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ABSTRACT

Large reasoning models have achieved remarkable performance through extended
chain-of-thought sequences, yet this computational freedom leads to excessive
token generation even for simple problems. We present Length-Adaptive Policy
Optimization (LAPO), a novel framework that transforms reasoning length control
from an external constraint into an intrinsic model capability. Unlike existing ap-
proaches that impose rigid limits or rely on post-hoc interventions, LAPO enables
models to internalize an understanding of appropriate reasoning depth through a
two-stage reinforcement learning process. In the first stage, models learn natural
reasoning patterns by discovering the statistical distribution of successful solution
lengths. In the second stage, these learned patterns are embedded as in-context,
self-declarative guidance, teaching the model to proactively plan its reasoning
budget. Experiments on mathematical reasoning benchmarks demonstrate that
LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%.
Our analysis reveals that models trained with LAPO develop emergent abilities to
allocate computational resources based on problem complexity, achieving efficient
reasoning without sacrificing quality.

1 INTRODUCTION

Recent advances in large reasoning models have demonstrated remarkable capabilities through
extended chain-of-thought sequences Wei et al. (2022); Jaech et al. (2024); DeepSeek-AI et al.
(2025). However, this computational freedom leads to “overthinking” Min et al. (2024): models
generate excessively verbose reasoning chains even for simple problems, causing significant
computational overhead and hindering practical deployment.

Existing approaches to address this challenge fall into three main categories, each with inherent
limitations. Direct length reduction methods either rely on reward design Yang et al. (2025);
Huang et al. (2025) that can cause over-shortening and accuracy degradation, or impose hard length
constraints Aggarwal & Welleck (2025); Hou et al. (2025) that lack adaptability across problem
types. Dynamic early-stopping approaches Qiao et al. (2025); Muennighoff et al. (2025) make
real-time termination decisions but often truncate mid-reasoning, disrupting the thinking process.
Adaptive thinking methods Lou et al. (2025); Zhang et al. (2025); Fang et al. (2025) enable models
to switch between thinking and non-thinking modes but operate at a coarse granularity.

The fundamental limitation of these approaches is their treatment of length control as an external
constraint. This very paradigm conflicts with the nature of mathematical reasoning, where intrinsic
problem complexity alone should dictate the required reasoning depth. Current methods fail to
recognize that when models successfully solve problems, they naturally converge to reasoning
lengths reflecting this complexity. The challenge, therefore, is not to impose arbitrary limits, but
to help models discover and internalize these natural patterns.

We propose a paradigm shift: instead of constraining reasoning through external mechanisms, we
enable models to learn from their own successful reasoning patterns and develop an internal sense of
appropriate reasoning depth. Our key insight is that the distribution of reasoning lengths in correct
solutions contains valuable information about how much thinking each problem genuinely requires.
By capturing these patterns during training and teaching models to anticipate the appropriate
reasoning budget before they begin solving, we can transform length control from an external
limitation into an intrinsic capability.

1
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Figure 1: Overview of Length-Adaptive Policy Optimization (LAPO) and its superior performance.
The LAPO framework (left) trains a model in two stages: first discovering natural reasoning lengths,
then internalizing them as self-proposed budgets. This process enables our models (LAPO-I)
to achieve a state-of-the-art balance between accuracy and efficiency (right), surpassing existing
methods by operating in the desirable top-left region of the performance plot.

We introduce Length-Adaptive Policy Optimization (LAPO), a two-stage reinforcement learning
framework that transforms length control into an intrinsic model capability. As illustrated in
Figure 1, LAPO first operates in a Discovery stage, where a length-aware reward encourages the
model to find a robust distribution of efficient yet correct solution lengths. This moves beyond
simply rewarding the shortest answer by identifying a zone of reasonableness. The pivotal second
stage, Internalization, embeds these discovered statistical patterns (specifically, the median length)
as in-context, self-declarative guidance (e.g., ...<think> I will answer with n tokens). This
technique reframes the budget not as an external command, but as part of the model’s own reasoning
plan, teaching it to proactively allocate its computational resources.

LAPO fundamentally differs from existing approaches by recognizing that true efficiency stems
from understanding problem-specific computational needs, not from following rigid rules. Our two-
stage design enables a natural progression: models first learn appropriate reasoning depth through
experience, then internalize this knowledge to proactively anticipate task demands. This process
mirrors how human experts develop intuition, allocating mental effort in proportion to a problem’s
complexity.

Extensive experiments validate the effectiveness of our approach. LAPO achieves remarkable
efficiency gains, reducing token usage by up to 40.9% while simultaneously improving accuracy
by 2.3% on mathematical reasoning benchmarks (see Figure 1). Our analysis reveals that this
improvement stems from the model’s ability to distinguish between problems requiring elaborate
derivations versus those needing only brief calculations. These results indicate that when models
learn from their own successful patterns rather than arbitrary constraints, they develop more robust
and efficient reasoning strategies.

Our main contributions are:

• We propose LAPO, a novel two-stage RL framework that transforms length control from
an external constraint into an intrinsic, adaptive capability by learning from the model’s
own successful reasoning.

• We introduce a training method that uses discovered statistical patterns as in-context, self-
declarative guidance, enabling models to internalize efficient reasoning behaviors without
sacrificing inference-time flexibility.

