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ABSTRACT

This paper examines the phenomenon of probabilistic robustness overestima-
tion in TRADES, a prominent adversarial training method. Our study reveals
that TRADES sometimes yields disproportionately high PGD validation accuracy
compared to the AutoAttack testing accuracy in the multiclass classification task.
This discrepancy highlights a significant overestimation of robustness for these in-
stances, potentially linked to gradient masking. We further analyze the parameters
contributing to unstable models that lead to overestimation. Our findings indicate
that smaller batch sizes, lower beta values (which control the weight of the robust
loss term in TRADES), larger learning rate, and higher class complexity (e.g.,
CIFAR-100 versus CIFAR-10) are associated with an increased likelihood of ro-
bustness overestimation. By examining metrics such as the First-Order Stationary
Condition (FOSC), inner-maximization, and gradient information, we identify the
underlying cause of this phenomenon as gradient masking and provide insights
into it. Furthermore, our experiments show that certain unstable training instances
may return to a state without robust overestimation, inspiring our attempts at a so-
lution. In addition to adjusting parameter settings to reduce instability or retrain-
ing when overestimation occurs, we recommend incorporating Gaussian noise in
inputs when the FOSC score exceed the threshold. This method aims to mitigate
robustness overestimation of TRADES and other similar methods at its source,
ensuring more reliable representation of adversarial robustness during evaluation.

1 INTRODUCTION

Adversarial robustness has emerged as a critical measure of security in machine learning models,
particularly for deep neural networks. These models, while achieving state-of-the-art accuracy on
various tasks, often exhibit vulnerabilities to adversarial examples—inputs specifically crafted to
cause the model to make errors (Szegedy et al., 2014). Adversarial training (Goodfellow et al.,
2015; Madry et al., 2018), a method that involves training a model on adversarial examples, has
been developed as a primary defense mechanism to enhance adversarial robustness.

In a more recent development, Zhang et al. (2019) proposed a novel adversarial training method,
TRADES (TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization). Consider a
data distribution D over pairs of examples x ∈ Rd and labels y ∈ [k]. As usual, fθ represents
the classifier, CE is the cross-entropy (CE) loss, and KL is the Kullback-Leibler (KL) divergence.
For a set of allowed perturbations S ⊆ Rd that formalizes the manipulative power of the adversary,
TRADES has the loss minimization defined as:

min
f

E(x,y)∼D

{
CE(f(x), y) + 1

λ
max
δ∈S
KL(fθ(x), fθ(x+ δ))

}
. (1)

Within this approach, the inner maximization seeks to increase the KL-divergence between the logits
generated from the original and adversarial examples, while the outer minimization aims to balance
accuracy and robustness by utilizing a hyperparameter λ and adjusting the trade-off between the per-
formance on natural and adversarial examples. This approach has been successful and is commonly
used today as one of the bases for adversarial training, often serving as a baseline.

However, the loss design of TRADES is similar to the logit pairing method (Kannan et al., 2018),
which is an abandoned approach due to its potential to cause gradient masking (Athalye et al., 2018)
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(a typical flaw in defense methods that appear to fool gradient-based attacks but do not actually
make the model more robust). In the past, many analyses (Mosbach et al., 2018; Engstrom et al.,
2018; Lee et al., 2021) have been conducted on this issue, but none of the works have experimented
on TRADES specifically. As a result, TRADES is still trusted and widely used today.

Through our study, under certain hyperparameter settings in multi-class classification tasks, we
found that some training instances may lead to robustness overestimation, where AutoAttack (Croce
& Hein, 2020b) test accuracy is significantly lower than PGD-10 (Madry et al., 2018) validation
accuracy. After analyzing the loss landscapes and the convergence capability of multi-step adver-
sarial examples of these instances, we observed the occurrence of gradient masking, a phenomenon
where the adversarial robustness of a model is inaccurately gauged, potentially compromising the
effectiveness of the defense in practical scenarios.

Moreover, by examining the inner maximization and batch-level gradient information, we experi-
mentally explained the reasons behind this phenomenon. We also found that robustness overesti-
mation may occasionally end by the model itself, returning to stability —a phenomenon we refer to
as “self-healing”. Inspired by some of the characteristics of self-healing, we proposed an actively
healing solution by simultaneously quantifying the degree of gradient masking and adding Gaus-
sian noise in inputs if needed, which allows errors during training to be detected and corrected in
real-time without the need for retraining. The contributions of this paper are as follows.

1. We identify the adversarial robustness overestimation and instability in TRADES and the
impact of hyperparameters in multi-class classification. By examining the loss landscape
and the convergence capability of adversarial examples, we interpret this issue as gradient
masking.

