
Proofs of Autonomy: Scalable and Practical Verification of AI Autonomy

Artem Grigor 1 Christian Schroeder de Witt 1 Ivan Martinovic 1

Abstract
Autonomous agents are increasingly relied upon
in critical settings. Yet despite their apparent
autonomy, these systems still operate on infras-
tructure controlled by a host, who can silently
tamper with models, inputs, or outputs. To en-
sure trust in agent-driven workflows, we intro-
duce Proofs of Autonomy, a formal framework
that binds each agent output to a unique agent
identity via a verifiable execution trace. At the
center of our approach is the Agent Identity Docu-
ment (AID), which uniquely identifies the agent’s
operational configuration and its component-level
verification methods. Although the framework is
explicitly compositional and can accommodate
multiple proof systems, existing techniques ex-
hibit practical limitations. We therefore propose
Web Proofs, MPC-assisted TLS transcripts, as the
most viable option for today’s autonomous agents.
Our evaluation shows that calls to state-of-the-art
models can be verified in under 2 seconds per
interaction, enabling secure and efficient verifica-
tion of agent’s autonomy.

1. Introduction
Arguably, today’s AI models have crossed a capability
threshold: they can not only generate human-like text but
also effectively plan, reflect, and select tools to achieve com-
plex objectives. When wrapped in lightweight orchestra-
tion code, these high-capacity models become autonomous
agents: systems that perceive, decide, and act over ex-
tended horizons with minimal human oversight. Recent
demonstrations such as Auto-GPT, WebArena, and Vend-
ingBench show agents navigating live websites, running
virtual businesses, and issuing hundreds of API calls in-
dependently (Significant Gravitas, 2025; Liu et al., 2023;
Backlund & Petersson, 2025). Industry adoption has quickly
followed: autonomous “CFO” bookkeepers, chemistry re-

1University of Oxford, Oxford, United Kingdom. Correspon-
dence to: Artem Grigor <artem.grigor@cs.ox.ac.uk>.

Workshop on Technical AI Governance (TAIG) at ICML 2025,
Vancouver, Canada. Copyright 2025 by the author(s).

searchers, HR-procurement bots, factory assistants, red-
team testers, and crypto-trading agents are already de-
ployed in production settings (Payhawk, 2025; Boiko et al.,
2023; Recruitagent, 2025; BMW, 2024; Terra, 2025; Khaliq,
2025).

While these agents are increasingly treated as independent
decision-makers, they typically run on infrastructure con-
trolled by their host. A malicious host can thus silently
substitute models, tamper with inputs, or fabricate out-
puts, undermining the very autonomy these systems are
claimed to exhibit. Recent incidents involving covert input
tampering (Alisha, 2024; Joyce & Slipstream, 2024), dis-
puted financial transactions (Andreessen & of Truths, 2024;
Ayrey, 2023), and outright impersonation (Hedge, 2024)
highlight the fragility of current accountability mechanisms.
As agents enter high-stakes domains, we must ask: How can
we verify that a given output genuinely reflects the agent’s
autonomous decision rather than the will of its host?

Several projects have taken first steps toward “verifiable au-
tonomy”. For example, Pet Rock’s TEE-based agent (Mal-
hotra, 2024), Phala’s GPU-TEE LLM service (Network,
2025), and Opacity’s zkTLS plug-ins for ElizaOS (Ron-
Turetzky, 2025). Yet these solutions remain fragmented:
they either attest only limited parts of agent execution or
rely on a single mechanism, offering no holistic approach
to the problem. Thus, to our knowledge, no prior work
provides a unified theoretical foundation for verifying an
agent’s autonomy, nor a practical deployment-ready mecha-
nism that achieves these guarantees at scale.

To address this, we introduce Proofs of Autonomy, a com-
positional framework that binds every agent output to a
unique agent identity via a verifiable execution trace, ensur-
ing that the output-generation process has not been manipu-
lated. Specifically, we:

1. Formalize verifiability for individual agent components
and show how it naturally composes into the Proofs of
Autonomy.

2. Survey existing proof systems suitable for instantiating
our framework, and introduce Web Proofs as the most
practical option for today’s autonomous agents (Team,
2025; Kalka & Kirejczyk, 2024).

3. Benchmark real-world overhead of Web Proofs and
present a case study of an autonomous trading agent,

1

Figure 1. System model. The verifier, given an Agent Identity Doc-
ument (AID), receives an output and verifies that it was produced
by the specified agent and has not been tampered with.

demonstrating how we enable verifiably autonomous
agents in high-stakes scenarios.