• We demonstrate that LAPO achieves substantial efficiency gains (up to 40.9% token
reduction) while simultaneously improving accuracy, revealing a robust capability for
adaptive resource allocation.
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2 RELATED WORKS

2.1 TEST-TIME SCALING IN LARGE LANGUAGE MODELS

Increasing test-time computation has consistently been shown to improve performance in complex
reasoning tasks, mathematical problem-solving, and code generation Wu et al. (2025); Wang et al.
(2023); Wei et al. (2022); DeepSeek-AI et al. (2025). Test-time scaling laws indicate predictable
performance gains from increasing inference computation, either by generating more reasoning
chains or longer ones Wu et al. (2025); Snell et al. (2024); Jaech et al. (2024). Prominent approaches
include parallel sampling of multiple reasoning paths Wang et al. (2023), tree-based search Yao
et al. (2023); Wu et al. (2025), and iterative refinement techniques Snell et al. (2024); Welleck et al.
(2024).

Recent reasoning models such as OpenAI’s O1 and DeepSeek’s R1-style models Jaech et al.
(2024); DeepSeek-AI et al. (2025) simplify test-time scaling by generating extended reasoning
traces through reinforcement learning with verifiable rewards (RLVR), encouraging deep thinking
behaviors such as broad exploration and feasibility checks Gandhi et al. (2025). However, these
extended reasoning behaviors often lead to much longer reasoning traces, sometimes several times
longer than those produced by short CoT models Sui et al. (2025); Chen et al. (2024), creating an
“overthinking” issue that largely increases inference costs Kumar et al. (2025).

2.2 EFFICIENT LONG CHAIN-OF-THOUGHT LLM

To address overthinking, various methods have been proposed. Prompt-based methods offer
imprecise control Xu et al. (2025a). Training-based methods, using supervised fine-tuning Wang
et al. (2024); Kang et al. (2025); Ma et al. (2025); Xia et al. (2025) or RL with length
penalties Muennighoff et al. (2025); Chang et al. (2025); Luo et al. (2025); Xu et al. (2025b),
often fail to adapt to problem complexity. Router-based methods add computational overhead by
routing queries between models Chuang et al. (2025); Ong et al. (2024). While recent approaches
like L1 Aggarwal & Welleck (2025) and Elastic Reasoning Xu et al. (2025b) can adhere to a given
token budget, they cannot autonomously estimate an appropriate budget for a given problem.

In contrast, our LAPO framework is designed to address this gap. Through its two-stage
“Discover-Internalize” process, LAPO explores a new direction where models learn to perform
both autonomous budget estimation and problem-adaptive length control. By training models to
learn from their own successful reasoning patterns, our approach aims to bridge the gap between
high-quality reasoning and computational efficiency in a way that prior work has not.

3 METHOD

We present Length-Adaptive Policy Optimization (LAPO), a framework designed to transform
efficient reasoning from an externally imposed constraint into an intrinsic model capability. Our
approach is built on the insight that the distribution of lengths across successful solutions reflects
a problem’s intrinsic complexity. LAPO leverages these patterns in a two-stage process: it first
Discovers natural reasoning lengths via a length-aware reward, then Internalizes this knowledge by
training the model to follow its own self-declarative reasoning plan, as illustrated in Figure 2.

3.1 DISCOVERY STAGE: LEARNING NATURAL REASONING PATTERNS

The Discovery stage aims to uncover inherent relationships between problems and their natural
reasoning lengths through GRPO training with a carefully designed reward mechanism that
encourages efficient exploration while maintaining correctness.

Extracting Statistics from GRPO Rollouts. During GRPO training, we generate N rollout
responses for each problem q in the training batch. From these rollouts, we collect the lengths
of responses that produce correct answers:

Lq = {|ri| : I(yi = ygold) = 1, i ∈ [1, N ]} (1)

3
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Figure 2: The LAPO framework consists of two stages: (1) Discovery stage learns natural reasoning
patterns by rewarding efficient correct solutions and collecting length statistics; (2) Internalization
stage embeds these statistics as self-proposed plans within the model’s reasoning context, teaching
models to internalize efficient reasoning.

where yi is the predicted answer from the i-th rollout response ri. This collection, extracted directly
from the GRPO sampling process, represents natural variation in successful reasoning lengths.

We derive two key statistics from these rollouts. First, we establish a reasonable length range using
percentiles to filter outliers while preserving central tendencies:

[Lmin, Lmax] = [Percentile30(Lq), Percentile70(Lq)] (2)

This choice is designed to robustly identify the core distribution of effective reasoning lengths by
filtering out statistical outliers. The lower bound (30th percentile) helps discard overly concise
solutions that might be correct by chance, while the upper bound (70th percentile) discourages
excessively verbose and inefficient reasoning paths.

Second, we create a problem-to-length mapping that will guide the Internalization stage:

M : q 7→ Lmedian(q) = Median(Lq) (3)

For problems without correct solutions in the current rollouts, we temporarily set M(q) = 4096
(maximum sequence length) to encourage comprehensive exploration in subsequent episodes. This
high initial budget is a fallback measure that is promptly updated to the data-driven median once the
model starts solving the problem (Eq. 8), preventing a lasting bias toward long-form answers.