2. We analyze inner-maximization metrics and gradient information to elucidate the underly-
ing causes of the observed phenomena and propose methodologies to address these instabil-
ities. Additionally, we discover that some training instances have the potential to self-heal
and resolve the issues mentioned above.

3. We propose a healing solution that enables real-time examination and correction of poten-
tial instability during TRADES training.

Our findings aim to refine the understanding and application of current adversarial training frame-
works, paving the way for more secure machine learning deployments.

2 RELATED WORK

To defend against various adversarial attacks (Carlini & Wagner, 2017; Madry et al., 2018; Croce &
Hein, 2020a; Andriushchenko et al., 2020; Croce & Hein, 2020b), adversarial training (Goodfellow
et al., 2015; Madry et al., 2018) has been demonstrated to be effective in enhancing the robust-
ness with AutoAttack (Croce & Hein, 2020b) serving as a reliable evaluation method. (Croce et al.,
2021) Adversarial training comes in different variants, including PGD-AT (Madry et al., 2018), ALP
(Kannan et al., 2018), and LSQ (Shafahi et al., 2019), MMA (Ding et al., 2020), among others. On
the other hand, Tsipras et al. (2019); Zhang et al. (2019) have identified a trade-off between robust-
ness and accuracy, a phenomenon well-explained in theoretical aspects. Based on this, Zhang et al.
(2019) developed TRADES, which currently serves as a classical baseline in adversarial training.
Then, subsequent works include Wang et al. (2020); Zhang et al. (2020); Blum et al. (2020); Jin
et al. (2022; 2023) have improved upon TRADES and achieved promising results.

However, in adversarial training, logit pairing methods (such as the previously mentioned ALP
(Kannan et al., 2018) and LSQ (Shafahi et al., 2019)) have been analyzed as unreliable because
they lead to robustness overestimation. (Mosbach et al., 2018; Engstrom et al., 2018; Lee et al.,
2021) This typically arises from gradient masking (or obfuscated gradients) (Athalye et al., 2018;
Goodfellow, 2018; Boenisch et al., 2021; B.S. et al., 2019; Ma et al., 2023), which results in black-
box attacks performing unexpectedly better than white-box attacks. This is unacceptable because
the model does not provide genuinely reliable robustness. Therefore, for a more comprehensive
robustness evaluation, in addition to using different attacks for testing, directly quantifying (Wang
et al., 2019; Liu et al., 2020; Lee et al., 2021) or visualizing (Li et al., 2018; Liu et al., 2020) the
relationship between the testing model and adversarial examples is also a good approach.
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3 EXPERIMENTAL METHODS AND SETTINGS

3.1 RELEVANT HYPERPARMETERS

We identify several key hyperparameters that impact instability, which will be discussed in detail in
Section 4.1. These are listed here in advance: (1) β (referred to as 1

λ in Equation 1), (2) batch size,
and (3) learning rate. To better analyze the phenomenon, unless otherwise specified, our default
setting is β = 3, batch size = 256, and learning rate = 0.1. Also, the complexity of the dataset may
also influence the results, with CIFAR-100 being used as the default. (The above setting is relatively
reasonable and similar to (Zhang et al., 2019; Pang et al., 2021; Wu et al., 2024)) In addition, other
experimental settings are provided in Appendix B.

3.2 EVALUATION METHODOS

Adversarial Attacks To measure the model’s robustness, the most direct approach is to use adver-
sarial attacks to test each sample and obtain the robust accuracy. Generally, Projected Gradient De-
scent (PGD) (Madry et al., 2018), a well-known and highly effective white-box attack, is frequently
used for validation to select checkpoints. Additionally, for more reliable robustness evaluation, Au-
toAttack (Croce & Hein, 2020b) has become the mainstream benchmark method. It combines four
different attacks: APGD-CE (Croce & Hein, 2020b), APGD-DLR (Croce & Hein, 2020b), FAB
(Croce & Hein, 2020a), and Square Attack (Andriushchenko et al., 2020). Among these, Square
Attack is of particular interest, as it is a black-box attack that is highly relevant in identifying the
presence of gradient masking.

First-Order Stationary Condition (FOSC) To measure the degree of gradient masking, we utilize
FOSC (Wang et al., 2019) to assess the convergence capability of multi-step adversarial examples.
Suppose we have a k-step adversarial example xk, its FOCS is defined as:

FOSC(xk) = max
δ∈S

〈
x+ δ − xk,∇xℓ(x

k)
〉
, (2)

where ℓ(xk) = CE(fθ(x), y) denotes the loss of the attacker. A smaller FOSC value indicates
stronger attack convergence capability, hence a lower level of gradient masking.