2. System and Threat Model
Our objective is to determine whether a given output was
genuinely produced by the predefined autonomous agent,
rather than being altered or fabricated by a malicious host.

(1) Autonomous Agent (A): A software entity uniquely
identified by an Agent Identity Document (AID), trusted
to make decisions independently of the host. The agent
processes inputs and produces outputs according to the
configurations and reasoning components specified in its
AID.

(2) Host (H): Controls the runtime environment of A. We
model H as malicious but computationally bounded: it
may replace agent’s models, tamper with inputs, fabri-
cate or suppress outputs, or selectively disclose results
(“cherry-picking”). However, it cannot break standard
cryptographic primitives or compromise trusted external
services (see Assumption 3.2).

(3) Verifier (V): Any entity that checks whether a given
output was indeed produced by an autonomous agent A,
as defined by a given Agent Identity Document.

3. Security Assumptions
Assumption 3.1 (Cryptographic Primitives). All crypto-
graphic primitives (signatures, hashes, proof systems) are
assumed to be secure against the adversarial host H .
Assumption 3.2 (Agent Components). Each component
listed in the Agent Identity Document (e.g., API, oracle,
LLM host) is assumed to operate according to its publicly
documented interface. Deviations are treated as tool faults
and are considered out of scope.
Assumption 3.3 (Denial-of-Service). Liveness is not guar-
anteed. A malicious host may withhold outputs or proofs at
will.

Assumption 3.4 (Host Timing Advantage). The host has an
inherent timing advantage: it may observe and delay agent
outputs before forwarding them to verifiers.

4. Formal Model
To verify that a particular output originated from a prede-
fined autonomous agent, we first define what constitutes an
autonomous agent. We then specify how to construct verifi-
able execution proofs for such agents, and finally introduce
an identity mechanism that captures an agent’s configura-
tion. Together, these components form the foundation of
our Proofs of Autonomy framework.

4.1. Autonomous Agents

From the classical Sense–Think–Act loop (Wooldridge &
Jennings, 1995) to Anthropic’s Model-Context Protocol
(MCP) (Anthropic, 2025), most agent architectures follow
a similar iterative pattern. At each step, a cognitive core
emits (i) a plaintext output and (ii) a set of tool invocations,
whose responses are appended to the agent’s internal state.
We formalize this below:

Let Σ be a finite alphabet. Denote by Σ∗ the set of finite
strings over Σ (e.g., UTF-8 text).

Definition 4.1 (Tool). A tool is a named (possibly stateful)
function t : Σ∗ −→ Σ∗. Let Vtool denote the set of tool
names, and let T ⊆ Vtool be the toolset available to the
agent.

Definition 4.2 (Cognitive Core). A cognitive core is a func-
tion Core : Σ∗ −→ Σ∗ × (Vtool × Σ∗)∗, which, given a
history h, returns (y, T) where y is a plaintext response and
T is a list of tool calls.

Definition 4.3 (Autonomous Agent). An autonomous agent
is a pair A = (Core, T) consisting of a cognitive core Core
and a finite toolset T .

Agent execution begins with an empty history h0 := ε and
proceeds as follows:

(yj , Tj)← Core(hj)

rt,x ← t(x) for each (t, x) ∈ Tj

hj+1 ← hj ∥ yj ∥ ∥(t,x)∈Tj
rt,x

The loop halts when Core outputs the special token ⟨STOP⟩.

4.2. Proof Systems

We instantiate the Proofs of Autonomy by first constructing
a verification relation R ⊆ Σ∗ × Σ∗ for every component
(core and tool):

R = {(x, r) | r is the correct output for input x}.

2

Figure 2. Illustration of the agent’s execution loop. The agent’s
cognitive Core iteratively processes execution transcripts h(j), pro-
duces plaintext outputs y(j), invokes specified tools (t1, t2), and
incorporates their responses (rti) into subsequent execution tran-
scripts.

Each component is paired with a prover–verifier pair (P, V)
that validates this relation. Let AdvR denote the adversary
class relevant to R (e.g., PPT adversaries for SNARKs,
hardware-bounded attackers for TEEs, etc.).

We require:

• Completeness: V (x, r, P (x, r)) = 1 for all (x, r) ∈ R.

• Soundness against AdvR: Any A ∈ AdvR convinces
V of an invalid (x, r) /∈ R with probability negl(λ)1.

Proof of Autonomy. Consider an agent A = (Core, T)
executed over multiple steps. A Proof of Autonomy consists
of one sub-proof per each core and tool call, each gener-
ated using the respective component’s prover. The global
prover PA is the composition of these individual provers,
and the global verifier VA checks each sub-proof using the
corresponding component-level verifier. Soundness and
completeness for the overall proof follow directly from the
definitions of the underlying component proof systems. The
agents adversary class AdvA is defined as the intersection
of the adversary classes AdvR for each component R, re-
flecting the joint assumption that all components behave
according to their claimed verification guarantees.

