study.

Compared to the Full Model, using only the Mel spectro-
gram (Mel-Former) or only the Cochleogram (Coch-Former)
both lead to a significant drop in performance. Although the
Mel spectrogram is a standard feature, it is insufficient to
capture all emotional cues. The Cochleogram, while having
psychoacoustic advantages, also requires the information from
the Mel spectrogram as a supplement. This strongly proves that

TABLE IV
ABLATION STUDY RMSE RESULTS ON THE DEAM DATASET (LOWER IS
BETTER).

Model Configuration Valence (RMSE) | Arousal (RMSE) |

PD-BILSTM 0.185 0.153
Mel-Former 0.192 0.165
Coch-Former 0.201 0.171
PD-EarlyFusion 0.253 0.202
PD-Former 0.168 0.139

the two features are highly complementary and that our dual-
stream design is rational and necessary, successfully fusing the
strengths of both representations.

The performance of PD-BiLSTM is inferior to the Full
Model, which uses the Transformer. This confirms one of
our core hypotheses: when processing a sequence like music,
which possesses complex structures and long-range depen-
dencies, the self-attention-based Transformer is superior to
BiLSTM in temporal modeling capabilities.

PD-EarlyFusion exhibits the worst performance of all vari-
ants (V: 0.253, A: 0.202). This model removes the CNN
encoders, directly feeding the raw (or near-raw) feature maps
into the Transformer after fusion. This results in a catastrophic
performance decline. This indicates that our designed dual-
stream CNN encoders are indispensable as feature extractors.
They successfully abstract the features from both modalities
into high-level, compact, and informative representations be-
fore the temporal fusion stage.

In summary, the ablation study systematically validates ev-
ery component of our model’s design. The results demonstrate
that the psychoacoustic-informed Cochleogram, the dual-
stream CNN feature encoders, and the Transformer temporal
fusion module work synergistically, and none can be dispensed
with.

V. CONCLUSION

This paper addresses a critical limitation in Dynamic Mu-
sic Emotion Recognition: the disconnect between acoustic
feature extraction and human psychoacoustic perception. We
propose PD-Former, a psychoacoustic-informed dual-stream
architecture that achieves state-of-the-art performance on the
DEAM benchmark (RMSE: 0.168 for Valence, 0.139 for
Arousal) while maintaining exceptional efficiency with only
95K parameters.

Our core contributions are threefold. First, we introduce
the Cochleogram as a psychoacoustic complement to standard
Mel spectrograms, simulating basilar membrane responses
to capture perceptual cues obscured by purely engineered
features. Second, we design a dual-stream CNN architecture
that processes heterogeneous feature modalities independently
before fusion, enabling effective exploitation of complemen-
tary information. Third, we employ Transformer encoders to
capture long-range temporal dependencies critical for model-
ing musical emotion dynamics, surpassing traditional RNN-
based approaches.



Rigorous ablation studies validate our hypothesis: emotional
perception emerges from the synergy of acoustic and psychoa-
coustic cues, and dual-stream processing is essential for their
effective integration. Our visualization analyses demonstrate
that PD-Former successfully tracks complex emotional tra-
jectories in music, though occasional over-sensitivity to tran-
sient acoustic changes suggests opportunities for incorporating
temporal smoothing or explicit emotional inertia modeling in
future work.
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