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Abstract

Cybersecurity and software research have crossed paths with modern deep learning
research for a few years. The power of large language models (LLMs) in particular
has intrigued us to apply them to understanding binary code. In this paper, we
investigate some of the many ways LLMs can be applied to binary code similarity
detection, as it is a significantly more difficult task compared to source code
similarity detection due to the sparsity of information and less meaningful syntax.
It also has great practical implications, such as vulnerability and malware detection.
We find that pretrained LLMs are mostly capable of detecting similar binary code,
even with a zero-shot setting. Our main contributions and findings are to provide
several supervised fine-tuning methods that, when combined, significantly surpass
zero-shot LLMs and state-of-the-art binary code similarity detection methods.
Specifically, we up-train the model through data augmentation, translation-style
causal learning, LLM2Vec, and cumulative GTE loss. With a complete ablation
study, we show that our training method can transform a generic language model
into a powerful binary similarity expert, and is also robust and general enough for
cross-optimization, cross-architecture, and cross-obfuscation detection.

1 Introduction

LLMs are almost ubiquitous in everyday life, fueling many powerful applications. Cybersecurity and
software researchers have utilized language models to solve complex tasks, such as code generation,
summarization, and similarity detection. In this paper, we investigate the benefits that LLMs can
bring to binary code modeling. In particular, binary code similarity detection (BCSD) and retrieval
are difficult due to the sparsity of information, loss of semantics and structures, and its limited syntax
compared to source code. Moreover, the same source code can be compiled into many formats
of binary code using different compiler settings and environments, including optimization levels,
machine architectures, compiler software, and obfuscation techniques. Existing LLMs [Roziere et al.,
2023; Radford, 2018] can somewhat perform binary code analysis with their large training data of
trillions of natural language and code tokens, but the proportion of binary code is small. Downstream
tasks like similarity detection and vulnerability detection are still difficult and require fine-tuning.
Some open-source coder models like CodeT5 [Wang et al., 2021] and GraphCodeBERT [Guo et al.,
2020] even lack the training of binary code, making zero-shot useless for binary analysis.

*Equal contribution.
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Many binary code models are trained from scratch [Yang et al., 2021; Tian et al., 2021; Yu et al.,
2020] and their sizes are much smaller compared to LLMs. They typically focus on cross-optimization
retrieval and fail to generalize to diverse compiler settings. Other works take pre-trained LLMs [Tan
et al., 2024; Wang et al., 2022, 2024] and apply custom fine-tuning techniques for binary code
matching. However, most of these approaches rely on either closed-source models like GPT [Radford,
2018] or large model sizes. This leads to scalability issues when the computational resource is a
constraint, which realistically is the case with small research labs or even companies. We want to
explore effective and efficient LLM fine-tuning for binary code embedding and matching.

In this work, we address the aforementioned problems and propose EBM (Effective Binary Matching),
our novel training framework, including carefully chosen data augmentation and fine-tuning processes,
to uptrain a generic LLM into a binary code embedding and matching expert. We show in our
experiments that LLMs have become dominant enough that even zero-shot models can surpass well-
trained binary code models. With our fine-tuning applied, EBM can significantly increase the mean
reciprocal rank (MRR) by 10% to 70%, depending on the tasks. We also provide a comprehensive
ablation study to prove and emphasize the importance of each training process. The dataset and code
can be accessed on Github 1. Our major contributions are:

• We propose a multi-training framework to utilize the power of generic LLMs specifi-
cally for BCSD. We target different compiler settings, including cross-optimization, cross-
architecture, and cross-obfuscation, to build a general and effective similarity retriever.

• To combat the lack of assembly code LLMs, we uptrain the generic LLM to a binary
code-specific model. Particularly in cross-architecture similarity detection, this allows for
significantly better translation between different syntaxes.

• We utilize LLM2Vec to build a refinement of the assembly tokens, which encodes better
semantics through a masked next token prediction task.

• In the downstream contrastive learning task, we propose an enhanced version of InfoNCE
loss to utilize all available samples within the batch. This is particularly useful when
computing resources are limited and large models are trained.

• We build and compare various baselines to evaluate the effect of different language/coder
models and state-of-the-art BCSD models. In our similarity retrieval evaluation, our ap-
proach outperforms all benchmarks for both datasets.

• We conduct thorough ablation studies and in-depth analysis to investigate all our training
tasks and how they contribute to the similarity retrieval result. We show that all our training
tasks are essential and can improve retrieval performance.

2 Related Works

Traditional BCSD Without data-driven or learning-based methods, code similarity detection is
traditionally conducted using static analysis, dynamic analysis, or code-based algorithms. Static
analysis usually involves graph matching [Dullien and Rolles, 2005; Bourquin et al., 2013], where
control flow graphs are extracted from assembly code and compared using algorithms or user-defined
heuristics. Dynamic analysis instead leverages runtime or symbolic execution to investigate program
behavior [Pewny et al., 2015; Xu et al., 2020; Egele et al., 2014; Moser et al., 2007]. Execution
traces or paths can be profiled for either manual or automated comparison using distance-based or
statistics-based methods. Code-based algorithms rely on patterns of the actual binary code, which
can be opcode or instruction code. Various ways of analyzing code strings include distance metrics
(Smith-Waterman or Levenshtein distance) [Gao et al., 2008], N-Gram matching [Rosenblum et al.,
2008], and frequency analysis [Santos et al., 2013].

