
Under review as a conference paper at ICLR 2024

PROVABLE BENEFIT OF ADAPTIVITY IN ADAM

Anonymous authors
Paper under double-blind review

ABSTRACT

The Adaptive Moment Estimation (Adam) algorithm is widely adopted in practical
applications due to its fast convergence. However, its theoretical analysis is still far
from satisfactory. Existing convergence analyses for Adam rely on the bounded
smoothness assumption, referred to as the L-smooth condition. Unfortunately, this
assumption does not hold for many deep learning tasks. Moreover, we believe
that this assumption obscures the true benefit of Adam, as the algorithm can adapt
its update magnitude according to local smoothness. This important feature of
Adam becomes irrelevant when assuming globally bounded smoothness. This
paper studies the convergence of randomly reshuffled Adam (RR Adam), which
is the major version of Adam adopted in deep learning. We present the first
convergence analysis of RR Adam without the bounded smoothness assumption.
We demonstrate that RR Adam can maintain its convergence properties when
smoothness is linearly bounded by the gradient norm, referred to as the (L0, L1)-
smooth condition. Further, under the same setting, we refine the existing lower
bound of SGD and show that SGD can be arbitrarily slower than Adam. To our
knowledge, this is the first time that Adam and SGD are rigorously compared in
the same setting where the advantage of Adam can be revealed. Our theoretical
results shed new light on the advantage of Adam over SGD.

1 INTRODUCTION

Machine learning tasks are often formulated as solving the following finite-sum problem.

min
w∈Rd

f(w) =

n−1∑
i=0

fi(w), (1)

where n denotes the number of samples or mini-batches, and w denotes the trainable parameters.
Recently, it is noted that adaptive gradient methods including Adaptive Moment estimation (Adam)
(Kingma and Ba, 2014) are widely used to train modern deep neural networks including GANs
(Brock et al., 2018), BERTs (Kenton and Toutanova, 2019), GPTs (Brown et al., 2020) and ViTs
(Dosovitskiy et al., 2020). It is often observed that Adam converges considerably faster than vanilla
Stochastic Gradient Descent (SGD) for the training of Transformers, as seen in Figure 1(a). Similar
phenomena are also reported in BERT training (Zhang et al., 2019b).

Despite its practical success, the theoretical analysis of Adam is less than satisfactory. Existing
analyses rely on bounded smoothness assumption, i.e., the Lipschitz coefficient of gradients (or the
spectrum norm of the Hessian) is globally upper bounded by constant L, referred to as L-smooth
condition. However, recent studies show that the L-smooth condition does not hold in practical deep
learning tasks such as LSTM (Zhang et al., 2019a) and Transformers (Crawshaw et al., 2022).

Moreover, such an assumption hides the benefit of Adam. Intuitively, Adam can overcome the issue
of unbounded smoothness using adaptive learning rate. First, Adam uses the reciprocal of the square
root of the exponential moving averages of past squared gradients as an effective learning rate (see
Algorithm 1 for the update rule). Thus, the effective learning rate would be adapted to the local
gradient norm. Second, there is a strong correlation between the Lipschitz coefficient and the gradient
norm of deep neural networks (Zhang et al., 2019a; Cohen et al., 2021; Crawshaw et al., 2022). As
a result, Adam can adapt the update magnitude to the local Lipschitz coefficient and is empirically
observed to converge fast (Figure 1(a) and (Zhang et al., 2019a)). Unfortunately, such benefit is
hidden because existing theories of Adam are built upon L-smooth condition.

1

Under review as a conference paper at ICLR 2024

To reveal the theoretical benefit of Adam, we analyze its convergence under a relaxed smoothness
condition called (L0, L1)-smooth condition (Zhang et al., 2019a):

∥∇2f(w)∥ ≤ L0 + L1∥∇f(w)∥. (2)

When L1 = 0, Eq. (2) degenerates into classical L-smooth condition. The (L0, L1)-smooth condition
allows the spectral norm of the Hessian (Lipschitz coefficient of gradients) to linearly grow with the
gradient norm of w, so it is a relaxed version of L-smooth condition. The (L0, L1)-smooth condition
is empirically observed to hold in LSTM (Zhang et al., 2019a; 2020) and Transformers (Figure 1(b)
and (Crawshaw et al., 2022)).

(a) Training loss (b) Gradient vs. smoothness

Figure 1: Experiments on the WMT 2014 dataset trained with the transformer. (a): The training loss
of SGD and Adam. (b): The gradient norm vs. the local smoothness on the training trajectory. The
blue line in (b) stands for log(local smoothness) = log(gradient norm)+1.4. It can be observed that
(e1.4, 0)-smooth condition holds in this task. Similar results can be seen in Zhang et al. (2019a).

Under the (L0, L1)-smooth condition, we successfully separate the convergence rate of Adam from
that of SGD. Our contributions are summarized as follows.

• We establish the first convergence result of Adam without “L-smoothness”. We prove that
Adam converges under the (L0, L1)-smooth condition.

• Our convergence result enjoys several good properties. First,there is no need for the bounded
gradient assumption (i.e. ∥∇f(w)∥ ≤ C). Eliminating this assumption is essential since the
(L0, L1)-smooth condition would otherwise degenerate to the L-smooth condition. Second,
our result does not rely on other assumptions such as a bounded adaptor or a large regularizer
for numerical stability. Lastly, the convergence holds for every possible trajectory, which is
not only technically demanding but also much stronger than “convergence in expectation”.

• We present an improved lower bound for (S)GD under the (L0, L1)-smooth condition. In
this lower bound, there is a factor related to the gradient norm of the initial point, which does
not exist in the upper bound of Adam. This indicates that (S)GD may converge arbitrarily
slow under the (L0, L1)-smooth condition, showing the advantage of Adam over (S)GD.
To our knowledge, this is the first time that Adam and SGD are rigorously compared in the
same setting where the advantage of Adam can be revealed. We believe these results shed
new light on understanding the benefit of Adam.

2 RELATED WORKS

Convergence analysis for Adam. Adam is firstly proposed in Kingma and Ba (2015) with a
convergence proof. However, the proof is pointed out to have flaws by Reddi et al. (2018) and Reddi
et al. (2018) further provide simple counterexamples with which Adam diverges. This discovery
caused the convergence analysis of Adam to stagnate for a while and motivated a series of works
developing variants of Adam without divergent issues (see discussion in Appendix ??). On the

2

Under review as a conference paper at ICLR 2024

other hand, vanilla Adam works well in practice and divergence is not empirically observed. This
phenomenon motivates researchers to rethink the counterexamples. The counterexamples states “for
every β1 <

√
β2, there exists a problem that Adam diverges”. That is to say, the divergence statement

requires picking (β1, β2) before fixing the problem, while in practice, the algorithmic parameters are
often picked according to the problem. Based on this observation, a recent work (Zhang et al., 2022)
proves that Adam can converge with (β1, β2) picked after the problem is given.

We categorize the existing results of Adam into two classes based on the sampling strategy: with-
replacement sampling (a.k.a., i.i.d. sampling, abbreviated as “WR”) and without-replacement
sampling (a.k.a., random reshuffling, abbreviated as “RR”). We believe both sampling strategies
are worth studying: WR is more favored among the theory community due to its simple form, whereas
RR is widely used among practitioners because it is easy to implement. Further, RR guarantees to
pass each data at least once and brings good performance (Bottou, 2009; 2012).

The first line of work analyzes WR Adam. For instance, Zaheer et al. (2018b) shows that WR
RMSProp (a simplified version of Adam with β1 = 0) converges to the neighborhood of the
stationary points. De et al. (2018) prove the convergence of WR RMSProp by assuming the signs
of the gradients to remain the same along the trajectory. However, this condition is not guaranteed
to hold in practice. Défossez et al. (2020) prove the convergence of WR Adam with β1 < β2.
However, their convergence bound is inversely proportional to ξ, which is the hyperparameter for
numerical stability. Consequently, their bound becomes vacuous as ξ approaches zero. This result
does not match practical observations because small values of ξ, like 10−8, often yield satisfactory
performance. Moreover, employing large values of ξ obscures the effect of

√
vk, and thus the

proof is largely reduced to the proof of SGD. Huang et al. (2021); Guo et al. (2021) provide simple
convergence proof for WR Adam with β1 close to 1. However, their results require the

√
vk to be

bounded in a certain interval [Cl, Cu]. This condition changes Adam into AdaBound (Luo et al.,
2019). In summary, all the above works require certain strong conditions such as bounded

√
vk

or large ξ. Further, they all require bounded gradient (∥∇f(x)∥ ≤ C) and bounded smoothness
(L-smooth) condition.

The second line of works focus on RR Adam. Shi et al. (2021) prove the trajectory-wise convergence
of RR RMSProp and Zhang et al. (2022) prove the in-expectation convergence of RR Adam. However,
these works both require L-smooth condition. Our analysis follows this line of works and provides
the first convergence result of RR Adam under relaxed smoothness condition.

Relaxed smoothness assumption. There are several attempts on relaxing L-smooth condition.
Zhang et al. (2019a) proposes (L0, L1)-smooth condition to theoretically explain the acceleration
effect of clipped SGD over SGD. Similar results are also extended to clipped SGD with momentum
(Zhang et al., 2020), distributionally-robust optimization (Jin et al., 2021) , differentially-private
SGD (Yang et al., 2022) and generalized SignSGD (Crawshaw et al., 2022). However, they did not
theoretically analyze Adam in this setting. Considering the great empirical impact of Adam, we
believe it is important to study Adam in its original form.

One concurrent work (Li et al., 2023) studies the convergence of WR Adam under (L0, L1)-smooth
condition by cleverly constructing certain stopping time. They also propose a variance-reduced
variant with better convergence rate. However, their bound on Adam has polynomial dependence
over 1/ξ (the hyperparameter for numerical stability). Similarly to (De et al., 2018), this result does
not match practice observations, since Adam performs well even when ξ is as small as 10−8. Further,
they do not compare the rate of Adam with SGD, probably because there is no directly-applicable
lower bound of SGD that can support the rigorous comparsion.

3 PRELIMINARIES

This section introduces notations, definitions, and assumptions that are used throughout this work.

Notations. We list the notations that are used in the formal definition of the randomly-shuffled Adam
and its convergence analysis.

• (Vector) We define a⊙ b as the Hadamard product (i.e., component-wise product) between
two vectors a and b with the same dimension. We also define ⟨a, b⟩ as the ℓ2 inner product
between a and b. We define 1d as an all-one vector with dimension d.

3

Under review as a conference paper at ICLR 2024

• (Array) We define [m1,m2] ≜ {m1, · · · ,m2}, ∀m1,m2 ∈ N,m1 ≤ m2. Specifically, we
use [m] ≜ {1, · · · ,m}.

• (Asymptotic notation) We define A1(x) = Ox→a(A2(x)) if |A1(x)
A2(x)

| is bounded when

x → a. We define A2(x) = Ωx→a(A1(x)) when A1(x)= Ox→a(A2(x)). We use Õ
to denote O with logarithmic factors hidden, i.e., A1(x) = Õx→a(A2(x)) if A1(x) =
Ox→a(A2(x) log |A2(x)|). When the context is clear, we hide ”x → a” and only use
O,Ω, Õ.

Pseudocode. To facilitate the analysis, we provide the pseudocode of Adam in Algorithm 1.

Algorithm 1 Randomly reshuffled Adam (RR-Adam)

Input: Objective function f(w) :=
∑n−1

i=0 fi(w), learning rate series {ηk}Tk=1 and hyperparame-
ters (β1, β2) ∈ [0, 1)2. Initialize the parameter w1,0 ∈ Rd, the conditioner ν1,−1 ∈ Rd,≥0, and
the momentum m1,−1 ∈ Rd.
for k = 1 to T do

Randomly shuffle [0, n− 1] to get {τk,j}n−1
j=0

for i = 0 to n− 1 do
Calculate gk,i = ∇fτk,i

(wτk,i
)

Update νk,i = β2νk,i−1 + (1− β2)g
⊙2
k,i ,

Update mk,i = β1mk,i−1 + (1− β1)gk,i
Update wk,i+1 = wk,i − ηk

1√
νk,i+ξ ⊙mk,i

end for
Update νk+1,−1 = νk,n−1, mk+1,−1 = mk,n−1, wk+1,0 = wk,n

end for

mk,i and νk,i are weighted averages with hyperparamter β1 ∈ [0, 1) and β2 ∈ [0, 1), respectively.
ξ is adopted for numerical stability and it is often chosen to be 10−8 in practice. In our theory, we
allow ξ to be an arbitrary non-negative constant including 0.

Algorithm 1 follows a without-replacement sampling strategy (also known as shuffling), which is
the default strategy used in CV, NLP, GANs, etc. However, it is not necessarily easy to analyze
shuffling strategy, because the stochastic gradients sampled by random-shuffling lack statistical
unbiasedness, i.e. E [∇fk,i(xk,i)|xk,i] ̸= ∇f(xk,i). This bias requires a much different analysis
from its with-replacement counterpart. Even for SGD, the analysis for shuffling is often known to be
“more challenging” (Tran et al., 2021; Mishchenko et al., 2020). However, we choose to study this
version as it is closer to the practice.

We make two mild assumptions on the objective function (Eq. (1)).
Assumption 3.1 ((L0, L1)-smooth condition). fi(w) satisfies (L0, L1)-smooth condition, i.e., there
exist positive constants (L0, L1), such that, ∀w1,w2 ∈ Rd satisfying ∥w1 −w2∥ ≤ 1

L1
,

∥∇fi(w1)−∇fi(w2)∥ ≤ (L0 + L1∥∇fi(w1)∥)∥w1 −w2∥. (3)

Eq. (3) is firstly introduced by Zhang et al. (2020). When f(w) is twice differentiable, Eq. (3) is
equivalent to Eq. (2) (Zhang et al., 2020). We will use the version of Eq. (3) since it does not require
f(w) to be twice differentiable.

Assumption 3.2 (Affine Noise Variance). ∀w ∈ Rd, the gradients of {fi(w)}n−1
i=0 has the following

connection with the gradient of f(w):
n−1∑
i=0

∥∇fi(w)∥2 ≤ D1∥∇f(w)∥2 +D0.

Assumption 3.2 generalizes the “bounded variance” assumption (which requires D1 = 1/n) (Ghadimi
et al., 2016; Zaheer et al., 2018a; Huang et al., 2021) and the “strongly growth condition” (which
requires D0 = 0) (Schmidt and Roux, 2013; Vaswani et al., 2019). Assumption 3.2 allows flexible
choices of D0 & D1 and thus it is among the weakest assumption of this kind.

4

Under review as a conference paper at ICLR 2024

4 ADAM CONVERGES UNDER THE (L0, L1)-SMOOTH CONDITION

Theorem 4.1. Consider RR-Adam defined as Algorithm 1 with diminishing learning rate ηk = η1√
k

.
Let Assumptions 3.1 and 3.2 hold. Suppose the hyperparamters satisfy: 0 ≤ β2

1 < β2 < 1 and β2 is
larger than a threshold γ(D1). Then, we have

min
k∈[1,T]

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2√

D0

}
≤ Õ

(
f(w1,0)−minw f(w)√

T

)
+O((1− β2)

2
√
D0). (4)

For simplicity, we defer the concrete form of γ to Appendix D.2. We provide some remarks on the
results as follows.

On the presentation of Theorem 4.1. As we state in Section 2, our analysis follows the line of
(Shi et al., 2021; Zhang et al., 2022), and we present our theorem in a similar way: we use T as
the number of epochs instead of the number of iterations (in which case the total iteration would be
nT). We use asymptotic notations since the concrete coefficiencies are rather complex (we defer a
detailed statement of the theorem to Appendix D.2). Here we highlight that the hidden coefficiency
of f(w1,0)−minw f(w)√

T
is Θ(1

(1−β2)2
). Therefore, if β2 = 1, the right-hand-side of Eq. (4) vanishes,

and thus Theorem 4.1 can not be applied to SGDM to derive the convergence rate.

