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Abstract: Robotic systems operating in unstructured environments must infer1

key physical properties of objects, such as stiffness, mass, center of mass, friction,2

and shape, to ensure stable manipulation. Accurate estimation of these properties3

is crucial for predicting and effective planning manipulation outcomes. In this4

work, we present a novel framework for identifying the properties of challenging5

objects which are articulated through versatile, non-prehensile push-pull actions6

and using visuo-tactile observation. Our approach introduces a differentiable fil-7

tering method that incorporates embedding interaction physics into graph neural8

networks, enabling the system to actively learn object-robot interactions and con-9

sistently infer both directly observable pose information and indirectly observable10

physical parameters. Experimental results on real robotic systems show that our11

method outperforms existing baselines in efficiency and accuracy.12

Keywords: Perception for Grasp & Manipulation, Visuo-Tactile Sensing, Active13

Learning, Interaction Dynamics14

Vision

Tactile

Interactive Perception Setupa)

Shape 
Perception

𝐷!"
Object 

Params.

𝒮#

Active 
Interaction

Initial 
Shape & 

Pose

(Push
/Pull)

Differentiable 
Filtering

Visuo-
Tactile
Obs.

t

𝐹!, 𝐹"

𝐶𝑂𝑀!

𝐶𝑂𝑀"

𝑀!
𝑓!𝑓"

𝑓#
𝑀"

Active Object Inference Frameworkb)

1 Introduction15

Robotic systems engaged in contact-rich object manipulation tasks need to perceive the physical16

properties of the object, such as mass, center of mass, and surface friction, to perform effectively.17

However, these properties are difficult to estimate, as they are not directly observable in static en-18

vironments and become salient only during specific object-robot interactions [1]. Current visual or19

tactile perception frameworks struggle to handle previously unseen objects [2, 3], necessitating the20

use of simple and robust interaction strategies to infer these physical properties prior to manipulation21

tasks [4, 5]. In this study, we propose a novel interactive learning and perception framework for22

inferring the properties of articulated objects using both vision and tactile sensing seamlessly using23

versatile push-pull interactions.24

2 Related Work25

Estimating inertial and surface properties of rigid objects is a long-standing problem in control the-26

ory, particularly for rigid body identification [6, 7]. The early methods relied on rigidly attached27
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objects to manipulators [8, 9], limiting their applicability in unstructured environments due to spe-28

cialized mechanisms and known object geometry. Interactive techniques like grasping or pushing29

[10, 11, 12] tried to overcome these issues but relied on simplified assumptions. Recent research ex-30

plores data-driven [13, 14, 15] and physics-based approaches [16], with studies [17, 18] showing31

the potential of graph networks to capture object-robot interactions. However, current GNNs fo-32

cus on spatial relationships and kinematics but fail to capture contact forces influenced by physical33

properties and robot actions. This highlights the need for a graph-based model incorporating tactile34

information with a stronger inductive bias. Moreover, existing data-driven methods require exten-35

sive training and often lack strategic interaction, limiting their use to simulation environments. This36

motivates us to investigate possible active/informative interaction techniques [19, 20, 21], which is37

addressed in this work. Furthermore, prior research has relied mainly on visual [1, 22] or tactile38

[12, 11] methods to estimate physical properties, each with limitations. Tactile sensing can infer39

multiple properties of objects, but requires precise information and prior knowledge, while vision40

offers a limited range of observable properties, but provides a global view of the shape and move-41

ment of an object. Recent works [23, 24] combining vision and tactile approaches have shown42

improvements in pose estimation and contact-rich manipulation tasks. Building on these advances,43

our framework integrates sensing modalities with active exploratory actions: non-prehensile push-44

ing, and prehensile pulling to enhance object perception. By encoding object-robot interactions into45

Probabilistic Markov Models and using a learned interaction model (differentiable filter [25, 22]),46

our system predicts visuo-tactile observations and estimates key physical parameters of articulated47

objects in a Bayesian Inference setting. The learned models capture not only the complex interaction48

dynamics but also modality-specific noise, improving the efficiency of inference.49
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Figure 1: Proposed framework for interactively learning & inferring the properties of articulated
objects using visuo-tactile sensing.