Length-Aware Reward Design. We employ a composite reward function balancing accuracy and
efficiency:

RD(ri, q) = I(yi = ygold) + α ·R1(ri, q) (4)

The length component operates on a crucial principle—only correct responses receive length-based
rewards. Let Ci = I(yi = ygold) indicate whether the response is correct, and define the distance
to the target length range as di = min(||ri| − Lmin|, ||ri| − Lmax|). We introduce a linear decay
function f(d) = max(0, 1 − d/100) to penalize deviations from the efficient length range. The
length reward is then defined as:

R1(ri, q) =


1.0 if Ci = 1 ∧ |ri| ∈ [Lmin, Lmax]

f(di) if Ci = 1 ∧ |ri| /∈ [Lmin, Lmax]

0 if Ci = 0

(5)

This design creates gradients guiding models toward efficient lengths while allowing flexibility for
complex problems. Throughout the Discovery stage, we continuously update M after each GRPO
training step to reflect evolving model capabilities.
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Algorithm 1 Length-Adaptive Policy Optimization(LAPO)
1: Input: Base model πθ , training data D, hyperparameters α, β, σ,E1, E2

2: Output: Length-adaptive model π∗
θ

3:
4: // Discovery Stage
5: for episode e = 1 to E1 do
6: Sample batch B ⊂ D
7: for each problem q ∈ B do
8: Generate N rollouts: {r1, . . . , rN} ∼ πθ(q)
9: Collect correct lengths: Lq = {|ri| : yi = ygold}

10: Compute range: [Lmin, Lmax] = [P30(Lq), P70(Lq)]
11: Update mapping: M(q) = Median(Lq)
12: Compute rewards: RD(ri, q) = I(yi = ygold) + α ·R1(ri, q)
13: end for
14: Update πθ using GRPO with rewards R1

15: end for
16:
17: // Internalization Stage
18: for episode e = 1 to E2 do
19: Sample batch B ⊂ D
20: for each problem q ∈ B do
21: Augment prompt: q′ ← q + “<think> I will answer the question with M(q) tokens.”
22: Generate N rollouts: {r1, . . . , rN} ∼ πθ(q

′)
23: Compute rewards: RI(ri, q

′) = I(yi = ygold) + β ·R2(ri, q
′)

24: Update mapping M(q) using dual-strategy (Eq. 8)
25: end for
26: Update πθ using GRPO with rewards R2

27: end for
28: return π∗

θ

3.2 INTERNALIZATION STAGE: LENGTH-AWARE EFFICIENT REASONING

The Internalization stage transforms discovered patterns into internalized capabilities through
continued GRPO training with modified prompts and rewards.

Length-Conditioned Rollout. We augment each problem prompt with explicit length guidance:

prompt′
q = promptq + “<think> I will answer the question with n tokens.”

where n = M(q) from the Discovery stage. This embeds length awareness within the reasoning
context, helping models perceive computational budgets as intrinsic to thinking rather than external
constraints.

Length-Adherence Reward. To encourage the model to follow its self-declared reasoning budget,
the Internalization stage employs a precision-focused reward function. This function is designed to
reward the alignment between the model’s output length and its self-declared budget n. The total
reward is defined as:

RI(ri, q
′) = I(yi = ygold) + β ·R2(ri, q

′) (6)

where the adherence component, R2, is only granted for correct solutions:

R2(ri, n) =

{
exp

(
− (|ri|−n)2

2σ2

)
if Ci = 1,

0 if Ci = 0;
(7)

This Gaussian-inspired reward reinforces solutions that are both correct and consistent with the
intended reasoning depth. The standard deviation σ serves as a tolerance parameter, where a smaller
σ enforces stricter adherence and a larger σ allows more flexibility. By rewarding adherence to the
self-proposed plan, this mechanism guides the model to internalize the relationship between problem
complexity and an appropriate computational budget, rather than merely tracking an external signal.

5
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Internalization via In-Context Guidance. A cornerstone of our framework is how it fosters
genuine internalization, enabling inference-time flexibility without explicit length targets. The key
lies in the design of the augmented prompt. Placing the self-declarative guidance immediately after
the <think> token transforms an external constraint into an intrinsic part of the model’s cognitive
plan.

During the Internalization stage, we refine M based on new GRPO rollouts with a dual-strategy
update:

M(q)←

{
Median(L(t)

q ) if unsolved
min(M(q),Median(L(t)

q )) if solved
(8)

This ensures newly solved problems establish reasonable benchmarks while previously solved
problems gravitate toward more efficient solutions.

3.3 TRAINING PIPELINE

We present the complete LAPO training procedure in Algorithm 1. LAPO employs GRPO across
both stages with the following pipeline:

Discovery Stage (Lines 4-15): The model first learns natural reasoning patterns via GRPO with
our length-aware reward. During this stage, we continuously update a problem-to-length mapping,
M, based on the statistics of successful rollouts, allowing the model to empirically discover problem-
specific length distributions.

Internalization Stage (Lines 17-27): The model then learns to internalize these discovered
patterns. We augment each prompt with the target length from M as in-context, self-declarative
guidance inside the <think> block. An adherence-focused reward encourages the model to treat
this budget as its own reasoning plan, while a dual-strategy update to M promotes continuous
efficiency gains.

This progressive design mirrors cognitive development: first gaining tacit experience about appro-
priate reasoning depth through practice, then learning to anticipate these requirements proactively.
The embedding of guidance as a self-declared plan is the very key mechanism that bridges this gap
from experience to proactive anticipation, creating models that can intrinsically adapt computational
effort to problem demands.