On the range of hyperparameters. Theorem 4.1 indicates that Adam can work when β2 is close
enough to 1. This matches the practical choice of β2 (e.g., 0.999 in default setting, 0.95 in the GPT-3
training (Brown et al., 2020)). Note that our result does not contradict the counterexamples of Adam’s
non-convergence (Reddi et al., 2018; Zhang et al., 2022), as these divergence results require β2 to be
small and thus not close to 1. Rather, these counterexamples suggest that large β2 is necessary for
convergence. As for β1, Theorem 4.1 needs β2

1 < β2. When β2 is large, Theorem 4.1 allows a wide
range of candidates of β1 (e.g., 0.9 in default setting and 0.5 in GAN (Radford et al., 2015)).

On the advantages besides (L0, L1)-smooth condition. We emphasize some more advan-
tages of Theorem 4.1. First, Theorem 4.1 does not require that the gradient norm is bounded.
This is vital since otherwise (L0, L1)-smooth condition will degenerate to L-smooth condi-
tion. Further, we do not assume the adaptive learning rate ηk/

√
νk to be upper bounded.

We do not assume ξ to be large, which agrees with the deep learning libraries because
small ξ such as 10−8 usually works well. Our theorem allows any non-negative ξ includ-
ing 0. Finally, Theorem 4.1 holds for every possible trajectory, which is much stronger
than the common results of “convergence in expectation” and is technically challenging.

Figure 2: Reconduct of exper-
imental results from (Zhang
et al., 2022).

On the neighborhood of stationary points. When D0 ̸= 0,
Theorem 4.1 only ensures that Adam converges to a neighbor-
hood of stationary points {w : min {∥∇f(w))∥√

D1
, ∥∇f(w)∥2

√
D0

} ≤
O((1− β2)

√
D0)}. Since SGD converges to the stationary points

with diminishing learning rate, one may wonder if Theorem 4.1 can
be improved to obtain the same conclusion as SGD. Unfortunately,
there is a counterexample in the existing literature (function (9) in
Zhang et al. (2022)) showing that Adam does not converge to sta-
tionary points even if all the conditions in Theorem 4.1 are satisfied.
Specifically, Zhang et al. (2022) consider the following function:

f(x) =

9∑
j=0

fj(x) =
1

10
x2−1, where fj(x) =

{
(x− 1)2 if j = 0

−0.1
(
x− 10

9

)2
if 1 ≤ j ≤ 9

.

One can easily verify such an example satisfies Assumptions 3.2 and 3.1 with D0 > 0. As shown in
Figure 2, when running Adam (with β1 = 0.9, ηk = 0.1/

√
k, a = 3, x0 = −2), it does not converge

to exact stationary points. Instead, it converges to a neighborhood of stationary points with size
inversely proportional to β2. Therefore, the non-vanishing term in Theorem 4.1 is not due to the
limitation of the proof. Rather, it is an intrinsic property of Adam.

Why cannot Adam converge to exact stationary points when D0 > 0? Intuitively, this is because even
with diminishing ηk, the effective learning rate ηk

ξ1d+
√
νk,i

may not diminish due to the potentially

5

Under review as a conference paper at ICLR 2024

decreasing √
νk,i. The good news is that O((1− β2)

√
D0) approaches 0 as β2 gets close to 1. This

means that the neighborhood shrinks as β2 → 1 (this is also observed in Figure 2). As discussed
above, the practical use of β2 is close to 1, and thus O((1− β2)

√
D0) is tolerable.

5 PROOF SKETCH OF THEOREM 4.1

In this section, we briefly explain our proof idea for Theorem 4.1, which can be divided into two
stages. In Stage I, we will prove Theorem 4.1 for Adam with β1 = 0 to show the challenge brought
by (L0, L1)-smooth condition and how we tackle it. In Stage II, we then show the additional difficulty
when adding the momentum and our corresponding intuition to solve it.

Stage I: Convergence of Adam with β1 = 0. By the descent lemma,

f(wk+1,0)− f(wk,0) ≤⟨wk+1,0 −wk,0,∇f(wk,0)⟩︸ ︷︷ ︸
First Order

+
Lloc

2
∥wk+1,0 −wk,0∥2,︸ ︷︷ ︸
Second Order

(5)

where Lloc is the local smoothness. We bound the first-order and the second-order term respectively.
The upper bound on second-order term is relatively simple. Due to the limited space, we only show
the idea of bounding first-order term here.

The ever-changing adaptive learning rate poses a challenge on deriving the bound. It is even
noted that with small β2, the first order term can be positive (Reddi et al., 2018). However, we
notice that if νk,i is stationary, i.e., RMSProp degenerates to SGD with preconditioning, the first
order term equals to −ηk⟨

∑
i

1
ξ1d+

√
νk,0

⊙ ∇fτk,i
(wk,i),∇f(wk,0)⟩ ≈ −ηk⟨

∑
i

1
ξ1d+

√
νk,0

⊙
∇fτk,i

(wk,0),∇f(wk,0)⟩, which is indeed negative. While that ”νk,i is stationary” is too good to
be true, we prove that νk,i changes little when β2 is close to 1, assuming that the gradient is large.
Below we denote νl,k,i as the l-th component of νk,i.
Lemma 5.1 (Informal). For any l ∈ [d] and i ∈ [0, n − 1], if maxp∈[0,n−1] |∂lfp(wk,0)| =

Ω(
∑k−1

r=1 β
(k−1−r)

2
2 ηr ∥∇f(wr,0)∥+ ηk), then |νl,k,i − νl,k,0| = O((1− β2)νl,k,0).

The idea of Lemma 5.1 is simple: since νk,i = β2νk,i−1 + (1 − β2)∇fτk,i
(wτk,i

)⊙2, the change
of νk,i w.r.t. i should be small when β2 is large. However, we need to check that the relative size
of ∇fτk,i

(wτk,i
)⊙2 w.r.t. νk,i−1 is uniformly bounded across varying β2, otherwise the term (1−

β2)∇fτk,i
(wτk,i

)⊙2 may not go to zero when β2 → 1. We resolve this challenge by expanding νk,i

in terms of squared gradients and bounding the gap between each of the terms and ∇fτk,i
(wτk,i

)⊙2

by echoing (L0, L1)-smooth condition. We defer a detailed proof to Corollary D.9 for details.

As a conclusion, if we denote those dimensions with large gradients (i.e., satisfying the requirement
of Lemma 5.1) as Lk

large and the rest as Lk
small, Lemma 5.1 indicates that the Lk

large part (i.e.,∑
l∈Lk

large
(wl,k+1,0 −wl,k,0)∂lf(wk,0)) in the first order term can be bounded as

− ηk
∑

l∈Lk
large

∂lf(wk,0)√
νl,k,i + ξ

∑
i

∂lfτk,i(wk,i)

≈− ηk
∑

l∈Lk
large

(
∂lf(wk,0)

2

√
νl,k,0 + ξ

+O
(
(1− β2)

∂l|f(wk,0)|
∑

i |∂lfτk,i(wk,i)|
√
νl,k,0 + ξ

))

=− Ω

(
ηk min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2√

D0

})
+O(ηk(1− β2)

√
D0).

The last equation uses the affine noise assumption (Assumption 3.2), and we defer a detailed proof
to Appendix D.4. A remaining problem is how to deal with those components in Lk

small. We

treat them as error terms. Concretely, l ∈ Lk
small indicates that ∂lf(wk,0) = O(

∑k−1
r=1 β

(k−1−r)
2

2

ηr∥∇f(wr,0)∥+ ηk). Applying it directly into
∑

l∈Lk
small

(wl,k+1,0 −wl,k,0)∂lf(wk,0), we have

−ηk
∑

l∈Lk
large

∂lf(wk,0)√
νl,k,i + ξ

∑
i

∂lfτk,i(wk,i) = O

(
ηk

(
k−1∑
r=1

β
(k−1−r)

2
2 ηr∥∇f(wr,0)∥+ ηk

))
,

6

Under review as a conference paper at ICLR 2024

where the equation is because
∂lfτk,i

(wk,i)
√
νl,k,i+ξ is bounded (proved by Lemma D.3).

In order to upper bound the first order term, we then need to prove that

−Ω(ηk min{∥∇f(wk,0)∥√
D1

,
∥∇f(wk,0)∥2

√
D0

}) dominates O(ηk(
∑k−1

r=1 β
(k−1−r)

2
2 ηr∥∇f(wr,0)∥ + ηk)).

This is not necessarily true, as the historical gradient norms in the latter term can be large.
Remark 5.2. We recognize this as the challenge brought by (L0, L1)-smooth condition, since the
latter term degenerates to O(η2k) with L-smooth condition, which is minor (

∑T
k=1 η

2
k is only in order

log T).

We address this challenge by noting that what we need to bound is the sum of the first or-
der term. Fortunately, although we cannot upper bound the first order term in one single
epoch, we can bound the sum of it across epochs. By a sum order change, the sum of

O(ηk(
∑k−1

r=1 β
(k−1−r)

2
2 ηr∥∇f(wr,0)∥ + ηk)) over k equals to O(

∑T
k=1 η2k∥∇f(wk,0)∥ + lnT).

This is smaller by the sum of −Ω(ηk min{∥∇f(wk,0)∥√
D1

,
∥∇f(wk,0)∥2

√
D0

}) by order of ηk except a lnT

term due to the mean value inequality η2k∥∇f(wk,0)∥ ≤ O(η2k) + O(η2k

√
D1

D0
∥∇f(wk,0)∥2). We

then conclude the sum of the first order term is −Ω(ηk min{∥∇f(wk,0)∥√
D1

,
∥∇f(wk,0)∥2

√
D0

}) +O(lnT).

Stage II: adding the momentum. The second order term of Adam can be bounded similarly.
However, the analysis of the first order term becomes more challenging even though we still have
νk,i ≈ νk,0. Specifically, even with constant νk,i = νk,0, −ηk⟨

∑
i

mk,i√
νk,i+ξ ,−∇f(wk,0)⟩ > 0 is

not necessarily correct, as the momentum mk,i contains a heavy historical signal, and may push the
update away from the negative gradient direction.

We resolve this challenge by observing that the alignment of wk+1,0 − wk,0 and −∇f(wk,0) is
required due to that our analysis is based on the potential function f(wk,0). However, while this
potential function is suitable for the analysis of RMSProp, it is no longer appropriate for Adam based
on the above discussion. We need to construct another potential function. Our construction of the
potential function is based on the following observation: we revisit the update rule in Algorithm 1
and rewrite it as mk,i−β1mk,i−1

1−β1
= ∇fτk,i

(wk,i).

Notice that the right-hand-side of the above equation contains no historical gradients but only the
gradient of the current step! By dividing (

√
νk,i + ξ)/ηk above,

wk,i+1 − wk,i − β1(wk,i − wk,i−1)

1 − β1

≈ −
ηk

√
νk,0 + ξ1d

⊙
mk,i − β1mk,i−1

1 − β1

= −
ηk

√
νk,0 + ξ1d

⊙ ∇fτk,i
(wk,i).

After simple rearrangement, one can see that the sequence {uk,i ≜
wk,i−β1wk,i−1

1−β1
} are (approxi-

mately) doing SGD within one epoch (with coordinate-wise but constant learning rate νk,i)! Further
notice that the distance between uk,i = wk,i + β1

wk,i−wk,i−1

1−β1
and wk,i is in order of one step’s

update, and thus uk,i ≈ wk,i . Therefore, we choose our potential function as f(uk,i). The Taylor’s
expansion of f at uk,0 then provides a new descent lemma, i.e.,

f(uk+1,0)− f(uk,0) ≤⟨uk+1,0 − uk,0,∇f(uk,0)⟩︸ ︷︷ ︸
First Order

+

L0 + L1∥∇f(wk,0)∥
2

∥wk+1,0 −wk,0∥2,︸ ︷︷ ︸
Second Order

(6)

By noticing wk,i ≈ uk,i ≈ uk,0, the first order term can be further approximated by −⟨ ηk√
νk,0+ξ1d

⊙
∇f(wk,0),∇f(wk,0)⟩ which is negative. The rest of the proof is the same as that of Stage I.
Remark 5.3. We notice that similar potential functions have already been applied in the analysis of
other momentum-based optimizers, e.g., momentum (S)GD in (Ghadimi et al., 2015) and (Liu et al.,
2020b) and Adam-type optimizers (except Adam) in (Chen et al., 2018b). However, extending the
proof to Adam is highly-nontrivial. The key difficulty lies in showing that the first-order expansion
of f(uk,0) is positive, which further requires that the adaptive learning rate does not change much
within one epoch. This is hard for Adam as the adaptive learning rate of Adam can be non-monotonic.
The lack of L-smooth condition makes the proof even challenging due to the unbounded error brought
by gradient norms.

7

Under review as a conference paper at ICLR 2024

6 COMPARISON BETWEEN ADAM AND SGD

Now we compare the convergence rate of Adam with SGD. To do so, we need a lower bound of SGD
in the same setting as Theorem 4.1. There are several existing lower bounds of SGD under (L0, L1)
smoothness condition (e.g., (Zhang et al., 2019a; Crawshaw et al., 2022)). However, we find these
lower bounds cannot be directly applicable for comparison with Adam. This is because:

• 1) The lower bounds in (Zhang et al., 2019a; Crawshaw et al., 2022) can only be applied
to SGD with constant learning rate. However, to compare with diminishing-learning-rate
Adam in Theorem 4.1, we need a lower bound of SGD with diminishing learning rate.

• 2) In the lower bound of (Zhang et al., 2019a; Crawshaw et al., 2022), they pick the learning
rate before the construction of the objective function and initialization point (we restate their
lower bound in Appendix B.1 for completeness). In other words, it is possible that if we fix
the objective function and tune the learning rate (which is a common practice in the training
of deep neural networks), SGD can converge very fast. For rigorous comparison with Adam,
we need a lower bound with reversed ordering. That is, we need the following statement:
“consider a fixed objective function and initialization point, then no matter how we pick the
learning rate, SGD suffers from a certain rate. ”

Unfortunately, there is no existing lower bound that satisfies the above two properties. In the following
theorem, we provide a refined lower bound of SGD in the setup that we desired.

Theorem 6.1. For any L0, L1, T > 0, there exists an objective function f obeying Assumption
3.1, and an initialized parameter w0 satisfying M = sup{∥∇f(w)∥ : f(w) ≤ f(w0)}, such
that ∀η1 > 0, the iterations of SGD {wt}∞t=0 satsifies mint∈T ∥∇f(wt)∥2 = Ω(M(f(w0) −
minw∈Rd f(w))/

√
T).

The proof can be in Appendix C. The proof idea is mainly motivated by Zhang et al. (2019b). We
highlight some differences when we try to reach the two properties mentioned previously.

• To change constant learning rate into diminishing learning rate, we show that: when the
initial learning rate η0 is larger than a certain threshold, the decay rate of the learning rate
cannot offset the curvature explosion along the iteration, causing divergence; on the other
hand, when initial η0 is small, it would lead to slow convergence. This is a new finding in
(L0, L1) setting. We prove this result by mathematical induction. This part of the discussion
is not required in the lower bound of Zhang et al. (2019b) with constant learning rate.

• To reverse the ordering of “picking learning rate and functions & initialization”, we simply
augment the worst-case example in Zhang et al. (2019b) into 2 dimensional space. It turns
out this simple trick is effective in the proof.

Comparison between Adam and SGD. Finally, we discuss the implication the lower bound of
SGD (Theorem 6.1) and the upper bound of Adam (Theorem 4.1). In the lower bound of SGD, there
is an extra constant M which does not appear in the upper bound of Adam. This allows us to compare
the convergence rates of these two algorithms.

We summarize our findings as follows. We emphasize that Theorem 4.1 and Theorem 6.1 share
exactly the same setting: both consider function class under the same assumptions; both SGD and
Adam use diminishing learning rate. Therefore, the following comparison is rigorous.

Finding 1: When D0 = 0. There exists a set of w with infinite Lebesgue measure, such that, when
starting at any w in this set, Adam converges (to stationary points) faster than SGD.

Finding 2: When D0 > 0. There exists a set of w with infinite Lebesgue measure, such that, when
starting at any w in this set, Adam converges (to the neighborhood of stationary points) faster than
SGD.

Note that the above statement “algorithm 1 converges faster than algorithm 2” does not mean that
algorithm 1 always converges faster than algorithm 2. For sure, rarely can anyone make such a strong
statement. The above statement actually means that “the worst-case complexity of algorithm 1 is

8

Under review as a conference paper at ICLR 2024

faster than that of algorithm 2, and both complexity bounds can be simultaneously achieved when
working on the same function and starting at the same initialization” 1

Proof. We now prove Finding 1. First, we state an important fact from the proof of Theorem 6.1.