Machine Learning-based BCSD is effective when a large amount of training data is available. The
methods can generally be categorized into text-based, structure-based, or combined. Text-based
models treat assembly instructions or opcodes as tokens and feed them into various models such as
unsupervised [Ding et al., 2019], RNN-based [Massarelli et al., 2019b; Yang et al., 2021; Tian et al.,
2021], BERT-based [Koo et al., 2021; Ahn et al., 2022; Li et al., 2023a], and LLM-based [Tan et al.,
2024; Wang et al., 2022; Liu et al., 2023; Wang et al., 2024]. Such models focus on the semantics

1Github Link
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and syntax of the binary code to encode binary programs. In structure-based models, some form of
graph structures, such as abstract syntax trees, control flow graphs, or custom graphs, is parsed from
binary code. Then appropriate machine learning techniques can be applied, including tree-LSTM [Tai
et al., 2015; Yang et al., 2021] and graph neural network [Xu et al., 2017; Li et al., 2019]. Instead of
utilizing complicated language models for word embedding, these models often apply Word2Vec-
style [Mikolov et al., 2013] representation learning to obtain node features. Other research works
combine code and structure information into a streamlined learning process [Massarelli et al., 2019a;
Gao et al., 2018; Yu et al., 2020]. When training the networks, contrastive learning is the most popular
technique for supervised learning models to differentiate positive and negative samples, which are
fed into the network as a pair of input data. Many approaches also utilize a siamese architecture
to simultaneously encode pairs under the same set of model parameters. Recently, many similarity
detection methods have adopted the InfoNCE loss [Oord et al., 2018] to enhance the discriminative
power of negative pairs by maximizing the mutual information. It has been shown to be quite effective
and can sometimes lead to large performance gains, especially for LLMs where batch size tends to
be small. Readers may refer to Appendix. A for additional information about LLM architecture and
foundation models.

3 Methodologies

We define the task of BCSD as retrieving the most similar function from a pool of binary functions.
Similar binary functions are created from the same source code with different compiler settings.
In our case, the settings can be optimization-based, obfuscation-based, architecture-based, and
compiler-based. The input is a binary function x and the output is a list of functions, ranked by cosine
similarity. For evaluation purposes, the pool contains exactly one similar function. The complete
training undergoes four processes: data augmentation, translation learning, embedding training, and
contrastive learning.

Input

Target

...

...

...

...

Figure 1: The input and target of causal uptraining are shown here. The input contains sampled pairs
of semantically identical assembly functions, where BLK tokens are added for structure awareness,
and language tokens are added for translation awareness. The training follows an autoregressive
manner, where previous tokens are used to predict the next unseen token.

3.1 Enabling Translation and Structure Awareness

Assembly code is an intermediate code acquired from a disassembler, such as IDAPRO 2. To clean
the data, all addresses, strings, and bytes are replaced by special tokens: addr, byte, str. The special
tokens help reduce noise when addresses or bytes are arbitrary and also reduce context length after
tokenization. We flatten the original data structure of assembly code, which contains basic blocks
and instruction streams, into a single sentence. Doing this removes the requirement for hierarchical
architecture and layered attention to process the inputs. This allows us to directly use existing
pre-trained language and coder models. The drawback is that a single sentence no longer contains
structural information regarding the semantically bound sections of the code (i.e., basic blocks). We
propose to simply add a special BLK token in between basic blocks to increase structure awareness
during training. This enables the model to consider assembly structure, which can be easily learned
in our uptraining processes.

2https://hex-rays.com/ida-pro
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Cross-architecture similarity detection is a difficult task that, to our knowledge, has not been ex-
tensively studied along with other compiler settings like cross-optimization. Assembly code can
have a completely different syntax based on the machine architecture during compilation. Different
architectures can be seen as different “languages" in this context. Inspired by [Conneau and Lample,
2019], we add several additional tokens to indicate the “language" information of each binary function,
which corresponds to the optimization level, compiler, obfuscation, and architecture. Adding such
information has proven to be effective, especially for cross-architecture detection.

3.2 Binary Translation Continual Training

Modern coder models aim to assist humans in coding tasks like code generation and summarization.
Although assembly code is included in some of the existing models, it is not as well understood to
the extent of source code languages like Python or Java. A cheap and effective way to uptrain such
coder models with assembly code is to use an autoregressive setup, which trains the model to predict
the next tokens.

We treat the task similarly to translation in natural language, as different compilers produce various
syntaxes depending on the settings. This is especially true in cross-architecture similarity detection,
where it is often not possible to retrieve similar code between machines with architectures like x86
and PowerPC. We only sample semantically identical function pairs (X1, X2) and concatenate them
into a single sequence X = concat(X1, X2) as input to the model. A pre-trained coder AR model is
initialized with weights W 0 and fine-tuned with the causal objective and update rule:

LAR = −
n∑

i=1

logP (xi | x<i) (1)

W (t+1) = W (t) − η · ∇WLAR(X;W (t)) (2)

Where η is the learning rate. As discussed in section 3.1, we manually add “language" tokens to all
assembly functions as an indication of their compiler settings. For training the translation task, we
place these tokens in between the concatenation of function pairs, acting as a transition. We give an
illustration of the input and output format in Figure 1. It is important to let the model access these
tokens during training before predicting the second sentence, X2, as it provides generalization due to
knowing what settings to expect and predict. It is important to reiterate that these language tokens are
unavailable during the inference phase.

3.3 LLM2Vec

BERT [Devlin, 2018] models have been proven effective in embedding tasks, largely due to their
bidirectional attention mechanism, which enables them to capture contextual information from the
whole sequence [Reimers, 2019; Shi et al., 2023]. However, the landscape of NLP has shifted
significantly in recent years to LLMs trained with next token prediction, such as GPT-2 [Radford
et al., 2019], Llama [Touvron et al., 2023], and their successors. These models, typically based
on unidirectional architectures, have achieved state-of-the-art performance across a wide range of
tasks, including embedding tasks, often surpassing traditional bidirectional models in scalability and
generalization [Wang et al., 2023a].