Step-wise Gradient Cosine Similarity (SGCS) Another metric we refer to is SGCS Lee et al.
(2021), which can also be used to compare the convergence stability. For the same k-step adversarial
example xk, let xi be the resultant example from the i-th step of the attack, we have:

K = {(i, j) | i, j ∈ {0, 1, . . . , k − 1}, i ̸= j},

g(xi) = sign(∇xiℓ(xi)),

SGCS(xk) = E(x,y)∼D

[
1

k(k − 1)

∑
(i,j)∈K

CosSim(g(xi), g(xj))

]
,

(3)

where CosSim(g(xi), g(xj)) denotes the cosine similarity of the adversarial example at different
steps. SGCS is the alignment of gradients for a multi-step adversarial example, which indicates a
higher degree of gradient masking if the value is smaller.

4 IDENTIFYING ROBUSTNESS OVERESTIMATION AND GRADIENT MASKING

4.1 IDENTIFYING ROBUSTNESS OVERESTIMATION

Motivated by the need to assess the reliability of TRADES, we conduct robust evaluations using
different attacks. However, we discover that, under identical configurations, two distinct instances
initialized with different random seeds can exhibit significant performance variation. We use PGD-
10 during validation to select the best checkpoint and perform a more rigorous evaluation at test
time using the more reliable AutoAttack. The results (Table 1) show that robustness overestimation
probabilistically occurs in certain instances, where the PGD-10 validation accuracy is significantly

3
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Clean PGD-10 AutoAttack APGD-CE APGD-DLR FAB Square
Regular 0.5363 0.2441 0.2027 0.2393 0.2128 0.2167 0.2426
Unstable 0.5593 0.2872 0.1042 0.1924 0.1885 0.1920 0.1215

Table 1: Under the same default configuration (CIFAR-100, β = 3, batch size = 256, learning rate =
0.1), with different random seeds, some training instances lead to robustness overestimation, where
PGD-10 accuracy is significantly higher than the more reliable AutoAttack. We refer to these in-
stances as ”Unstable” cases, in contrast to the ”Regular” cases, which exhibit stable and expected
behavior.

Learning Rate = 0.1 Batch Size = 128
β \ batchsize 128 256 512 β \ Learning Rate 0.01 0.05 0.1

1 10/10 10/10 10/10 1 10/10 10/10 10/10
3 10/10 7/10 0/10 3 0/10 10/10 10/10
6 1/10 0/10 0/10 6 0/10 1/10 1/10

Table 2: Probability of unstable cases w.r.t. the influential hyperparameters. For each set of param-
eters, we perform training 10 times with random seeds to identify groups that may exhibit gradient
masking, which are identified when the PGD-10 (white-box) accuracy is significantly higher than
the Square Attack (black-box) accuracy.(≥ 8%).

higher than the AutoAttack test accuracy. The main contributor to this discrepancy is Square Attack
within AutoAttack, as we find that the black-box attack (Square Attack) outperforms the white-
box attack (PGD), indicating the presence of gradient masking as the primary cause of the
anomaly. For future reference, we refer to such anomalous cases as ”Unstable” cases, highlighting
that TRADES may unexpectedly induce gradient masking. Analyzing the causes and resolving this
issue is the primary focus of this work.

In the preceding empirical observations, we identify that robustness overestimation is not uniformly
present across all training instances, even when hyperparameters remain constant. This variability
highlights the need for a deeper examination of the factors contributing to this phenomenon’s in-
stability. Therefore, we begin by exploring the hyperparameters (Table 2)that may influence this
instability and find that β (the coefficient regulating the trade-off between natural and adversarial
loss), batch size, and learning rate all have a significant impact. We discover that smaller values of β,
smaller batch sizes, larger learning rates, and higher class complexity of the datasets (see Appendix
C) exhibit a positive correlation with increased instability. In addition, the unstable cases can still
occur when applying learning rate scheduling (see Appendix D).

4.2 EXPLORING THE INSTABILITY OF GRADIENT MASKING

To more clearly depict gradient masking in unstable cases, we plot the data loss landscapes in Fig-
ure 1 from the corresponding checkpoints. Typically, more robust models tend to have smoother
loss surfaces, whereas less robust models exhibit more jagged landscapes (Chen et al., 2021). We
find that checkpoints with an overestimated robust accuracy tend to correspond to these jagged loss
landscapes, which supports that unstable cases obtain less robust representations, thereby leading to
gradient masking.