Theorem 4.4 (Compositional Security). Suppose each com-
ponent (core or tool) is equipped with a proof system (P, V)
that is perfectly complete and negl(λ)-sound against AdvR.
Then the composed agent proof (PA, VA) is perfectly com-
plete and negl(λ)-sound with respect to the agents adver-
sary class AdvA.

1negl(λ) represents a negligible function, such that for ev-
ery polynomial p(λ), there exists λ0 such that for all λ > λ0,
negl(λ) < 1

p(λ)
.

A proof sketch is provided in Appendix B.4.

4.3. Agent Identity Document (AID)

To verify that an output originated from a specific au-
tonomous agent, we introduce the Agent Identity Document
(AID): a human- and machine-readable manifest that un-
ambiguously specifies the agent’s configuration. The AID
plays a role analogous to model cards for machine learning
models (Mitchell et al., 2019), but includes additional meta-
data necessary for autonomy verification. Concretely, the
AID (Fig. 3) specifies:

• Descriptive metadata for each component (e.g., model
version, endpoint, or binary hash).

• Verification metadata which defines the prover–verifier
pair (P, V) for each component.

For simplicity, the serialized AID can be hashed to derive a
succinct, immutable identifier that uniquely represents the
agent’s configuration and verification metadata:

IDA := Hash(serialize(AID)).

To verify an output of a predefined agent, it is sufficient
for the verifier to fix IDA and retrieve the corresponding
AID. The verifier can then use the metadata in the AID to
construct the verifier VA and check whether the output was
indeed produced by the agent. In this way, the AID binds the
formal agent model (§4) to concrete, deployable systems.

{
"agent_name": "VeriTradeBot",
"core": {

"model": "gpt-4o-2024-05-13",
"endpoint": "https://api.openai.com",
"hash": "sha256:d72f...9c",
"verifier": "TLSNotary"

},
"tools": [

{
"name": "PriceFeedAPI",
"endpoint": "https://api.coingecko.com",
"hash": "sha256:8a1b...f0",
"verifier": "TLSNotary"

},
{

"name": "TradeSynthesizer",
"hash": "sha256:6c55...79",
"verifier": {

"Groth16": {
"vk": "groth16-vk:3f7b9a..."

}
}

}
],
"verifiers": {

"TLSNotary": {
"version": "v0.1.0-alpha.10",
"key": "ecdsa-p256:04a1b2..."

}
},
"aid_hash": "sha256:27c8f3...42"

}

Figure 3. Sample of an Agent Identity Document (AID) for a
crypto-trading agent. Each component is linked to a proof system.
The final aid hash serves as a stable agent identifier.

3

5. Limitations of Prior Proof Systems for
Agent Components

Our Proofs of Autonomy framework is agnostic to how
each component produces its local proof, as long as the
prover–verifier pair in the Agent Identity Document satis-
fies the soundness and completeness properties defined in
Section 4.2. Now, we evaluate the three main classes of
proof systems most commonly used in practice, SNARKs,
Trusted Execution Environments (TEEs), and consensus-
based attestation, and find that none are currently suitable
as a default proof system for today’s autonomous agents
components.

SNARKs. Succinct non-interactive arguments of knowl-
edge (SNARKs) produce compact O(1)-size proofs (Groth,
2016; Gennaro et al., 2013). They offer strong security guar-
antees grounded in standard cryptographic assumptions and
enable highly efficient verification. However, this comes
at the cost of prover runtime: even the fastest ZKML li-
braries (SNARK implementations specifically for proving
ML model inference) running on top-tier hardware still
struggle to prove the inference of a single token for billion-
parameter models (Peng et al., 2025). As a result, ZKPs are
currently best suited for small- to medium-scale neural net-
works or one-off, high-value computations (e.g., signature
generation).

Trusted Execution Environments (TEEs). Hardware en-
claves such as Intel SGX and TDX attest that a specific
binary ran on untampered memory and input (Schneider
et al., 2022; Tramèr & Boneh, 2019). They can handle
large models in real time but shift trust to the CPU vendor
and remain vulnerable to side-channel and key-extraction
attacks (Fei et al., 2021). TEEs also require model own-
ers to replatform their serving stack, limiting immediate
deployability.