LMNTP = −
masked∑

i

P (xi) logP (x̂i|x1, ..., xn) (3)

To bridge the gap between the strengths of causal models and the benefits of bidirectional architectures,
we adopt an innovative approach called LLM2Vec [BehnamGhader et al., 2024]. As depicted
in Figure 2, this method leverages the pre-trained knowledge of causal models, while enabling
bidirectional attention and being trained through a masked next token prediction task (MNTP).
Specifically, we initialize the model with the same weights from a pre-trained causal model and
enable bidirectional attention during forward propagation. The model is then fine-tuned using MNTP
loss, defined in Equation 3, where a random token in the sequence is masked and predicted based on
the surrounding context.
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Figure 2: An overview of the LLM2Vec approach. The method adds bidirectional attention (red lines)
based on future context to the original causal model (gray lines). It is fine-tuned with masked next
token prediction (MNTP). The model can be further fine-tuned with contrastive learning approaches
such as InfoNCE and GTE losses, for specific downstream tasks.

In essence, this approach constructs a BERT-like model from a pre-trained causal model rather than
training a BERT model from scratch. This strategy offers several key advantages. First, it allows us to
leverage the existing pre-trained LLMs, reducing the need for costly and time-consuming pre-training.
Most importantly, it achieves better performance than training a BERT-style model from scratch.

3.4 Cumulative GTE Loss

The InfoNCE loss (Equation 4) is a widely used objective function in contrastive learning. It
encourages the model to learn distinctive representations by contrasting one positive pair against
in-batch negative ones. Incorporating additional contrastive pairs can further enhance the learning
process [Li et al., 2023b; Wang et al., 2022]. We denote ki to be the embedding of the source binary
function (key) in batch i, qi to be the embedding of the target binary function (query) in batch i, and
τ as a hyperparameter for temperature.

LInfoNCE = − 1

N

N∑
i=1

log
exp(sim(qi, ki)/τ)∑N
j=1 exp(sim(qi, kj)/τ)

(4)

The GTE (general text embedding) loss generalizes the InfoNCE loss by introducing additional
contrastive terms, which include query-key pairs as well as query-query, key-key, and key-query pairs.
This broader set of contrasts helps the model capture richer relationships within the data. The GTE
loss is defined as:

LGTE = − 1

N

N∑
i=1

log
exp(sim(qi, ki)/τ)

Z

Z =
∑
j

esim(qi,kj)/τ +
∑
j

esim(qi,qj)/τ

+
∑
j ̸=i

esim(qj ,ki)/τ +
∑
j ̸=i

esim(kj ,ki)/τ

(5)

Based on the GTE loss, we propose the cumulative GTE loss (cGTE), which aggregates embed-
ding representations from multiple distributed models and accumulated inputs. The cGTE loss is
formulated as:

q = q(1)||q(2)||...||q(n)

k = k(1)||k(2)||...||k(n)

LcGTE = GTE(q, k)

(6)

where the superscript denotes accumulated vector representation from distributed models or batches.
The backpropagation is halted until a number of inputs are met. The cGTE loss syncs gradient
backpropagation generated from asynchronous input batches and distributed models to the same
model weights. cGTE creates more contrastive pairs with limited computing resources.
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4 Training and Experiments Setup

4.1 Backbone Model and Baselines

We use Qwen2.5-Coder-0.5B [Hui et al., 2024] as the backbone model for all training processes.
We compare against existing non-LLM methods, including PalmTree [Li et al., 2021], SAFE [Mas-
sarelli et al., 2019b], OrderMatters [Yu et al., 2020], and Asm2Vec [Ding et al., 2019]. We also
evaluate several state-of-the-art large coder models, such as GraphCodeBERT [Guo et al., 2020],
CodeT5+ [Wang et al., 2023b], Qwen2.5-Coder-1.5B [Hui et al., 2024], Qwen3 [Yang et al., 2025],
and CodeGemma [Team et al., 2024]. All baseline models, except for Qwen2.5-Emb, are fine-tuned
on the same training set using contrastive learning. Qwen2.5-Emb, being a pre-trained embedding
model, is included as a baseline to indicate the differences between programming language code and
binary code. As our model is trained on Qwen2.5-Coder-0.5B, the Qwen2.5-Coder-1.5B baseline is a
good candidate for an ablation study.

4.2 Dataset

We use two datasets for training and evaluation. The first contains multiple libraries written in C
and is used by other existing works [Ding et al., 2019]. We manually compile each library using
different optimization levels (O0, O1, O2, and O3), compilers (GCC and Clang), architectures (x86,
PowerPC, Arm, and MIPS), and obfuscations (none, substitution, flatten, bogus control flow, and all).
The training libraries used include BusyBox, Coreutils, Curl, ImageMagick, PuTTY, and SQLite.
The evaluation libraries are GMP, LibTomCrypt, and OpenSSL. We separate the libraries for the
purpose of out-of-domain evaluation, which is a common practice in binary code retrieval. The pool
size for the retrieval evaluation is 1,000. The second dataset is BinaryCorp [Wang et al., 2022],
which is constructed based on ArchLinux3 and Arch User Repository4. BinaryCorp only contains
cross-optimization functions. We use the same training and testing splits and pool size of 10,000 as
the original paper for comparison.

4.3 Training Details

We train our models on a machine with 4 NVIDIA RTX 6000 GPUs (24 GB). Each computing card
can contain one batch of 4 entries with 512 tokens as the sequence length. We use AdamW as the
training optimizer and a learning rate of 10−5. Every model is trained with 5 epochs and warmed up
for 1000/[batch size] steps. The best model weights are based on the best validation contrastive loss.

