

000 001 002 003 004 005 006 007 008 009 010 LAPO: INTERNALIZING REASONING EFFICIENCY VIA 001 LENGTH-ADAPTIVE POLICY OPTIMIZATION

005 **Anonymous authors**
006 Paper under double-blind review

009 ABSTRACT

011 Large reasoning models have achieved remarkable performance through extended
012 chain-of-thought sequences, yet this computational freedom leads to excessive
013 token generation even for simple problems. We present Length-Adaptive Policy
014 Optimization (LAPO), a novel framework that transforms reasoning length control
015 from an external constraint into an intrinsic model capability. Unlike existing ap-
016 proaches that impose rigid limits or rely on post-hoc interventions, LAPO enables
017 models to internalize an understanding of appropriate reasoning depth through a
018 two-stage reinforcement learning process. In the first stage, models learn natural
019 reasoning patterns by discovering the statistical distribution of successful solution
020 lengths. In the second stage, these learned patterns are embedded as in-context,
021 self-declarative guidance, teaching the model to proactively plan its reasoning
022 budget. Experiments on mathematical reasoning benchmarks demonstrate that
023 LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%.
024 Our analysis reveals that models trained with LAPO develop emergent abilities to
025 allocate computational resources based on problem complexity, achieving efficient
026 reasoning without sacrificing quality.

027 1 INTRODUCTION

029 Recent advances in large reasoning models have demonstrated remarkable capabilities through
030 extended chain-of-thought sequences [Wei et al. \(2022\)](#); [Jaech et al. \(2024\)](#); [DeepSeek-AI et al.](#)
031 [\(2025\)](#). However, this computational freedom leads to “overthinking” [Min et al. \(2024\)](#): models
032 generate excessively verbose reasoning chains even for simple problems, causing significant
033 computational overhead and hindering practical deployment.

034 Existing approaches to address this challenge fall into three main categories, each with inherent
035 limitations. Direct length reduction methods either rely on reward design [Yang et al. \(2025\)](#);
036 [Huang et al. \(2025\)](#) that can cause over-shortening and accuracy degradation, or impose hard length
037 constraints [Aggarwal & Welleck \(2025\)](#); [Hou et al. \(2025\)](#) that lack adaptability across problem
038 types. Dynamic early-stopping approaches [Qiao et al. \(2025\)](#); [Muennighoff et al. \(2025\)](#) make
039 real-time termination decisions but often truncate mid-reasoning, disrupting the thinking process.
040 Adaptive thinking methods [Lou et al. \(2025\)](#); [Zhang et al. \(2025\)](#); [Fang et al. \(2025\)](#) enable models
041 to switch between thinking and non-thinking modes but operate at a coarse granularity.

042 The fundamental limitation of these approaches is their treatment of length control as an external
043 constraint. This very paradigm conflicts with the nature of mathematical reasoning, where intrinsic
044 problem complexity alone should dictate the required reasoning depth. Current methods fail to
045 recognize that when models successfully solve problems, they naturally converge to reasoning
046 lengths reflecting this complexity. The challenge, therefore, is not to impose arbitrary limits, but
047 to help models discover and internalize these natural patterns.

048 We propose a paradigm shift: instead of constraining reasoning through external mechanisms, we
049 enable models to learn from their own successful reasoning patterns and develop an internal sense of
050 appropriate reasoning depth. Our key insight is that the distribution of reasoning lengths in correct
051 solutions contains valuable information about how much thinking each problem genuinely requires.
052 By capturing these patterns during training and teaching models to anticipate the appropriate
053 reasoning budget before they begin solving, we can transform length control from an external
limitation into an intrinsic capability.

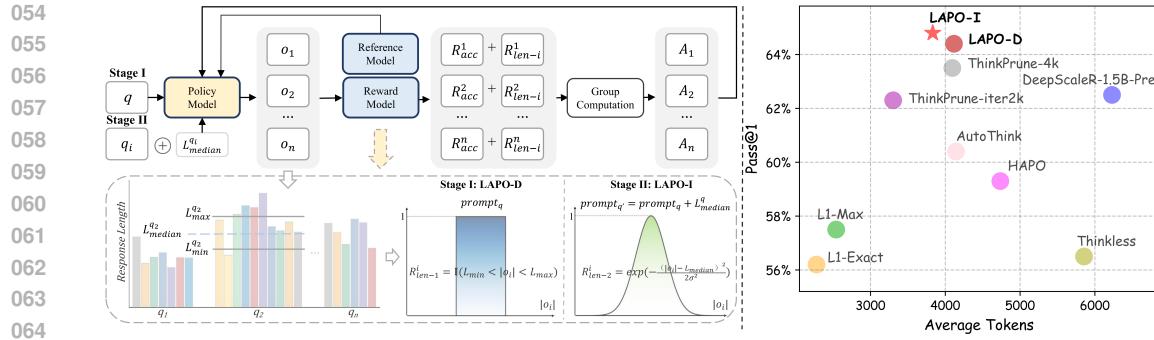


Figure 1: Overview of Length-Adaptive Policy Optimization (LAPO) and its superior performance. The LAPO framework (left) trains a model in two stages: first discovering natural reasoning lengths, then internalizing them as self-proposed budgets. This process enables our models (LAPO-I) to achieve a state-of-the-art balance between accuracy and efficiency (right), surpassing existing methods by operating in the desirable top-left region of the performance plot.

We introduce Length-Adaptive Policy Optimization (LAPO), a two-stage reinforcement learning framework that transforms length control into an intrinsic model capability. As illustrated in Figure 1, LAPO first operates in a Discovery stage, where a length-aware reward encourages the model to find a robust distribution of efficient yet correct solution lengths. This moves beyond simply rewarding the shortest answer by identifying a zone of reasonableness. The pivotal second stage, Internalization, embeds these discovered statistical patterns (specifically, the median length) as in-context, self-declarative guidance (e.g., ...<think> I will answer with n tokens). This technique reframes the budget not as an external command, but as part of the model’s own reasoning plan, teaching it to proactively allocate its computational resources.

LAPO fundamentally differs from existing approaches by recognizing that true efficiency stems from understanding problem-specific computational needs, not from following rigid rules. Our two-stage design enables a natural progression: models first learn appropriate reasoning depth through experience, then internalize this knowledge to proactively anticipate task demands. This process mirrors how human experts develop intuition, allocating mental effort in proportion to a problem’s complexity.

Extensive experiments validate the effectiveness of our approach. LAPO achieves remarkable efficiency gains, reducing token usage by up to 40.9% while simultaneously improving accuracy by 2.3% on mathematical reasoning benchmarks (see Figure 1). Our analysis reveals that this improvement stems from the model’s ability to distinguish between problems requiring elaborate derivations versus those needing only brief calculations. These results indicate that when models learn from their own successful patterns rather than arbitrary constraints, they develop more robust and efficient reasoning strategies.

Our main contributions are:

- We propose LAPO, a novel two-stage RL framework that transforms length control from an external constraint into an intrinsic, adaptive capability by learning from the model’s own successful reasoning.
- We introduce a training method that uses discovered statistical patterns as in-context, self-declarative guidance, enabling models to internalize efficient reasoning behaviors without sacrificing inference-time flexibility.
- We demonstrate that LAPO achieves substantial efficiency gains (up to 40.9% token reduction) while simultaneously improving accuracy, revealing a robust capability for adaptive resource allocation.