Fact 1: For the counter-example we constructed in Theorem 6.1. M = sup{∥∇f(w)∥ : f(w) ≤
f(w0)} goes to infinity as ∥w∥ goes to infinity. Further, for any C > 0, the set {w : M > C} is of
infinite Lebesgue measure.

Based on Fact 1, for the worst-case example in Theorem 6.1, there must exist a region in Rd where M
is larger than all the constant terms in the upper bound of Adam in Theorem 4.1. Further, Such region
is of infinite Lebesgue measure. When running Adam and SGD simultaneously on this worst-case
example starting from any w in this region, the constants in the upper bound of Adam is smaller than
the constants in the lower bound of SGD. Since the upper and lower bounds share the same rate, we
conclude that Adam converges faster than SGD.

The proof of Finding 2 is the same as above. We omit it for brevity.

Note that when D0 > 0, Adam is still guaranteed to converge faster, but only to the neighborhood in
lieu of the exact stationary points. We emphasize that this “neighborhood” cannot be eliminated since
there is a counter-example showing that Adam cannot reach 0 gradient when D0 > 0 (see Figure
2). So this is an intrinsic property of Adam, rather than the limitation of the theory. Nevertheless, we
believe the effect of “not converging to exact stationary points” is minor in practice. This is because:
1) As shown in Theorem 4.1 and Figure 2, the size of the “ambiguity zone” is inversely proportional
to β2. Since β2 is often chosen to be close to 1, the ambiguity zone shrinks and becomes negligible.
2) Machine learning tasks do not pursue high-precision solutions (as much as other fields like PDE).
Practitioners usually aim to efficiently find approximate solutions, rather than exact solutions that
over-fit the training data.

To our knowledge, the discussion above is the first time that Adam and SGD are rigorously compared
in the same setting where the advantage of Adam can be revealed. We believe these results shed new
light on understanding the benefit of Adam.

Finally, we briefly explain why the upper bound of Adam is independent of M . Intuitively, this is
because: (1) it uses different learning rates for different components of w. (2) For each component
of w, the effective learning rate adjusts according to the gradient norm (thus according to the local
smoothness). Even though the initial effective learning rate is small, it gets larger when moving in a
flat landscape. Combining together, the initial learning rate of Adam can be independent of M , and
so is its convergence rate.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we take the first step to theoretically understanding the adaptivity in Adam. We provide
the first convergence result under (L0, L1)-smooth condition, which is realistic and close to practical
settings. Then, we refine the lower bound for SGD in the same setting. By comparing the complexity
bound of Adam and SGD, we find out that Adam can converge arbitrarily faster than SGD when the
initial gradient norm is large.

Future directions. One interesting future direction is to find out the benefit of using momentum in
Adam. Theorem 4.1 provides the same convergence rate for β1 = 0 (RMSProp) and β1 > 0 (Adam).
In other words, we are still not able to separate the iteration complexity of Adam and RMSProp, and
thus we can not explain the benefit of momentum in Adam. We believe this is a challenging future
work since the effect of momentum is not clear even for SGD with momentum, let alone for Adam.
A potential approach is to first theoretically prove the benefit of momentum in SGD with momentum,
and then try to adapt it in the analysis of Adam. Further, it is interesting to investigate whether Adam
can handle more sharp smooth conditions, e.g., smoothness is bounded by a high-order polynomial
of the gradient norm.

1Here, we follow the definition of ”algorithm 1 is faster than algorithm 2” in (Sun and Ye, 2021), which is a
widely accepted definition in the optimization field.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth. Lower bounds for
non-convex stochastic optimization. Mathematical Programming, 199(1-2):165–214, 2023.

L. Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In Proceedings
of the symposium on learning and data science, Paris, volume 8, pages 2624–2633, 2009.

L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436.
Springer, 2012.

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2018.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points of
non-convex, smooth high-dimensional functions.

C. Chen, L. Shen, F. Zou, and W. Liu. Towards practical Adam: Non-convexity, convergence theory,
and mini-batch acceleration. arXiv preprint arXiv:2101.05471, 2021.

J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. Closing the generalization gap of adaptive
gradient methods in training deep neural networks. arXiv preprint arXiv:1806.06763, 2018a.

X. Chen, S. Liu, R. Sun, and M. Hong. On the convergence of a class of Adam-type algorithms for
non-convex optimization. arXiv preprint arXiv:1808.02941, 2018b.

J. M. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural networks
typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

M. Crawshaw, M. Liu, F. Orabona, W. Zhang, and Z. Zhuang. Robustness to unbounded smoothness
of generalized signSGD. arXiv preprint arXiv:2208.11195, 2022.

S. De, A. Mukherjee, and E. Ullah. Convergence guarantees for rmsprop and Adam in non-convex op-
timization and an empirical comparison to Nesterov acceleration. arXiv preprint arXiv:1807.06766,
2018.

A. Défossez, L. Bottou, F. Bach, and N. Usunier. A simple convergence proof of Adam and AdaGrad.
arXiv preprint arXiv:2003.02395, 2020.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2020.

T. Dozat. Incorporating Nesterov momentum into Adam. 2016.

S. Gadat and I. Gavra. Asymptotic study of stochastic adaptive algorithm in non-convex landscape.
arXiv preprint arXiv:2012.05640, 2020.

E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-ball method
for convex optimization. In 2015 European control conference (ECC), pages 310–315. IEEE,
2015.

S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for nonconvex
stochastic composite optimization. Mathematical Programming, 155(1):267–305, 2016.

Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. A novel convergence analysis for algorithms of the Adam
family. arXiv preprint arXiv:2112.03459, 2021.

F. Huang, J. Li, and H. Huang. Super-Adam: faster and universal framework of adaptive gradients.
Advances in Neural Information Processing Systems, 34:9074–9085, 2021.

10

Under review as a conference paper at ICLR 2024

J. Jin, B. Zhang, H. Wang, and L. Wang. Non-convex distributionally robust optimization: Non-
asymptotic analysis. Advances in Neural Information Processing Systems, 34:2771–2782, 2021.

J. D. M.-W. C. Kenton and L. K. Toutanova. Bert: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of NAACL-HLT, pages 4171–4186, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

H. Li, A. Jadbabaie, and A. Rakhlin. Convergence of adam under relaxed assumptions. arXiv preprint
arXiv:2304.13972, 2023.

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the adaptive
learning rate and beyond. In International Conference on Learning Representations, 2020a. URL
https://openreview.net/forum?id=rkgz2aEKDr.

Y. Liu, Y. Gao, and W. Yin. An improved analysis of stochastic gradient descent with momentum.
Advances in Neural Information Processing Systems, 33, 2020b.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

L. Luo, Y. Xiong, Y. Liu, and X. Sun. Adaptive gradient methods with dynamic bound of learning
rate. arXiv preprint arXiv:1902.09843, 2019.

K. Mishchenko, A. Khaled Ragab Bayoumi, and P. Richtárik. Random reshuffling: Simple analysis
with vast improvements. Advances in Neural Information Processing Systems, 33, 2020.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In International
Conference on Learning Representations, 2018.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. arXiv preprint
arXiv:1904.09237, 2019.

M. Schmidt and N. L. Roux. Fast convergence of stochastic gradient descent under a strong growth
condition. arXiv preprint arXiv:1308.6370, 2013.

N. Shi, D. Li, M. Hong, and R. Sun. Rmsprop converges with proper hyper-parameter. In International
Conference on Learning Representations, 2021.

S. Sra. Advanced optimization: Lecture 18 proximal methods, monotone operators.
https://www.cs.cmu.edu/ suvrit/teach/lect18.pdf, 2014.

R. Sun and Y. Ye. Worst-case complexity of cyclic coordinate descent: O (nˆ 2) o (n 2) gap with
randomized version. Mathematical Programming, 185:487–520, 2021.

T. H. Tran, L. M. Nguyen, and Q. Tran-Dinh. Smg: A shuffling gradient-based method with
momentum. In International Conference on Machine Learning, pages 10379–10389. PMLR, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in neural information processing systems, pages 5998–6008,
2017.

S. Vaswani, F. Bach, and M. Schmidt. Fast and faster convergence of SGD for over-parameterized
models and an accelerated perceptron. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pages 1195–1204. PMLR, 2019.

11

https://openreview.net/forum?id=rkgz2aEKDr

Under review as a conference paper at ICLR 2024

B. Wang, Q. Meng, W. Chen, and T.-Y. Liu. The implicit bias for adaptive optimization algorithms
on homogeneous neural networks. In International Conference on Machine Learning, pages
10849–10858. PMLR, 2021.

Z. Xie, X. Wang, H. Zhang, I. Sato, and M. Sugiyama. Adaptive inertia: Disentangling the effects of
adaptive learning rate and momentum. In International Conference on Machine Learning, pages
24430–24459. PMLR, 2022.

X. Yang, H. Zhang, W. Chen, and T.-Y. Liu. Normalized/clipped SGD with perturbation for
differentially private non-convex optimization. arXiv e-prints, pages arXiv–2206, 2022.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex opti-
mization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018a. URL https://proceedings.neurips.cc/paper/2018/file/
90365351ccc7437a1309dc64e4db32a3-Paper.pdf.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimization.
Advances in neural information processing systems, 31, 2018b.

B. Zhang, J. Jin, C. Fang, and L. Wang. Improved analysis of clipping algorithms for non-convex
optimization. Advances in Neural Information Processing Systems, 33:15511–15521, 2020.

J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training: A theoretical
justification for adaptivity. In International Conference on Learning Representations, 2019a.

J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. J. Reddi, S. Kumar, and S. Sra. Why Adam beats
SGD for attention models. 2019b.

Y. Zhang, C. Chen, N. Shi, R. Sun, and Z.-Q. Luo. Adam can converge without any modification on
update rules. Advances in Neural Information Processing Systems, 2022.

D. Zhou, J. Chen, Y. Cao, Y. Tang, Z. Yang, and Q. Gu. On the convergence of adaptive gradient
methods for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018a.

P. Zhou, J. Feng, C. Ma, C. Xiong, S. Hoi, and E. Weinan. Towards theoretically understanding why
SGD generalizes better than Adam in deep learning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, pages 21285–21296, 2020.

Z. Zhou, Q. Zhang, G. Lu, H. Wang, W. Zhang, and Y. Yu. Adashift: Decorrelation and convergence
of adaptive learning rate methods. arXiv preprint arXiv:1810.00143, 2018b.

D. Zou, Y. Cao, Y. Li, and Q. Gu. Understanding the generalization of Adam in learning neural
networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu. A sufficient condition for convergences of Adam
and rmsprop. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11127–11135, 2019.

12

https://proceedings.neurips.cc/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf

Under review as a conference paper at ICLR 2024

A ADDITIONAL RELATED WORKS

In this section, we provide discussions on more related works.

Variants of Adam. Ever since the counter-example of the convergence of Adam raised by Reddi
et al. (2018), many new variants of Adam have been designed. For instance, Zou et al. (2019);
Gadat and Gavra (2020); Chen et al. (2018b; 2021) replaced the constant hyperparameters by iterate-
dependent ones e.g. β1t or β2t. AMSGrad (Reddi et al., 2019) and AdaFom (Chen et al., 2018b)
enforced {vt} to be non-decreasing. Similarly, AdaBound (Luo et al., 2019) imposed constraints
vt ∈ [Cl, Cu] to prevent the learning rate from vanishing or exploding. Similarly, Zhou et al. (2018b)
adopted a new estimate of vt to correct the bias. In addition, there are attempts to combine Adam
with Nesterov momentum (Dozat, 2016) as well as warm-up techniques (Liu et al., 2020a). There are
also some works providing theoretical analysis on the variants of Adam. For instance, Zhou et al.
(2018a) studied the convergence of AdaGrad and AMSGrad. Gadat and Gavra (2020) studied the
asymptotic behavior of a subclass of adaptive gradient methods from landscape point of view. Their
analysis applies to RMSprop-variants with iterate-dependent β2t. In summary, all these works study
variants of Adam, which is different from our work since we focus on vanilla Adam.

Generalization ability of Adaptive gradient methods. The generalization ability of Adam is a
hot debate topic. For instance, Wang et al. (2021) study the implicit bias of adaptive optimization
algorithms on homogeneous neural networks. They proved that the convergent direction of Adam and
RMSProp is the same as SGD. Zhou et al. (2020); Xie et al. (2022); Zou et al. (2021) argue that Adam
preferred sharp local-min while GD prefers the wide ones. As such, they argue that Adam generalizes
worse than SGD. Zou et al. (2021) prove that Adam generalizes worse than SGD over a specific
model. There are also several attempts to improve the generalization ability of Adam. For instance,
Padam (Chen et al., 2018a) introduces a partial adaptive parameter to improve the generalization
performance. AdamW (Loshchilov and Hutter, 2017) improves regularization in Adam by decoupling
the weight decay from the gradient-based update.

B ADDITIONAL DISCUSSIONS

B.1 RESTATEMENT OF EXISTING LOWER BOUND OF SGD

We restate the lower bound of GD in Crawshaw et al. (2022) as follows:

Proposition B.1 (Theorem 2, Crawshaw et al. (2022)). For any L0, L1, ε > 0,M ≥ max(L0

L1
, ε),

with a fixed constant learning rate η for GD, there exists an objective function f obeying Assumption
3.1, and an initialized parameter w0 satisfying M = sup{∥∇f(w)∥ : f(w) ≤ f(w0)}, such that
denoting {wt}∞t=0 be the iterations of running GD over f with initialization w0 and learning rate η,
if t ≤ Θ̃(

M(f(w0)−min
w∈Rd f(w))

ε2), then ∥∇f(wt)∥ > ε.

The above proposition is used to claim that the convergence rate of GD has a dependence over an
additional constant M , which can be arbitrarily large and make the convergence rate of GD arbitrarily
slow. However, we argue that the above proposition is not a standard lower bound and does not
suffice to support such a claim. This is because: Proposition B.1 picks the learning rate before the
construction of the objective function and initialization point. In other words, the construction is
based on the knowledge of the learning rate, and it is possible that if we fix the objective function and
tune the learning rate (which is a common practice in the training of deep neural networks), GD can
converge very fast and be independent of the additional constant M . It is more desired that in the
lower bound, the objective function and initialization point is constructed before picking the learning
rate, which is also a standard setting in other lower bounds Arjevani et al. (2023); Carmon et al.. In
the following theorem, we provide a lower bound of the convergence rate of SGD in the more desired
setup.

B.2 COMPARISONS OF OPTIMIZERS OVER THE FINE-TUNING TASK

For the case where the gradient along the trajectory is small, the (L0, L1)-smooth condition can
be easily described by the L-smooth condition with small gap, and thus SGD works well. This

13

Under review as a conference paper at ICLR 2024

may explain the phenomenon that SGD is also adopted in some finetuning tasks, as pretraining can
be viewed as selecting a good initialization and we can expect that the gradient is small along the
trajectory. It is an interesting future work to formalize the above discussion.

B.3 ADVANTAGE OF ADAM OVER THE GD/SGD WITH GRADIENT CLIPPING

Zhang et al. (2019a) shows that GD/SGD with gradient clipping converges under (L0, L1) smooth
condition. A natural question is that what is the benefit of Adam over GD/SGD with gradient clipping.
Honestly, we are not able to give strong theoretical evidence to this question. However, comparing
our current result for Adam to the result for GD/SGD with clipping, one advantage is that Adam can
handle more complex noise that satisfies affine variance noise assumption while existing analyses of
GD/SGD with gradient clipping under the (L0, L1)-smooth condition all assume that the distance
between stochastic gradient and true gradient are bounded with probability 1 ([Zhang et al., 2019]
and [Zhang et al. 2020]), which is strictly stronger than ours. It will be interesting to either provide
counterexample that SGD with clipping does not converge with affine noise assumption, or prove
that SGD with clipping does converge and find other perspective to demonstrate the advantage of
Adam over SGD with clipping.

B.4 INSIGHT FOR PRACTITIONERS

First, Adam receives great popularity among practitioners (with more than 100k citations). It is
important to theoretically understand this algorithm.

Second, our result theoretically verifies a well-known practitioners’ choice: When running experi-
ments on tasks such as Transformers and LSTM training, use Adam instead of SGD.