5 Evaluation

In this section, we evaluate both datasets with LLM-based and non-LLM baselines. The evaluation
metrics are mean reciprocal rank (MRR) and recall@1. Due to limited space and a large number of
combinations for our evaluation setup, we only include a subset of the retrieval tasks. The remaining
evaluation details, including additional tasks, training, and inference time, are in the Appendix B.

Models MRR Recall@1

O0,O3 O0,O1 O0,O2 O1,O3 O2,O3 Avg. O0,O3 O0,O1 O0,O2 O1,O3 O2,O3 Avg.

SAFE 0.189 0.189 0.200 0.218 0.171 0.193 0.063 0.000 0.063 0.063 0.000 0.038
PalmTree 0.023 0.020 0.019 0.314 0.878 0.251 0.008 0.006 0.007 0.184 0.676 0.176
Asm2Vec 0.444 0.494 0.460 0.535 0.563 0.499 0.234 0.290 0.252 0.343 0.376 0.299
OrderMatters 0.006 0.006 0.008 0.006 0.006 0.006 0.000 0.001 0.002 0.001 0.000 0.001

GraphCodeBERT (125M) 0.636 0.757 0.673 0.792 0.920 0.756 0.560 0.694 0.602 0.722 0.895 0.695
CodeT5+ (110M) 0.604 0.650 0.629 0.830 0.893 0.721 0.532 0.572 0.552 0.783 0.869 0.662
Qwen2.5-Emb (1.5B) 0.569 0.648 0.573 0.773 0.907 0.694 0.498 0.578 0.505 0.699 0.875 0.631
Qwen2.5-Coder (1.5B) 0.758 0.881 0.807 0.864 0.936 0.849 0.706 0.842 0.757 0.810 0.912 0.805
CodeGemma (2B) 0.763 0.888 0.833 0.866 0.931 0.856 0.696 0.840 0.778 0.821 0.905 0.808

EBM (0.5B) 0.850 0.942 0.902 0.933 0.955 0.916 0.793 0.903 0.850 0.887 0.929 0.872

Table 1: Evaluation on cross-optimization settings (O0, O1, O2, and O3) with a pool size of 1,000.

3https://archlinux.org/packages/
4https://aur.archlinux.org/
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5.1 Cross-optimization Evaluation

Table 1 highlights the performance comparison between various baselines and our approach for
cross-optimization retrieval. LLMs, even with a zero-shot setting, can outperform existing non-LLM
methods, which have been state-of-the-art in the past for binary similarity detection. However, they
still struggle with more difficult retrieval tasks like [O0, O3]. EBM can consistently outperform other
models across all optimization settings, achieving the highest MRR and Recall@1 scores, while also
improving [O0, O3] significantly.

5.2 Cross-architecture

Cross-architecture has been shown to be the most difficult task for both LLMs and non-LLM
baselines, as shown in Table 2. Even with contrastive fine-tuning, Qwen-2.5-Coder, which has 1.5
billion parameters, fails to effectively retrieve cross-architecture functions. Due to the difference in
syntax, matching the semantics across several languages is nearly impossible with limited training.
Our method outperforms all baselines by a large margin. This further proves the significance of the
causal training process that contributes to the improvement in cross-architecture generalization. We
will show firm results in ablation studies.

Models MRR Recall@1

Arm, x64 PowerPC, x64 MIPS, x64 Avg. Arm, x64 PowerPC, x64 MIPS, x64 Avg.

SAFE 0.239 0.187 0.196 0.208 0.063 0.063 0.063 0.063
PalmTree 0.037 0.036 0.018 0.031 0.031 0.013 0.007 0.017
Asm2Vec 0.242 0.293 0.417 0.317 0.085 0.113 0.231 0.143
OrderMatters 0.007 0.007 0.007 0.007 0.002 0.000 0.001 0.001

GraphCodeBERT (125M) 0.067 0.269 0.495 0.277 0.037 0.204 0.419 0.220
CodeT5+ (110M) 0.056 0.303 0.462 0.274 0.035 0.227 0.392 0.218
Qwen2.5-Emb (1.5B) 0.039 0.059 0.409 0.169 0.031 0.035 0.331 0.132
Qwen2.5-Coder (1.5B) 0.256 0.481 0.548 0.428 0.179 0.380 0.442 0.334
CodeGemma (2B) 0.293 0.581 0.548 0.474 0.208 0.479 0.432 0.373

EBM (0.5B) 0.783 0.792 0.859 0.811 0.675 0.703 0.784 0.721

Table 2: Evaluation on cross-architecture settings (Arm, x86-64, PowerPC, and MIPS) with a pool
size of 1,000.

5.3 Cross-obfuscation

Obfuscation techniques can introduce complex and confusing variants to a binary function and are
considered the most difficult task for binary retrieval. In Table 3, all models have shown undesirable
results for [all, none], which retrieves vanilla functions from functions with all three obfuscation
techniques applied. Our method still outperforms all other baselines. While investigating the functions
in this task, we often found that the obfuscated function can be 10x as large as the vanilla function.
With limited sequence length, this result is somewhat expected. We suspect a much longer sequence
length can alleviate this constraint and improve performance.