108

2 RELATED WORKS

109

110 2.1 TEST-TIME SCALING IN LARGE LANGUAGE MODELS

111
112 Increasing test-time computation has consistently been shown to improve performance in complex
113 reasoning tasks, mathematical problem-solving, and code generation [Wu et al. \(2025\)](#); [Wang et al.](#)
114 [\(2023\)](#); [Wei et al. \(2022\)](#); [DeepSeek-AI et al. \(2025\)](#). Test-time scaling laws indicate predictable
115 performance gains from increasing inference computation, either by generating more reasoning
116 chains or longer ones [Wu et al. \(2025\)](#); [Snell et al. \(2024\)](#); [Jaech et al. \(2024\)](#). Prominent approaches
117 include parallel sampling of multiple reasoning paths [Wang et al. \(2023\)](#), tree-based search [Yao](#)
118 [et al. \(2023\)](#); [Wu et al. \(2025\)](#), and iterative refinement techniques [Snell et al. \(2024\)](#); [Welleck et al.](#)
119 [\(2024\)](#).120 Recent reasoning models such as OpenAI’s O1 and DeepSeek’s R1-style models [Jaech et al.](#)
121 [\(2024\)](#); [DeepSeek-AI et al. \(2025\)](#) simplify test-time scaling by generating extended reasoning
122 traces through reinforcement learning with verifiable rewards (RLVR), encouraging deep thinking
123 behaviors such as broad exploration and feasibility checks [Gandhi et al. \(2025\)](#). However, these
124 extended reasoning behaviors often lead to much longer reasoning traces, sometimes several times
125 longer than those produced by short CoT models [Sui et al. \(2025\)](#); [Chen et al. \(2024\)](#), creating an
126 “overthinking” issue that largely increases inference costs [Kumar et al. \(2025\)](#).127

128 2.2 EFFICIENT LONG CHAIN-OF-THOUGHT LLM

129 To address overthinking, various methods have been proposed. Prompt-based methods offer
130 imprecise control [Xu et al. \(2025a\)](#). Training-based methods, using supervised fine-tuning [Wang](#)
131 [et al. \(2024\)](#); [Kang et al. \(2025\)](#); [Ma et al. \(2025\)](#); [Xia et al. \(2025\)](#) or RL with length
132 penalties [Muennighoff et al. \(2025\)](#); [Chang et al. \(2025\)](#); [Luo et al. \(2025\)](#); [Xu et al. \(2025b\)](#),
133 often fail to adapt to problem complexity. Router-based methods add computational overhead by
134 routing queries between models [Chuang et al. \(2025\)](#); [Ong et al. \(2024\)](#). While recent approaches
135 like L1 [Aggarwal & Welleck \(2025\)](#) and Elastic Reasoning [Xu et al. \(2025b\)](#) can adhere to a given
136 token budget, they cannot autonomously estimate an appropriate budget for a given problem.137 In contrast, our LAPO framework is designed to address this gap. Through its two-stage
138 “Discover-Internalize” process, LAPO explores a new direction where models learn to perform
139 both autonomous budget estimation and problem-adaptive length control. By training models to
140 learn from their own successful reasoning patterns, our approach aims to bridge the gap between
141 high-quality reasoning and computational efficiency in a way that prior work has not.143

3 METHOD

144 We present Length-Adaptive Policy Optimization (LAPO), a framework designed to transform
145 efficient reasoning from an externally imposed constraint into an intrinsic model capability. Our
146 approach is built on the insight that the distribution of lengths across successful solutions reflects
147 a problem’s intrinsic complexity. LAPO leverages these patterns in a two-stage process: it first
148 Discovers natural reasoning lengths via a length-aware reward, then Internalizes this knowledge by
149 training the model to follow its own self-declarative reasoning plan, as illustrated in Figure 2.152

153 3.1 DISCOVERY STAGE: LEARNING NATURAL REASONING PATTERNS

154 The Discovery stage aims to uncover inherent relationships between problems and their natural
155 reasoning lengths through GRPO training with a carefully designed reward mechanism that
156 encourages efficient exploration while maintaining correctness.158 **Extracting Statistics from GRPO Rollouts.** During GRPO training, we generate N rollout
159 responses for each problem q in the training batch. From these rollouts, we collect the lengths
160 of responses that produce correct answers:

161
$$\mathcal{L}_q = \{|r_i| : \mathbb{I}(y_i = y_{\text{gold}}) = 1, i \in [1, N]\} \quad (1)$$



Figure 2: The LAPO framework consists of two stages: (1) Discovery stage learns natural reasoning patterns by rewarding efficient correct solutions and collecting length statistics; (2) Internalization stage embeds these statistics as self-proposed plans within the model’s reasoning context, teaching models to internalize efficient reasoning.

where y_i is the predicted answer from the i -th rollout response r_i . This collection, extracted directly from the GRPO sampling process, represents natural variation in successful reasoning lengths.

We derive two key statistics from these rollouts. First, we establish a reasonable length range using percentiles to filter outliers while preserving central tendencies:

$$[L_{\min}, L_{\max}] = [\text{Percentile}_{30}(\mathcal{L}_q), \text{Percentile}_{70}(\mathcal{L}_q)] \quad (2)$$

This choice is designed to robustly identify the core distribution of effective reasoning lengths by filtering out statistical outliers. The lower bound (30th percentile) helps discard overly concise solutions that might be correct by chance, while the upper bound (70th percentile) discourages excessively verbose and inefficient reasoning paths.

Second, we create a problem-to-length mapping that will guide the Internalization stage:

$$\mathcal{M} : q \mapsto L_{\text{median}}(q) = \text{Median}(\mathcal{L}_q) \quad (3)$$

For problems without correct solutions in the current rollouts, we temporarily set $\mathcal{M}(q) = 4096$ (maximum sequence length) to encourage comprehensive exploration in subsequent episodes. This high initial budget is a fallback measure that is promptly updated to the data-driven median once the model starts solving the problem (Eq. 8), preventing a lasting bias toward long-form answers.

Length-Aware Reward Design. We employ a composite reward function balancing accuracy and efficiency:

$$R_D(r_i, q) = \mathbb{I}(y_i = y_{\text{gold}}) + \alpha \cdot R_1(r_i, q) \quad (4)$$

The length component operates on a crucial principle—only correct responses receive length-based rewards. Let $\mathcal{C}_i = \mathbb{I}(y_i = y_{\text{gold}})$ indicate whether the response is correct, and define the distance to the target length range as $d_i = \min(|r_i| - L_{\min}, |r_i| - L_{\max})$. We introduce a linear decay function $f(d) = \max(0, 1 - d/100)$ to penalize deviations from the efficient length range. The length reward is then defined as:

$$R_1(r_i, q) = \begin{cases} 1.0 & \text{if } \mathcal{C}_i = 1 \wedge |r_i| \in [L_{\min}, L_{\max}] \\ f(d_i) & \text{if } \mathcal{C}_i = 1 \wedge |r_i| \notin [L_{\min}, L_{\max}] \\ 0 & \text{if } \mathcal{C}_i = 0 \end{cases} \quad (5)$$

This design creates gradients guiding models toward efficient lengths while allowing flexibility for complex problems. Throughout the Discovery stage, we continuously update \mathcal{M} after each GRPO training step to reflect evolving model capabilities.