4 EXPERIMENT SETUP

Training Details. We train our models on a mixed dataset of 10,000 mathematical problems to
ensure a balanced difficulty distribution, comprising 6,000 examples from the DeepScaleR-Preview-
Dataset and 4,000 from the intermediate levels of the MATH dataset Hendrycks et al. (2021). We
apply LAPO to two base models: DeepSeek-R1-1.5B DeepSeek-AI et al. (2025) and DeepScaleR-
1.5B-Preview.

We train all models using the GRPO algorithm. Each of LAPO’s two stages is trained for 3
episodes, with reward weights set to α=0.7 and β=0.7 respectively. These values were chosen to
provide a substantial efficiency signal without overpowering the primary reward for correctness.
Training is conducted with a maximum context length of 4,096 tokens, a constraint also applied
to relevant baselines like ThinkPrune and L1 to ensure a fair comparison. A comprehensive list
of all hyperparameters is available in the Appendix. Note that we did not conduct extensive
hyperparameter tuning, so one can expect further improvements with additional optimization.

Evaluation Details. At inference, we expand the generation window to a generous 32,768 tokens
for all models to assess their true, unconstrained reasoning capabilities. This setup allows us to
isolate the efficiency gains stemming directly from the LAPO framework, rather than from simple
context window limitations. We evaluate on four challenging benchmarks: MATH-500 Hendrycks
et al. (2021), AIME2024, AMC23, and Olympiad-Bench He et al. (2024). Following standard
practices DeepSeek-AI et al. (2025), we report both Pass@1 accuracy and the average number
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of tokens. For each problem, we sample N responses (4 for MATH-500/OlympiadBench, 32 for
AIME/AMC) with a temperature of 0.6 and a top-p of 0.95.

Baselines. We benchmark LAPO against three classes of baselines: the foundational models,
an ablation baseline, and existing methods designed for efficient reasoning. First, we evaluate
the Base Models to establish a performance starting point. Second, to isolate the effect of our
length-reward, we also include an Ablation Baseline, denoted as Acc-Only, which is trained with
GRPO using only the accuracy reward. Finally, we compare against several state-of-the-art Efficient
Reasoning Baselines, which represent different philosophies for achieving efficiency. (1)Implicit
Regularization: HAPO Huang et al. (2025), which uses history-aware rewards. (2)Budget-Driven
Control: L1 Aggarwal & Welleck (2025) and ThinkPrune Hou et al. (2025), which follow external
length targets. (3)Adaptive Activation: AutoThink Tu et al. (2025), AdaptThink Zhang et al. (2025),
and Thinkless Fang et al. (2025), which learn a binary think/no-think policy.

5 RESULTS AND ANALYSIS

We present comprehensive experimental results to validate LAPO’s effectiveness and understand its
underlying mechanisms. We first benchmark LAPO against state-of-the-art baselines (Section 5.1).
We then conduct in-depth ablation studies on key design choices, including the the form of length
guidance (Section 5.2) and the statistical metrics for target length selection (Section 5.3). Finally,
we provide a qualitative analysis of the learned reasoning patterns (Section 5.4).

5.1 MAIN RESULTS

As shown in Table 1, LAPO achieves a superior balance of reasoning accuracy and computational
efficiency, consistently outperforming its base models and establishing a new state-of-the-art frontier
among methods that do not rely on external length controls.

LAPO simultaneously enhances reasoning performance and reduces test-time computes.
Compared to its base models, LAPO delivers substantial gains. On DeepScaleR-1.5B-Preview, it
reduces tokens by 38.5% while boosting average accuracy by 2.3 points; a similar trend holds for
DeepSeek-R1-1.5B (41.0% token cut and 1.2 point accuracy gain). This validates that LAPO learns
to produce more concise yet effective reasoning.

LAPO surpasses existing efficient reasoning optimization approaches. LAPO’s effectiveness
is further contextualized by comparison with existing paradigms. First, in contrast to budget-driven
methods like ThinkPrune-4k, LAPO achieves higher accuracy under identical training conditions
without needing an external length target at inference. Second, the comparison with implicit
regularization methods like HAPO, which rewards the shortest correct solution, is particularly
informative. Our results indicate that HAPO’s token reduction is accompanied by a degradation
in accuracy. LAPO, by targeting the median length, maintains or enhances performance, lending
empirical support to the hypothesis that a statistically typical reasoning length is a more effective
optimization target than the absolute minimum. Finally, while adaptive activation strategies
like AutoThink are token-efficient, they do not attain LAPO’s level of accuracy, suggesting that
modulating reasoning length is a more effective mechanism for preserving performance than a binary
think/no-think decision.

Both Discovery and Internalization stages contribute to the final performance. The frame-
work’s two-stage design is critical to these results. The Discovery stage (LAPO-D) establishes a
strong initial policy, outperforming the accuracy-only baseline on both metrics and indicating the
efficacy of its length-aware reward. The subsequent Internalization stage (LAPO-I) further refines
this policy, using in-context guidance to cultivate a more deeply embedded adaptive reasoning
capability.

5.2 ABLATION STUDY ON IN-CONTEXT GUIDANCE

To validate that our method’s success stems from internalizing a self-proposed plan, we ablate the
two key factors of our in-context guidance: its form (how precise the guidance is) and its position

7
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Table 1: Main results on MATH500, AIME2024, AMC23, and OlympiadBench. We report Pass@1
accuracy (%) and the average number of generated tokens (#Tok). For each metric, bold indicates
the best and underline indicates the second-best Pass@1 score within each base model group.