We support our perspective by utilizing FOSC (Wang et al., 2019) and SGCS (Lee et al., 2021)
(described in Section 3.2). These metrics represent values that measure the degree of adversar-
ial convergence and can be used to assess the ruggedness of the loss landscape. As depicted in
Figure 2, one can observe that the difference in PGD-10 accuracy between the two cases is not
significant. However, both FOSC and SGCS in the unstable case “simultaneously” show a sharp
change, indicating a substantial loss of robustness and the occurrence of gradient masking, which
results in the PGD attacker struggling to find adversarial examples. We also provide a theoretical
explanation of the relationship between FOSC and SGCS in Appendix E.
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Figure 1: Comparison of the data loss landscapes for regular and unstable cases under the same
configuration. Following the same setting of Wu et al. (2024); Engstrom et al. (2018); Chen et al.
(2021), we plot the loss landscape function z = loss(x · r1 + y · r2), where r1 = sign(∇if(i))
(i is the input data) and r2 ∼ Rademacher(0.5). The x and y axes represent the magnitude of the
perturbation added in each direction and the z axis represents the loss. One can observe that the loss
landscape of the unstable case is highly rugged, which is not expected for a robust model.

(a) Regular (b) Unstable

Figure 2: Comparison between the FOSC, SGCS, and PGD-10 validation accuracy. Under the same
configuration but with different seeds, the values for the regular case are displayed in (a), while
the unstable case is shown in (b). Note that for clearer visualization, we scaled FOSC up by 10.
Although the PGD-10 validation accuracy shows only slight fluctuations, both FOSC and SGCS
exhibit significant changes within the same epoch, indicating that we can indeed observe gradient
masking through this relation.

5 ANALYZING AND INTERPRETING THE INSTABILITY

In this section, we analyze robustness overestimation and instability from three different perspec-
tives: 1) inner maximization, 2) gradient information, and 3) self-healing. Through this analysis,
we aim to understand the causes of instability and explore potential solutions. Also, from this point
onward, we use the same seed of unstable instance as default settings in Figure 2 to better explain
the instability (though this does not imply that these explanations are incidental). Additionally, we
now focus on FOSC as a more effective tool for detecting unstable cases.

5
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Figure 3: Relationship between FOSC and the gap between the clean training accuracy and ad-
versarial training accuracy. Note that adversarial training accuracy is measured using TPGD. This
demonstrates that TPGD, as the training adversary, may cause the model over-fitting to gradient-
based attacks, making it difficult for the adversarial example to converge to a good condition.

5.1 TPGD CAUSES OVER-FITTING TO GRADIENT-BASED ATTACKS

In Figure 3, by monitoring the gap metric, defined as the difference between the clean training ac-
curacy and the adversarial training accuracy, insights can be gained into the dynamics of robustness
overestimation. In instances where the model becomes unstable, as indicated by an increase in the
FOSC values, we observe a sudden drop in the gap metric. In some epochs, this gap even tem-
porarily becomes negative, implying that the adversarial training accuracy has surpassed the clean
training accuracy. This counterintuitive outcome suggests that the addition of adversarial pertur-
bations through TRADES’ PGD (TPGD) somehow aids the model in better classifying the cases,
which is clearly abnormal.

As indicated in Equation 1, the inner-maximization step seeks to maximize the adversarial loss by
increasing the KL divergence between the clean and adversarial logits. Conversely, the outer min-
imization step aims to reduce this divergence. This push-and-pull dynamic in logit-logit relations,
rather than the typical logit-label relations used in robust methods like PGD-AT (Madry et al., 2018),
suggests the model may overfit to the unique characteristics of TPGD perturbations. Further analysis
of these dynamics can be found in Appendix F.

The above hypothesis falls in line with the findings from the prior work by Kurakin et al. (2017),
which discusses the learnable patterns of simpler attacks like Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2015). However, in this case, the model is not learning any specific patterns;
instead, it overfits the perturbations and converges at a point where most gradient-based attackers
struggle to cause large logit differences due to obfuscated gradients.

5.2 BATCH-LEVEL GRADIENT INFORMATION

To better understand the instability observed during training, we keep track of the weight gradient
norm of the full loss (W grad norm), the gradient norm of the cross-entropy term (CE norm), the
gradient norm of the KL-divergence term (KL norm), and the cosine similarity between the gradient
directions of the full loss before and after each training step (grad cosine similarity). See Appendix
G for the detailed definition of these metrics. We examine the changes of these metrics at the batch
level in Figure 4, focusing on the epoch where the instability first occurs, namely epoch 102. At
this epoch, multiple spikes in W grad norm are observed across several batches. Notably, KL norm
also shows spikes in these batches. In contrast, CE norm remains relatively stable throughout the
epochs. These findings support our earlier hypothesis that minimizing the distance between the
clean and adversarial logits is a key contributor to the observed instability.

6
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Figure 4: Batch-level gradient metric (detailed definition in Appendix G) of the unstable case at
epoch 102, where FOSC starts to rise sharply in Figure 3. (With a batch size of 256, each epoch
updates 50,000 / 256 = 195 steps. Therefore, epoch 102 corresponds to steps, ranging from 19,891 to
20,085.) We can see the correlation between W Grad Norm, KL Norm, and grad cosine similarity.