216 **Algorithm 1** Length-Adaptive Policy Optimization(LAPO)

217 1: **Input:** Base model π_θ , training data \mathcal{D} , hyperparameters $\alpha, \beta, \sigma, E_1, E_2$
218 2: **Output:** Length-adaptive model π_θ^*
219 3:
220 4: // **Discovery Stage**
221 5: **for** episode $e = 1$ to E_1 **do**
222 6: Sample batch $\mathcal{B} \subset \mathcal{D}$
223 7: **for** each problem $q \in \mathcal{B}$ **do**
224 8: Generate N rollouts: $\{r_1, \dots, r_N\} \sim \pi_\theta(q)$
225 9: Collect correct lengths: $\mathcal{L}_q = \{|r_i| : y_i = y_{\text{gold}}\}$
226 10: Compute range: $[L_{\min}, L_{\max}] = [\text{P}_{30}(\mathcal{L}_q), \text{P}_{70}(\mathcal{L}_q)]$
227 11: Update mapping: $\mathcal{M}(q) = \text{Median}(\mathcal{L}_q)$
228 12: Compute rewards: $R_D(r_i, q) = \mathbb{I}(y_i = y_{\text{gold}}) + \alpha \cdot R_1(r_i, q)$
229 13: **end for**
230 14: Update π_θ using GRPO with rewards R_1
231 15: **end for**
232 16:
233 17: // **Internalization Stage**
234 18: **for** episode $e = 1$ to E_2 **do**
235 19: Sample batch $\mathcal{B} \subset \mathcal{D}$
236 20: **for** each problem $q \in \mathcal{B}$ **do**
237 21: Augment prompt: $q' \leftarrow q + \text{"<think> I will answer the question with } \mathcal{M}(q) \text{ tokens."}$
238 22: Generate N rollouts: $\{r_1, \dots, r_N\} \sim \pi_\theta(q')$
239 23: Compute rewards: $R_I(r_i, q') = \mathbb{I}(y_i = y_{\text{gold}}) + \beta \cdot R_2(r_i, q')$
240 24: Update mapping $\mathcal{M}(q)$ using dual-strategy (Eq. 8)
241 25: **end for**
242 26: Update π_θ using GRPO with rewards R_2
243 27: **end for**
244 28: **return** π_θ^*

3.2 INTERNALIZATION STAGE: LENGTH-AWARE EFFICIENT REASONING

The Internalization stage transforms discovered patterns into internalized capabilities through continued GRPO training with modified prompts and rewards.

Length-Conditioned Rollout. We augment each problem prompt with explicit length guidance:

$$\text{prompt}'_q = \text{prompt}_q + \text{"<think> I will answer the question with } n \text{ tokens."}$$

where $n = \mathcal{M}(q)$ from the Discovery stage. This embeds length awareness within the reasoning context, helping models perceive computational budgets as intrinsic to thinking rather than external constraints.

Length-Adherence Reward. To encourage the model to follow its self-declared reasoning budget, the Internalization stage employs a precision-focused reward function. This function is designed to reward the alignment between the model’s output length and its self-declared budget n . The total reward is defined as:

$$R_I(r_i, q') = \mathbb{I}(y_i = y_{\text{gold}}) + \beta \cdot R_2(r_i, q') \quad (6)$$

where the adherence component, R_2 , is only granted for correct solutions:

$$R_2(r_i, n) = \begin{cases} \exp\left(-\frac{(|r_i|-n)^2}{2\sigma^2}\right) & \text{if } \mathcal{C}_i = 1, \\ 0 & \text{if } \mathcal{C}_i = 0; \end{cases} \quad (7)$$

This Gaussian-inspired reward reinforces solutions that are both correct and consistent with the intended reasoning depth. The standard deviation σ serves as a tolerance parameter, where a smaller σ enforces stricter adherence and a larger σ allows more flexibility. By rewarding adherence to the self-proposed plan, this mechanism guides the model to internalize the relationship between problem complexity and an appropriate computational budget, rather than merely tracking an external signal.

270 **Internalization via In-Context Guidance.** A cornerstone of our framework is how it fosters
 271 genuine internalization, enabling inference-time flexibility without explicit length targets. The key
 272 lies in the design of the augmented prompt. Placing the self-declarative guidance immediately after
 273 the `<think>` token transforms an external constraint into an intrinsic part of the model’s cognitive
 274 plan.

275 During the Internalization stage, we refine \mathcal{M} based on new GRPO rollouts with a dual-strategy
 276 update:

$$\mathcal{M}(q) \leftarrow \begin{cases} \text{Median}(\mathcal{L}_q^{(t)}) & \text{if unsolved} \\ \min(\mathcal{M}(q), \text{Median}(\mathcal{L}_q^{(t)})) & \text{if solved} \end{cases} \quad (8)$$

280 This ensures newly solved problems establish reasonable benchmarks while previously solved
 281 problems gravitate toward more efficient solutions.

283 3.3 TRAINING PIPELINE

285 We present the complete LAPO training procedure in Algorithm 1. LAPO employs GRPO across
 286 both stages with the following pipeline:

288 **Discovery Stage** (Lines 4-15): The model first learns natural reasoning patterns via GRPO with
 289 our length-aware reward. During this stage, we continuously update a problem-to-length mapping,
 290 \mathcal{M} , based on the statistics of successful rollouts, allowing the model to empirically discover problem-
 291 specific length distributions.

293 **Internalization Stage** (Lines 17-27): The model then learns to internalize these discovered
 294 patterns. We augment each prompt with the target length from \mathcal{M} as in-context, self-declarative
 295 guidance inside the `<think>` block. An adherence-focused reward encourages the model to treat
 296 this budget as its own reasoning plan, while a dual-strategy update to \mathcal{M} promotes continuous
 297 efficiency gains.

298 This progressive design mirrors cognitive development: first gaining tacit experience about appropriate
 299 reasoning depth through practice, then learning to anticipate these requirements proactively.
 300 The embedding of guidance as a self-declared plan is the very key mechanism that bridges this gap
 301 from experience to proactive anticipation, creating models that can intrinsically adapt computational
 302 effort to problem demands.

304 4 EXPERIMENT SETUP

306 **Training Details.** We train our models on a mixed dataset of 10,000 mathematical problems to
 307 ensure a balanced difficulty distribution, comprising 6,000 examples from the DeepScaleR-Preview-
 308 Dataset and 4,000 from the intermediate levels of the MATH dataset [Hendrycks et al. \(2021\)](#). We
 309 apply LAPO to two base models: DeepSeek-R1-1.5B [DeepSeek-AI et al. \(2025\)](#) and DeepScaleR-
 310 1.5B-Preview.

312 We train all models using the GRPO algorithm. Each of LAPO’s two stages is trained for 3
 313 episodes, with reward weights set to $\alpha=0.7$ and $\beta=0.7$ respectively. These values were chosen to
 314 provide a substantial efficiency signal without overpowering the primary reward for correctness.
 315 Training is conducted with a maximum context length of 4,096 tokens, a constraint also applied
 316 to relevant baselines like ThinkPrune and L1 to ensure a fair comparison. A comprehensive list
 317 of all hyperparameters is available in the Appendix. Note that we did not conduct extensive
 318 hyperparameter tuning, so one can expect further improvements with additional optimization.