MATH-500 AIME2024 AMC-23 OlympiadBench Average

Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok

Base model: DeepSeek-R1-1.5B

HAPO 82.2 2288 31.3 8649 67.3 4735 50.1 5024 57.7 5174
AutoThink 83.5 2017 29.7 7084 70.2 3499 51.2 4606 58.6 3825
AdaptThink 81.6 1580 23.9 6432 63.2 2860 48.5 4616 54.3 3871

Base 83.1 4031 30.3 12150 68.3 7222 50.0 8942 57.9 8086
+ Acc-Only 83.3 3061 31.6 10628 70.5 5307 50.6 6402 59.0 6349
+ LAPO-D 84.7 2566 28.5 8415 72.2 4132 51.3 5595 59.2 5177

+ LAPO-I 84.3 2354 29.3 8318 71.2 3568 51.7 4863 59.1 4775

Base model: DeepScaleR-1.5B-Preview

L1-Exact 80.6 1953 24.4 2625 70.9 2177 48.8 2357 56.2 2278
L1-Max 81.9 1673 24.9 3638 72.7 2705 50.5 2151 57.5 2541
ThinkPrune-I2k 85.5 1707 34.9 5095 74.3 2913 54.7 3498 62.3 3303
ThinkPrune-4k 86.6 2042 35.5 6488 76.3 3839 55.7 4010 63.5 4094
HAPO 84.4 2370 31.4 7702 70.3 4301 51.4 4571 59.3 4736
AutoThink 84.9 1635 36.2 7201 67.8 3658 52.5 4085 60.4 4144
Thinkless 81.3 2944 28.9 9143 65.7 5276 50.2 6057 56.5 5855

Base 85.8 3280 35.5 9246 74.2 6416 54.6 5974 62.5 6229
+ Acc-Only 85.6 2510 36.9 7319 77.6 4244 55.6 4712 63.9 4696
+ LAPO-D 86.4 2365 37.6 5945 77.6 3655 56.1 4499 64.4 4116

+ LAPO-I 86.3 2168 38.1 5371 78.3 3765 56.3 4024 64.8 3832

Table 2: Results with different length guidance for LAPO-I.

Method MATH-500 AIME2024 AMC-23 OlympiadBench Average

Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok

Base model: DeepScaleR-1.5B-Preview

Base 85.8 3280 35.5 9246 74.2 6416 54.6 5974 62.5 6229
LAPO-D 86.4 2365 37.6 5945 77.6 3655 56.1 4499 64.4 4116

w/ Exact 86.3 2168 38.1 5371 78.3 3765 56.3 4024 64.8 3832
w/ Range 86.6 2153 36.5 6095 76.9 3600 56.2 4011 64.1 3964
w/ Outside 86.5 2251 36.4 5882 76.3 3850 55.4 4105 63.9 4022
w/ Implicit 86.9 2181 36.2 5963 76.1 4002 55.1 4206 63.6 4088

(whether it’s part of the model’s internal thought process). We compare our default approach (w/
Exact) against three variants: w/ Range (less precise guidance), w/ Outside (placing the guidance
before <think>), and w/ Implicit (no guidance, relying only on the reward). As shown in Table 2,
the results demonstrate that both form and position are critical for effective internalization.

Our default method outperforms the less precise Range variant, indicating that specific targets
discovered in Discovery stage provide a stronger learning signal. More critically, the guidance’s
position determines whether the model internalizes a plan or merely follows instructions. Moving
the guidance outside the <think> block transforms it into an external command and causes
accuracy to drop significantly to 63.9%. This illustrates that the model performs best when the
budget is framed as part of its own cognitive plan. Finally, removing the guidance entirely results
in the worst performance, with accuracy dropping to 63.6% and token count reverting to the LAPO-
D baseline. This indicates that our explicit, properly-positioned, self-declarative guidance is the
critical mechanism for internalization.
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Table 3: Results within different statistical metrics used for target length selection in LAPO-I.

Method MATH-500 AIME2024 AMC-23 OlympiadBench Average

Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok

Base model: DeepScaleR-1.5B-Preview

Base 85.8 3280 35.5 9246 74.2 6416 54.6 5974 62.5 6229
LAPO-D 86.4 2365 37.6 5945 77.6 3655 56.1 4499 64.4 4116

w/ Median 86.3 2168 38.1 5371 78.3 3765 56.3 4024 64.8 3832
w/ Mean 85.6 2308 36.8 6030 77.4 3658 56.6 4164 64.1 4040
w/ Minimum 85.9 2031 36.3 6080 76.7 3324 55.0 3851 63.5 3821

5.3 ABLATION ON STATISTICAL METRICS FOR TARGET LENGTH

The choice of a statistical measure to derive the target length n from the distribution of successful
solutions is critical. We conduct an ablation study comparing three strategies for this selection
(Table 3): using the median (our default), the mean, and the minimum length.

The median proves most effective, achieving the highest average accuracy (64.8%). The mean,
being sensitive to long-tail outliers, sets overly generous budgets and slightly reduces accuracy.
Conversely, targeting the minimum length, while most token-efficient, causes a significant accuracy
drop to 63.5%. This finding validates our hypothesis that pursuing the shortest solution can lead
to harmful “over-shortening” and underscores the median’s robustness in identifying a typically
effective reasoning depth.