Third, we provide suggestions for hyperparameter tuning (based on the convergence conditions in
Theorem 4.1): when running Adam, we suggest tune up β2 and try different β1s such that β1 <

√
β2.

This suggestion would save much effort of grid-searching the (β1, β2) combination.

C PROOF OF THEOREM 6.1

In this section, we prove Theorem 6.1. We consider the following function with variable w =
(x, y) ∈ R2: f(w) = f((x, y)) = f1(x) + f2(y), where

f1(x) =

L0 exp
L1x−1

L2
1

, x ∈ [
1

L1
,∞),

L0x
2

2
+

L0

2L2
1

, x ∈ [− 1

L1
,
1

L1
],

L0 exp
−L1x−1

L2
1

, x ∈ (−∞,− 1

L1
].

(7)

f2(y) =

ε(y − 1) +

ε

2
, y ∈ [1,∞),

ε

2
y2 , y ∈ [−1, 1],

− ε(y + 1) +
ε

2
, y ∈ (−∞,−1].

(8)

The construction of both functions (7) and (8) are motivated by Zhang et al. (2019a). One im-
provement here is that we introduce a single function with variable w ∈ R2 f(w) = f((x, y)) =
f1(x) + f2(y), which helps us to derive a stronger conclusion, i.e., the constructed f is independent
of η1. It is easy to see that this f(w) satisfies (L0, L1) condition with L0 = L0 and L1 = L1. We
now restate Theorem ?? as follows with constants specified.

Theorem C.1 (Theorem ??, restated). Consider function f(w) = f((x, y)) = f1(x) + f2(y)
with f1(x) and f2(y) defined in (7) and (8). Consider gradient descent with diminishing
learning rates: wk+1 = wk − ηk∇f(wk), where ηk = η1√

k
. Then for any ϵ > 0 and

14

Under review as a conference paper at ICLR 2024

M > { 2(e
log 2√
2−1

−1
− 1

4)L0

L1
, ε}, there exists an initialization w0 = (x0, y0) such that, M =

sup{∥∇f(w)∥ : w such that f(w) ≤ f(w0)}, and for any η1 > 0, ∥∇f(wk)∥ ≥ ϵ whenever

k < (
L1M

2 +
L0
4

2(1+
√
2)(log(

L1M
2L0

+ 1
4)+1)

)2
(
f2(y0)−miny f2(y)

ε − 3
2)

2

ε2 .

Before giving the proof of Theorem C.1, we briefly discuss the difference between ours and (Zhang
et al., 2019a, Theorem 4). Generally speaking, our result is stronger than (Zhang et al., 2019a,
Theorem 4). This is because we pick the function before the learning rate: we prove that there exists
a function f and an initialization, such that with any learning rate GD takes a long time to reach the
stationary point, while (Zhang et al., 2019a, Theorem 4) picks the learning rate before the function:
they prove that with any learning rate, there exists a function f and an initialization, such that GD
takes a long time to reach the stationary point.

We next present the proof of Theorem C.1 in Part I and Part II as follows. For simplicity, we
let ∥ · ∥ to be the ℓ∞ norm, and the proof can be easily extended to other norms given the equiv-

alence between norms in R2. We pick x0 =
log(

L1M
2L0

+ 1
4)+1

L1
and y0 =

f1(x0)− L0
2L2

1

ε − 1
2 . We

have f1(x0) − minx f1(x) = f2(y0) − miny f2(y), and thus f((x0, y0)) − minx,y f((x, y)) =
2 (f1(x0)−minx f1(x)). As M > ε, sup{∥∇f(w)∥ : w such that f(w) ≤ f(w0)} is achieved at
(x′

0, 0) where x′
0 satisfies f1(x′

0)−minx f1(x) = 2 (f1(x0)−minx f1(x)). By simple calculation,
we have sup{∥∇f(w)∥ : w such that f(w) ≤ f(w0)} = M .

In the proof, we use xk to denote the value of x (i.e., the first component of w ∈ R) in the k-th
iteration of gradient descent. Similarly for yk.

Part I: Large η1 can cause divergence. In this part, we prove that: when using the large initial
learning rate η1 ≥ L1(1+

√
2)|x0|

L0 expL1|x0|−1 , decay-learning-rate gradient descent will never reach stationary
points.

We prove this claim by induction. When k = 1, we claim the following two statements are true:

(1-I): |x1| ≥
√
2|x0|.

(1-II): η2 = η1√
2
≥ L1(1+

√
2)|x1|

L0 expL1|x1|−1 .

We first prove (1-I): without loss of generality, we assume x1 > 0. By the update rule of gradient
descent, we have

x1 = x0 − η1
∂f(x0)

∂x

(7)
= x0 − η1

L0 exp
L1x0−1

L1

≤ x0 −
L1(1 +

√
2)|x0|

L0 expL1|x0|−1

L0 exp
L1x0−1

L1
= −

√
2x0.

So |x1| ≥
√
2|x0| and (1-1) is proved. We now prove (1-II). Before that, we introduce the following

lemma.

Lemma C.2. Consider any x, y ∈ {z : |z| ≥ log 2

(
√
2−1)L1

, z ∈ R}. When |y| >
√
2|x|, then we have

|y|
expL1|y| ≤ 1√

2

|x|
expL1|x| .

15

Under review as a conference paper at ICLR 2024

Proof. Let g(z) = z
expL1z . It is easy to see that ∇g(z) < 0 when z > 0. Therefore, when z1 ≥

√
2z2,

we have g(z1) ≤ g(
√
2z2). When z2 ≥ log 2

(
√
2−1)L1

, we have

z2 ≥ log 2

(
√
2− 1)L1

⇔
√
2L1z2 > log 2 + L1z2

⇔ exp
√
2L1z2 ≥ 2 expL1z2

⇔ 1

exp
√
2L1z2

≥ 1

2 expL1z2

⇔
√
2z2

exp
√
2L1z2

≥ z2√
2 expL1z2

.

Therefore, we have z1
expz1L1

≤
√
2z2

exp
√

2L1z2
≥ z2√

2 expL1z2
. Proof of Lemma C.2 is completed.

Now we prove (1-II):

η2 =
η1√
2

≥ L1(1 +
√
2)|x0|

L0 expL1|x0|−1

1√
2

(1-I) and Lemma C.2
≥ L1(1 +

√
2)|x1|

L0 expL1|x1|−1

√
2

1√
2

=
L1(1 +

√
2)|x1|

L0 expL1|x1|−1

So (1-II) is proved. Now we suppose the following two claims hold for k = 2m where m ∈ N+.

(2m-I): |x2m+1| ≥
√
2|x2m|.

(2m-II): η2m+2 = η1√
2m+2

≥ L1(1+
√
2)|x2m+1|

L0 expL1|x2m+1|−1

Then for k = 2m+ 1, we prove the following claims hold for k = 2m+ 1.

((2m+1)-I): |x2m+2| ≥
√
2|x2m+1|.

((2m+1)-II): η2m+3 = η1√
2m+3

≥ L1(1+
√
2)|x2m+2|

L0 expL1|x2m+2|−1 .

We first prove ((2m+1)-I):

x2m+2 = x2m+1 − η2m+2
∂f(x2m+1)

∂x
(7)
= x2m+1 − η2m+2

L0

L1
expL1x2m+1−1

(2m-II)
≤ x2m+1 −

L1(1 +
√
2)|x2m+1|

L0 expL1|x2m+1|−1

L0 exp
L1x2m+1−1

L1

≤ −
√
2x2m+1.

So |x2m+2| ≥
√
2|x2m+1| and ((2m+1)-I) is proved. We now prove ((2m+1)-II).

16

Under review as a conference paper at ICLR 2024

η2m+3 = η2m+2

√
2m+ 2

2m+ 3

(2m-II)
≥ L1(1 +

√
2)|x2m+1|

L0 expL1|x2m+1|−1

√
2m+ 2

2m+ 3

(2m-I) and Lemma C.2
≥ L1(1 +

√
2)|x2m+2|

L0 expL1|x2m+2|−1

√
2

√
2m+ 2

2m+ 3

≥ L1(1 +
√
2)|x2m+2|

L0 expL1|x2m+2|−1
.

So ((2m+1)-II) is proved. We can derive a similar claim when k is odd. By the principle of induction,
we know that |xk+1| ≥

√
2|xk| for any k ≥ 1. Since f1(x) grows exponentially, gradient descent in

Part I will never reach stationary points.

Part II: Small η1 can cause slow convergence. In this part, we prove that: when using initialization
w ∈ Ω, decay-learning-rate gradient descent with small initial learning rate η1 < L1(1+

√
2)|x0|

L0 expL1|x0|−1 =

(1+
√
2)(log(

L1M
2L0

+ 1
4)+1)

L1M
2 +

L0
4

will cause slow convergence. For any k ≥ 1, we have

yk − yk+1 = ηk
∂f(wk)

∂y
(8)
= ε

η1√
k

< ε
L1(1 +

√
2)|x0|

L0 expL1|x0|−1

1√
k

Therefore, we have

K∑
k=1

(yk+1 − yk) =

K∑
k=1

ε
η1√
k
< 2

√
kεη1 < 2

√
kε

L1(1 +
√
2)|x0|

L0 expL1|x0|−1

When using initialization y0, it is easy to have the following conclusion: when

2
(1+

√
2)(log(

L1M
2L0

+ 1
4)+1)

L1M
2 +

L0
4

√
k = 2ε

√
k L1(1+

√
2)|x1|

L0 expL1|x1|−1 < y0 − 1 = (f1(x0)−minx f1(x))
ε − 3

2 ,

we have ∂f(wk)
∂y = ε. In other words, we have: ∥∇f(wk)∥ ≥ ε for all k <

(
L1M

2 +
L0
4

2(1+
√
2)(log(

L1M
2L0

+ 1
4)+1)

)2
(
f2(y0)−miny f2(y)

ε − 3
2)

2

ε2 . Recall that f(w1) − minw f(w) = 2(f2(y0) −

minx f2(x)), the proof is completed.

D PROOF OF THEOREM 4.1

This appendix provides the formal proof of Theorem 4.1, which is organized as follows. In Section
D.1, we first introduce notations that are used in the proof. In Section D.2, We restate Theorem 4.1
with constants specified. In Section D.3, we then make preparations by proving auxiliary lemmas.
Finally, in Section D.4, we prove Theorem 4.1.

D.1 NOTATIONS

Here we provide a complete list of notations used in the appendix for a clear reference.

• We use (k1, i1) ≤ (<)(k2, i2) for ∀k1, k2 ∈ N+ and i1, i2 ∈ {0, · · · , n − 1}, if either
k1 < k2 or k1 = k2 and i1 ≤ (<)i2

17

Under review as a conference paper at ICLR 2024

• We define function g(x) : [0, 1] → R/− as

g(β2) ≜ max

1√
βn−1
2

− 1, 1− 1√
βn−1
2 + 8n

1−βn−1
2

βn
2

, 1−
√

β2,

√√√√ β2(
1− (1− β2)

2n
βn
2

) − 1

 .

• We define constants {Ci}10i=1 as follows:

C1 ≜
(1 − β1)

2

1 − β2

1

1 − β2
1

β2

+ 1,

C2 ≜ nC1 +
β1

1 − β1

C1

(
1 +

√
2
)
,

C3 ≜ C1

(
n(L0 + L1

√
D0) + 2

√
2(L0 + L1

√
D0)

√
1 − β2

1 −
√
β2

√
β2

1 −
√
β2

+ 8
√
2nL0

1

1 − βn
2

)
,

C4 ≜ 4L1C1

√
D1

√
1 − β2

1 −
√
β2

C5 ≜ n
2
(1 + n

√
dC1η1L1

√
n
√

D1)

(
C4 +

dC4

√
D1

1 −
√

βn
2

)
,

C6 ≜

(
dC3 +

C4n
√
D1

1 −
√

βn
2

)
η
2
1 ,

C7 ≜ 3n

(
C4 +

dC4

1 −
√

βn
2

)(
nL0 + L1

√
n
√

D0

)
n
2
√
dC1η

3
1 +

(
dC3 +

C2C4n
√
D1

1 −
√

βn
2

)
η
2
1 ,

C8 ≜

√
2n2

βn
2

L1

√
D1n

√
n + dg(β2)

(
n − 1 +

1 + β1

1 − β1

) √
2n

β
n
2
2

L1C1

√
D1

(
1 +

1

1 − βn
2

)
(n + n

5
2
√
dC1η1L1

√
D1) + 2

β1

(1 − β1)η1

√
dC1,

C9 ≜

√
2n2

βn
2

d(n
2
L0 + n

√
nL1

√
D0)C1η

2
1 + g(β2)

(
n − 1 +

1 + β1

1 − β1

) √
2n

β
n
2
2

(
n +

2
√
2β1

1 − β1

)
C1(L0 + L1

√
D0)d

√
dη

2
1 ,

C10 ≜ 3dg(β2)

(
n − 1 +

1 + β1

1 − β1

) √
2n

β
n
2
2

L1C1

√
D1

(
1 +

1

1 − βn
2

)
n
(
nL0 + L1

√
n
√

D0

)
n
√
dC1η

3
1 + C9,

C11 ≜ (
1

2
+ C2)C5 + C8 +

3L1
√
n
√
D1C

2
2d

2
,

C12 ≜ (
1

2
+ C2)C6 + C9 +

nL0 + L1
√
n
√
D0

2
3C

2
2dη

2
1 ,

C13 ≜ (
1

2
+ C2)C7 + C10 +

nL0 + L1
√
n
√
D0

2
3C

2
2dη

2
1 .

(9)

D.2 RESTATE THEOREM 4.1

Here we restate Theorem 4.1 with constants specified.

Theorem D.1 (Theorem 4.1, restated). Consider Adam defined as Alg. (1) with diminishing learning
rate ηk ≡ η1√

k
. Let Assumptions 3.1 and 3.2 hold. Suppose the hyperparamters satisfy: γ < β2 < 1

and 0 ≤ β2
1 < β2, where γ is defined as the solution of

√
dg(x) n

x
n
2
= 1

2(4+
√
2)

√
D1

(
n−1+

1+β1
1−β1

) with

respect to x. Then, either

min
k∈[1,T]

∥∇f(wk,0)∥ ≤ 2
√
d(2

√
2 + 1)

√
D0g(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

,

or

min
k∈[1,T]

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2√

D0 + ξ

}
≤ (4(2

√
2 + 1))

f(w1,0)−minw f(w)

η1
√
T

+ 4(2
√
2 + 1)

(
C12 +

√
D0 + ξ

4
√
D1

C11η
2
1

)
lnT

η1
√
T

+ 4(2
√
2 + 1)

C13 +
√
D0+ξ

4
√
D1

C11

η1
√
T

.

18

Under review as a conference paper at ICLR 2024

D.3 AUXILIARY LEMMAS

In this section, we introduce auxiliary lemmas that will be latter used. In the remaining proof of this
paper, we assume without the loss of generality that η1 is small enough, such that the following
requirements are fulfilled: (C1 and C2 are defined in Eq. (9)).

• 2C2

√
dη1 ≤ 1

L1
. This will latter ensure that we can directly apply the definition of (L0, L1)-

smooth condition (Assumption 3.1) to parameter sequence {wk,i}k,i;

• 1
4(2

√
2+1)

≥
√
D1C11η1. This will latter ensure the second-order term is smaller than the

first-order term at the end of the proof.

The proof can be easily extended to general cases by selecting large enough K and using the epoch
K as a new start point and derive the results after epoch K, because the epochs before epoch K can
be uniformly bounded due to ηk decaying and K finite, and we then derive the desired result for all
epochs.

Without the loss of generality, we also take the following initialization: w1,0 = w0, m1,−1 =
∇fτ1,−1(w0) where τ1,−1 can be any integer in [0, n − 1], and νl,1,−1 = maxj{∂lfj(w0)

2} ∀l
where the maximum is taken component-wisely. We take the initialization to have a more concise
proof, while the proof can be easily extended to all the initialization as the information of the
initialization in the exponentially decayed average of Adam (both in mk,i and νk,i) decays rapidly
with k increasing.

The following lemma shows that f is also (L0, L1)-smooth under Assumptions 3.1 and 3.2 (while
the L0 and L1 are different from those of fi).