319 **Evaluation Details.** At inference, we expand the generation window to a generous 32,768 tokens
 320 for all models to assess their true, unconstrained reasoning capabilities. This setup allows us to
 321 isolate the efficiency gains stemming directly from the LAPO framework, rather than from simple
 322 context window limitations. We evaluate on four challenging benchmarks: MATH-500 [Hendrycks
 323 et al. \(2021\)](#), AIME2024, AMC23, and Olympiad-Bench [He et al. \(2024\)](#). Following standard
 practices [DeepSeek-AI et al. \(2025\)](#), we report both Pass@1 accuracy and the average number

324 of tokens. For each problem, we sample N responses (4 for MATH-500/OlympiadBench, 32 for
 325 AIME/AMC) with a temperature of 0.6 and a top-p of 0.95.
 326

327 **Baselines.** We benchmark LAPO against three classes of baselines: the foundational models,
 328 an ablation baseline, and existing methods designed for efficient reasoning. First, we evaluate
 329 the Base Models to establish a performance starting point. Second, to isolate the effect of our
 330 length-reward, we also include an Ablation Baseline, denoted as Acc-Only, which is trained with
 331 GRPO using only the accuracy reward. Finally, we compare against several state-of-the-art Efficient
 332 Reasoning Baselines, which represent different philosophies for achieving efficiency. (1)Implicit
 333 Regularization: HAPO [Huang et al. \(2025\)](#), which uses history-aware rewards. (2)Budget-Driven
 334 Control: L1 [Aggarwal & Welleck \(2025\)](#) and ThinkPrune [Hou et al. \(2025\)](#), which follow external
 335 length targets. (3)Adaptive Activation: AutoThink [Tu et al. \(2025\)](#), AdaptThink [Zhang et al. \(2025\)](#),
 336 and Thinkless [Fang et al. \(2025\)](#), which learn a binary think/no-think policy.
 337

338 5 RESULTS AND ANALYSIS

340 We present comprehensive experimental results to validate LAPO’s effectiveness and understand its
 341 underlying mechanisms. We first benchmark LAPO against state-of-the-art baselines (Section 5.1).
 342 We then conduct in-depth ablation studies on key design choices, including the the form of length
 343 guidance (Section 5.2) and the statistical metrics for target length selection (Section 5.3). Finally,
 344 we provide a qualitative analysis of the learned reasoning patterns (Section 5.4).
 345

346 5.1 MAIN RESULTS

347 As shown in Table 1, LAPO achieves a superior balance of reasoning accuracy and computational
 348 efficiency, consistently outperforming its base models and establishing a new state-of-the-art frontier
 349 among methods that do not rely on external length controls.
 350

351 **LAPO simultaneously enhances reasoning performance and reduces test-time computes.** Compared to its base models, LAPO delivers substantial gains. On DeepScaleR-1.5B-Preview, it
 352 reduces tokens by 38.5% while boosting average accuracy by 2.3 points; a similar trend holds for
 353 DeepSeek-R1-1.5B (41.0% token cut and 1.2 point accuracy gain). This validates that LAPO learns
 354 to produce more concise yet effective reasoning.
 355

356 **LAPO surpasses existing efficient reasoning optimization approaches.** LAPO’s effectiveness
 357 is further contextualized by comparison with existing paradigms. First, in contrast to budget-driven
 358 methods like ThinkPrune-4k, LAPO achieves higher accuracy under identical training conditions
 359 without needing an external length target at inference. Second, the comparison with implicit
 360 regularization methods like HAPO, which rewards the shortest correct solution, is particularly
 361 informative. Our results indicate that HAPO’s token reduction is accompanied by a degradation
 362 in accuracy. LAPO, by targeting the median length, maintains or enhances performance, lending
 363 empirical support to the hypothesis that a statistically typical reasoning length is a more effective
 364 optimization target than the absolute minimum. Finally, while adaptive activation strategies
 365 like AutoThink are token-efficient, they do not attain LAPO’s level of accuracy, suggesting that
 366 modulating reasoning length is a more effective mechanism for preserving performance than a binary
 367 think/no-think decision.
 368

369 **Both Discovery and Internalization stages contribute to the final performance.** The frame-
 370 work’s two-stage design is critical to these results. The Discovery stage (LAPO-D) establishes a
 371 strong initial policy, outperforming the accuracy-only baseline on both metrics and indicating the
 372 efficacy of its length-aware reward. The subsequent Internalization stage (LAPO-I) further refines
 373 this policy, using in-context guidance to cultivate a more deeply embedded adaptive reasoning
 374 capability.
 375

376 5.2 ABLATION STUDY ON IN-CONTEXT GUIDANCE

377 To validate that our method’s success stems from internalizing a self-proposed plan, we ablate the
 378 two key factors of our in-context guidance: its form (how precise the guidance is) and its position
 379

378 Table 1: Main results on MATH500, AIME2024, AMC23, and OlympiadBench. We report Pass@1
 379 accuracy (%) and the average number of generated tokens (#Tok). For each metric, **bold** indicates
 380 the best and underline indicates the second-best Pass@1 score within each base model group.
 381

	MATH-500		AIME2024		AMC-23		OlympiadBench		Average	
	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok
<i>Base model: DeepSeek-R1-1.5B</i>										
HAPO	82.2	2288	<u>31.3</u>	8649	67.3	4735	<u>50.1</u>	5024	57.7	5174
AutoThink	83.5	2017	<u>29.7</u>	7084	70.2	3499	51.2	4606	58.6	3825
AdaptThink	81.6	1580	23.9	6432	63.2	2860	48.5	4616	54.3	3871
Base	83.1	4031	30.3	12150	68.3	7222	50.0	8942	57.9	8086
+ Acc-Only	83.3	3061	31.6	10628	70.5	5307	50.6	6402	59.0	6349
+ LAPO-D	84.7	2566	28.5	8415	72.2	4132	<u>51.3</u>	5595	59.2	5177
+ LAPO-I	<u>84.3</u>	2354	29.3	8318	<u>71.2</u>	3568	51.7	4863	<u>59.1</u>	4775
<i>Base model: DeepScaleR-1.5B-Preview</i>										
L1-Exact	80.6	1953	24.4	2625	70.9	2177	48.8	2357	56.2	2278
L1-Max	81.9	1673	24.9	3638	72.7	2705	50.5	2151	57.5	2541
ThinkPrune-I2k	85.5	1707	34.9	5095	74.3	2913	54.7	3498	62.3	3303
ThinkPrune-4k	86.6	2042	35.5	6488	76.3	3839	55.7	4010	63.5	4094
HAPO	84.4	2370	31.4	7702	70.3	4301	51.4	4571	59.3	4736
AutoThink	84.9	1635	36.2	7201	67.8	3658	52.5	4085	60.4	4144
Thinkless	81.3	2944	28.9	9143	65.7	5276	50.2	6057	56.5	5855
Base	85.8	3280	35.5	9246	74.2	6416	54.6	5974	62.5	6229
+ Acc-Only	85.6	2510	36.9	7319	<u>77.6</u>	4244	55.6	4712	63.9	4696
+ LAPO-D	<u>86.4</u>	2365	<u>37.6</u>	5945	<u>77.6</u>	3655	56.1	4499	<u>64.4</u>	4116
+ LAPO-I	86.3	2168	38.1	5371	78.3	3765	56.3	4024	64.8	3832

Table 2: Results with different length guidance for LAPO-I.

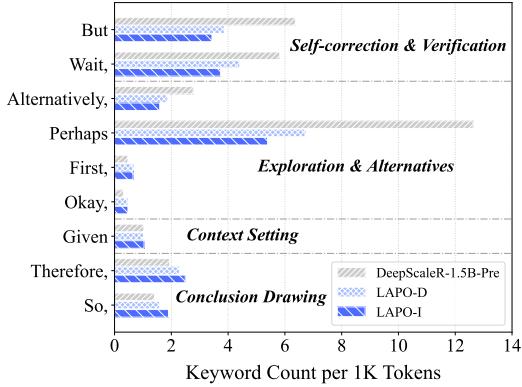
Method	MATH-500		AIME2024		AMC-23		OlympiadBench		Average	
	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok
<i>Base model: DeepScaleR-1.5B-Preview</i>										
Base	85.8	3280	35.5	9246	74.2	6416	54.6	5974	62.5	6229
LAPO-D	86.4	2365	<u>37.6</u>	5945	<u>77.6</u>	3655	56.1	4499	<u>64.4</u>	4116
w/ Exact	86.3	2168	38.1	5371	78.3	3765	56.3	4024	64.8	3832
w/ Range	<u>86.6</u>	2153	36.5	6095	76.9	3600	<u>56.2</u>	4011	64.1	3964
w/ Outside	86.5	2251	36.4	5882	76.3	3850	55.4	4105	63.9	4022
w/ Implicit	86.9	2181	36.2	5963	76.1	4002	55.1	4206	63.6	4088

(whether it's part of the model's internal thought process). We compare our default approach (w/ Exact) against three variants: w/ Range (less precise guidance), w/ Outside (placing the guidance before `<think>`), and w/ Implicit (no guidance, relying only on the reward). As shown in Table 2, the results demonstrate that both form and position are critical for effective internalization.