Consensus and Optimistic Schemes. Re-executing the
same call on a committee of nodes (e.g., a blockchain or
federated cluster) provides strong integrity guarantees un-
der honest-majority assumptions (Luu et al., 2015). How-
ever, for heavyweight inference, such direct re-execution is
prohibitively expensive. A common workaround is to use
optimistic protocols, which execute once and only fall back
to re-execution upon dispute (Conway et al., 2024). While
effective in some settings, both approaches are difficult to in-
tegrate with stochastic services, such as price-feed or LLM
APIs, whose outputs are inherently non-deterministic. Ad-
ditionally, they rely on economic security assumptions that
are challenging to formalize and may not hold in adversarial
environments.

6. Web Proofs: A Practical Alternative
The proof systems surveyed so far are either too slow for
real-time inference on large models, require re-platforming,
or cannot handle highly stochastic processes. In contrast, we
identify Web Proofs as a practical alternative that overcomes
all these limitations. Web Proofs use MPC-TLS (Kalka &
Kirejczyk, 2024) to generate cryptographic transcripts of
standard HTTPS interactions, without requiring any changes
to the model or tool backend. Their overhead scales only
with the size of the TLS transcript, not the complexity of
the computation, and they do not require access to model
internals. As a result, Web Proofs are well-suited for agent
components that rely on remote services, which remains the
dominant execution model for agents today.

6.1. Protocol Sketch

A client and a semi-trusted notary jointly execute a TLS
connection such that (i) neither party can send or receive
messages without the other, and (ii) only the client learns
the cleartext of the communication. Upon termination of the
TLS session, the notary signs a commitment to the transcript,
yielding a succinct proof of transcript correctness πTLS.

Figure 4. Web Proofs protocol overview. (1) Connection: The
Prover initiates a TLS session with the Target Server. (2) Co-
execution: An honest-but-curious Notary jointly executes the
MPC-TLS handshake, attesting to exchanged bytes without ac-
cessing plaintext. (3) Transcript: The Notary outputs a signed
commitment, allowing the Prover to selectively disclose signed
transcript portions to the Verifier. (4) Verification: The Verifier
checks the disclosed transcript against the Notary’s signature and
Server’s TLS public key, accepting if valid.

6.2. Practical Evaluation

Table 1. Latency comparison for a 30-token response from the
claude-3-opus API using different TLS proof configurations.

Setup RTT (ms) Total (s) Overhead vs plain

None (plain API call) 20 0.80 ×1.0
Self-hosted notary (t2.medium) 8 7.77 ×9.7
Public TEE notary2 31 17.74 ×22

• Dominant cost is one-time setup. For the self-hosted
notary, 5.7s of the 7.8s total comes from establishing the

4

local-execution proof (ZK/TEE) remote-call proof (Web Proof)

trusted API provider aggregated agent proof

Figure 5. Architecture of the VERITRADE agent.

MPC channel; subsequent calls on the same channel fall
to ≈ 2s (only about ×2.5 overhead over plain API call).

• Insensitive to model size. Swapping
claude-3-haiku ($3/MTok) for the 4×-larger
claude-3-sonnet ($15/MTok) increases total time
by less than 15% (9.57 s → 10.8 s), confirming that
Web Proof costs scale with I/O bytes rather than FLOPs.

• Hardware TEE notary ∼ 2× slower. Using a public
PSE notary3 adds extra location and TEE based latency
(30 ms RTT), but remains orders of magnitude faster
than current ZKML for comparable model sizes.

Comparison with ZKP for local models. Running the
state-of-the-art ZKML prover EZKL on LeNet-5 (61k pa-
rameters, over 106× smaller than claude-3-opus) took
15s per single-token inference on the same hardware. This
illustrates the impracticality of using SNARKs for large-
scale models such as those commonly deployed as agent
cores.

7. Prototype Implementation
To further validate the practicality of our framework, we
implemented a minimal, publicly released4 library that: (i)
generates an Agent Identity Document (AID) for an agent;
(ii) emits an agent proof (τ,Π) alongside each execution
result; and (iii) provides a one-line verifier of agent outputs
VA.

Case Study: VERITRADE We also implemented a verifi-
able autonomous trading agent, VeriTrade, using our library.
This case study demonstrates how our Proofs of Autonomy
framework can operate in mission-critical environments and
combine components backed by different proof systems.
See Appendix C for details.

3https://notary.pse.dev
4https://github.com/ElusAegis/ai-passport

8. Related Work.
Several industry-backed protocols and academic proposals
have attempted to define agent identity and authenticate
agent outputs (Chan et al., 2024; Vouched, 2025; Auth0,
2025). However, these approaches either rely on informal
descriptions or assume unrealistic trust models (e.g., an
honest host). In contrast, our Proofs of Autonomy frame-
work formalizes agent identity via the Agent Identity Docu-
ment (AID) and introduces component-wise proof systems
that enable composable, host-agnostic authentication of au-
tonomous agents.