Lemma D.2. With Assumptions 3.1 and 3.2, f satisfies (nL0 + L1
√
n
√
D0, L1

√
n
√
D1)-smooth

condition.

Proof. ∀w1,w2 ∈ Rd satisfying ∥w1 −w2∥ ≤ 1
L1

,

∥∇f(w1)−∇f(w2)∥ ≤
n−1∑
i=0

∥∇fi(w1)−∇fi(w2)∥ ≤
n−1∑
i=0

(L0 + L1∥∇fi(w1)∥)∥w1 −w2∥

≤

nL0 + L1

√
n

√√√√n−1∑
i=0

∥∇fi(w1)∥2

 ∥w1 −w2∥ ≤ (nL0 + L1

√
n
√

D0 +D1∥∇f(w1)∥2)∥w1 −w2∥

≤(nL0 + L1

√
n(

√
D0 +

√
D1∥∇f(w1)∥))∥w1 −w2∥ ≤ (nL0 + L1

√
n
√
D0 + L1

√
n
√
D1∥∇f(w1)∥)∥w1 −w2∥.

The proof is completed.

The following lemma bounds the update norm of Adam.

Lemma D.3 (Bounded Update). If β1 <
√
β2, we have ∀k ∈ N+, i ∈ {0, · · · , n− 1},

|ml,k,i|√
νl,k,i + ξ

≤ C1,

where C1 is defined in Eq. (9).

Furthermore, we have |wl,k,i+1 −wl,k,i| ≤ C1ηk, and thus ∥wk,i+1 −wk,i∥ ≤ C1ηk
√
d.

19

Under review as a conference paper at ICLR 2024

Proof. By the definition of mk,i, we have

(ml,k,i)
2

=

(1− β1)

i∑
j=0

β
(k−1)n+i−((k−1)n+j)
1 ∂lfτk,j

(wk,j)

+ (1− β1)

k−1∑
m=1

n−1∑
j=0

β
(k−1)n+i−((m−1)n+j)
1 ∂lfτm,j (wm,j) + β

(k−1)n+i+1
1 ∂lfτ1,−1(w1,0)

2

≤

(1− β1)

i∑
j=0

β
(k−1)n+i−((k−1)n+j)
1 |∂lfτk,j

(wk,j)|

+ (1− β1)

k−1∑
m=1

n−1∑
j=0

β
(k−1)n+i−((m−1)n+j)
1 |∂lfτm,j (wm,j)|+ β

(k−1)n+i+1
1 max

s∈[n]
|∂lfs(w1,0)|

2

(⋆)

≤

(1− β2)

i∑
j=0

β
(k−1)n+i−((k−1)n+j)
2 |∂lfτk,j

(wk,j)|2

+ (1− β2)

k−1∑
m=1

n−1∑
j=0

β
(k−1)n+i−((m−1)n+j)
2 |∂lfτm,j

(wm,j)|2 + β
(k−1)n+i+1
2 max

s∈[n]
|∂lfs(w1,0)|2

·

 (1− β1)
2

1− β2

(k−1)n+i∑
j=0

(
β2
1

β2

)j

+

(
β2
1

β2

)(k−1)n+i+1

(∗)
=

 (1− β1)
2

1− β2

(k−1)n+i∑
j=0

(
β2
1

β2

)j

+

(
β2
1

β2

)(k−1)n+i+1
νl,k,i

≤

 (1− β1)
2

1− β2

1

1− β2
1

β2

+ 1

νl,k,i = C1νl,k,i,

where Eq. (⋆) is due to the Cauchy-Schwartz’s Inequality, and Eq. (∗) is due to the definition of
νl,1,−1. We complete the proof of the first claim. The second claim then follows directly from the
update rule

wl,k,i+1 −wl,k,i = ηk
ml,k,i√
νl,k,i + ξ

.

The proof is completed.

Define uk ≜ wk,0−β1wk,−1

1−β1
(with w1,−1 ≜ w1,0), and let ul,k be the i-th component of uk,

∀k ∈ N+, l ∈ [d]. The following lemma bounds the distance between ul,k and wl,k,0 and the
distance between ul,k+1 and ul,k.

Lemma D.4. ∀k ≥ 1,

|ul,k −wl,k,0| ≤ C2ηk, (10)
|ul,k+1 − ul,k| ≤ C2ηk, (11)

where C2 is defined in Eq. (9).

20

Under review as a conference paper at ICLR 2024

Proof. By Lemma D.3, we immediately have ∀l ∈ [d], |ul,k −wl,k,0| is bounded as

|ul,k −wl,k,0| =
∣∣∣∣wl,k,0 − β1wl,k,−1

1− β1
−wl,k,0

∣∣∣∣
=

β1

1− β1
|wl,k,0 −wl,k,−1| ≤

β1

1− β1
C1η1

1√
k − 1

≤
√
2β1

1− β1
C1η1

1√
k
≤

√
2β1

1− β1
C1ηk ≤ C2ηk,

and

|ul,k+1 − ul,k|

=

∣∣∣∣wl,k+1,0 − β1wl,k+1,−1

1− β1
− wl,k,0 − β1wl,k,−1

1− β1

∣∣∣∣
=

∣∣∣∣(wl,k+1,0 −wl,k,0) +
β1

1− β1
(wl,k+1,0 −wl,k+1,−1)−

β1

1− β1
(wl,k,0 −wl,k,−1)

∣∣∣∣
≤
∣∣∣∣(wl,k+1,0 −wl,k,0) +

β1

1− β1
(wl,k+1,0 −wl,k+1,−1)−

β1

1− β1
(wl,k,0 −wl,k,−1)

∣∣∣∣
≤nC1η1

1√
k
+

β1

1− β1
C1η1

(
1√
k
+

√
2√
k

)
= C2η1

1√
k
= C2ηk.

In the following lemma, we bound the change of the gradient within one epoch.

Lemma D.5. ∀k ∈ N+, i ∈ {0, · · · , n− 1},

∥∇f(wk,i)∥ ≤ (1 + n
√
dC1η1L1

√
n
√

D1)∥∇f(wk,0)∥+
(
nL0 + L1

√
n
√
D0

)
n
√
dC1ηk,

where C1 is defined in Eq. (9).

Proof. By Assumption 3.1 and Lemma D.2, we have

∥∇f(wk,i)∥ ≤∥∇f(wk,0)∥+
(
nL0 + L1

√
n
√
D0 + L1

√
n
√
D1∥∇f(wk,0)∥

)
∥wk,i −wk,0∥

≤∥∇f(wk,0)∥+
(
nL0 + L1

√
n
√
D0 + L1

√
n
√
D1∥∇f(wk,0)∥

)
i
√
dC1ηk

≤(1 + n
√
dC1η1L1

√
n
√
D1)∥∇f(wk,0)∥+

(
nL0 + L1

√
n
√
D0

)
n
√
dC1ηk.

The proof is completed.

We further need a descent lemma assuming (L0, L1)-smooth condition similar to the case assuming
L smoothness. Specifically, for a function h satisfying L-smooth condition and two points w and v,
by Taylor’s expansion, we have

h(w) ≤ h(v) + ⟨∇h(v),w − v⟩+ L

2
∥w − v∥2.

This is called ”Descent Lemma” by existing literature Sra (2014), as it guarantees that the loss
decreases with proper parameter update. Paralleling to the above inequality, we establish the
following descent lemma under the (L0, L1)-smooth condition.

Lemma D.6. Assume that function h : X → R satisfies the (L0, L1)-smooth condition, i.e., ∀w,v ∈
X satisfying ∥w − v∥ ≤ 1

L1
,

∥∇h(w)−∇h(v)∥ ≤ (L0 + L1∥∇h(v)∥)∥w − v∥.

Then, for any three points u,w,v ∈ X satisfying ∥w − u∥ ≤ 1
L1

and ∥v − u∥ ≤ 1
L1

, we have

h(w) ≤ h(v) + ⟨∇h(u),w − v⟩+ 1

2
(L0 + L1∥∇h(u)∥)(∥v − u∥+ ∥w − u∥)∥w − v∥.

21

Under review as a conference paper at ICLR 2024

Proof. By the Fundamental Theorem of Calculus, we have

h(w) =h(v) +

∫ 1

0

⟨∇h(v + a(w − v)),w − v⟩da

=h(v) + ⟨∇h(u),w − v⟩+
∫ 1

0

⟨∇h(v + a(w − v))−∇h(u),w − v⟩da

≤h(v) + ⟨∇h(u),w − v⟩+
∫ 1

0

∥∇h(v + a(w − v))−∇h(u)∥∥w − v∥da

(⋆)

≤h(v) + ⟨∇h(u),w − v⟩+
∫ 1

0

(L0 + L1∥∇h(u)∥)∥v + a(w − v)− u∥∥w − v∥da

≤h(v) + ⟨∇h(u),w − v⟩+
∫ 1

0

(L0 + L1∥∇h(u)∥)((1− a)∥v − u∥+ a∥w − u∥)∥w − v∥da

≤h(v) + ⟨∇h(u),w − v⟩+ 1

2
(L0 + L1∥∇h(u)∥)(∥v − u∥+ ∥w − u∥)∥w − v∥,

where Inequality (⋆) is due to

∥v + a(w − v)− u∥ = ∥(1− a)(v − u) + a(w − u)∥ ≤ (1− a)∥v − u∥+ a∥w − u∥ ≤ 1

L1
.

Thus the definition of (L0, L1)-smooth condition can be applied and the proof is completed.

Based on Lemma D.3, we bound the momentum using the gradient of the current step plus some
error terms.

Lemma D.7 (Estimation of the norm of the momentum). We have for all l ∈ [d], k ∈ Z+, i ∈ [n],

|ml,k,i| ≤ max
i′∈[n]

|∂lfi′(wk,0)|+

(
n+

2
√
2β1

1− β1

)
C1(L0 + L1

√
D0)

√
dηk + L1C1

√
D1ηk

i−1∑
j=0

∥∇f(wk,j)∥

+ L1C1

√
D1

k−1∑
t=1

ηk−t

n−1∑
j=0

βtn+i−j
1 ∥∇f(wk−t,j)∥,

where C1 is defined in Eq. (9). Similarly, l ∈ [d], k ∈ Z+/{1},

|ml,k−1,n−1| ≤ max
i′∈[n]

|∂lfi′(wk,0)|+
k−1∑
t=1

n−1∑
j=0

βtn−1−j
1 C1ηk−t

√
dL1

√
D1∥∇f(wk−t,j)∥+

2
√
2(L0 + L1

√
D0)C1

√
dηk

1− β1
.

22

Under review as a conference paper at ICLR 2024

Proof. To begin with, for any t ∈ [k − 1] and any j ∈ [0, n− 1], we have the following estimation
for ∂lfi(wk−t,j):

|∂lfi(wk−t,j)|

≤|∂lfi(wk,0)|+
n−1∑
p=j

|∂lfi(wk−t,p)− ∂lfi(wk−t,p+1)|+
t−1∑
r=1

n−1∑
p=0

|∂lfi(wk−r,p)− ∂lfi(wk−r,p+1)|

(⋆)

≤|∂lfi(wk,0)|+
n−1∑
p=j

(L0 + L1∥∇fi(wk−t,p)∥)∥wk−t,p −wk−t,p+1∥

+

t−1∑
r=1

n−1∑
p=0

(L0 + L1∥∇fi(wk−r,p)∥)∥wk−r,p −wk−r,p+1∥

≤|∂lfi(wk,0)|+
n−1∑
p=j

(L0 + L1∥∇fi(wk−t,p)∥)C1ηk−t

√
d+

t−1∑
r=1

n−1∑
p=0

(L0 + L1∥∇fi(wk−r,p)∥)C1ηk−r

√
d

≤|∂lfi(wk,0)|+
n−1∑
p=j

L0 + L1

√∑
i′∈[n]

∥∇fi′(wk−t,p)∥2

C1ηk−t

√
d

+

t−1∑
r=1

n−1∑
p=0

L0 + L1

√∑
i′∈[n]

∥∇fi′(wk−r,p)∥2

C1ηk−r

√
d,

where Inequality (⋆) is due to (L0, L1)-smooth condition. By Assumption 3.2, the RHS of the above
inequality can be bounded as

|∂lfi(wk,0)|+
n−1∑
p=j

(
L0 + L1

√
D1∥∇f(wk−t,p)∥+ L1

√
D0

)
C1ηk−t

√
d

+

t−1∑
r=1

n−1∑
p=0

(
L0 + L1

√
D1∥∇f(wk−r,p)∥+ L1

√
D0

)
C1ηk−r

√
d

(∗)
≤|∂lfi(wk,0)|+

n−1∑
p=j

L1

√
D1∥∇f(wk−t,p)C1ηk−t

√
d+

t−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d

+ 2(L0 + L1

√
D0)C1

√
dηk−1(tn− j)

≤|∂lfi(wk,0)|+
n−1∑
p=j

L1

√
D1∥∇f(wk−t,p)C1ηk−t

√
d+

t−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d

+ 2
√
2(L0 + L1

√
D0)C1

√
dηk(tn− j).

where Inequality (∗) is due to ∀a, b ∈ N+, a > b,
∑b

i=0
1√
a−i

≤ 2 b+1
a . Similarly, we have that for

any j ∈ [0, n− 1],

|∂lfi(wk,j)| ≤ |∂lfi(wk,0)|+
j−1∑
p=0

|∂lfi(wk,p+1)− ∂lfi(wk,p)|

≤|∂lfi(wk,0)|+
j−1∑
p=0

(
L0 + L1

√
D1∥∇f(wk,p)∥+ L1

√
D0

)
C1ηk

√
d

=|∂lfi(wk,0)|+
j−1∑
p=0

L1

√
D1∥∇f(wk,p)∥C1ηk

√
d+ j(L0 + L1

√
D0)C1

√
dηk.

23

Under review as a conference paper at ICLR 2024

Therefore, the norm of ml,k,i can be bounded as

|ml,k,i|

≤(1− β1)

i∑
j=0

β
(k−1)n+i−((k−1)n+j)
1 |∂lfτk,j (wk,j)|+ (1− β1)

k−1∑
t=1

n−1∑
j=0

βtn+i−j
1 |∂lfτk−t,j (wk−t,j)|

+ β
(k−1)n+i+1
1 |∂lfτ1,0(w1,0)|

≤(1− β1)

i∑
j=0

β
(k−1)n+i−((k−1)n+j)
1 |∂lfτk,j (wk,0)|+ (1− β1)

k−1∑
t=1

n−1∑
j=0

βtn+i−j
1 |∂lfτk−t,j (wk,0)|

+ β
(k−1)n+i+1
1 |∂lfτ1,0(wk,0)|

+ (1− β1)

i∑
j=0

β
(k−1)n+i−((k−1)n+j)
1

(
j−1∑
p=0

C1ηk
√
dL1

√
D1∥∇f(wk,p)∥+ (L0 + L1

√
D0)C1ηk

√
dj

)

+ (1− β1)

k−1∑
t=1

n−1∑
j=0

βtn+i−j
1

(
n−1∑
p=j

C1ηk−t

√
dL1

√
D1∥∇f(wk−t,p)∥

+

t−1∑
r=1

n−1∑
p=0

C1ηk−r

√
dL1

√
D1∥∇f(wk−r,p)∥+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(tn− j)

)

+ β
(k−1)n+i+1
1

(
k−1∑
t=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(k − 1)n

)
(⋆)

≤ max
i∈[n]

|∂lfi(wk,0)|+
(
n+

2
√
2β1

1− β1

)√
dC1(L0 + L1

√
D0)ηk + L1C1

√
D1ηk

i−1∑
j=0

∥∇f(wk,j)∥

+ L1C1

√
D1

k−1∑
t=1

ηk−t

n−1∑
j=0

βtn+i−j
1 ∥∇f(wk−t,j)∥,

where Inequality (⋆) is due to an exchange in the sum order.