Our default method outperforms the less precise Range variant, indicating that specific targets discovered in Discovery stage provide a stronger learning signal. More critically, the guidance's position determines whether the model internalizes a plan or merely follows instructions. Moving the guidance outside the `<think>` block transforms it into an external command and causes accuracy to drop significantly to 63.9%. This illustrates that the model performs best when the budget is framed as part of its own cognitive plan. Finally, removing the guidance entirely results in the worst performance, with accuracy dropping to 63.6% and token count reverting to the LAPO-D baseline. This indicates that our explicit, properly-positioned, self-declarative guidance is the critical mechanism for internalization.

432 Table 3: Results within different statistical metrics used for target length selection in LAPO-I.
433

434 435 436 437 Method	438 MATH-500		439 AIME2024		440 AMC-23		441 OlympiadBench		442 Average	
	443 Pass@1	444 #Tok	445 Pass@1	446 #Tok	447 Pass@1	448 #Tok	449 Pass@1	450 #Tok	451 Pass@1	452 #Tok
<i>Base model: DeepScaleR-1.5B-Preview</i>										
Base	85.8	3280	35.5	9246	74.2	6416	54.6	5974	62.5	6229
LAPO-D	86.4	2365	37.6	5945	77.6	3655	56.1	4499	64.4	4116
w/ Median	86.3	2168	38.1	5371	78.3	3765	56.3	4024	64.8	3832
w/ Mean	85.6	2308	36.8	6030	77.4	3658	56.6	4164	64.1	4040
w/ Minimum	85.9	2031	36.3	6080	76.7	3324	55.0	3851	63.5	3821

443
444 5.3 ABLATION ON STATISTICAL METRICS FOR TARGET LENGTH
445446 The choice of a statistical measure to derive the target length n from the distribution of successful
447 solutions is critical. We conduct an ablation study comparing three strategies for this selection
448 (Table 3): using the median (our default), the mean, and the minimum length.449 The median proves most effective, achieving the highest average accuracy (64.8%). The mean,
450 being sensitive to long-tail outliers, sets overly generous budgets and slightly reduces accuracy.
451 Conversely, targeting the minimum length, while most token-efficient, causes a significant accuracy
452 drop to 63.5%. This finding validates our hypothesis that pursuing the shortest solution can lead
453 to harmful “over-shortening” and underscores the median’s robustness in identifying a typically
454 effective reasoning depth.455
456 5.4 QUALITATIVE REFINEMENT OF REASONING BEHAVIORS457 This shift towards efficiency is also reflected
458 in the model’s qualitative reasoning patterns.
459 We analyzed the frequency of keywords in-
460 dicative of different cognitive behaviors (Fig-
461 ure 3), revealing a significant shift in the
462 model’s reasoning style. The most notable
463 change is a dramatic reduction in keywords
464 associated with “Self-Correction” and “Explor-
465 ation”. LAPO training significantly curtails
466 this verbose, deliberative internal monologue,
467 effectively discouraging redundant verification
468 and exploration. Crucially, keywords for “Con-
469 text Setting” and “Conclusion Drawing” remain
470 stable. This shows LAPO selectively prunes
471 inefficient, hesitant thought patterns while pre-
472 serving the essential scaffolding of a logical
473 argument, a behavior further refined in the
474 internalization stage.475
476 6 CONCLUSION477 In this work, we introduce Length-Adaptive Policy Optimization (LAPO), a two-stage reinforce-
478 learning framework that enables language models to adjust reasoning length based on problem
479 complexity. Unlike existing approaches that impose uniform constraints, LAPO recognizes
480 that efficient reasoning requires understanding problem-specific computational needs rather than
481 following rigid rules. Our two-stage design enables a natural progression: models first learn what
482 constitutes appropriate reasoning depth through experience, then develop the ability to anticipate
483 these requirements proactively. This approach mirrors how human experts develop intuition about
484 problem complexity, allocating mental effort proportionally to task demands. Extensive experiments
485 validate LAPO’s effectiveness. When models learn from their own successful patterns rather than
arbitrary constraints, they develop more robust and efficient reasoning strategies.475
476 Figure 3: Keyword usage of reasoning behaviors
477 across different stages.

486 REPRODUCIBILITY STATEMENT
487

488 We have made every effort to ensure the reproducibility of our work by providing detailed
489 descriptions of our methodology, experimental setup, and resources. Our proposed Length-Adaptive
490 Policy Optimization (LAPO) framework is described in detail in Section 3, with a complete
491 pseudocode provided in Algorithm 1. All experiments were implemented using the publicly
492 available OpenRLHF framework, and we will release our full source code, configuration files, and
493 training scripts upon publication to facilitate direct replication. The composition of our training
494 dataset and the selection of evaluation benchmarks are outlined in Section 4, with a further analysis
495 of data choices in Appendix A.4. No new data were generated during this study. All analyzed
496 datasets are publicly available and cited appropriately. A comprehensive list of all hyperparameters
497 for training and evaluation can be found in Table 4 of Appendix A.2. This section also contains the
498 exact prompt templates used for both stages of LAPO and for all ablation studies. Furthermore, to
499 aid in validating the training process, we present an analysis of the training dynamics in Appendix
500 A.3, showcasing the learning curves for key metrics.

501 ETHICS STATEMENT
502

503 This work does not involve human subjects, personal data, or any other form of sensitive
504 information. All datasets used in our experiments—including the DeepScaleR-Preview-Dataset,
505 MATH, AIME2024, AMC23, Olympiad-Bench, and GPQA—are publicly available benchmark
506 datasets designed for evaluating reasoning capabilities in large language models. We have strictly
507 adhered to ethical research practices, and our work relies exclusively on pre-existing, public data,
508 thereby raising no concerns regarding privacy, security, or fairness from data collection.

509 Our method, Length-Adaptive Policy Optimization (LAPO), focuses on improving the computational
510 efficiency and reasoning accuracy of language models. It is a foundational technique that
511 does not inherently introduce new risks of harmful applications. To the best of our knowledge, this
512 research complies with the ICLR Code of Ethics and poses no foreseeable ethical concerns.

514 REFERENCES
515

516 Pranjal Aggarwal and Sean Welleck. L1: controlling how long A reasoning model thinks with
517 reinforcement learning. *CoRR*, abs/2503.04697, 2025. doi: 10.48550/ARXIV.2503.04697. URL
518 <https://doi.org/10.48550/arXiv.2503.04697>.

520 Edward Y. Chang, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
521 chain-of-thought reasoning in llms. *CoRR*, abs/2502.03373, 2025. doi: 10.48550/ARXIV.2502.
522 03373. URL <https://doi.org/10.48550/arXiv.2502.03373>.

523 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
524 Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do NOT
525 think that much for 2+3=? on the overthinking of o1-like llms. *CoRR*, abs/2412.21187, 2024.
526 doi: 10.48550/ARXIV.2412.21187. URL [https://doi.org/10.48550/arXiv.2412.
527 21187](https://doi.org/10.48550/arXiv.2412.21187).

529 Yu-Neng Chuang, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio, Sara Bolouki,
530 Xia Hu, and Helen Zhou. Learning to route llms with confidence tokens, 2025. URL <https://arxiv.org/abs/2410.13284>.