5.4 QUALITATIVE REFINEMENT OF REASONING BEHAVIORS

0 2 4 6 8 10 12 14
Keyword Count per 1K Tokens

But

Wait,

Alternatively,

Perhaps

First,

Okay,

Given

Therefore,

So,

Self-correction & Verification

Exploration & Alternatives

Context Setting

Conclusion Drawing
DeepScaleR-1.5B-Pre
LAPO-D
LAPO-I

Figure 3: Keyword usage of reasoning behaviors
across different stages.

This shift towards efficiency is also reflected
in the model’s qualitative reasoning patterns.
We analyzed the frequency of keywords in-
dicative of different cognitive behaviors (Fig-
ure 3), revealing a significant shift in the
model’s reasoning style. The most notable
change is a dramatic reduction in keywords
associated with “Self-Correction” and “Explo-
ration”. LAPO training significantly curtails
this verbose, deliberative internal monologue,
effectively discouraging redundant verification
and exploration. Crucially, keywords for “Con-
text Setting” and “Conclusion Drawing” remain
stable. This shows LAPO selectively prunes
inefficient, hesitant thought patterns while pre-
serving the essential scaffolding of a logical
argument, a behavior further refined in the
internalization stage.

6 CONCLUSION

In this work, we introduce Length-Adaptive Policy Optimization (LAPO), a two-stage reinforcement
learning framework that enables language models to adjust reasoning length based on problem
complexity. Unlike existing approaches that impose uniform constraints, LAPO recognizes
that efficient reasoning requires understanding problem-specific computational needs rather than
following rigid rules. Our two-stage design enables a natural progression: models first learn what
constitutes appropriate reasoning depth through experience, then develop the ability to anticipate
these requirements proactively. This approach mirrors how human experts develop intuition about
problem complexity, allocating mental effort proportionally to task demands. Extensive experiments
validate LAPO’s effectiveness. When models learn from their own successful patterns rather than
arbitrary constraints, they develop more robust and efficient reasoning strategies.
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REPRODUCIBILITY STATEMEMT

We have made every effort to ensure the reproducibility of our work by providing detailed
descriptions of our methodology, experimental setup, and resources. Our proposed Length-Adaptive
Policy Optimization (LAPO) framework is described in detail in Section 3, with a complete
pseudocode provided in Algorithm 1. All experiments were implemented using the publicly
available OpenRLHF framework, and we will release our full source code, configuration files, and
training scripts upon publication to facilitate direct replication. The composition of our training
dataset and the selection of evaluation benchmarks are outlined in Section 4, with a further analysis
of data choices in Appendix A.4. No new data were generated during this study. All analyzed
datasets are publicly available and cited appropriately. A comprehensive list of all hyperparameters
for training and evaluation can be found in Table 4 of Appendix A.2. This section also contains the
exact prompt templates used for both stages of LAPO and for all ablation studies. Furthermore, to
aid in validating the training process, we present an analysis of the training dynamics in Appendix
A.3, showcasing the learning curves for key metrics.

ETHICS STATEMENT

This work does not involve human subjects, personal data, or any other form of sensitive
information. All datasets used in our experiments—including the DeepScaleR-Preview-Dataset,
MATH, AIME2024, AMC23, Olympiad-Bench, and GPQA—are publicly available benchmark
datasets designed for evaluating reasoning capabilities in large language models. We have strictly
adhered to ethical research practices, and our work relies exclusively on pre-existing, public data,
thereby raising no concerns regarding privacy, security, or fairness from data collection.

Our method, Length-Adaptive Policy Optimization (LAPO), focuses on improving the computa-
tional efficiency and reasoning accuracy of language models. It is a foundational technique that
does not inherently introduce new risks of harmful applications. To the best of our knowledge, this
research complies with the ICLR Code of Ethics and poses no foreseeable ethical concerns.
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A APPENDIX

A.1 LLM USAGE

We wish to clarify that a large language model (LLM) provided assistance in the preparation of this
manuscript. Its use was confined exclusively to enhancing the language, including grammar, style,
and overall readability. The LLM made no substantive contributions to the research design, analysis,
or the formulation of our conclusions.

A.2 IMPLEMENTATION DETAILS

System prompt used for training. The system prompts used for the two-stage training are shown
in the boxes below. The prompt titled LAPO-D-prompt was used for DeepSeek-R1-Distill-Qwen-
1.5B, and LAPO-I-prompt was used for DeepScaleR. This approach maintains consistency with
the original RL training of DeepSeek-R1.

LAPO-D-prompt

You are a helpful assistant. A conversation between User and Assistant. The user asks a
question, and the Assistant solves it. The Assistant first thinks about the reasoning process
in the mind and then provides the user with the answer. The reasoning process is enclosed
within <think> and </think> tags, respectively, i.e., <think> reasoning process here
</think> answer here. User: {question} Please think step by step and output the final
answer within \boxed{}. Assistant: <think>

LAPO-I-prompt

You are a helpful assistant. A conversation between User and Assistant. The user asks a
question, and the Assistant solves it. The Assistant first thinks about the reasoning process
in the mind and then provides the user with the answer. The reasoning process is enclosed
within <think> and </think> tags, respectively, i.e., <think> reasoning process here
</think> answer here. User: {question} Please think step by step and output the final
answer within \boxed{}. Assistant: <think> I will answer the question with {length}
tokens.

Prompts for Ablation Studies. To support the ablation studies in Section5.2, we utilized several
variations of the prompt structure. These are detailed below:

w/ Range: For this variant, the self-declarative statement was modified to specify a range instead
of an exact number. The prompt concluded with:

“... Assistant: <think> I will answer the question within approximately nmin to nmax

tokens.”