Following the same routine, we have

|ml,k,−1|

≤(1− β1)

k−1∑
t=1

n−1∑
j=0

βtn−1−j
1 |∂lfτk−t,j

(wk−t,j)|+ β
(k−1)n
1 |∂lfτ1,0(w1,0)|

≤(1− β1)
k−1∑
t=1

n−1∑
j=0

βtn−1−j
1 |∂lfτk−t,j

(wk,0)|+ β
(k−1)n
1 |∂lfτ1,0(wk,0)|

+ (1− β1)

k−1∑
t=1

n−1∑
j=0

βtn−1−j
1 C1

√
d

n−1∑
p=j

L1

√
D1∥∇f(wk−t,p)∥ηk−t +

t−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥ηk−r

+ 2
√
2(L0 + L1

√
D0)C1

√
dηk(tn− j)

)
+ β

(k−1)n
1

(
k−1∑
t=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(k − 1)n

)

≤max
i∈[n]

|∂lfi(wk,0)|+
k−1∑
t=1

n−1∑
j=0

βtn−1−j
1 C1ηk−t

√
dL1

√
D1∥∇f(wk−t,j)∥

+
2
√
2(L0 + L1

√
D0)C1

√
dηk

1− β1
.

The proof is completed.

24

Under review as a conference paper at ICLR 2024

Similarly, we can upper and lower bound the adaptor νk,0 by the gradient plus some error terms.

Lemma D.8 (Estimation of the norm of the adaptor). We have for all l ∈ [d], k ∈ Z+,

|νl,k,0| ≥βn
2

1− β2

1− βn
2

∑
i∈[n]

∂lfi(wk,0)
2 −

√∑
i∈[n]

|∂lfi(wk,0)2|
(
8
√
2nηkC1L0

1− β2

(1− βn
2)

2
βn
2

+ 4L1C1
1− β2

1− βn
2

√
1− β2

1−
√
β2

k−1∑
t=1

βn
2

√
β2

(r−1)n
ηk−t

n−1∑
j=0

(
√

D1∥∇f(wk−t,j)∥+
√

D0)

 ,

and

|νl,k,0| ≤2max
i∈[n]

∂lfi(wk,0)
2 + 2

(
2
√
2ηkC1(L0 + L1

√
D0)

√
1− β2

1−
√
β2

√
β2

1−
√
β2

+ L1C1

√
D1

k−1∑
t=1

ηk−t

√
1− β2

1−
√
β2

n−1∑
j=0

√
β2

(t−1)n
∥∇f(wk−t,j)∥

2

,

where C1 is defined in Eq. (9).

Proof. By the definition of νl,k,0, we have

νl,k,0

=(1− β2)∂lfτk,0(wk,0)
2 +

k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn−j
2 ∂lfτk−t,j (wk−t,j)

2 + β
(k−1)n+1
2 max

i∈[n]
∂lfi(w1,0)

2

≥(1− β2)∂lfτk,0(wk,0)
2 +

k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn
2 ∂lfτk−t,j (wk−t,j)

2 + β
(k−1)n+1
2

1

n

n∑
i=1

∂lfi(w1,0)
2

=(1− β2)∂lfτk,0(wk,0)
2 +

k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn
2 (∂lfτk−t,j (wk,0) + ∂lfτk−t,j (wk−t,j)− ∂lfτk−t,j (wk,0))

2

+ β
(k−1)n+1
2

1

n

n∑
i=1

(∂lfi(wk,0) + ∂lfi(w1,0)− ∂lfi(wk,0))
2

≥(1− β2)∂lfτk,0(wk,0)
2 +

k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn
2 ∂lfτk−t,j (wk,0)

2 + β
(k−1)n+1
2

1

n

n∑
i=1

∂lfi(wk,0)
2

−
k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn
2 |∂lfτk−t,j (wk,0)||∂lfτk−t,j (wk,0)− ∂lfτk−t,j (wk−t,j)|

− β
(k−1)n+1
2

1

n

n∑
i=1

|∂lfi(wk,0)||∂lfi(wk,0)− ∂lfi(w1,0)|

25

Under review as a conference paper at ICLR 2024

Since fi is (L0, L1)-smooth, the RHS of the above inequality can be further lower bounded as
follows:

(
βn
2
1− β

(k−1)n
2

1− βn
2

(1− β2) +
β
(k−1)n+1
2

n

) ∑
i∈[n]

∂lfi(wk,0)
2

−
k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn
2 |∂lfτk−t,j (wk,0)|

(
t∑

r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηktn

)

− β
(k−1)n+1
2

1

n

n∑
i=1

|∂lfi(wk,0)|

(
k−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(k − 1)n

)

≥βn
2
1− β2

1− βn
2

∑
i∈[n]

∂lfi(wk,0)
2

−
k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn
2 |∂lfτk−t,j (wk,0)|

(
t∑

r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηktn

)

− β
(k−1)n+1
2

1

n

n∑
i=1

|∂lfi(wk,0)|

(
k−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(k − 1)n

)
,

where the last inequality we use βn
2

1−β
(k−1)n
2

1−βn
2

(1− β2) +
β
(k−1)n+1
2

n ≥ βn
2

1−β2

1−βn
2

.

≥βn
2
1− β2

1− βn
2

∑
i∈[n]

∂lfi(wk,0)
2 − 8

√
2ηkC1L0

1− β2

(1− βn
2)

2
βn
2

∑
i∈[n]

|∂lfi(wk,0)|

− 4L1C1
1− β2

1− βn
2

∑
i∈[n]

|∂lfi(wk,0)|

(
k−1∑
r=1

βrn
2 ηk−r

n−1∑
j=0

∥∇fi(wk−r,j)∥

)

≥βn
2
1− β2

1− βn
2

∑
i∈[n]

∂lfi(wk,0)
2 − 8

√
2ηkC1L0

1− β2

(1− βn
2)

2
βn
2

∑
i∈[n]

|∂lfi(wk,0)|

− 4L1C1
1− β2

1− βn
2

∥∇fi(wk,0)∥

(
k−1∑
r=1

βrn
2 ηk−r

n−1∑
j=0

(
√
D1∥∇f(wk−r,j)∥+

√
D0)

)

≥βn
2
1− β2

1− βn
2

∑
i∈[n]

∂lfi(wk,0)
2 − 8

√
2nηkC1L0

1− β2

(1− βn
2)

2
βn
2

√∑
i∈[n]

|∂lfi(wk,0)2|

− 4L1C1
1− β2

1− βn
2

√∑
i∈[n]

|∂lfi(wk,0)2|

(
k−1∑
r=1

βrn
2 ηk−r

n−1∑
j=0

(
√
D1∥∇f(wk−r,j)∥+

√
D0)

)

≥βn
2
1− β2

1− βn
2

∑
i∈[n]

∂lfi(wk,0)
2 − 8

√
2nηkC1L0

1− β2

(1− βn
2)

2
βn
2

√∑
i∈[n]

|∂lfi(wk,0)2|

− 4L1C1
1− β2

1− βn
2

√
1− β2

1−
√
β2

√∑
i∈[n]

|∂lfi(wk,0)2|

(
k−1∑
r=1

βn
2

√
β2

(r−1)n
ηk−r

n−1∑
j=0

(
√
D1∥∇f(wk−r,j)∥+

√
D0)

)
.

The first claim is proved.

26

Under review as a conference paper at ICLR 2024

As for the upper bound, we have

νl,k,0

=(1− β2)∂lfτk,0(wk,0)
2 +

k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn−j
2 ∂lfτk−t,j (wk−t,j)

2 + β
(k−1)n+1
2 max

i∈[n]
∂lfi(w1,0)

2

≤2(1− β2)∂lfτk,0(wk,0)
2 + 2

k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn−j
2 ∂lfτk−t,j (wk,0)

2 + 2β
(k−1)n+1
2 max

i∈[n]
∂lfi(wk,0)

2

+ 2

k−1∑
t=1

n−1∑
j=0

(1− β2)β
tn−j
2

(
n−1∑
p=j

L1

√
D1∥∇f(wk−t,p)C1ηk−t

√
d

+

t−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(tn− j)

)2

+ 2β
(k−1)n+1
2

(
k−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(k − 1)n

)2

≤2max
i∈[n]

∂lfi(wk,0)
2 + 2

(
k−1∑
t=1

n−1∑
j=0

√
1− β2

√
β2

tn−j

(
n−1∑
p=j

L1

√
D1∥∇f(wk−t,p)C1ηk−t

√
d

+

t−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(tn− j)

)

+
√

β2
(k−1)n+1

(
k−1∑
r=1

n−1∑
p=0

L1

√
D1∥∇f(wk−r,p)∥C1ηk−r

√
d+ 2

√
2(L0 + L1

√
D0)C1

√
dηk(k − 1)n

))2

≤2max
i∈[n]

∂lfi(wk,0)
2 + 2

(
2
√
2ηkC1(L0 + L1

√
D0)

√
1− β2

1−
√
β2

√
β2

1−
√
β2

+ L1C1

√
D1

k−1∑
t=1

ηk−t

√
1− β2

1−
√
β2

n−1∑
j=0

√
β2

tn−j
∥∇f(wk−t,j)∥

)2

≤2max
i∈[n]

∂lfi(wk,0)
2 + 2

(
2
√
2ηkC1(L0 + L1

√
D0)

√
1− β2

1−
√
β2

√
β2

1−
√
β2

+ L1C1

√
D1

k−1∑
t=1

ηk−t

√
1− β2

1−
√
β2

n−1∑
j=0

√
β2

(t−1)n
∥∇f(wk−t,j)∥

)2

.

The proof is completed.

We then immediately have the following corollary when maxi∈[n] |∂lfi(wk,0)| is large enough
compared to the error term.

Corollary D.9 (Lemma 5.1, formal). If

max
i∈[n]

|∂lfi(wk,0)| ≥4L1C1

√
1− β2

1−
√
β2

k−1∑
r=1

√
β2

(r−1)n
ηk−r

n−1∑
j=0

(
√

D1∥∇f(wk−r,j)∥+
√
D0)

+ 2

√
2ηkC1(L0 + L1

√
D0)

√
1− β2

1−
√
β2

√
β2

1−
√
β2

+ 8
√
2nηkC1L0

1

1− βn
2

+ ηkC1

(
n(L0 + L1

√
D0) + L1

√
D1

(
n−1∑
p=0

∥∇f(wk,p)∥

))
, (12)

then
βn
2

2

1

n

∑
i∈[n]

∂lfi(wk,0)
2 ≤ νl,k,0 ≤ 4max

i∈[n]
∂lfi(wk,0)

2,

27

Under review as a conference paper at ICLR 2024

where C1 is defined in Eq. (9). Furthermore, if Eq. (12) holds, we have ∀i ∈ {0, · · · , n− 1},

βn−1
2 νl,k,0 ≤ νl,k,i ≤

(
βn−1
2 + 8n

1− βn−1
2

βn
2

)
νl,k,0,

and
1

β2

(
1− (1− β2)

2n

βn
2

)
νl,k,0 ≤ νl,k,−1 ≤ 1

β2
νl,k,0,

Proof. The first claim is derived by directly applying the range of maxi∈[n] |∂lfi(wk,0)| into Lemma
D.8.

As for the second claim, we have

νl,k,i = βi
2νl,k,0 + (1− β2)(∂lfτk,i

(wk,i)
2 + · · ·+ βi−1

2 ∂lfτk,i
(wk,1)

2).

On the other hand, since ∀j ∈ {0, · · · , n− 1}

|∂lfi(wk,j)| ≤max
p∈[n]

|∂lfp(wk,0)|+ ηkC1

(
j(L0 + L1

√
D0) + L1

√
D1

(
j−1∑
p=0

∥∇f(wk,p)∥

))

≤max
p∈[n]

|∂lfp(wk,0)|+ ηkC1

(
n(L0 + L1

√
D0) + L1

√
D1

(
n−1∑
p=0

∥∇f(wk,p)∥

))
,

we have

βn−1
2 νl,k,0 ≤ νl,k,i

≤βi
2νl,k,0 + 2(1− β2) max

p∈[n]
∂lfp(wk,0)

2(1 + · · ·+ βi−1
2)

+ 2(1− β2)(1 + · · ·+ βi−1
2)η2

kC
2
1

(
n(L0 + L1

√
D0) + L1

√
D1

(
n−1∑
p=0

∥∇f(wk,p)∥

))2

=βi
2νl,k,0 + 2(1− βi

2) max
p∈[n]

∂lfp(wk,0)
2 + 2(1− βi

2)η
2
kC

2
1

(
n(L0 + L1

√
D0) + L1

√
D1

(
n−1∑
p=0

∥∇f(wk,p)∥

))2

.

Therefore, if Eq. (12) holds, we then have

νl,k,i ≤βi
2νl,k,0 + 4(1− βi

2) max
p∈[n]

∂lfp(wk,0)
2

≤βi
2νl,k,0 + 4

n

n
(1− βi

2)
∑
p∈[n]

∂lfp(wk,0)
2 ≤

(
βi
2 + 8n

1− βi
2

βn
2

)
νl,k,0

≤
(
βn−1
2 + 8n

1− βn−1
2

βn
2

)
νl,k,0.

Following the same routine, we have

β2νl,k,−1 ≤ νl,k,0,

and if Eq. (12) holds,

νl,k,−1 =
1

β2

(
νl,k,0 − (1− β2)∂lfτk,0

(wk,0)
2
)
≥ 1

β2

(
νl,k,0 − (1− β2)max

p
∂lfp(wk,0)

2

)
≥νl,k,0

1

β2

(
1− (1− β2)

2n

βn
2

)
.

The proof of the second claim is completed.

28

Under review as a conference paper at ICLR 2024

Remark D.10. By the notations in Eq. (9)., Eq. (12) can be translated into

max
i∈[n]

|∂lfi(wk,0)| ≥C3ηk + C4

k−1∑
r=1

√
β2

(r−1)n
ηk−r

n−1∑
j=0

∥∇f(wk−r,j)∥

+ C4n

k−1∑
r=1

√
β2

(r−1)n
ηk−r + ηkC4

(
n−1∑
j=0

∥∇f(wk,j)∥

)
. (13)

Furthermore, we define g(β2) as

g(β2) ≜ max

1

√
β2

n−1 − 1, 1− 1√
βn−1
2 + 8n

1−βn−1
2

βn
2

, 1−
√
β2,

√√√√ β2(
1− (1− β2)

2n
βn
2

) − 1

 ,

and the conclusion of Corollary D.9 can be translated into that if Eq. (13) holds,∣∣∣∣ 1
√
νl,k,i

− 1
√
νl,k,0

∣∣∣∣ ≤ g(β2)
1

√
νl,k,0

,

and ∣∣∣∣ 1
√
νl,k,−1

− 1
√
νl,k,0

∣∣∣∣ ≤ g(β2)
1

√
νl,k,0

.

Based on whether Eq. (13) is fulfilled, we divide [d] into Lk
large and Lk

small (∀k ≥ 1), which are
respectively defined as

Lk
large = {l : l ∈ [d], s.t. Eq. (13) holds},

Lk
small = {l : l ∈ [d], s.t. Eq. (13) doesn’t hold}.

The following lemma characterizes the property of Lk
small.

Lemma D.11. Define uk ≜ wk,0−β1wk,−1

1−β1
(with w1,−1 ≜ w1,0). Then,

T∑
k=1

∣∣∣∣∣∣
∑

l∈Lk
small

∂lf(wk,0)(ul,k+1 − ul,k)

∣∣∣∣∣∣ ≤ C2

(
C5

T∑
k=1

η2k∥∇f(wk,0)∥+ C6 lnT + C7

)
,

where C2, C5, C6, and C7 are defined in Eq. (9).

Proof. By directly applying the definition of Lk
large and Lemma D.4, we have

1

n

∣∣∣∣∣∣
∑

l∈Lk
small

∂lf(wk,0)(ul,k+1 − ul,k)

∣∣∣∣∣∣
≤dC2ηk

(
C3ηk + C4

k−1∑
r=1

√
β2

(r−1)n
ηk−r

n−1∑
j=0

∥∇f(wk−r,j)∥ +C4n

k−1∑
r=1

√
β2

(r−1)n
ηk−r + ηkC4

(
n−1∑
p=0

∥∇f(wk,p)∥

))
.