532 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
533 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
534 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
535 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
536 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
537 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
538 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
539 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,

540 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 541 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 542 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 543 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye,
 544 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
 545 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
 546 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

547 Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: LLM learns when to think. *CoRR*,
 548 abs/2505.13379, 2025. doi: 10.48550/ARXIV.2505.13379. URL <https://doi.org/10.48550/arXiv.2505.13379>.

551 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman.
 552 Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective
 553 stars. *CoRR*, abs/2503.01307, 2025. doi: 10.48550/ARXIV.2503.01307. URL <https://doi.org/10.48550/arXiv.2503.01307>.

556 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
 557 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
 558 Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual
 559 multimodal scientific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 560 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 3828–3850.
 561 Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.211. URL
 562 <https://doi.org/10.18653/v1/2024.acl-long.211>.

563

564 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 565 Jacob Steinhardt. Measuring massive multitask language understanding. In *9th International
 566 Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*.
 567 OpenReview.net, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

568

569 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 570 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *CoRR*,
 571 abs/2504.01296, 2025. doi: 10.48550/ARXIV.2504.01296. URL <https://doi.org/10.48550/arXiv.2504.01296>.

572

573 Chengyu Huang, Zhengxin Zhang, and Claire Cardie. HAPO: training language models to reason
 574 concisely via history-aware policy optimization. *CoRR*, abs/2505.11225, 2025. doi: 10.48550/
 575 ARXIV.2505.11225. URL <https://doi.org/10.48550/arXiv.2505.11225>.

576

577 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 578 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
 579 Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
 580 Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey
 581 Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani,
 582 Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botaao Hao,
 583 Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
 584 Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
 585 Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
 586 Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
 587 Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund
 588 Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan
 589 Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song,
 590 Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot,
 591 Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
 592 Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian
 593 Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya. Openai
 o1 system card. *CoRR*, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
<https://doi.org/10.48550/arXiv.2412.16720>.

594 Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
 595 without compromising effectiveness. In Toby Walsh, Julie Shah, and Zico Kolter (eds.), *AAAI-
 596 25, Sponsored by the Association for the Advancement of Artificial Intelligence, February 25 -
 597 March 4, 2025, Philadelphia, PA, USA*, pp. 24312–24320. AAAI Press, 2025. doi: 10.1609/
 598 AAAI.V39I23.34608. URL <https://doi.org/10.1609/aaai.v39i23.34608>.

599 Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr, and
 600 Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms. *CoRR*, abs/2502.02542,
 601 2025. doi: 10.48550/ARXIV.2502.02542. URL <https://doi.org/10.48550/arXiv.2502.02542>.

602 Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qingping
 603 Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
 604 reinforcement learning. *CoRR*, abs/2505.11896, 2025. doi: 10.48550/ARXIV.2505.11896. URL
 605 <https://doi.org/10.48550/arXiv.2505.11896>.

606 Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
 607 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
 608 *CoRR*, abs/2501.12570, 2025. doi: 10.48550/ARXIV.2501.12570. URL <https://doi.org/10.48550/arXiv.2501.12570>.

609 Xinyin Ma, Guangnian Wan, Rupeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
 610 compressible chain-of-thought tuning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 611 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 612 for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 -
 613 August 1, 2025*, pp. 6025–6035. Association for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.acl-long.300/>.

614 Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
 615 Wang, Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, and Ji-
 616 Rong Wen. Imitate, explore, and self-improve: A reproduction report on slow-thinking reasoning
 617 systems. *CoRR*, abs/2412.09413, 2024. doi: 10.48550/ARXIV.2412.09413. URL <https://doi.org/10.48550/arXiv.2412.09413>.

618 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
 619 Luke Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple test-
 620 time scaling. *CoRR*, abs/2501.19393, 2025. doi: 10.48550/ARXIV.2501.19393. URL <https://doi.org/10.48550/arXiv.2501.19393>.

621 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
 622 M. Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data.
 623 *CoRR*, abs/2406.18665, 2024. doi: 10.48550/ARXIV.2406.18665. URL <https://doi.org/10.48550/arXiv.2406.18665>.

624 Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren,
 625 and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning.
 626 *CoRR*, abs/2505.04881, 2025. doi: 10.48550/ARXIV.2505.04881. URL <https://doi.org/10.48550/arXiv.2505.04881>.

627 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
 628 optimally can be more effective than scaling model parameters. *CoRR*, abs/2408.03314, 2024.
 629 doi: 10.48550/ARXIV.2408.03314. URL <https://doi.org/10.48550/arXiv.2408.03314>.

630 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 631 Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Ben Hu. Stop overthinking: A survey
 632 on efficient reasoning for large language models. *CoRR*, abs/2503.16419, 2025. doi: 10.48550/
 633 ARXIV.2503.16419. URL <https://doi.org/10.48550/arXiv.2503.16419>.

634 Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
 635 Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl.
 636 *arXiv preprint arXiv:2505.10832*, 2025.

648 Junlin Wang, Siddhartha Jain, Dejiao Zhang, Baishakhi Ray, Varun Kumar, and Ben Athiwaratkun.
 649 Reasoning in token economies: Budget-aware evaluation of LLM reasoning strategies. In Yaser
 650 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference*
 651 *on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,*
 652 *November 12-16, 2024*, pp. 19916–19939. Association for Computational Linguistics, 2024.
 653 doi: 10.18653/V1/2024.EMNLP-MAIN.1112. URL <https://doi.org/10.18653/v1/2024.emnlp-main.1112>.

654 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
 655 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 656 models. In *The Eleventh International Conference on Learning Representations, ICLR 2023,*
 657 *Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=1PL1NIMMrw>.

658 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 659 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 660 models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
 661 (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural*
 662 *Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-*
 663 *December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

664 Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham
 665 Neubig, Ilia Kulikov, and Zaïd Harchaoui. From decoding to meta-generation: Inference-
 666 time algorithms for large language models. *Trans. Mach. Learn. Res.*, 2024, 2024. URL
 667 <https://openreview.net/forum?id=eskQMcIbMS>.

668 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 669 An empirical analysis of compute-optimal inference for problem-solving with language models,
 670 2025. URL <https://arxiv.org/abs/2408.00724>.

671 Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
 672 chain-of-thought compression in llms. *CoRR*, abs/2502.12067, 2025. doi: 10.48550/ARXIV.
 673 2502.12067. URL <https://doi.org/10.48550/arXiv.2502.12067>.

674 Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
 675 writing less. *CoRR*, abs/2502.18600, 2025a. doi: 10.48550/ARXIV.2502.18600. URL <https://doi.org/10.48550/arXiv.2502.18600>.

676 Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, and Caiming Xiong. Scalable chain
 677 of thoughts via elastic reasoning. *CoRR*, abs/2505.05315, 2025b. doi: 10.48550/ARXIV.2505.
 678 05315. URL <https://doi.org/10.48550/arXiv.2505.05315>.

679 Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning.
 680 *CoRR*, abs/2504.03234, 2025. doi: 10.48550/ARXIV.2504.03234. URL <https://doi.org/10.48550/arXiv.2504.03234>.

681 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 682 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
 683 Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 684 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural*
 685 *Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 686 *16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html.

687 Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
 688 learn when to think. *CoRR*, abs/2505.13417, 2025. doi: 10.48550/ARXIV.2505.13417. URL
 689 <https://doi.org/10.48550/arXiv.2505.13417>.