The length reward for this configuration was a uniform score of 1.0 for any correct solution whose
length fell within this range.

w/ Outside: In this configuration, the length guidance was provided as an external instruction
before the <think> token, altering the prompt to:

“... User: {question} Please think step by step, answer the question with n tokens, and output
the final answer within boxed{}. Assistant: <think>”

w/ Implicit: This variant used the same prompt as the Discovery stage (LAPO-D-prompt), with
no explicit length guidance provided to the model. However, the reward function was the same as
the Internalization stage (Eq.6), based on the target length M(q).
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Training and Reproduction Details. We trained the model on the OpenRLHF framework. During
training, we sampled 8 responses for each query in the batch with a temperature of 1.0, set the kl
parameter to 0.0001, used a learning rate of 1e-6 and a batch size of 128, and set the maximum
context length to 4K tokens during training. Both LAPO-D and LAPO-I training were conducted
for 3 episodes, approximately 240 steps. The α and β parameters in R1 and R2 were 0.7 and
0.7, respectively. All experiments were conducted using 4 A800 GPUs. We provide training
hyperparameters in Table 4.

Table 4: Training Hyperparameters

Hyperparameter Value
Epochs 1
Episodes 3
Learning Rate 1e-6
Train Batch Size 128
Temperature 1.0
Rollout per Prompt 8
Prompt Max Length 1024
Generation Max Length 4096
KL Coefficient 0.0001
Precision BF16
α 0.7
β 0.7
σ 120

Discussion on Hyperparameter Selection. Our method-
ology incorporates several hyperparameters to guide the
learning process. Our choices are based on principled
heuristics designed to ensure stable and effective training.
The percentile range for the length target, [P30, P70], was
selected to define a robust zone of reasonableness, filter-
ing out statistically anomalous short solutions that may
be correct by chance, while also discouraging excessive
verbosity. This approach is intentionally more stable than
targeting only the minimum length. The reward weights,
α=0.7 and β=0.7, were set to provide a substantial
learning signal for efficiency, yet remain subsidiary to the
primary binary reward for correctness, thereby mitigating
the risk of reward hacking. For penalizing deviations
outside the target range, a linear decay function, f(d),
was employed to be less aggressive than exponential
alternatives, allowing for necessary flexibility on complex
problems. In the Internalization stage, the Gaussian
standard deviation σ=120 creates a soft adherence target,
tolerating minor deviations from the self-proposed plan
while penalizing large ones, thus balancing planning with execution flexibility. Finally, the number
of episodes for each stage (E1=3, E2=3) was determined empirically, as we observed that model
performance on both efficiency and accuracy metrics stabilized after this duration, as illustrated by
our training dynamics in Figure 4a and 4b.

A.3 TRAINING DYNAMICS

We analyze the training dynamics by periodically evaluating model checkpoints on the MATH-500
validation set to understand the learning mechanisms of our two-stage framework. As illustrated in
Figures 4a and 4b, LAPO achieves a superior balance between efficiency and accuracy across both
training stages.

Continuous Efficiency Gains. Figure 4a shows a clear, two-step reduction in token generation. In
Stage 1, the LAPO-D policy rapidly becomes more concise, with its average length decreasing from
a verbose baseline of 3,280 tokens to a stable 2,365 tokens, driven by the length-aware reward
(R1). Building on this, the LAPO-I policy achieves further compression, reducing the length to
below 2,200 tokens. This demonstrates that the plan-adherence reward (R2), combined with in-
context guidance, effectively encourages the model to execute its self-proposed reasoning plans
more precisely.

Accuracy Maintenance and Refinement. Crucially, these efficiency gains do not compromise
performance. As shown in Figure 4b, accuracy on MATH-500 is consistently maintained or
improved. The LAPO-D policy’s accuracy climbs from 85.8% to over 86.4%, suggesting the reward
mechanism prunes redundant or error-prone reasoning steps. The LAPO-I policy sustains this high
accuracy level even on a much tighter token budget. Notably, it exhibits a transient performance
peak, a key finding that suggests the in-context guidance actively steers the model toward more
focused and effective reasoning, rather than merely acting as a constraint.

In summary, the training dynamics validate our two-stage design. LAPO-D establishes a robust
foundation for efficient reasoning, which LAPO-I then refines to achieve a superior performance-
cost balance. The smooth convergence on a challenging validation set confirms that by learning
from its own successful patterns, the model develops transferable and efficient reasoning strategies.
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Figure 4: Training dynamics evaluated on the MATH-500 validation set. Checkpoints were saved
periodically during training on our mixed dataset. (a) Both LAPO-D and LAPO-I policies learn
to significantly reduce the average response length. (b) These efficiency gains are achieved while
maintaining or even improving accuracy over the baseline.

Table 5: Ablation study on the training dataset. This table compares performance when trained on
different data sources. For each metric column, bold indicates the best score and underline indicates
the second-best score across all configurations.