Identity Threat Model Security Assumption

AI IDs (Chan et al.) (Chan et al., 2024) informal ✗ Host
MCP-I / A2A (Vouched, 2025; Google,
2025)

✓ ✓ Host

Proofs of Autonomy (this work) ✓ ✓ Adjustable

Table 2. Comparison of agent identity and authentication schemes.
Ours supports explicit agent identity, threat modeling, and modular
security assumptions, unlike prior host- or TEE-bound proposals.

9. Conclusion & Outlook
We presented Proofs of Autonomy, a lightweight, composi-
tional framework for verifying autonomous-agent outputs in
the presence of a malicious host. The framework is assem-
bled from three key elements: (i) a Think–Act agent model
that isolates core reasoning and tool calls; (ii) component-
level proof systems that attest to each step of execution;
and (iii) an Agent Identity Document (AID) that binds these
proofs to a unique agent identity.

Our design remains fully composable and supports various
proof systems, including SNARKs, TEEs, and consensus-
based approaches. However, we find that these existing
methods have significant limitations when used in Agent
Component Proof Systems. We therefore introduce Web
Proofs, MPC-assisted TLS transcripts, as the most practical
solution for today’s autonomous agents. To our knowledge,
this is the first application of Web Proofs to verifying agent
autonomy. Benchmarks show that single interactions com-
plete in under 2 seconds, and our autonomous trading agent
case study demonstrates how these proofs can secure real-
world, high-stakes scenarios.

We plan to release further improvements to our open-source
library and investigate system and framework level opti-
mizations, such as faster transcript handling and reduced
setup latency, to broaden the practical adoption of Proofs
of Autonomy and enable its use in latency-sensitive agent
deployments.

5

https://notary.pse.dev
https://github.com/ElusAegis/ai-passport

References
Alisha, B. What Is Truth Terminal?, October

2024. URL https://www.ccn.com/education/
crypto/what-is-truth-terminal/.

Andreessen, M. and of Truths, T. AI agent and funding dy-
namics: Grant for self-acting AI development, July 2024.
URL https://x.com/AndyAyrey/status/
1811168313235648687. tex.howpublished: Post on
X (formerly Twitter).

Anthropic. Introducing the Model Context Proto-
col, 2025. URL https://www.anthropic.com/
news/model-context-protocol.

Auth0. Auth for GenAI | Auth0, 2025. URL https:
//www.auth0.ai/.

Ayrey, A. The {truth terminal} has spoken, October 2023.
URL https://x.com/AndyAyrey/status/
1811168313235648687. tex.howpublished: Post on
X (formerly Twitter).

Backlund, A. and Petersson, L. Vending-Bench: A Bench-
mark for Long-Term Coherence of Autonomous Agents,
February 2025. URL http://arxiv.org/abs/
2502.15840. arXiv:2502.15840 [cs] TLDR: Vending-
Bench is presented, a simulated environment designed to
specifically test an LLM-based agent’s ability to manage
a straightforward, long-running business scenario: op-
erating a vending machine, and tests models’ ability to
acquire capital, a necessity in many hypothetical danger-
ous AI scenarios.

BMW. Humanoid Robots for BMW Group Plant Spartan-
burg, 2024. URL https://www.bmwgroup.com/
en/news/general/2024/humanoid-robots.
html.

Boiko, D. A., MacKnight, R., Kline, B., and Gomes,
G. Autonomous chemical research with large lan-
guage models. Nature, 624(7992):570–578, De-
cember 2023. ISSN 1476-4687. doi: 10.1038/
s41586-023-06792-0. URL https://www.nature.
com/articles/s41586-023-06792-0. 279 ci-
tations (Semantic Scholar/DOI) [2025-04-25] Publisher:
Nature Publishing Group TLDR: Coscientist showcases
its potential for accelerating research across six diverse
tasks, including the successful reaction optimization of
palladium-catalysed cross-couplings, while exhibiting ad-
vanced capabilities for (semi-)autonomous experimental
design and execution.

Chan, A., Ezell, C., Kaufmann, M., Wei, K., Hammond,
L., Bradley, H., Bluemke, E., Rajkumar, N., Krueger, D.,
Kolt, N., Heim, L., and Anderljung, M. Visibility into AI

Agents, May 2024. URL http://arxiv.org/abs/
2401.13138. 29 citations (Semantic Scholar/arXiv)
[2025-05-13] arXiv:2401.13138 [cs].