5.4 BinaryCorp

Table 4 shows the evaluation of the BinaryCorp dataset. Among all benchmarks, jTrans [Wang et al.,
2022] and CLAP [Wang et al., 2024] are recent LLM-based models for BCSD. They have shown
great results compared to the other methods. CLAP has the closest performance compared to our
method, though has a few drawbacks. Firstly, CLAP relies on GPT3.5, a closed-source model, to
generate natural language explanations. It is also costly and difficult to scale the model. CLAP uses
Llama 13B and 30B as the backbone model for supervised fine-tuning, which can become a constraint
for resource-limited scenarios.

In conclusion, EBM is a general approach that can adapt any pre-trained coder model, such as the
0.5B model used in our study, for binary embedding matching tasks. This methodology eliminates
the need for external expert models, such as GPT, or auxiliary inputs, such as control flow graphs.
Thus, it simplifies the data pipeline and training process and makes it more accessible and easy to use.
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Models MRR Recall@1

all, none none, bcf sub, fla Avg. all, none none, bcf sub, fla Avg.

SAFE 0.256 0.181 0.264 0.234 0.0625 0.0625 0.125 0.083
PalmTree 0.122 0.289 0.215 0.209 0.060 0.200 0.083 0.114
Asm2Vec 0.200 0.181 0.264 0.215 0.069 0.063 0.125 0.086
OrderMatters 0.008 0.006 0.007 0.007 0.001 0.001 0.001 0.001

GraphCodeBERT (125M) 0.230 0.648 0.479 0.452 0.163 0.557 0.391 0.370
CodeT5+ (110M) 0.176 0.619 0.372 0.389 0.118 0.539 0.291 0.316
Qwen2.5-Emb (1.5B) 0.288 0.630 0.466 0.461 0.213 0.538 0.375 0.375
Qwen2.5-Coder (1.5B) 0.391 0.719 0.580 0.563 0.301 0.637 0.491 0.476
CodeGemma (2B) 0.454 0.796 0.571 0.607 0.356 0.735 0.473 0.521

EBM (0.5B) 0.531 0.815 0.784 0.710 0.454 0.738 0.713 0.635

Table 3: Evaluation on cross-obfuscation settings (all obfuscations, bogus control flow, flattened, and
substitution) with a pool size of 1,000. The proposed EBM model outperforms all baselines by an
absolute margin of over 15% in both MRR and Recall@1 metrics.

Models MRR Recall@1

O0,03 O1,O3 O2,O3 O0,Os O2,Os Avg. O0,O3 O1,O3 O2,O3 O0,Os O2,Os Avg.

Gemini 0.037 0.161 0.416 0.049 0.195 0.172 0.024 0.122 0.367 0.030 0.151 0.139
SAFE 0.127 0.345 0.643 0.147 0.377 0.328 0.068 0.247 0.575 0.079 0.283 0.250
OrderMatters 0.062 0.319 0.600 0.075 0.233 0.258 0.040 0.248 0.535 0.040 0.158 0.204
Asm2Vec 0.072 0.449 0.669 0.083 0.510 0.357 0.046 0.367 0.589 0.052 0.426 0.296
PalmTree 0.130 0.403 0.677 0.152 0.496 0.372 0.080 0.326 0.609 0.097 0.420 0.306
jTrans (Zero Shot) 0.137 0.490 0.693 0.182 0.513 0.403 0.088 0.412 0.622 0.122 0.430 0.335
jTrans (Finetune) 0.475 0.663 0.731 0.539 0.664 0.614 0.376 0.580 0.661 0.443 0.585 0.529
CLAP 0.764 0.903 0.941 0.813 0.877 0.860 0.719 0.875 0.920 0.774 0.847 0.827

EBM 0.779 0.911 0.955 0.808 0.909 0.872 0.725 0.882 0.942 0.808 0.889 0.849

Table 4: Evaluation on the BinaryCorp-3M dataset with pool size=10,000

5.5 Similarity Threshold

In the preceding sections, we assumed the presence of at least one matching pair in the search pool.
However, in real-world scenarios, top-1 selection often yields high false positive rates. To address
this limitation, we introduce a similarity threshold based on the distribution of similarity scores in
the training data. Table 5 reports the mean and standard deviation for both similar and non-similar
optimization pairs. We set the threshold at ‘mean - std’ for each model. The accuracy is then
computed as the proportion of queries without matching pairs that correctly fall below this threshold,
formulated as “# of queries with no matching pair / total number of test queries.” EBM continues to
outperform the best baseline model. The results for the remaining experiments are in the Appendix.

Source Dest Accuracy Mean ± STD of Similar pairs Mean ± STD of Non-similar pairs
CodeGemma EBM CodeGemma EBM CodeGemma EBM

o0 o1 0.472 0.719 0.904 ± 0.136 0.910 ± 0.106 0.207 ± 0.220 0.180 ± 0.180
o0 o2 0.387 0.676 0.868 ± 0.155 0.879 ± 0.120 0.208 ± 0.212 0.178 ± 0.172
o0 o3 0.236 0.458 0.830 ± 0.195 0.833 ± 0.173 0.210 ± 0.213 0.184 ± 0.174
o1 o2 0.675 0.831 0.937 ± 0.092 0.952 ± 0.076 0.176 ± 0.213 0.164 ± 0.173
o1 o3 0.438 0.675 0.899 ± 0.151 0.916 ± 0.134 0.168 ± 0.221 0.170 ± 0.176
o2 o3 0.618 0.793 0.955 ± 0.139 0.965 ± 0.133 0.183 ± 0.217 0.174 ± 0.173

Table 5: Model Accuracy for non-match and Similarity Metrics Comparison

5.6 Comparison of Base and EBM-trained Models

To further assess the effectiveness of EBM, we perform the same evaluation on the base model
for similarity detection with Qwen2.5-0.5B and Qwen3-1.7B models to understand the difference
between pre- and post-finetuning. Table. 6 illustrates the average MRR and Recall@1 across cross-
optimization, cross-architecture, and cross-obfuscation. Without training, the base model struggles to
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understand the semantics of assembly code, especially for cross-architecture and cross-obfuscation
tasks. EBM clearly enables significant uplift for similarity detection and boosts the MRR up to 16X
and Recall@1 up to 30X.