Further analysis reveals that the cosine similarity of weight gradients before and after each training
step sharply declines at the same points where the KL and total gradient norms spike. This drop
in cosine similarity indicates a shift in the direction of the weight gradients, suggesting that the
optimization landscape, particularly in the adversarial component, becomes locally rugged. Such
ruggedness is a typical trait of non-linear models during adversarial training, where the optimization
trajectory tends to be less smooth and more erratic, as noted by Liu et al. (2020).

5.3 SELF-HEALING IN TRADES

During our experiments, we observed a phenomenon in some instances of TRADES training that we
term “self-healing”. This occurs when a model initially shows signs of robustness overestimation but
eventually stabilizes, correcting the overestimation without external intervention. Figure 5 illustrates
such a case, showing the dynamics of FOSC values, weight gradient norms, and clean training
accuracy over the training epochs. As mentioned earlier, instability is marked by spikes in FOSC
values, indicating a rugged loss landscape. However, in this example, these spikes are followed by
a decline, suggesting a return to a smoother loss landscape and subsequent stability.

A distinctive feature of self-healing instances is a slight decline in clean training accuracy, accom-
panied by a drop in FOSC to nearly zero within the same epoch. In the following epoch, the weight
gradient norm decreases as well, suggesting that the model encountered a challenging batch, trigger-
ing the self-healing process and thus leading to a large optimization step, which effectively escapes
the problematic local loss landscape that causes obfuscated gradients. Although this step temporarily
worsens the model’s predictions, it effectively resets the training process to a more stable state.

6 SOLVING THE INSTABILITY

Careful hyperparameter tuning and rigorous evaluation may resolve the instability, but this approach
requires extensive time spent on trial and error. Therefore, it is essential to design a method within
the training process to directly address this issue. Given the goal of resolving the local ruggedness
observed in Figure 1, we experimented with Adversarial Weight Perturbation (AWP) (Wu et al.,
2020), but it proved ineffective (details in Appendix H). This suggests that previous adversarial
training methods, which focused on overall performance, are inadequate for addressing such spe-
cific challenges. Consequently, we must leverage the characteristics identified earlier to develop an
appropriate solution.

In light of the observed self-healing behavior in Section 5.3, we develop a solution that artificially
induces conditions that prompt the model to take larger optimization steps during instability, allow-
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Figure 5: FOSC, training clean accuracy (train acc), and weight gradient norm (W grad norm) of the
self-healing case under the same configuration but with a different seed from the training instance in
Figure 3. Note that for clearer visualization, we scaled FOSC up by 10 and scaled the W Grad Norm
down by 0.3. And it is important to clarify that a decline in clean training accuracy, accompanied
by a drop in FOSC to nearly zero, occurs at epoch 142. Subsequently, the weight gradient norm
decreases at epoch 143.

(a) Unstable (b) Fixed

Figure 6: FOSC and PGD-10 validation accuracy of an Unstable versus Fixed case with the same
seed and configuration as Figure 3. Note that for clearer visualization, we scaled FOSC up by 10.
Through our method, once the FOSC value is higher than the threshold, we can address the issue in
the next epoch.

ing it to escape problematic regions in the loss landscape. This idea is somewhat similar to Ge et al.
(2015), where additional noise is introduced to prevent the model from getting stuck at a certain
point, caused by the instability.

As outlined in Algorithm 1, we monitor the FOSC values at each training epoch. If the FOSC for
a given epoch exceeds a predefined threshold, Gaussian noise is introduced to the images in the
first ten batches of the subsequent epoch. This artificial perturbation prompts the model to make
substantial adjustments, as the affected batches are likely to produce larger discrepancies between
the clean logits and the labels.

Figure 6 presents a case study of an originally unstable training instance with the same seed. Starting
from epoch 102, the continually high FOSC value indicates instability. However, simply observing
the PGD-10 accuracy makes it difficult to detect this instability. By applying our solution and
injecting Gaussian noise into the first ten batches of epoch 103, the FOSC values revert to normal

8
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Clean PGD-10 AutoAttack Gap
Regular 0.5342 ± 0.0019 0.2440 ± 0.0006 0.2009 ± 0.0028 0.0431 ± 0.0033
Unstable 0.5424 ± 0.0102 0.2763 ± 0.0133 0.1292 ± 0.0344 0.1471 ± 0.0455
Fixed 0.5290 ± 0.0063 0.2450 ± 0.0023 0.1999 ± 0.0029 0.0451 ± 0.0032

Table 3: Performance of different cases under the same configuration, where the Fixed case repre-
sents the use of our algorithm and shares the same set of seeds as the Unstable case. Note that Gap
represents the difference between the PGD-10 and AutoAttack accuracy. In the Fixed case, there
is neither robustness overestimation nor any compromise in performance, which remains consistent
with the Regular case.

levels, signifying restored stability. It is worth noting that this solution might still result in a FOSC
spike for one epoch, but as long as this checkpoint is not selected (as lines 19-20 of Algorithm 1),
our method ensures a good optimization process in all other epochs, similar to the regular case.