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A APPENDIX704
705 A.1 LLM USAGE706
707 We wish to clarify that a large language model (LLM) provided assistance in the preparation of this
708 manuscript. Its use was confined exclusively to enhancing the language, including grammar, style,
709 and overall readability. The LLM made no substantive contributions to the research design, analysis,
710 or the formulation of our conclusions.711
712 A.2 IMPLEMENTATION DETAILS713
714 **System prompt used for training.** The system prompts used for the two-stage training are shown
715 in the boxes below. The prompt titled **LAPO-D-prompt** was used for DeepSeek-R1-Distill-Qwen-
716 1.5B, and **LAPO-I-prompt** was used for DeepScaleR. This approach maintains consistency with
717 the original RL training of DeepSeek-R1.718
719 LAPO-D-prompt720
721 You are a helpful assistant. A conversation between User and Assistant. The user asks a
722 question, and the Assistant solves it. The Assistant first thinks about the reasoning process
723 in the mind and then provides the user with the answer. The reasoning process is enclosed
724 within `<think>` and `</think>` tags, respectively, i.e., `<think>` reasoning process here
725 `</think>` answer here. User: {question} Please think step by step and output the final
726 answer within `\boxed{}`. Assistant: `<think>`727
728 LAPO-I-prompt729
730 You are a helpful assistant. A conversation between User and Assistant. The user asks a
731 question, and the Assistant solves it. The Assistant first thinks about the reasoning process
732 in the mind and then provides the user with the answer. The reasoning process is enclosed
733 within `<think>` and `</think>` tags, respectively, i.e., `<think>` reasoning process here
734 `</think>` answer here. User: {question} Please think step by step and output the final
735 answer within `\boxed{}`. Assistant: `<think>` I will answer the question with {length}
736 tokens.737
738 **Prompts for Ablation Studies.** To support the ablation studies in Section 5.2, we utilized several
739 variations of the prompt structure. These are detailed below:740
741 **w/ Range:** For this variant, the self-declarative statement was modified to specify a range instead
742 of an exact number. The prompt concluded with:743
744 “.... Assistant: `<think>` I will answer the question within approximately n_{min} to n_{max}
745 tokens.”746
747 The length reward for this configuration was a uniform score of 1.0 for any correct solution whose
748 length fell within this range.749
750 **w/ Outside:** In this configuration, the length guidance was provided as an external instruction
751 before the `<think>` token, altering the prompt to:752
753 “.... User: {question} Please think step by step, answer the question with n tokens, and output
754 the final answer within `\boxed{}`. Assistant: `<think>`”755
756 **w/ Implicit:** This variant used the same prompt as the Discovery stage (LAPO-D-prompt), with
757 no explicit length guidance provided to the model. However, the reward function was the same as
758 the Internalization stage (Eq. 6), based on the target length $\mathcal{M}(q)$.

756 **Training and Reproduction Details.** We trained the model on the OpenRLHF framework. During
 757 training, we sampled 8 responses for each query in the batch with a temperature of 1.0, set the kl
 758 parameter to 0.0001, used a learning rate of 1e-6 and a batch size of 128, and set the maximum
 759 context length to 4K tokens during training. Both LAPO-D and LAPO-I training were conducted
 760 for 3 episodes, approximately 240 steps. The α and β parameters in R_1 and R_2 were 0.7 and
 761 0.7, respectively. All experiments were conducted using 4 A800 GPUs. We provide training
 762 hyperparameters in Table 4.

763 **Discussion on Hyperparameter Selection.** Our methodology incorporates several hyperparameters to guide the
 764 learning process. Our choices are based on principled heuristics designed to ensure stable and effective training.
 765 The percentile range for the length target, [P30, P70], was selected to define a robust zone of reasonableness, filtering
 766 out statistically anomalous short solutions that may be correct by chance, while also discouraging excessive
 767 verbosity. This approach is intentionally more stable than targeting only the minimum length. The reward weights,
 768 $\alpha=0.7$ and $\beta=0.7$, were set to provide a substantial learning signal for efficiency, yet remain subsidiary to the
 769 primary binary reward for correctness, thereby mitigating the risk of reward hacking. For penalizing deviations
 770 outside the target range, a linear decay function, $f(d)$, was employed to be less aggressive than exponential
 771 alternatives, allowing for necessary flexibility on complex problems. In the Internalization stage, the Gaussian
 772 standard deviation $\sigma=120$ creates a soft adherence target, tolerating minor deviations from the self-proposed plan
 773 while penalizing large ones, thus balancing planning with execution flexibility. Finally, the number
 774 of episodes for each stage (E1=3, E2=3) was determined empirically, as we observed that model
 775 performance on both efficiency and accuracy metrics stabilized after this duration, as illustrated by
 776 our training dynamics in Figure 4a and 4b.
 777

778 A.3 TRAINING DYNAMICS

779 We analyze the training dynamics by periodically evaluating model checkpoints on the MATH-500
 780 validation set to understand the learning mechanisms of our two-stage framework. As illustrated in
 781 Figures 4a and 4b, LAPO achieves a superior balance between efficiency and accuracy across both
 782 training stages.

783 **Continuous Efficiency Gains.** Figure 4a shows a clear, two-step reduction in token generation. In
 784 Stage 1, the LAPO-D policy rapidly becomes more concise, with its average length decreasing from
 785 a verbose baseline of 3,280 tokens to a stable 2,365 tokens, driven by the length-aware reward
 786 (R_1). Building on this, the LAPO-I policy achieves further compression, reducing the length to
 787 below 2,200 tokens. This demonstrates that the plan-adherence reward (R_2), combined with in-
 788 context guidance, effectively encourages the model to execute its self-proposed reasoning plans
 789 more precisely.

800 **Accuracy Maintenance and Refinement.** Crucially, these efficiency gains do not compromise
 801 performance. As shown in Figure 4b, accuracy on MATH-500 is consistently maintained or
 802 improved. The LAPO-D policy's accuracy climbs from 85.8% to over 86.4%, suggesting the reward
 803 mechanism prunes redundant or error-prone reasoning steps. The LAPO-I policy sustains this high
 804 accuracy level even on a much tighter token budget. Notably, it exhibits a transient performance
 805 peak, a key finding that suggests the in-context guidance actively steers the model toward more
 806 focused and effective reasoning, rather than merely acting as a constraint.

807 In summary, the training dynamics validate our two-stage design. LAPO-D establishes a robust
 808 foundation for efficient reasoning, which LAPO-I then refines to achieve a superior performance-
 809 cost balance. The smooth convergence on a challenging validation set confirms that by learning
 from its own successful patterns, the model develops transferable and efficient reasoning strategies.

Table 4: Training Hyperparameters

Hyperparameter	Value
Epochs	1
Episodes	3
Learning Rate	1e-6
Train Batch Size	128
Temperature	1.0
Rollout per Prompt	8
Prompt Max Length	1024
Generation Max Length	4096
KL Coefficient	0.0001
Precision	BF16
α	0.7
β	0.7
σ	120

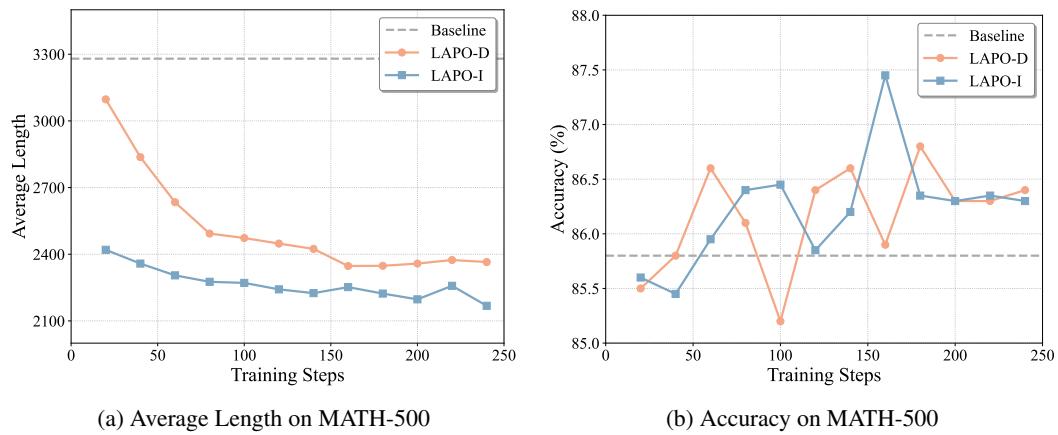


Figure 4: Training dynamics evaluated on the MATH-500 validation set. Checkpoints were saved periodically during training on our mixed dataset. (a) Both LAPO-D and LAPO-I policies learn to significantly reduce the average response length. (b) These efficiency gains are achieved while maintaining or even improving accuracy over the baseline.