Models Average MRR Average Recall@1

Cross-Optimization Cross-Obfuscation Cross-Architecture Cross-Optimization Cross-Obfuscation Cross-Architecture

Qwen2.5-Coder-0.5B (Base) 0.485 0.226 0.050 0.444 0.184 0.026
Qwen2.5-Coder-0.5B (EBM) 0.924 0.738 0.816 0.883 0.668 0.733
Qwen3-1.7B (Base) 0.284 0.023 0.028 0.228 0.011 0.015
Qwen3-1.7B (EBM) 0.917 0.700 0.826 0.884 0.627 0.761

Table 6: Evaluation on the Base Model and Finetuned Model

6 Ablation

We illustrate ablation studies that investigate the effects of data augmentation and fine-tuning pro-
cesses. All parts of our method must be included, as they provide either generalization or significant
performance improvement for a tuned LLM to understand the context, semantics, and structures of
assembly code.

arm,32 arm,mips arm,powerpc
powerpc,64

64,mips
0.7

0.8

0.9

M
M

R

w/o causal EBM

(a) Causal training ablation study

O0,O3 arm,mips all obf,none
0.0

0.2

0.4

0.6

0.8

1.0

M
M

R

w/o augmentation
w/o llm2vec

w/o cGTE
EBM

(b) Data augmentation, LLM2Vec, and cGTE ablation.

Figure 3: (3a) shows the MRR for two versions of EBM, with and without causal training. Cross-
architecture retrieval is particularly sensitive to causal training, as it enables better translation between
different languages. In (3b), EBM significantly improves the MRR compared to ablated models.
LLM2Vec contributes the most to the increase.

6.1 Assembly Code Data Augmentation

We provide an ablation study on the data augmentation process, which includes data cleaning and
adding special tokens for translation and structure awareness. The details can be found in Section 3.1.
In Figure 3b, we plot the MRR when data augmentation is removed. It has a major improvement in
cross-architecture and cross-obfuscation retrieval. Since these tasks are considered more difficult
than cross-optimization retrieval, enhancing the quality of input data with structural and language
information is a key process. The assembly code also becomes less noisy after the tokenization,
which is often a constraint for cross-obfuscation detection.

6.2 Causal Training

Causal uptraining is the first process to fine-tune a generic LLM. In our analysis, it has an evident
impact on improving cross-architecture retrieval and less impact on other retrieval tasks. In Figure 3a,
we plot the cross-architecture evaluation for the two versions of our model, with and without causal
uptraining. The MRR difference varies from 2% to 6%, which is a significant improvement.

6.3 LLM2Vec and cGTE

LLM2Vec is our BERT-like uptraining that converts a pre-trained decoder model to an embedding
model by enabling bidirectional attention. cGTE is our enhanced version of InfoNCE loss during
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Figure 4: t-SNE visualization of embedding distributions. Each color corresponds to a binary function
under different settings, represented by distinct shapes. That means, embeddings for the same function
should cluster by color instead of shapes.

contrastive learning that introduces additional contrastive terms. Both are crucial to improving
the retrieval performance, as shown in Figure 2. We show the difference in MRR for [O0,O3],
[arm,mips], and [all obf,none], as they represent cross-optimization, cross-architecture, and cross-
obfuscation, respectively. Overall, LLM2Vec contributes the most to the performance gains for our
training and can increase MRR by 2 to 4 times. cGTE is useful in complex tasks like cross-obfuscation,
where introducing more negative contrastive pairs enables efficient training.

6.4 Embedding distributions

We provide visualizations for the embeddings of similar binary functions. The t-distributed Stochastic
Neighbor Embedding (t-SNE) is used to reduce the embedding dimension to 2. In Figure 4, we plot
20 functions that are compiled using different optimization levels and architectures, represented in
different shapes. Similar functions are grouped by colors, whereas the compilation setting is grouped
by shapes. After dimensionality reduction, EBM produces tight groups that can be easily separated
from the others. This illustrates that our final embeddings are effective and contain rich semantics.

7 Discussions and Limitations

LLMs have proven to be powerful for many learning tasks. To bridge such a technological gap in
the binary software and security domain, we propose EBM, a multi-phase uptraining framework
for binary code embedding and similarity detection. EBM is a flexible framework for any generic
language or coder models, and is effective in outperforming all state-of-the-art benchmarks. Our data
augmentation is carefully engineered to provide enhanced awareness of the language and structure
information. The causal uptraining module leverages such information and pairs of data to translate
different compilation settings to specifically enable cross-architecture learning phrased as a translation
task. LLM2Vec performs a BERT-like task to learn the context and provide semantic-rich embeddings.
Lastly, our custom cumulative GTE loss can efficiently capture more negative relationships during
contrastive learning, significantly improving the semantics embedding in a resource-limited training
environment. Our comprehensive evaluation shows that EBM outperforms all benchmarks in all tasks.
The ablation study further indicates the effectiveness of all training processes.