3 Methods50

3.1 Problem Formulation51

We tackle estimating the state s of an unknown rigid object on a support surface using visual (oV )52

and tactile (oT ) inputs along with actions (a). The objects are articulated, with multiple links con-53

nected through rotational joints. At time t, the state of the object st is composed of l ∈ 1, ..., L54

links, expressed as st = {s1t ...sLt }. The state of each link l, slt = {ψlt, ϕl}, includes time-varying55

elements: the 2D pose and twist, ψlt = {xt, yt, θt, vxt , vyt , ωt}, and time-invariant elements ϕl,56

involving inertial parameters like {m,CoMx, CoMy}mass and center of mass vector, and interac-57

tion parameters {f, fr, fj} for friction with the table, robot, and adjacent link. The visual data oVt58
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includes RGB-D images of the robot-object interface, while the tactile data oTt is 2D contact forces59

from the robotic gripper’s interaction (fingertip forces). The push/pull action is defined by the tuple60

contact point (cp), direction (pd) and velocity (u). In addition, for autonomous and seamless explo-61

ration of the object, the shape of each link Sl is estimated via superquadrics [26]. The belief about62

the current state of the object st is represented by a distribution conditioned on previous actions a1:t63

and observations o1:t and employs recursive Bayesian filtering.64

bel(st) = p(st|o1:t, a1:t) = ηp(ot|st, at)
∫
p(st|st−1, at−1)bel(st−1)dst−1 (1)

where η is a normalizing factor. We employ a data-driven strategy to learn the process, observation,65

and noise models. Since object pose intricately relies on inertial and interaction parameters, joint66

filtering for pose and parameters [27] is found to be ineffective and we adopt a dual filter design to67

maintain consistent filtering and infer object parameters.68

3.2 Dual Differentiable Filter69

For the dual filter formulation, we explicitly represent the state of the object (joint distribution of70

pose and twist) via Multivariate Gaussian distribution:71

bel(ψt, ϕt)
.
= N (ψt, ϕt|µt,Σt), µt =

(
µψt

µϕt

)
, Σt =

(
Σψt Σψtϕt

Σϕtψt
Σϕt

)
(2)

with dimensions µt ∈ R11L−1 and Σt ∈ R(11L−1)×(11L−1). The dual filter as shown in Fig.172

follows the structure of a Kalman filter with a prediction step and an update step, with the proposed73

novelty explained in this section.74

3.2.1 Prediction Step75

In the prediction step, the next joint belief is predicted based on the prior belief and actions. Since76

the object’s inertial and interaction parameters have physical constraints (e.g., m, f, fj > 0, CoMx,77

CoMy must lie within the object boundary), constrained Monte Carlo sigma point sampling is per-78

formed to maintain these constraints and the Gaussian variance. A differentiable sampling method79

[28] is used to sample C sigma points χit−1, i = {1..C} from the joint distribution bel(ψt−1, ϕt−1),80

with an associated weight wit−1 = 1/C.81

We employ Graph Neural Networks (GNNs) to model the interaction between the object, the support82

surface, and the robot. Using the sigma points χit−1 and the robot action at−1, a directed graph83

Git = ({nl}, {ej , sj , rj}) is constructed, where nl represents the nodes for each link of the object,84

the robot and the support surface, and ej represents the directed edges. Each node nl ∈ RL+285

contains features including dynamic (pose, twist) and static (inertial) parameters, populated from86

the sigma points for the object links, with default values for the robot and surface. The edges87

ej ∈ R3L capture the interaction between the links between the objects, the robot and the support88

surface, with features such as friction coefficients. To update node and edge features from time t−189

to t, we use a novel graph propagation algorithm (see the Appendix) with two functions: fn for node90

updates and fe for edge updates.91

3.2.2 Update Step92

The dual filter employs a separate update of the parameter belief similar to the parameter update93

presented in [29] and the conditional pose belief update based on the UKF update [30]. To reduce94

the complexity of predicting raw RGB-D images, we use the initial segmented point cloud PCt095

from the shape perception method to transform it using the predicted pose and generate expected96

RGB-D images using the standard 3D to 2D projective transformation approach [31] involving97

the intrinsic and extrinsic values of the camera, also avoiding generalization issues. For the tactile98

counterpart, a three-layer feedforward network is utilized to predict the contact force information99

from the edge encoding directed towards the robot. The filtering step is used end-to-end for both100

learning and inference.101
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3.2.3 Active Interaction: N -step Information Gain102

To make the framework more sample efficient for real robot scenarios, we employ active action103

selection by formulating an N -step information gain criteria [32] under the filtering setting. We104

recursively use the prediction step of the dual differentiable filter without the update step to compute105

the expected Information Gain for both model learning and object parameter inference for each106

sampled non-prehensile pushing or prehensile pulling action π[i] = aiτ0:τN over N−step in future107