Table 5: Ablation study on the training dataset. This table compares performance when trained on different data sources. For each metric column, **bold** indicates the best score and underline indicates the second-best score across all configurations.

Method	MATH500		AIME2024		AMC-23		OlympiadBench		Average	
	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok	Pass@1	#Tok
<i>Training Data: Combined (Ours)</i>										
LAPO-D	86.4	2365	37.6	5945	77.6	3655	56.1	4499	64.4	4116
LAPO-I	86.3	2168	38.1	5371	78.3	3765	56.3	4024	64.8	3832
<i>Training Data: DeepScaleR-only</i>										
LAPO-D	86.1	2397	36.8	6153	76.8	3983	55.5	4258	63.8	4197
LAPO-I	86.1	2210	36.5	6418	77.0	3791	55.6	3933	63.8	4088
<i>Training Data: MATH-only</i>										
LAPO-D	86.5	2398	38.0	7034	77.3	4060	55.8	4494	64.4	4496
LAPO-I	<u>86.1</u>	2340	35.5	6452	75.8	4021	54.5	4194	63.0	4251

A.4 SELECTION OF TRAINING DATASET

As mentioned in section 4 Experiment Setup, we chose a mixed dataset for training in our experiments. In this section, we provide a detailed analysis of the impact of different dataset selections on model performance. Table 5 shows the test results on various benchmarks after two-stage training using different training datasets. Several important findings can be observed from the experimental results. Combined-data achieved the best performance in terms of average accuracy, showing a clear advantage over single-dataset training. This indicates that a dataset with a balanced difficulty distribution helps enhance the model’s generalization ability across different types of questions. In terms of token usage efficiency, the model trained on combined-data also performed the best. This suggests that problems with different difficulty gradients help establish a more accurate complexity-length mapping relationship. By exposing the model to a wider range of problem difficulties, it can better learn the optimal thinking range for different questions. Taking all these factors into consideration, we selected the mixed dataset as the training data to expose the model to a more diverse set of problems and enable it to deeply learn the optimal reasoning patterns for different questions.

864
865 Table 6: Performance on the GPQA benchmark.
866 LAPO demonstrates generalizable efficiency
867 and accuracy gains in a non-mathematical,
868 knowledge-intensive domain.

Method	Pass@1 (%)	#Tokens
<i>Base Model: DeepSeek-R1-1.5B</i>		
Base	36.1	10297
+ LAPO-D	38.1	7596
+ LAPO-I	<u>36.9</u>	7235
<i>Base Model: DeepScaleR-1.5B-Preview</i>		
Base	36.1	7667
+ LAPO-D	38.3	6176
+ LAPO-I	<u>37.8</u>	6154

Table 7: Robustness of LAPO-I to conflicting length instructions on MATH-500.

Method	Length Constraint	MATH-500	
		Pass@1 (%)	#Tok
<i>LAPO-I</i>			
Base	N/A	86.3	2168
+Short	500	<u>86.0</u>	2279
+Long	3500	<u>85.9</u>	2300
<i>LAPO-I w/ Outside</i>			
Base	N/A	86.2	2251
+Short	500	<u>85.1</u>	1247
+Long	3500	<u>86.1</u>	2821

A.5 GENERALIZABILITY TO EXPERT-LEVEL QUESTION ANSWERING.

To test if LAPO’s benefits extend beyond structured mathematical reasoning, we evaluated our method on the GPQA benchmark. The results, presented in Table 6, demonstrate that LAPO’s core principles are highly generalizable.

For both base models, LAPO achieves a compelling dual improvement in accuracy and efficiency. On the DeepSeek-R1-1.5B model, LAPO-D improves Pass@1 accuracy by a significant 2.0 points while reducing token generation by 26.2%. Similarly, on the more advanced DeepScaleR-1.5B-Preview, LAPO-D boosts accuracy by 2.2 points and cuts tokens by 19.4%. The internalization stage consistently pushes efficiency further while maintaining a strong accuracy improvement over the baseline. This robust performance on a knowledge-intensive, non-mathematical task indicates that LAPO is not merely exploiting domain-specific patterns. Instead, it learns a fundamental and transferable skill: how to allocate cognitive effort efficiently for complex reasoning across different domains.

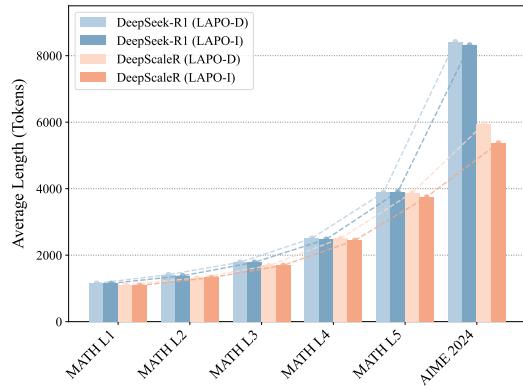
A.6 ANALYSIS OF INTERNALIZATION

To validate that LAPO fosters genuine internalization, we stress-tested our default LAPO-I model against the w/ Outside ablation variant using adversarial Short (500 tokens) and Long (3500 tokens) length prompts. The results in Table 7 reveal a stark behavioral divergence. Our default LAPO-I remains robust, its output length staying stable around its 2200-token baseline, thus ignoring the conflicting external instructions. In contrast, the w/ Outside model is clearly influenced: its token count drops to 1247 under the Short constraint and rises to 2821 under the Long one. This comparison indicates that the placement of guidance is critical. Framing the budget as part of the model’s internal plan (inside `<think>`) builds a robust, internalized behavior. Framing it externally teaches superficial instruction-following. This indicates the observed robustness of LAPO-I is a direct result of our internalization mechanism.

A.7 DIFFICULTY-AWARE COMPUTATIONAL ALLOCATION

To understand the mechanisms behind LAPO’s efficiency gains, we examine its ability to allocate computational resources in proportion to problem complexity. We evaluate LAPO-trained models on benchmarks with clear difficulty gradients, from MATH Level 1 up to the highly complex AIME 2024. As shown in Figure 5, our models demonstrate a remarkable emergent capability for difficulty-aware resource allocation. There is a clear, near-linear positive correlation between problem complexity and the average reasoning length. On simpler problems, the models generate concise responses, while for the most challenging AIME questions, they produce extensive reasoning chains that are substantially longer than any solution observed during the training phase. This ability to extrapolate reasoning depth well beyond the bounds of their training experience is a crucial finding. It provides strong evidence that LAPO does not merely teach models to compress their outputs.

918 Instead, it successfully imparts a generalizable principle of complexity-to-length mapping. This
 919 allows the models to dynamically and appropriately scale their computational investment when
 920 faced with novel problems of varying difficulty. The consistent scaling behavior across different
 921 base models further underscores that LAPO develops a robust, fundamental reasoning strategy rather
 922 than model-specific optimizations.



937 Figure 5: Reasoning length allocation across
 938 mathematical problem difficulty levels. LAPO
 939 learns to scale computation with complexity.