29

Under review as a conference paper at ICLR 2024

Summing over k from 1 to t then leads to

1

n

T∑
k=1

∣∣∣∣∣∣
∑

l∈Lk
small

∂lf(wk,0)(ul,k+1 − ul,k)

∣∣∣∣∣∣
≤

T∑
k=1

dC2C3η
2
k + dC2C4

T∑
k=1

ηk

k−1∑
r=1

√
β2

(r−1)n
ηk−r

n−1∑
j=0

∥∇f(wk−r,j)∥+ C2C4n

T∑
k=1

ηk

k−1∑
r=1

√
β2

(r−1)n
ηk−r

+ C2C4

T∑
k=1

η2
k

n−1∑
p=0

∥∇f(wk,p)∥

≤
T∑

k=1

dC2C3η
2
k +

dC2C4

1−
√

βn
2

T−1∑
k=1

η2
k

n−1∑
j=0

∥∇f(wk,j)∥+
C2C4n

1−
√

βn
2

T−1∑
k=1

η2
k + C2C4

T∑
k=1

η2
k

n−1∑
p=0

∥∇f(wk,p)∥

≤

(
dC2C3 +

C2C4n

1−
√

βn
2

)
η2
1(1 + lnT) +

(
C2C4 +

dC2C4

1−
√

βn
2

)
T∑

k=1

η2
k

n−1∑
j=0

∥∇f(wk,j)∥,

where in the second inequality we exchange the sum order. By Lemma D.5, the above inequality
further leads to

T∑
k=1

∣∣∣∣∣∣
∑

l∈Lk
small

∂lf(wk,0)(ul,k+1 − ul,k)

∣∣∣∣∣∣
≤n

(
C2C4 +

dC2C4

1−
√

βn
2

)
T∑

k=1

η2
k

n−1∑
j=0

(
(1 + n

√
dC1η1L1

√
n)∥∇f(wk,0)∥+

(
nL0 + L1

√
n
√
D0

)
n
√
dC1ηk

)

+ n

(
dC2C3 +

C2C4n

1−
√

βn
2

)
η2
1(1 + lnT)

≤n2(1 + n
√
dC1η1L1

√
n)

(
C2C4 +

dC2C4

1−
√

βn
2

)
T∑

k=1

η2
k∥∇f(wk,0)∥+

(
dC2C3 +

C2C4n

1−
√

βn
2

)
η2
1(1 + lnT)

+ n

(
C2C4 +

dC2C4

1−
√

βn
2

)(
nL0 + L1

√
n
√
D0

)
n2

√
dC1

T∑
k=1

η3
k

≤n2(1 + n
√
dC1η1L1

√
n
√
D1)

(
C2C4 +

dC2C4

√
D1

1−
√

βn
2

)
T∑

k=1

η2
k∥∇f(wk,0)∥+

(
dC2C3 +

C2C4n
√
D1

1−
√

βn
2

)

× η2
1(1 + lnT) + 3n

(
C2C4 +

dC2C4

1−
√

βn
2

)(
nL0 + L1

√
n
√
D0

)
n2

√
dC1η

3
1 . (14)

By the notations in Eq. (9), the proof is completed.

The next lemma characterizes the property of Lk
large.

Lemma D.12. Define uk ≜ wk,0−β1wk,−1

1−β1
(with w1,−1 ≜ w1,0). We have

T∑
k=1

∑
l∈Lk

large

∂lf(wk,0)(ul,k+1 − ul,k)

≤−
T∑

k=1

∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ

+

T∑
k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

+

(
(C8 +

1

2
C5)

T∑
k=1

η2
k∥∇f(wk,0)∥+ (C9 +

1

2
C6) lnT + (C10 +

1

2
C7)

)
.

30

Under review as a conference paper at ICLR 2024

Proof. Compared to the proof of Lemma D.11, the proof of this lemma is more complicated. To
begin with, we provide a decomposition of uk+1 − uk. According to the definition of uk, we have

uk+1 − uk

=
(wk+1,0 − β1wk+1,−1)− (wk,0 − β1wk,−1)

1− β1

=
(wk+1,0 −wk,0)− β1(wk+1,−1 −wk,−1)

1− β1

=

∑n−1
i=0 (wk,i+1 −wk,i)− β1

∑n−1
i=0 (wk,i −wk,i−1)

1− β1

=
(wk+1,0 −wk+1,−1) + (1− β1)

∑n−2
i=0 (wk,i+1 −wk,i)− β1(wk,0 −wk,−1)

1− β1

(⋆)
= −

ηk√
νk,n−1

⊙mk,n−1 + (1− β1)
∑n−2

i=0
ηk√
νk,i

⊙mk,i − β1
ηk−1√

νk−1,n−1
⊙mk−1,n−1

1− β1

=− ηk√
νk,0

⊙
mk,n−1 + (1− β1)

∑n−2
i=0 mk,i − β1mk−1,n−1

1− β1
− ηk

((
1

√
νk,n−1

− 1
√
νk,0

)
⊙ mk,n−1

1− β1

+

n−2∑
i=0

(
1

√
νk,i

− 1
√
νk,0

)
⊙mk,i −

β1

1− β1

(
1

√
νk−1,n−1

− 1
√
νk,0

)
⊙mk−1,n−1

)

− β1

1− β1
(ηk−1 − ηk)

1
√
νk−1,n−1

⊙mk−1,n−1. (15)

Here equation (⋆) is due to a direct application of the update rule of wk,i. We then analyze the above
three terms respectively, namely, we define

a1
l ≜ − ηk√

νl,k,0

ml,k,n−1 + (1− β1)
∑n−2

i=0 ml,k,i − β1ml,k−1,n−1

1− β1
= − ηk√

νl,k,0

n−1∑
i=0

∂lfτk,i(wk,i),

a2
l ≜ −ηk

((
1

√
νl,k,n−1

− 1
√
νl,k,0

)
ml,k,n−1

1− β1
+

n−2∑
i=0

(
1

√
νl,k,i

− 1
√
νl,k,0

)
ml,k,i

− β1

1− β1

(
1

√
νl,k−1,n−1

− 1
√
νl,k,0

)
ml,k−1,n−1

)
,

a3
l ≜ − β1

1− β1
(ηk−1 − ηk)

1
√
νl,k−1,n−1

ml,k−1,n−1.

One can then easily observe that by Eq. (15),∑
l∈Lk

large

∂lf(wk,0)(ul,k+1−ul,k) =
∑

l∈Lk
large

∂lf(wk,0)a
1
l+

∑
l∈Lk

large

∂lf(wk,0)a
2
l+

∑
l∈Lk

large

∂lf(wk,0)a
3
l .

① Tackling Term
∑

l∈Lk
large

∂lf(wk,0)a
1
l :

We have∑
l∈Lk

large

∂lf(wk,0)a
1
l

=−
∑

l∈Lk
large

∂l
ηk√
νl,k,0

∂lf(wk,0)

(
n−1∑
i=0

∂lfτk,i(wk,0)

)
−

∑
l∈Lk

large

ηk√
νl,k,0

∂lf(wk,0)

(
n−1∑
i=0

(∂lfτk,i(wk,i)− ∂lfτk,i(wk,0))

)

=−
∑

l∈Lk
large

ηk√
νl,k,0

∂lf(wk,0)
2 −

∑
l∈Lk

large

ηk√
νl,k,0

∂lf(wk,0)

(
n−1∑
i=0

(∂lfτk,i(wk,i)− ∂lfτk,i(wk,0))

)
(⋆)
= −

∑
l∈Lk

large

ηk√
νl,k,0

∂lf(wk,0)
2 +O

(
η2
k

)
+O

(
η2
k∥∇f(wk,0)∥

)
,

31

Under review as a conference paper at ICLR 2024

where Eq. (⋆) is due to∣∣∣∣∣∣∣
∑

l∈Lk
large

ηk√
νl,k,0

∂lf(wk,0)

(
n−1∑
i=0

(∂lfτk,i(wk,i)− ∂lfτk,i(wk,0))

)∣∣∣∣∣∣∣
(∗)
≤ηk

√
2n2

βn
2

 ∑
l∈Lk

large

n−1∑
i=0

|∂lfτk,i(wk,i)− ∂lfτk,i(wk,0)|

≤ηk

√
2n2

βn
2

(
√
d

n−1∑
i=0

∥∇fτk,i(wk,i)−∇fτk,i(wk,0)∥

)
(◦)
≤ηk

√
2n2

βn
2

√
d

n−1∑
i=0

(L0 + L1∥∇fτk,i(wk,0)∥)∥wk,i −wk,0∥

≤ηk

√
2n2

βn
2

√
d(nL0 + L1

√
D1

√
n∥∇f(wk,0)∥+

√
nL1

√
D0)n

√
dC1ηk

(•)
≤

√
2n2

βn
2

d(n2L0 + n
√
nL1

√
D0)C1η

2
k + η2

kd

√
2n2

βn
2

L1

√
D1n

√
n∥∇f(wk,0)∥.

Here Eq. (∗) is due to Corollary D.9, Eq. (◦) is due to fi is (L0, L1)-smooth, ∀i, and Eq. (•) is due
to Lemma D.3.

② Tackling Term
∑

l∈Lk
large

∂lf(wk,0)a
2
l :

We have for any l ∈ Lmax,

|∂lf(wk,0)a
2
l |

≤ηk|∂lf(wk,0)|

(∣∣∣∣ 1
√
νl,k,n−1

− 1
√
νl,k,0

∣∣∣∣ |ml,k,n−1|
1− β1

+

n−2∑
i=0

∣∣∣∣ 1
√
νl,k,i

− 1
√
νl,k,0

∣∣∣∣ |ml,k,i|

− β1

1− β1

∣∣∣∣ 1
√
νl,k−1,n−1

+
1

√
νl,k,0

∣∣∣∣ |ml,k−1,n−1|
)

(⋆)

≤ηkg(β2)
|∂lf(wk,0)|√

νl,k,0

(
|ml,k,n−1|
1− β1

+

n−2∑
i=0

|ml,k,i|+
β1

1− β1
|ml,k−1,n−1|

)
(∗)
≤ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

νl,k,0

(
max
i∈[n]

|∂lfi(wk,0)|
)

+ η2kg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

(
n+

2
√
2β1

1− β1

)
C1(L0 + L1

√
D0)

√
d

+ η2kg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

n−1∑
j=0

∥∇f(wk,j)∥

+ ηkg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

k−1∑
t=1

ηk−t

n−1∑
j=0

βtn−1−j
1 ∥∇f(wk−t,j)∥,

where Inequality (⋆) is due to Corollary D.9, and g(β2) is defined in Lemma D.10 , and Inequality
(∗) is due to Lemma D.7, by which we have ∀i ∈ {−1, · · · , n− 1}

|ml,k,i| ≤ max
i′∈[n]

|∂lfi′(wk,0)|+

(
n+

2
√
2β1

1− β1

)
C1(L0 + L1

√
D0)

√
dηk + L1C1

√
D1ηk

n−1∑
j=0

∥∇f(wk,j)∥

+ L1C1

√
D1

k−1∑
t=1

ηk−t

n−1∑
j=0

βtn−1−j
1 ∥∇f(wk−t,j)∥.

32

Under review as a conference paper at ICLR 2024

Therefore, summing over Lk
large and k leads to

T∑
k=1

∣∣∣∣∣∣
∑

l∈Lk
large

∂lf(wk,0)a
2
l

∣∣∣∣∣∣
≤

T∑
k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

νl,k,0

(
max
i∈[n]

|∂lfi(wk,0)|
)

+

T∑
k=1

η2kg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

(
n+

2
√
2β1

1− β1

)
C1(L0 + L1

√
D0)d

√
d

+ dg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

T∑
k=1

η2k

n−1∑
j=0

∥∇f(wk,j)∥

+ dg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

T∑
k=1

ηk

k−1∑
t=1

ηk−t

n−1∑
j=0

β
(t−1)n
1 ∥∇f(wk−t,j)∥

≤
T∑

k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

νl,k,0

(
max
i∈[n]

|∂lfi(wk,0)|
)

+ g(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

(
n+

2
√
2β1

1− β1

)
C1(L0 + L1

√
D0)d

√
dη1(1 + lnT)

+ dg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

(
1 +

1

1− βn
2

) T∑
k=1

η2k

n−1∑
j=0

∥∇f(wk,j)∥

(⋆)

≤
T∑

k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

νl,k,0

(
max
i∈[n]

|∂lfi(wk,0)|
)

+ g(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

(
n+

2
√
2β1

1− β1

)
C1(L0 + L1

√
D0)d

√
dη1(1 + lnT)

+ dg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

(
1 +

1

1− βn
2

)

·
T∑

k=1

η2k

n−1∑
j=0

(
(1 + n

√
dC1η1L1

√
n
√

D1)∥∇f(wk,0)∥+
(
nL0 + L1

√
n
√
D0

)
n
√
dC1ηk

)

≤
T∑

k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

νl,k,0

(
max
i∈[n]

|∂lfi(wk,0)|
)

+ g(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

(
n+

2
√
2β1

1− β1

)
C1(L0 + L1

√
D0)d

√
dη21(1 + lnT)

+ dg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

(
1 +

1

1− βn
2

)
(n+ n

5
2

√
dC1η1L1

√
D1)

T∑
k=1

η2k∥∇f(wk,0)∥

+ 3dg(β2)

(
n− 1 +

1 + β1

1− β1

) √
2n

β
n
2
2

L1C1

√
D1

(
1 +

1

1− βn
2

)
n
(
nL0 + L1

√
n
√
D0

)
n
√
dC1η

3
1 .

where Inequality (⋆) is due to Lemma D.5.

③ Tackling Term
∑

l∈Lk
large

∂lf(wk,0)a
3
l :

33

Under review as a conference paper at ICLR 2024

For any l ∈ Lk
large,

|∂lf(wk,0)a
3
l | ≤

β1

1− β1
|ηk−1 − ηk|

1
√
νl,k−1,n−1

|ml,k−1,n−1||∂lf(wk,0)|

≤ β1η1
(1− β1)

1√
k
√
k − 1(

√
k +

√
k − 1)

C1|∂lf(wk,0)|

=
β1ηk

(1− β1)

1
√
k − 1(

√
k +

√
k − 1)

C1|∂lf(wk,0)|.

Summing over k and Lk
large then leads to

T∑
k=1

∑
l∈Lk

large

|∂lf(wk,0)a
3
l | ≤

β1

(1− β1)

T∑
k=1

∑
l∈Lk

large

ηk√
k − 1(

√
k +

√
k − 1)

C1|∂lf(wk,0)|

≤2
β1

(1− β1)η1

√
dC1

T∑
k=1

η2
k∥∇f(wk,0)∥.

Put ①, ②, and ③ together and applying the notations in Eq. (9), we then have

T∑
k=1

∑
l∈Lk

large

∂lf(wk,0)(ul,k+1 − ul,k)

≤−
T∑

k=1

∑
l∈Lk

large

ηk√
νl,k,0

∂lf(wk,0)
2 +

T∑
k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

νl,k,0

(
max
i∈[n]

|∂lfi(wk,0)|
)

+ C8

T∑
k=1

η2
k∥∇f(wk,0)∥+ C9 lnT + C10. (16)

We then focus on the first two terms of the RHS of the above inequality. Specifically, we have ∀k ≥ 1,

∑
l∈Lk

large

ηk∂lf(wk,0)
2

√
νl,k,0 + ξ

−
∑

l∈Lk
large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√
νl,k,0 + ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

(⋆)

≥
∑

l∈Lk
large

ηk∂lf(wk,0)
2

√
νl,k,0 + ξ

−
∑

l∈Lk
large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥
∑

l∈Lk
large

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
−

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

(◦)
=
∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
−

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

− ndηk
2

(
C3ηk + C4

k−1∑
r=1

√
β2

(r−1)n
ηk−r

n−1∑
j=0

∥∇f(wk−r,j)∥+ C4n

k−1∑
r=1

√
β2

(r−1)n
ηk−r + ηkC4

n−1∑
j=0

∥∇f(wk,j)∥

)
,

where Inequality (⋆) is due to Corollary D.9 and Equality (◦) is due to

∑
l∈Lk

small

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
≤

∑
l∈Lk

small

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
≤ n

2
ηk

∑
l∈Lk

small

max
i∈[n]

|∂lfi(wk,0)|

≤ndηk
2

(
C3ηk + C4

k−1∑
r=1

√
β2

(r−1)n
ηk−r

n−1∑
j=0

∥∇f(wk−r,j)∥+ C4n

k−1∑
r=1

√
β2

(r−1)n
ηk−r + ηkC4

n−1∑
j=0

∥∇f(wk,j)∥

)
.