Table 3 compares the PGD-10 and AutoAttack accuracies for the unstable and fixed training in-
stances. The results demonstrate that the fixed instance, trained with the proposed algorithm, does
not exhibit significant robustness overestimation, unlike the original unstable instance. Notably,
our method worsens only a small number of training batches, so it has minimal impact on overall
performance when compared to the regular case. Moreover, FOSC is computed alongside adversar-
ial examples during validation, resulting in minimal computational overhead. Finally, rather than
continuously adjusting parameter settings to reduce instability or retraining when overestimation
occurs—both of which are time-consuming—our approach ensures generalization across different
tasks without the risk of severe robustness overestimation.

7 LIMITATIONS

This paper focuses primarily on analyzing TRADES, a well-established adversarial training method.
Although proper hyperparameter tuning may mitigate some of TRADES’ potential issues, we be-
lieve these challenges are linked to sampling probability and gradient masking—an issue that should
not occur in an adversarial defense method—can still happen. Therefore, its existence should not be
overlooked.

Additionally, while many modern defense methods empirically outperform TRADES, it remains a
foundational baseline for numerous adversarial training approaches. Researchers continue to build
upon TRADES to validate the effectiveness of their own methods. In this sense, TRADES must still
maintain a degree of reliability, and this is exactly what we aim to challenge. Moreover, the logit
pairing technique used in TRADES raises the question of whether it genuinely enhances robustness
or if this is merely a misconception. This issue provides an opportunity for future researchers to
further investigate, building on the analysis and solutions we have proposed.

8 CONCLUSION AND FUTURE WORK

In conclusion, we have identified the issue of probabilistic robustness overestimation in TRADES,
analyzed its root causes, and proposed a potential solution. Hence, we believe that vanilla TRADES
should not be fully trusted as a baseline for multi-class classification tasks without applying our so-
lution techniques. Given that TRADES incorporates techniques similar to logit pairing—previously
abandoned due to unreliable robustness and gradient masking—we found that TRADES exhibits
similar issues. Future research can build upon this correlation by consolidating all these methods to
provide a more unified analysis and explanation. Our findings offer a valuable reference for future
research in adversarial training methods.

9
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REPRODUCIBILITY

In Section 3 and Appendix B, G, we explained the experimental methods and settings. Additionally,
the source code can be found in the supplementary materials to ensure reproducibility, and we will
make the code publicly available after acceptance.
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A SOLUTION ALGORITHM

In Section 6, we explained the solution algorithm to address the instability. Here, we provide a
detailed version of the pseudocode.

Algorithm 1 TRADES Training with FOSC Threshold and Gaussian Noise Addition

Require: model, train loader, val loader, epochs, β, FOSCthresh

1: best adv acc← 0
2: add noise batches← 0
3: best model← ϕ
4: for epoch e from 1 to epochs do
5: Training Phase
6: for each batch (img, label) in train loader do
7: if add noise batches > 0 then
8: img ← img +N (0, 0.1)
9: add noise batches← add noise batches− 1

10: end if
11: img adv ← TPGD(model, img, label)
12: logits natural, logits adv ← model(img),model(img adv)
13: loss← CE(logits natural, label) + β × KL(logits adv, logits natural)
14: end for
15: Evaluation Phase
16: clean acc, adv acc, FOSC ← evaluate(model, val loader)
17: if adv acc > best adv acc and FOSC ≤ FOSCthresh then
18: best model← model
19: end if
20: if FOSC > FOSCthresh then
21: add noise batches← 10
22: end if
23: end for

B OTHER EXPERIMENTAL SETTINGS

About other configurations, we follow the similar settings of relevant work (Wu et al., 2024; Rice
et al., 2020; Gowal et al., 2020; Pang et al., 2021). We perform adversarial training with a perturba-
tion budget of ϵ = 8/255 under the l∞-norm. During training, we use a 10-step TPGD (TRADES’
PGD) adversary with a step size of α = 2/255. The models are trained using the SGD optimizer
with Nesterov momentum of 0.9 and a weight decay of 0.0005. For AWP, we choose radius 0.005
as Wu et al. (2024; 2020); Gowal et al. (2020). For CIFAR-10/100 (Krizhevsky et al., 2009), we
use 200 total training epochs, and simple data augmentations include 32 × 32 random crop with
4-pixel padding and random horizontal flip. As for TinyImageNet-200 (Le & Yang, 2015), we crop
the image size to 64 × 64 and use 100 training epochs. All experiments were using the ResNet-18
model. Finally, we evaluate the models with PGD-10 at each epoch and select the checkpoint with
the highest robust accuracy on the validation set for further experiments.