Limitations Our limitations include the lack of evaluation on larger LLMs (due to our limited
computational resources), relatively small training data compared to state-of-the-art coder models,
and a lack of potential downstream tasks for binary code, such as malware and software vulnerability
detection. We would like to lay a foundation for future work to apply our method or variants of it
that address these limitations. We believe that such an approach has large potential in achieving the
state-of-the-art going forward.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We believe the scope is accurate and the contributions are reflected in the
subsequent sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of the work in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose the source code to reproduce the result. And the proposed methods
are general enough and easy to reproduce.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide instructions in the README.md file in the code repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss about the details in Training Details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the results clearly show the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the details about the training setup in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we do.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We citep the original papers for the datasets used in this paper, and we comply
with the open-source license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should citep the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide README, comments alongside the published code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use any large language models in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Related Work on Large Language Models

LLM Architectures. In the foundation of LLMs, transformer [Vaswani, 2017] is the architecture
used to capture contextual relationships for long text sequences. The original transformer contains
both encoder and decoder modules, where they work in tandem to encode input sequences into a
fixed-length vector and output predictions for a new sequence. Such architecture can be used for
machine translation, question answering, etc. Encoder models like BERT [Devlin, 2018] and its
variants [Liu, 2019; Lan, 2019; Clark, 2020] perform pre-training using masked language modeling
with a large amount of text data and generate contextual representations. BERT-style models use
bi-directional information that conditions the entire sentence. The generated embeddings can be used
for transfer learning or supervised fine-tuning in other downstream tasks. Decoder autoregressive
(AR) models such as GPT [Radford, 2018] and Llama [Touvron et al., 2023] perform the next token
prediction based on previously seen tokens and generate new sequences.

Foundation Coder Models are trained on multiple programming languages and large codebases.
They are capable of code generation, summarization, and translation. A list of modern open source
coder models include Code Llama [Roziere et al., 2023], codeT5 [Wang et al., 2021], Qwen-
coder [Hui et al., 2024], GraphCodeBERT [Guo et al., 2020], and many more. However, most of
coder models are only trained using source code such as Python and Java. Assembly code has not
attracted great attention from LLMs, thus some form of transfer learning is required to learn both the
syntax and semantics of assembly code.

B Additional Results

This section contains additional results for cross-compiler (Table 7), cross-architectures (Table 9), and
cross-obfuscation (Table 11). We also plot the t-SNE distributions for all LLM models in Figure 5.

Models MRR Recall@1

clang,gcc clang,gcc

SAFE 0.200 0.063
PalmTree 0.423 0.178
Asm2Vec 0.523 0.328
OrderMatters 0.007 0.001

GraphCodeBERT (125M) 0.611 0.540
CodeT5+ (110M) 0.635 0.569
Qwen2.5-Emb (1.5B) 0.667 0.593
Qwen2.5-Coder (1.5B) 0.867 0.807

EBM (0.5B) 0.946 0.912

Table 7: Experimental results for cross-compiler between Clang and GCC. As a fairly easy task,
Qwen2.5-Emb achieves 0.667 MRR with a zero-shot setting. EBM outperforms all the baselines by
over 10%.

Models MRR

Arm, PowerPC Arm, x32 Arm, MIPS PowerPC, x32 PowerPC, MIPS x32, x64 x32, MIPS

SAFE 0.180 0.191 0.189 0.165 0.110 0.196 0.152
PalmTree 0.021 0.008 0.019 0.008 0.028 0.018 0.013
Asm2Vec 0.270 0.236 0.223 0.265 0.240 0.417 0.307
OrderMatters 0.008 0.008 0.007 0.008 0.006 0.007 0.008

GraphCodeBERT (125M) 0.094 0.075 0.064 0.256 0.215 0.495 0.239
CodeT5+ (110M) 0.057 0.043 0.048 0.287 0.259 0.461 0.259
Qwen2.5-Emb (1.5B) 0.014 0.030 0.032 0.142 0.095 0.409 0.079
Qwen2.5-Coder (1.5B) 0.269 0.319 0.374 0.490 0.480 0.757 0.522

EBM (0.5B) 0.718 0.818 0.770 0.836 0.803 0.906 0.883

Table 8: Additional MRR results for cross-architecture settings.
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Figure 5: t-SNE visualization of embedding distributions of 100 functions generated by LLM models.
Each color corresponds to a binary function under different optimization settings, represented by
distinct shapes. Embeddings for the same function should cluster by color instead of shapes. Note
that some colors are visually similar but represent different functions. It is evident that the embedding
representations generated by EBM distribute more evenly in the space than in all others.
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Models Recall@1

Arm, PowerPC Arm, x32 Arm, MIPS PowerPC, x32 PowerPC, MIPS x32, x64 x32, MIPS

SAFE 0.063 0.000 0.063 0.000 0.000 0.063 0.000
PalmTree 0.001 0.001 0.001 0.001 0.001 0.007 0.000
Asm2Vec 0.098 0.080 0.072 0.085 0.080 0.231 0.114
OrderMatters 0.001 0.002 0.000 0.001 0.000 0.000 0.000

GraphCodeBERT (125M) 0.059 0.034 0.029 0.187 0.146 0.419 0.183
CodeT5+ (110M) 0.023 0.013 0.019 0.223 0.198 0.392 0.205
Qwen2.5-Emb (1.5B) 0.003 0.010 0.013 0.093 0.054 0.331 0.050
Qwen2.5-Coder (1.5B) 0.189 0.230 0.280 0.395 0.379 0.682 0.414

EBM (0.5B) 0.620 0.726 0.668 0.771 0.727 0.846 0.809

Table 9: Additional recall@1 results for cross-architecture settings.