34

Under review as a conference paper at ICLR 2024

Summing the both sides of the above inequality then leads to
T∑

k=1

∑
l∈Lk

large

ηk∂lf(wk,0)
2

√
νl,k,0 + ξ

−
T∑

k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√
νl,k,0 + ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥
T∑

k=1

∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ

−
T∑

k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

−
T∑

k=1

ndηk
2

(
C3ηk + C4

k−1∑
r=1

√
β2

(r−1)n
ηk−r

n−1∑
j=0

∥∇f(wk−r,j)∥+ C4n

k−1∑
r=1

√
β2

(r−1)n
ηk−r + ηkC4

n−1∑
j=0

∥∇f(wk,j)∥

)

≥
T∑

k=1

∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ

−
T∑

k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

− 1

2

(
C5

T∑
k=1

η2
k∥∇f(wk,0)∥+ C6 lnT + C7

)
.

Applying the above inequality back to Eq. (16), the proof is completed.

The following lemma will be useful when translating ⟨∇f(wk,0),
1√
νk,0

⊙ ∇f(wk,0)⟩ to

min
{

∥∇f(wk,0)∥√
D1

,
∥∇f(wk,0)∥2

√
D0

}
.

Lemma D.13. Let all conditions in Theorem 4.1 hold. Then, either there exists a iteration k ∈ [T],
such that either

∥∇f(wk,0)∥ ≤ 2
√
d(2

√
2 + 1)

√
D0g(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

,

or for all iteration k ∈ [1, T], we have that∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
.

Proof. To begin with, we have∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

(⋆)

≥
∑
l∈[d]

ηk∂lf(wk,0)
2

2
√

D1∥∇f(wk,0)∥2 +D0 + ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

=
ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 +D0 + ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)
,

where Inequality (⋆) is due to that

max
i∈[n]

|∂lfi(wk,0)| =
√

max
i∈[n]

|∂lfi(wk,0)|2

≤

√√√√∑
i∈[n]

d∑
l′=1

|∂l′fi(wk,0)|2 =

√∑
i∈[n]

∥∇fi(wk,0)∥2 ≤
√
D1∥∇f(wk,0)∥2 +D0.

35

Under review as a conference paper at ICLR 2024

We respectively consider the case ξ ≤
√
D0 and ξ >

√
D0.

Case I: ξ ≤
√
D0. In this case, we have that

ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 +D0 + ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 +D0 +
√
D0

−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|

(
max
i∈[n]

|∂lfi(wk,0)|
)

=
ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 +D0 +
√
D0

−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

|∂lf(wk,0)|

≥ ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 +D0 +
√
D0

−
√
dηkg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

∥∇f(wk,0)∥.

We further discuss the case depending on whether ∥∇f(wk,0)∥2 ≤ D0

D1
or not.

Case I.1: ∥∇f(wk,0)∥2 ≤ D0

D1
. In this case, the last line of the above equations can be further lower

bounded by

ηk∥∇f(wk,0)∥2

2
√
D1∥∇f(wk,0)∥2 +D0 +

√
D0

−
√
dηkg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

∥∇f(wk,0)∥

≥ηk∥∇f(wk,0)∥2

(2
√
2 + 1)

√
D0

−
√
dηkg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

∥∇f(wk,0)∥

=ηk

(
∥∇f(wk,0)∥

(2
√
2 + 1)

√
D0

−
√
dg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

)
∥∇f(wk,0)∥

Case I.2: ∥∇f(wk,0)∥2 > D0

D1
.

ηk∥∇f(wk,0)∥2

2
√
D1∥∇f(wk,0)∥2 +D0 +

√
D0

−
√
dηkg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

∥∇f(wk,0)∥

≥ ηk∥∇f(wk,0)∥2

(2
√
2 + 1)

√
D1∥∇f(wk,0)∥

−
√
dηkg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

∥∇f(wk,0)∥

=ηk

(
1

(2
√
2 + 1)

√
D1

−
√
dg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

)
∥∇f(wk,0)∥

(∗)
≥ηk

1

2(2
√
2 + 1)

√
D1

∥∇f(wk,0)∥,

where Inequality (∗) is due to the constraint on β2.

Therefore, we have either (1). there exists a iteration k ∈ [T], such that

∥∇f(wk,0)∥ ≤ 2
√
d(2

√
2 + 1)

√
D0g(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

,

or (2).for all k ∈ [1, T],∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2√

D0

}
.

36

Under review as a conference paper at ICLR 2024

Case II: ξ >
√
D0. In this case, we have that

ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 +D0 + ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 + ξ2 + ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)
.

Similar as Case I, we further divides the case regarding the value of ∥∇f(wk,0)∥.

Case II.1: D1∥∇f(wk,0)∥2 ≤ ξ2. In this case, we have
ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 + ξ2 + ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ηk∥∇f(wk,0)∥2

(2
√
2 + 1)ξ

−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|

ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ηk∥∇f(wk,0)∥2

(2
√
2 + 1)ξ

− ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
∥∇f(wk,0)∥

ξ

√
D1∥∇f(wk,0)∥2 +D0

=
ηk∥∇f(wk,0)∥

ξ

(
∥∇f(wk,0)∥
2
√
2 + 1

− g(β2)

(
n− 1 +

1 + β1

1− β1

)√
D1∥∇f(wk,0)∥2 +D0

)
.

Case II.2: D1∥∇f(wk,0)∥2 > ξ2. This case is quite similar to Case I.2, and we have
ηk∥∇f(wk,0)∥2

2
√

D1∥∇f(wk,0)∥2 + ξ2 + ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ ηk∥∇f(wk,0)∥2

(2
√
2 + 1)

√
D1∥∇f(wk,0)∥

−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ ηk∥∇f(wk,0)∥
(2
√
2 + 1)

√
D1

−
√
d

√
2n

βn
2

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
∥∇f(wk,0)∥

=ηk

(
1

(2
√
2 + 1)

√
D1

−
√
dg(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

)
∥∇f(wk,0)∥

≥ηk
1

2(2
√
2 + 1)

√
D1

∥∇f(wk,0)∥.

Therefore, we have either (1). there exists a iteration k ∈ [T], such that

∥∇f(wk,0)∥ ≤ 2
√
d(2

√
2 + 1)

√
D0g(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

,

or (2). for all k ∈ [1, T],∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ

}
.

As a conclusion of Case I and Case II, we have that either there exists a iteration k ∈ [T], such that

∥∇f(wk,0)∥ ≤ 2
√
d(2

√
2 + 1)

√
D0g(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

,

or for all iteration k ∈ [1, T], we have that∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ
−
∑
l∈[d]

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
.

37

Under review as a conference paper at ICLR 2024

The proof is completed.

D.4 PROOF OF THEOREM 4.1

Proof of Theorem 4.1. We start by the descent lemma of f(uk). Specifically, by Lemma D.6, we
have

f(uk+1)

≤f(uk) + ⟨∇f(wk,0),uk+1 − uk⟩+
nL0 + L1

∑
i∈[n] ∥∇fi(wk,0)∥
2

(∥wk,0 − uk∥+ ∥wk,0 − uk+1∥)∥uk+1 − uk∥

≤f(uk) + ⟨∇f(wk,0),uk+1 − uk⟩+
nL0 + L1

∑
i∈[n] ∥∇fi(wk,0)∥
2

3C2
2dη

2
k

≤f(uk) + ⟨∇f(wk,0),uk+1 − uk⟩+
nL0 + L1

√
n
√∑

i∈[n] ∥∇fi(wk,0)∥2

2
3C2

2dη
2
k

≤f(uk) + ⟨∇f(wk,0),uk+1 − uk⟩+
nL0 + L1

√
n
√
D0 +D1∥∇f(wk,0)∥2

2
3C2

2dη
2
k

≤f(uk) + ⟨∇f(wk,0),uk+1 − uk⟩+
nL0 + L1

√
n(
√
D0 +

√
D1∥∇f(wk,0)∥)

2
3C2

2dη
2
k

(∗)
=f(uk) +

∑
l∈Lk

large

∂lf(wk,0)(ul,k+1 − ul,k) +
∑

l∈Lk
small

∂lf(wk,0)(ul,k+1 − ul,k)

+
nL0 + L1

√
n
√
D0

2
3C2

2dη
2
k +

3L1
√
n
√
D1C

2
2dη

2
k

2
∥∇f(wk,0)∥.

Summing the above inequality over k from 1 to T then leads to

f(uT+1) ≤f(u1) +

T∑
k=1

∑
l∈Lk

large

∂lf(wk,0)(ul,k+1 − ul,k) +

T∑
k=1

∑
l∈Lk

small

∂lf(wk,0)(ul,k+1 − ul,k)

+

T∑
k=1

nL0 + L1
√
n
√
D0

2
3C2

2dη
2
k +

T∑
k=1

3L1
√
n
√
D1C

2
2dη

2
k

2
∥∇f(wk,0)∥.

Bounding the second term and the third term of the RHS of the above inequality respectively by
Lemma D.12 and Lemma D.11, we then arrive at

f(uT+1) ≤f(u1)−
T∑

k=1

∑
l∈[d]

ηk∂lf(wk,0)
2

2maxi∈[n] |∂lfi(wk,0)|+ ξ

+

T∑
k=1

∑
l∈Lk

large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√

βn
2

2n
maxi∈[n] |∂lfi(wk,0)|+ ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

+

(
(C8 + (

1

2
+ C2)C5)

T∑
k=1

η2
k∥∇f(wk,0)∥+ (C9 + (

1

2
+ C2)C6) lnT + (C10 + (

1

2
+ C2)C7)

)

+

T∑
k=1

nL0 + L1
√
n
√
D0

2
3C2

2dη
2
k +

T∑
k=1

3L1
√
n
√
D1C

2
2dη

2
k

2
∥∇f(wk,0)∥.

Suppose now there does not exist an iteration k ∈ [T], such that

∥∇f(wk,0)∥ ≤ 2
√
d(2

√
2 + 1)

√
D0g(β2)

(
n− 1 +

1 + β1

1− β1

)√
2n

βn
2

,

38

Under review as a conference paper at ICLR 2024

since otherwise, the proof has been completed. By Lemma D.13, we then have

∑
l∈Lk

large

ηk∂lf(wk,0)
2

√
νl,k,0 + ξ

−
∑

l∈Lk
large

ηkg(β2)

(
n− 1 +

1 + β1

1− β1

)
|∂lf(wk,0)|√
νl,k,0 + ξ

(
max
i∈[n]

|∂lfi(wk,0)|
)

≥ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
.

Therefore, we have

f(uT+1)− f(u1)

≤−
T∑

k=1

ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
+

(
(
1

2
+ C2)C5 + C8

) T∑
k=1

η2
k∥∇f(wk,0)∥

+

(
(
1

2
+ C2)C6 + C9

)
lnT +

(
(
1

2
+ C2)C7 + C10

)
+

T∑
k=1

nL0 + L1
√
n
√
D0

2
3C2

2dη
2
k +

T∑
k=1

3L1
√
n
√
D1C

2
2dη

2
k

2
∥∇f(wk,0)∥

≤ −
T∑

k=1

ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
+

(
(
1

2
+ C2)C5 + C8 +

3L1
√
n
√
D1C

2
2d

2

) T∑
k=1

η2
k∥∇f(wk,0)∥

+

(
(
1

2
+ C2)C6 + C9 +

nL0 + L1
√
n
√
D0

2
3C2

2dη
2
1

)
lnT +

(
(
1

2
+ C2)C7 + C10 +

nL0 + L1
√
n
√
D0

2
3C2

2dη
2
1

)
≤

T∑
k=1

ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
+ C11

T∑
k=1

η2
k∥∇f(wk,0)∥+ C12 lnT + C13,

where C11, C12, and C13 is defined as

C11 ≜ (
1

2
+ C2)C5 + C8 +

3L1
√
n
√
D1C

2
2d

2
,

C12 ≜ (
1

2
+ C2)C6 + C9 +

nL0 + L1
√
n
√
D0

2
3C2

2dη
2
1 ,

C13 ≜ (
1

2
+ C2)C7 + C10 +

nL0 + L1
√
n
√
D0

2
3C2

2dη
2
1 .

On the other hand, as for ∀k ∈ [T],

η2k∥∇f(wk,0)∥ ≤ 1

4

√
D0 + ξ√
D1

η2k +

√
D1√

D0 + ξ
η2k∥∇f(wk,0)∥2,

we have that

η2k∥∇f(wk,0)∥ ≤1

4

√
D0 + ξ√
D1

η2k + η2k min

{
∥∇f(wk,0)∥,

√
D1√

D0 + ξ
∥∇f(wk,0)∥2

}
=
1

4

√
D0 + ξ√
D1

η2k +
√

D1η
2
k min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2√

D0 + ξ

}
,

39

Under review as a conference paper at ICLR 2024

and thus,
f(uT+1)− f(u1)

≤−
T∑

k=1

ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
+ C11

T∑
k=1

η2
k∥∇f(wk,0)∥+ C12 lnT + C13

≤−
T∑

k=1

ηk
1

2(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
+

√
D0 + ξ

4
√
D1

C11

T∑
k=1

η2
k + C12 lnT + C13

+
√
D1C11

T∑
k=1

η2
k min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}

≤−
T∑

k=1

ηk

(
1

2(2
√
2 + 1)

−
√
D1C11ηk

)
min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
+

(
C12 +

√
D0 + ξ

4
√
D1

C11η
2
1

)
lnT

+

(
C13 +

√
D0 + ξ

4
√
D1

C11η
2
1

)
≤−

T∑
k=1

ηk
1

4(2
√
2 + 1)

min

{
∥∇f(wk,0)∥√

D1

,
∥∇f(wk,0)∥2

ξ +
√
D0

}
+

(
C12 +

√
D0 + ξ

4
√
D1

C11η
2
1

)
lnT

+

(
C13 +

√
D0 + ξ

4
√
D1

C11η
2
1

)
.

Dividing
∑T

k=1 ηk to the both sides of the above inequality, the proof is completed.

E EXPERIMENT DETAILS

This section collects experiments and their corresponding settings, and is arranged as follows: to
begin with, we show that Adam works well under the different reshuffling order; we then provide the
experiment settings of Figure 1.

E.1 ADAM WORKS WELL UNDER DIFFERENT RESHUFFLING ORDER

We run Adam on ResNet 110 for CIFAR 10 across different random seeds and plot the 10-run mean
and variance in Figure 3. One can observe that the performance of Adam is robust with respect to
random seed, and support Theorem 4.1 in terms of trajectory-wise convergence. The experiment is
based on this repo, where we adopt the default hyperparameters settings.

Figure 3: Performance of Adam with different shuffling orders. We respectively plot the training loss
and the training accuracy of Adam together with their variances over 10 runs with different random
shuffling order. The result indicate the performance of Adam is robust w.r.t. the shuffling order.

E.2 LOCAL SMOOTHNESS VS. GRADIENT NORM

In this section, we provide the models and hyperparameter settings of Figures 1. We will also illustrate
how we evaluate the local smoothness.

40

https://github.com/akamaster/pytorch_resnet_cifar10

Under review as a conference paper at ICLR 2024

Models and hyper-parameter settings in Figures 1. In Figure 1, we use exactly the same setting as
Vaswani et al. (2017) on WMT 2014 dataset, based on this repo.

How we evaluate the local smoothness. We use the same method as Zhang et al. (2019a). Specifi-
cally, with a finite-difference step α, we calculate the smoothness at wk as

local smoothness = max
γ∈{α,2α,··· ,1}

∥∇f(wk + γ(wk+1 −wk))−∇f(wk)∥
γ∥wk+1 −wk∥

.

41

https://github.com/bkoch4142/attention-is-all-you-need-paper

	Introduction
	Related works
	Preliminaries
	 Adam Converges under the (L0,L1)-smooth condition
	Proof sketch of Theorem 4.1
	Comparison Between Adam and SGD
	Conclusions and Future directions
	Additional Related Works
	Additional discussions
	Restatement of existing lower bound of SGD
	Comparisons of optimizers over the fine-tuning task
	Advantage of Adam over the GD/SGD with gradient clipping
	Insight for practitioners

	Proof of Theorem 6.1
	Proof of Theorem 4.1
	Notations
	Restate Theorem 4.1
	Auxiliary Lemmas
	Proof of Theorem 4.1

	Experiment Details
	Adam works well under different reshuffling order
	Local smoothness vs. gradient norm