Conway, K., So, C., Yu, X., and Wong, K. opml: Optimistic
machine learning on blockchain, 2024. URL https:
//arxiv.org/abs/2401.17555.

Fei, S., Yan, Z., Ding, W., and Xie, H. Security vulnera-
bilities of sgx and countermeasures: A survey. ACM
Comput. Surv., 54(6), July 2021. ISSN 0360-0300.
doi: 10.1145/3456631. URL https://doi.org/10.
1145/3456631.

Gennaro, R., Gentry, C., Parno, B., and Raykova, M.
Quadratic Span Programs and Succinct NIZKs without
PCPs. In Johansson, T. and Nguyen, P. Q. (eds.), Ad-
vances in Cryptology – EUROCRYPT 2013, pp. 626–645,
Berlin, Heidelberg, 2013. Springer. ISBN 978-3-642-
38348-9. doi: 10.1007/978-3-642-38348-9 37. 825 ci-
tations (Semantic Scholar/DOI) [2025-05-16] TLDR: A
new characterization of the NP complexity class, called
Quadratic Span Programs (QSPs), is introduced, which is
a natural extension of span programs defined by Karch-
mer and Wigderson.

Google. Agent2Agent Protocol (A2A), May 2025.
URL https://google-a2a.github.io/A2A/
#get-started-with-a2a.

Groth, J. On the size of pairing-based non-interactive argu-
ments. Cryptology ePrint Archive, Paper 2016/260, 2016.
URL https://eprint.iacr.org/2016/260.

Hedge, M. Discussion on AI agent vulnerabilities:
Manipulation risks from adversarial attacks and
owner bias, October 2024. URL https://x.com/
MiyaHedge/status/1849117352664715489.
tex.howpublished: Post on X (formerly Twitter).

Joyce and Slipstream. Evidence of devel-
oper impersonation of AI messages in raiba
ai’s logging system, October 2024. URL
https://x.com/sIipstream11/status/
1847108619856498751. tex.howpublished: Post on
X (formerly Twitter).

Kalka, M. and Kirejczyk, M. A Comprehensive Review
of TLSNotary Protocol, September 2024. URL http:
//arxiv.org/abs/2409.17670. 0 citations (Se-
mantic Scholar/DOI) [2025-04-18] 0 citations (Seman-
tic Scholar/DOI) [2025-04-18] arXiv:2409.17670 [cs]
GSCC: 0000000 2025-04-18T15:52:54.837Z TLDR: The
TLSNotary protocol is investigated, which aim to enable
the Client to obtain proof of provenance for data from
TLS session, while getting as much as possible from the
TLS security properties.

6

https://www.ccn.com/education/crypto/what-is-truth-terminal/
https://www.ccn.com/education/crypto/what-is-truth-terminal/
https://x.com/AndyAyrey/status/1811168313235648687
https://x.com/AndyAyrey/status/1811168313235648687
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.auth0.ai/
https://www.auth0.ai/
https://x.com/AndyAyrey/status/1811168313235648687
https://x.com/AndyAyrey/status/1811168313235648687
http://arxiv.org/abs/2502.15840
http://arxiv.org/abs/2502.15840
https://www.bmwgroup.com/en/news/general/2024/humanoid-robots.html
https://www.bmwgroup.com/en/news/general/2024/humanoid-robots.html
https://www.bmwgroup.com/en/news/general/2024/humanoid-robots.html
https://www.nature.com/articles/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
http://arxiv.org/abs/2401.13138
http://arxiv.org/abs/2401.13138
https://arxiv.org/abs/2401.17555
https://arxiv.org/abs/2401.17555
https://doi.org/10.1145/3456631
https://doi.org/10.1145/3456631
https://google-a2a.github.io/A2A/#get-started-with-a2a
https://google-a2a.github.io/A2A/#get-started-with-a2a
https://eprint.iacr.org/2016/260
https://x.com/MiyaHedge/status/1849117352664715489
https://x.com/MiyaHedge/status/1849117352664715489
https://x.com/sIipstream11/status/1847108619856498751
https://x.com/sIipstream11/status/1847108619856498751
http://arxiv.org/abs/2409.17670
http://arxiv.org/abs/2409.17670

Khaliq, W. The Best Crypto AI Trading Bots of April
2025: Using AI To Buy & Sell Crypto, April 2025.
URL https://coinbureau.com/analysis/
best-crypto-ai-trading-bots/.