τ = τ0..τN108

IGN (π[i]) ≈ −Ep(ψτN
,ϕτN

|π[i])[ln(bel
[i]
(ψτN , ϕτN ))− ln(bel[i](ψτ0 , ϕτ0))] (3)

where, bel
[i]
(ψτN , ϕτN ) is the hypothetical predictive joint distribution afterN -step by taking action109

π[i] without taking account the actual observation. At every step π∗ = argmaxπi IGN (π[i]) is110

selected for interaction.111

4 Results & Conclusion112
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Figure 2: A) Experimental Setup with configurable objects B) Parameter estimation error across
multiple interactions for articulated objects comparing proposedA−GNN withA−FF ,R−GNN
and U −GNN

Pulling Pushing
A B A B

A-GNN 2830 0.21 ± 0.02 4390 0.15 ± 0.03
A-FF 3410 0.22 ± 0.04 4810 0.16 ± 0.05
R-GNN 2922 0.21 ± 0.03 5295 0.15 ± 0.02
U-GNN 3405 0.25 ± 0.02 6000 0.18 ± 0.07

Table 1: Col. A) presents the no. of interactions required
for training convergence, and B) presents NRMSE of
the overall parameter inference

We compare our proposed method, A−113

GNN , with the baseline A − FF from114

[14] and conducted ablation studies to115

evaluate active action selection against116

uniform (U −GNN ) and random (R−117

GNN ) selection for model learning and118

inference. We designed 60 3D-printed119

articulated objects by varying weights,120

frictional surfaces, and joint friction121

(Fig.2a)). The networks were trained using negative log-likelihood (LNLL), mean squared error122

(LMSE), and observed noise log-likelihood (LobsNLL). LNLL and LMSE compared ground truth and123

predicted poses, parameters, and forces, while LobsNLL was calculated using predicted and real obser-124

vations. To account for different inertial and interaction parameters, we used normalized root mean125

squared error (NRMSE) to report estimation errors. Table 1.A shows that A − GNN with active126

action selection improved data efficiency by 25% over uniform selection and 9% over A − FF ,127

particularly for complex articulated objects and push interactions. Moreover, inference accuracy128

remains consistent with low SD and surpasses baseline methods (see Fig.2.B and Table 1.B).129

Although this study considers a single object in isolation, future work will address more complex130

clutter scenarios and include interactive perception for prismatic-rotational joint identification. We131

also assumed the objects were planar and each articulated link was at most connected by two links.132

In conclusion, the proposed novel framework enables the robotic system to estimate the properties133

of intricate articulated objects autonomously using simple and efficient (active) interactive actions:134

non-prehensile push and prehensile pull.135
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5 Appendix220

5.1 Graph Propogation Algorithm221

Figure 3: a) Illustration of the proposed graph representation of an example articulated object with
two links b) Novel graph propagation for updating the graphical model from time t − 1 to t for the
example object. The support edges e1, e2, the edge e6 contains contact force or tactile information

Algorithm 1 Graph Propagation Algorithm (GP )
Input: Graph Gt−1 = ({ni}, {ej , sj , rj})

Initialize Stacks (LIFO)
NTV ←− nR ▷ Nodes to visit
NV ←− ∅ ▷ Nodes visited
EN ←− ∅ ▷ End nodes
Propagate cause
while do NTV ̸= ∅

ni = Pop NTV
nrj = Gather receiver nodes of ni
nrj = nrj \NV ▷ Remove nodes already visited
if nrj ̸= ∅ then

Push ni → NV
Push nrj → NTV
for each node nrj do

Compute causal edges, e∗j = fe(ni,nrj , esj )
▷ esj is static edge feature (friction values)

Compute support edges, e∗k = fe(nS ,nrj , esk)
Compute node features, n∗

i = fn(ni, e
∗
j + e∗k)

end for
else

Push ni → EN
end if

end while
Propagate effect
while do NV ̸= ∅

ni = Pop NV
n∗
sj = Gather sender nodes of ni

n∗
sj = n∗

sj \NV
Aggregate effect edges, e∗j = fe(n

∗
sj ,ni, esj )

Update node features, n∗
i = fn(ni,

∑
j/sj

e∗j )

end while
Output: Graph Gt = ({n∗

i }, {e∗j , sj , rj})
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