Models MRR

all, sub all, fla all, bcf none, sub none, fla sub, bcf fla, bcf

SAFE 0.209 0.148 0.229 0.312 0.200 0.128 0.178
PalmTree 0.120 0.254 0.144 0.829 0.260 0.276 0.141
Asm2Vec 0.205 0.238 0.259 0.534 0.332 0.340 0.357
OrderMatters 0.008 0.008 0.007 0.007 0.008 0.008 0.008

GraphCodeBERT (125M) 0.239 0.331 0.290 0.932 0.464 0.621 0.447
CodeT5+ (110M) 0.174 0.324 0.263 0.873 0.378 0.585 0.465
Qwen2.5-Emb (1.5B) 0.277 0.337 0.355 0.900 0.466 0.618 0.463
Qwen2.5-Coder (1.5B) 0.374 0.417 0.422 0.953 0.583 0.687 0.540

EBM (0.5B) 0.522 0.704 0.614 0.989 0.815 0.817 0.790

Table 10: Additional MRR results for cross-obfuscation settings.

Models Recall@1

all, sub all, fla all, bcf none, sub none, fla sub, bcf fla, bcf

SAFE 0.063 0.000 0.063 0.125 0.063 0.000 0.000
PalmTree 0.069 0.125 0.072 0.599 0.117 0.186 0.073
Asm2Vec 0.075 0.090 0.114 0.336 0.148 0.161 0.176
OrderMatters 0.001 0.001 0.001 0.000 0.002 0.001 0.002

GraphCodeBERT (125M) 0.186 0.268 0.230 0.901 0.384 0.540 0.375
CodeT5+ (110M) 0.127 0.251 0.196 0.839 0.301 0.511 0.374
Qwen2.5-Emb (1.5B) 0.207 0.262 0.284 0.867 0.375 0.540 0.380
Qwen2.5-Coder (1.5B) 0.292 0.340 0.340 0.921 0.504 0.603 0.454

EBM (0.5B) 0.436 0.624 0.523 0.972 0.751 0.751 0.717

Table 11: Additional recall@1 results for cross-obfuscation settings.

Model Average Inference Time per Batch Average Training Time per Batch
(100 samples) in seconds (4 samples) in it/s

CodeT5P(110M) 0.007 13.90
GraphCodeBERT(125M) 0.005 17.78
Qwen2.5(1.5B) 2.000 2.78
CodeGemma2B 2.540 2.12

EBM(0.5B) 0.014 3.32

Table 12: Model Computational Performance Comparison
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Source Dest Accuracy Mean ± STD of Similar pairs Mean ± STD of Non-similar pairs
CodeGemma EBM CodeGemma EBM CodeGemma EBM

obf_all obf_none 0.207 0.103 0.615 ± 0.232 0.580 ± 0.216 0.141 ± 0.189 0.244 ± 0.156
obf_all obf_sub 0.179 0.097 0.607 ± 0.235 0.592 ± 0.206 0.149 ± 0.189 0.254 ± 0.158
obf_all obf_fla 0.057 0.085 0.719 ± 0.185 0.765 ± 0.145 0.221 ± 0.192 0.386 ± 0.172
obf_all obf_bcf 0.111 0.026 0.651 ± 0.227 0.690 ± 0.166 0.172 ± 0.189 0.347 ± 0.163
obf_none obf_sub 0.838 0.890 0.943 ± 0.059 0.972 ± 0.065 0.181 ± 0.222 0.210 ± 0.179
obf_none obf_fla 0.169 0.341 0.763 ± 0.167 0.746 ± 0.161 0.166 ± 0.206 0.230 ± 0.167
obf_none obf_bcf 0.354 0.320 0.843 ± 0.149 0.774 ± 0.180 0.180 ± 0.218 0.233 ± 0.172
obf_sub obf_fla 0.120 0.278 0.740 ± 0.172 0.734 ± 0.161 0.161 ± 0.202 0.235 ± 0.165
obf_sub obf_bcf 0.231 0.265 0.810 ± 0.159 0.762 ± 0.173 0.169 ± 0.210 0.232 ± 0.171
obf_fla obf_bcf 0.176 0.273 0.766 ± 0.167 0.735 ± 0.141 0.184 ± 0.195 0.291 ± 0.162
clang gcc 0.529 0.849 0.911 ± 0.105 0.896 ± 0.097 0.200 ± 0.257 0.103 ± 0.164
arm powerpc 0.014 0.478 0.727 ± 0.173 0.765 ± 0.168 0.278 ± 0.270 0.111 ± 0.160
arm x86_32 0.014 0.624 0.732 ± 0.149 0.801 ± 0.137 0.290 ± 0.266 0.108 ± 0.166
arm x86_64 0.011 0.526 0.724 ± 0.173 0.776 ± 0.163 0.273 ± 0.267 0.102 ± 0.161
arm mips 0.034 0.587 0.757 ± 0.149 0.805 ± 0.148 0.283 ± 0.266 0.094 ± 0.159
powerpc x86_32 0.111 0.529 0.820 ± 0.157 0.810 ± 0.157 0.307 ± 0.267 0.123 ± 0.173
powerpc x86_64 0.102 0.424 0.818 ± 0.171 0.797 ± 0.195 0.279 ± 0.270 0.119 ± 0.169
powerpc mips 0.104 0.474 0.803 ± 0.165 0.792 ± 0.181 0.302 ± 0.261 0.114 ± 0.165
x86_32 x86_64 0.276 0.712 0.902 ± 0.146 0.877 ± 0.148 0.318 ± 0.262 0.121 ± 0.179
x86_32 mips 0.136 0.663 0.797 ± 0.144 0.826 ± 0.140 0.280 ± 0.263 0.103 ± 0.166
x86_64 mips 0.124 0.624 0.800 ± 0.145 0.810 ± 0.143 0.286 ± 0.256 0.103 ± 0.165

Table 13: Additional results for Model Accuracy for non-match and Similarity Metrics Comparison
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