Method MATH500 AIME2024 AMC-23 OlympiadBench Average

Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok Pass@1 #Tok

Training Data: Combined (Ours)

LAPO-D 86.4 2365 37.6 5945 77.6 3655 56.1 4499 64.4 4116
LAPO-I 86.3 2168 38.1 5371 78.3 3765 56.3 4024 64.8 3832

Training Data: DeepScaleR-only

LAPO-D 86.1 2397 36.8 6153 76.8 3983 55.5 4258 63.8 4197
LAPO-I 86.1 2210 36.5 6418 77.0 3791 55.6 3933 63.8 4088

Training Data: MATH-only

LAPO-D 86.5 2398 38.0 7034 77.3 4060 55.8 4494 64.4 4496
LAPO-I 86.1 2340 35.5 6452 75.8 4021 54.5 4194 63.0 4251

A.4 SELECTION OF TRAINING DATASET

As mentioned in section 4 Experiment Setup, we chose a mixed dataset for training in our
experiments. In this section, we provide a detailed analysis of the impact of different dataset
selections on model performance. Table 5 shows the test results on various benchmarks after
two-stage training using different training datasets. Several important findings can be observed
from the experimental results. Combined-data achieved the best performance in terms of average
accuracy, showing a clear advantage over single-dataset training. This indicates that a dataset with
a balanced difficulty distribution helps enhance the model’s generalization ability across different
types of questions. In terms of token usage efficiency, the model trained on combined-data also
performed the best. This suggests that problems with different difficulty gradients help establish a
more accurate complexity-length mapping relationship. By exposing the model to a wider range of
problem difficulties, it can better learn the optimal thinking range for different questions. Taking
all these factors into consideration, we selected the mixed dataset as the training data to expose the
model to a more diverse set of problems and enable it to deeply learn the optimal reasoning patterns
for different questions.
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Table 6: Performance on the GPQA benchmark.
LAPO demonstrates generalizable efficiency
and accuracy gains in a non-mathematical,
knowledge-intensive domain.

Method Pass@1 (%) #Tokens
Base Model: DeepSeek-R1-1.5B

Base 36.1 10297
+ LAPO-D 38.1 7596
+ LAPO-I 36.9 7235

Base Model: DeepScaleR-1.5B-Preview

Base 36.1 7667
+ LAPO-D 38.3 6176
+ LAPO-I 37.8 6154

Table 7: Robustness of LAPO-I to conflicting
length instructions on MATH-500.

Method Length
Constraint

MATH-500

Pass@1 (%) #Tok

LAPO-I

Base N/A 86.3 2168
+Short 500 86.0 2279
+Long 3500 85.9 2300

LAPO-I w/ Outside

Base N/A 86.2 2251
+Short 500 85.1 1247
+Long 3500 86.1 2821

A.5 GENERALIZABILITY TO EXPERT-LEVEL QUESTION ANSWERING.

To test if LAPO’s benefits extend beyond structured mathematical reasoning, we evaluated our
method on the GPQA benchmark. The results, presented in Table 6, demonstrate that LAPO’s
core principles are highly generalizable.

For both base models, LAPO achieves a compelling dual improvement in accuracy and efficiency.
On the DeepSeek-R1-1.5B model, LAPO-D improves Pass@1 accuracy by a significant 2.0 points
while reducing token generation by 26.2%. Similarly, on the more advanced DeepScaleR-1.5B-
Preview, LAPO-D boosts accuracy by 2.2 points and cuts tokens by 19.4%. The internalization
stage consistently pushes efficiency further while maintaining a strong accuracy improvement over
the baseline. This robust performance on a knowledge-intensive, non-mathematical task indicates
that LAPO is not merely exploiting domain-specific patterns. Instead, it learns a fundamental and
transferable skill: how to allocate cognitive effort efficiently for complex reasoning across different
domains.

A.6 ANALYSIS OF INTERNALIZATION

To validate that LAPO fosters genuine internalization, we stress-tested our default LAPO-I model
against the w/ Outside ablation variant using adversarial Short (500 tokens) and Long (3500 tokens)
length prompts. The results in Table 7 reveal a stark behavioral divergence. Our default LAPO-
I remains robust, its output length staying stable around its 2200-token baseline, thus ignoring
the conflicting external instructions. In contrast, the w/ Outside model is clearly influenced: its
token count drops to 1247 under the Short constraint and rises to 2821 under the Long one. This
comparison indicates that the placement of guidance is critical. Framing the budget as part of the
model’s internal plan (inside <think>) builds a robust, internalized behavior. Framing it externally
teaches superficial instruction-following. This indicates the observed robustness of LAPO-I is a
direct result of our internalization mechanism.

A.7 DIFFICULTY-AWARE COMPUTATIONAL ALLOCATION

To understand the mechanisms behind LAPO’s efficiency gains, we examine its ability to allocate
computational resources in proportion to problem complexity. We evaluate LAPO-trained models
on benchmarks with clear difficulty gradients, from MATH Level 1 up to the highly complex AIME
2024. As shown in Figure 5, our models demonstrate a remarkable emergent capability for difficulty-
aware resource allocation. There is a clear, near-linear positive correlation between problem
complexity and the average reasoning length. On simpler problems, the models generate concise
responses, while for the most challenging AIME questions, they produce extensive reasoning chains
that are substantially longer than any solution observed during the training phase. This ability to
extrapolate reasoning depth well beyond the bounds of their training experience is a crucial finding.
It provides strong evidence that LAPO does not merely teach models to compress their outputs.
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Instead, it successfully imparts a generalizable principle of complexity-to-length mapping. This
allows the models to dynamically and appropriately scale their computational investment when
faced with novel problems of varying difficulty. The consistent scaling behavior across different
base models further underscores that LAPO develops a robust, fundamental reasoning strategy rather
than model-specific optimizations.
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Figure 5: Reasoning length allocation across
mathematical problem difficulty levels. LAPO
learns to scale computation with complexity.
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