C OTHER DATASETS

The issue of instability in TRADES is not limited to the CIFAR-100 (Krizhevsky et al., 2009)
dataset. Instead, when experimenting on CIFAR-10 and Tiny-Imagenet-200 (Le & Yang, 2015),
it is clear that robustness overestimation cases can still occur, as demonstrated in Table 4. Generally
speaking, we find that instability is more prominent with larger class complexity.
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β \ dataset CIFAR-10 CIFAR-100 Tiny-Imagenet-200
1 1/6 10/10 2/3
3 0/6 7/10 3/3
6 0/6 0/10 0/3

Table 4: Probability of unstable cases w.r.t. β and dataset. The batch size is fixed to 256. For
each set of parameters, we perform multiple training instances with random seeds to identify groups
that may exhibit gradient masking, which are identified when the PGD-10 (white-box) accuracy is
significantly higher than the Square Attack (black-box) accuracy. (≥ 8%).

D LEARNING RATE SCHEDULING

In all the aforementioned experiments, we did not perform optimizer learning rate scheduling during
training in order to better isolate the issue of instability. However, we also conducted experiments
to demonstrate that this phenomenon still occurs when the learning rate is decreased throughout the
training process. As shown in Table 5, the general trend of smaller β values leading to instability
remains the same.

Prob. Clean PGD-10 AutoAttack Gap
β = 1 3/3 0.6273 ± 0.0241 0.2880 ± 0.0179 0.0482 ± 0.0064 0.2398 ± 0.0198
β = 3 0/3 0.5860 ± 0.0120 0.2849 ± 0.0088 0.2286 ± 0.0092 0.0563 ± 0.0151
β = 6 0/3 0.5572 ± 0.0005 0.2940 ± 0.0026 0.2440 ± 0.0012 0.0500 ± 0.0016

Table 5: Performance of different β under the same configuration of learning rate scheduling
(CIFAR-100, batch size = 256, initial learning rate lr0 = 0.1, γ = 0.1, and learning rate de-
noted lrt at the t-th epoch updated to lrt−1 ∗ γ at epochs 100 and 150). Note that the first column
of Prob. represents the probability of unstable cases and the Gap represents the difference between
the PGD-10 and AutoAttack accuracy. The results with different β values show that instability still
exists and that the general trend of worsening overestimation with smaller β values holds.

(a) β = 1, Unstable (b) β = 6, Regular

Figure 7: Comparison between the FOSC, SGCS, and PGD-10 validation accuracy under the learn-
ing rate scheduling setting. Under the same configuration, the values for the Unstable case with
β = 1 are displayed in (a), while the values for the Regular case with β = 6 are shown in (b).
Note that for clearer visualization, we scaled FOSC up by 5. This aligns with previous findings, and
we can observe that even the PGD-10 accuracy exhibits significant fluctuations, indicating severe
instability.
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E RELATION BETWEEN FOSC AND SGCS

In this section, we demonstrate that a non-zero First-Order Stationary Condition (FOSC) value
implies a Step-wise Gradient Cosine Similarity (SGCS) less than 1 for a PGD attacker in a toy case
where the input x has dimension of 1. This is done to intuitively show that our hypothesis of poor
convergence capability indicating a locally rugged loss landscape is logical, as the SGCS taking a
smaller value implies non-aligned steps taken by the PGD attacker.

We work our proof on a PGD-k attacker taking input x with step-size α and perturbation
bound ϵ, assuming kα > ϵ. The perturbation ball is denoted X = [x − ϵ,x + ϵ] while the result
from the i-th perturbation step is xi.
As demonstrated by Wang et al. (2019), we have the closed-form

FOSC(xk) = max
δ∈S

〈
x+ δ − xk,∇xℓ(x

k)
〉
= ϵ∥∇xℓ(x

k)∥1 − ⟨xk − x0,∇xℓ(x
k)⟩

If FOSC(xk) = 0, we have that either ∇xℓ(x
k) = 0 or xk − x0 = ϵ sign(ℓ(xk)). Namely, either

xk is a stationary point, or the maximum point for ℓ(xk) is on the boundary of X . This implies that
if FOSC(xk) > 0, xk − x0 ̸= ϵ sign(xk)). In other words, xk is not on the boundary of X .
Assume that SGCS(xk) = 1 when FOSC(xk) > 0. This implies for each pair i, j where i ̸= j,
we have CosSim(g(xi), g(xj)) = 1. Applying the projection in PGD in the one-dimensional case,
this means that xk can only be x±ϵ, which is the boundary of X . This contradicts FOSC(xk) > 0.