Liu, A., Lakhotia, K., Wang, X., Zettlemoyer, L., and
Kwiatkowski, T. WebArena: a realistic web environ-
ment for building autonomous agents. In Proceedings
of the thirty-seventh conference on neural information
processing systems (NeurIPS 2023), datasets and bench-
marks track, 2023. URL https://neurips.cc/
virtual/2023/83780. arXiv: 2307.13313 [cs.LG].

Luu, L., Teutsch, J., Kulkarni, R., and Saxena, P. Demysti-
fying incentives in the consensus computer. Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015. URL https://api.
semanticscholar.org/CorpusID:10922240.

Malhotra, K. Setting Your Pet Rock Free., Octo-
ber 2024. URL https://nousresearch.com/
setting-your-pet-rock-free/.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasser-
man, L., Hutchinson, B., Spitzer, E., Raji, I. D., and
Gebru, T. Model Cards for Model Reporting. In Pro-
ceedings of the Conference on Fairness, Accountabil-
ity, and Transparency, FAT* ’19, pp. 220–229, New
York, NY, USA, January 2019. Association for Com-
puting Machinery. ISBN 978-1-4503-6125-5. doi: 10.
1145/3287560.3287596. URL https://doi.org/
10.1145/3287560.3287596. 1820 citations (Se-
mantic Scholar/DOI) [2025-05-13] TLDR: This work
proposes model cards, a framework that can be used to
document any trained machine learning model in the ap-
plication fields of computer vision and natural language
processing, and provides cards for two supervised models:
One trained to detect smiling faces in images, and one
training to detect toxic comments in text.

Network, P. Secure, Privacy & Verifiable LLMs
with GPU TEEs is Alive on OpenRouter!, 2025.
URL https://phala.network/posts/
GPU-TEEs-is-Alive-on-OpenRouter.

Payhawk. AI Office of the CFO - AI agents
to help with finance operations | Payhawk,
2025. URL https://payhawk.com/blog/
ai-office-of-the-cfo-brings-enterprise-ready-ai-to-finance-operations.

Peng, Z., Wang, T., Zhao, C., Liao, G., Lin, Z., Liu, Y., Cao,
B., Shi, L., Yang, Q., and Zhang, S. A Survey of Zero-
Knowledge Proof Based Verifiable Machine Learning,
February 2025. URL http://arxiv.org/abs/
2502.18535. 0 citations (Semantic Scholar/DOI)

[2025-04-25] arXiv:2502.18535 [cs] TLDR: A compre-
hensive survey of all the existing Zero-Knowledge Ma-
chine Learning (ZKML) research from June 2017 to De-
cember 2024 is reviewed and analyzed under three key
categories: verifiable training, verifiable inference, and
verifiable testing.

Recruitagent. RecruitAgent, 2025. URL https://
recruitagent.ai/.

RonTuretzky. Opacity Verifiable Interference zkTLS Plugin
by RonTuretzky · Pull Request #1673 · elizaOS/eliza,
2025. URL https://github.com/elizaOS/
eliza/pull/1673.

Schneider, M., Masti, R. J., Shinde, S., Capkun, S., and
Perez, R. Sok: Hardware-supported trusted execution
environments, 2022. URL https://arxiv.org/
abs/2205.12742.

Significant Gravitas. AutoGPT, April 2025. URL https:
//github.com/Significant-Gravitas/
AutoGPT. original-date: 2023-03-16T09:21:07Z.

Team, T. TLSNotary, February 2025. URL https://
tlsnotary.org/.

Terra. Terra Security, 2025. URL https://www.terra.
security/.

Tramèr, F. and Boneh, D. Slalom: Fast, verifiable and
private execution of neural networks in trusted hardware.
In Proceedings of the 7th international conference on
learning representations (ICLR), 2019.

Vouched. MCP-I Documentation, 2025. URL https:
//modelcontextprotocol-identity.io/.

Wooldridge, M. J. and Jennings, N. R. Intelli-
gent agents: Theory and practice. The Knowl-
edge Engineering Review, 10(2):115–152, June
1995. doi: 10.1017/S0269888900008122. URL
https://www.cs.ox.ac.uk/people/
michael.wooldridge/pubs/ker95.pdf.
TLDR: The aim of this paper is to point the reader at
what it is perceived to be the most important theoretical
and practical issues associated with the design and
construction of intelligent agents.