F LOGIT DYNAMICS IN INNER MAXIMIZATION

In order to better understand the effects of maximizing the distance between clean logits and adver-
sarial logits during inner maximization in the TRADES training algorithm, we performed experi-
ments where the original TRADES’ PGD (TPGD) was replaced with a standard PGD-10 attacker,
which maximizes the distance between adversarial logits and the labels. This approach is similar to
the algorithm in Wang et al. (2020), but without the misclassification weight.

As shown in Table 6, this modified algorithm does not lead to robustness overestimation or insta-
bility. Thus, we infer that the dynamic of maximizing the difference between clean and adversarial
logits is problematic. However, it should be noted that although this training algorithm avoids the
issue of instability, it is not an ideal solution due to the significant decrease in clean accuracy.

Clean PGD-10 AutoAttack Gap
Regular 0.5342 ± 0.0019 0.2440 ± 0.0006 0.2009 ± 0.0028 0.0431 ± 0.0033
Unstable 0.5424 ± 0.0102 0.2763 ± 0.0133 0.1292 ± 0.0344 0.1471 ± 0.0455
Modified 0.5026 ± 0.0057 0.2422 ± 0.0013 0.1998 ± 0.0029 0.0424 ± 0.0022

Table 6: Performance of different cases under the same configuration of learning rate scheduling
(CIFAR-100, batch size = 256, learning rate = 0.1). the Gap represents the difference between the
PGD-10 and AutoAttack accuracy. The ”Modified” case represents training using TRADES outer-
minimization and PGD-10 maximization. The results show that the Modified case exhibits almost
no instability and has a similar gap value to the Regular case; however, this comes at the cost of
clean accuracy.

G GRADIENT NORM ANALYSIS

To better understand the behavior of model gradients during the TRADES training process (see
Section 5.2), we additionally keep track of the following metrics, using methods similar to Liu et al.
(2020):

• W Grad Norm: The ℓ2 norm of the gradient of the full TRADES loss in Equation 1 is
denoted as:

W Grad Norm =

∥∥∥∥∇θ

(
CE(fθ(x), y) +

1

λ
max
δ∈S
KL(fθ(x), fθ(x+ δ))

)∥∥∥∥
2

. (4)
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• CE Norm: The ℓ2 norm of the gradient of the first term in TRADES loss is denoted as:

CE Norm = ∥∇θ (CE(fθ(x), y))∥2 . (5)

• KL Norm: The ℓ2 norm of the gradient of the second term in TRADES loss is denoted as:

KL Norm =

∥∥∥∥∇θ

(
1

λ
max
δ∈S
KL(fθ(x), fθ(x+ δ))

)∥∥∥∥
2

. (6)

• grad cosine similarity: The cosine similarity between the gradient directions of the full
loss before and after each training step is:

grad cosine similarity =
∇θL

before · ∇θL
after

∥∇θLbefore∥2 ∥∇θLafter∥2
, (7)

where ∇θL
before and ∇θL

after represent the gradients of the full TRADES loss, as defined
in Equation 4, before and after a training step, respectively.

All four norm metrics are calculated in each training step. If the value of a metric is referenced at
the epoch level, the average value across training steps is taken.

H ADVERSARIAL WEIGHT PERTURBATION

Hypothesizing that local ruggedness (as shown in Figure 1) causes the PGD-10 attacker to fail in
finding effective adversarial examples, we attempted to use a sharpness-aware technique, specifically
Adversarial Weight Perturbation (AWP) (Wu et al., 2020) as a solution.

However, we found that adding this technique does not eliminate instability when used with the
TRADES algorithm. In fact, as shown in Table 7, all training instances displayed robustness overes-
timation and instability. We hypothesize that this is due to small rugged areas that are not smoothed
out when flattening the landscape in general.

Prob. Clean PGD-10 AutoAttack Gap
β = 1 10/10 0.6023 ± 0.0305 0.2880 ± 0.0145 0.1005 ± 0.0148 0.1875 ± 0.0238
β = 3 10/10 0.5707 ± 0.0013 0.3180 ± 0.0187 0.1623 ± 0.0320 0.1557 ± 0.0496

Table 7: Performance of different β under the same configuration of AWP (CIFAR-100, batch size
= 256, learning rate = 0.1). Note that the first column of Prob. represents the probability of unstable
cases and the Gap represents the difference between the PGD-10 and AutoAttack accuracy. We can
see that applying AWP techniques does not solve the issue of robustness overestimation.
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