7

https://coinbureau.com/analysis/best-crypto-ai-trading-bots/
https://coinbureau.com/analysis/best-crypto-ai-trading-bots/
https://neurips.cc/virtual/2023/83780
https://neurips.cc/virtual/2023/83780
https://api.semanticscholar.org/CorpusID:10922240
https://api.semanticscholar.org/CorpusID:10922240
https://nousresearch.com/setting-your-pet-rock-free/
https://nousresearch.com/setting-your-pet-rock-free/
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://phala.network/posts/GPU-TEEs-is-Alive-on-OpenRouter
https://phala.network/posts/GPU-TEEs-is-Alive-on-OpenRouter
https://payhawk.com/blog/ai-office-of-the-cfo-brings-enterprise-ready-ai-to-finance-operations
https://payhawk.com/blog/ai-office-of-the-cfo-brings-enterprise-ready-ai-to-finance-operations
http://arxiv.org/abs/2502.18535
http://arxiv.org/abs/2502.18535
https://recruitagent.ai/
https://recruitagent.ai/
https://github.com/elizaOS/eliza/pull/1673
https://github.com/elizaOS/eliza/pull/1673
https://arxiv.org/abs/2205.12742
https://arxiv.org/abs/2205.12742
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://tlsnotary.org/
https://tlsnotary.org/
https://www.terra.security/
https://www.terra.security/
https://modelcontextprotocol-identity.io/
https://modelcontextprotocol-identity.io/
https://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/ker95.pdf
https://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/ker95.pdf

A. Formal Model: Autonomous Agents and Proof Composition
This appendix provides formal definitions underlying our Proofs of Autonomy framework. While the main paper already
introduces agent proofs and the Agent Identity Document (AID), this section consolidates the precise execution semantics
and proof composition logic. It is intended for readers seeking to understand or replicate our formalization and verification
results.

Unified Communication Interface. We assume a shared string-based domain Σ∗ (e.g., UTF-8 encoded text) for all agent
components, enabling uniform communication between the cognitive core and its tools.

Definition A.1 (Tool). A tool is a named, possibly stateful computational function:

tool : Σ∗ → Σ∗,

defined by:

• an identifier t ∈ Vtool, from a fixed vocabulary of known tools;

• an input descriptor, explaining the expected semantics of the input string;

• an output descriptor, for interpreting the result.

Tools may wrap external APIs, local code, physical actuators, or even other agents (see Remark A.2).

Remark A.2 (Tools as Sub-Agents). Because all tools adhere to the string-in/string-out interface, they can themselves be
autonomous agents, enabling recursive or hierarchical agent architectures.

Definition A.3 (Autonomous Agent). An autonomous agent is a tuple:

A = (Core, T),

where Core is a reasoning module and T is a finite set of tools.

Execution Semantics. Starting from initial context h(0) ∈ Σ∗, an agent executes in rounds as follows:

1. (y(j), T (j)) ← Core(h(j))

2. For each (t, x) ∈ T (j), compute rt ← toolt(x)

3. Append outputs to form new context:

h(j+1) = h(j) ∥ y(j) ∥ (t1:x1 ⇒ rt1) ∥ . . . ∥ (tk:xk ⇒ rtk)

The process halts when T (j) = ∅ and the core emits ¡STOP¿.

Definition A.4 (Execution Trace). An execution trace is a sequence:

τ =
(
h(0), s(0), . . . , s(n−1)

)
, s(j) =

(
y(j), {(ti, xi, rti)}

kj

i=1

)
.

B. Component Proofs and Composition
We now define a modular proof system for autonomous agents. Each component (core or tool) is modelled as a relation over
input–output pairs, with an associated proof system.

Component Relations. For each tool t ∈ Vtool:

Rt = {(x, r) ∈ Σ∗ × Σ∗ | r = toolt(x)}.

For the core:
RCore = {(h, (y, T)) | (y, T) = Core(h)} .

8

Definition B.1 (Component Proof System). Let R be a relation and AdvR an adversary class. A proof system for R is a pair
(P, V) such that:

• Perfect completeness: ∀(x, r) ∈ R, V (x, r, P (x, r)) = 1.

• Soundness w.r.t. AdvR: ∀A ∈ AdvR:

Pr [(x, r) /∈ R ∧ V (x, r, π) = 1] ≤ negl(λ).

Nondeterminism. If components are randomized, R includes all admissible outputs. Soundness then ensures infeasible
outputs cannot be forged.

Verifier Composition. Given verifiers {Vt}t∈T ∪ {VCore}, define VA to check all steps in τ using the corresponding Vt or
VCore.

Definition B.2 (Agent Proof). Let τ be a valid execution trace. An agent proof is:

Π =
(
π
(0)
Core, . . . , π

(n−1)
Core , {π(j)

ti }
)
,

with:
π
(j)
Core = PCore

(
h(j), (y(j), T (j))

)
, π

(j)
ti = Pti(xi, rti).

Definition B.3 (Agent Completeness and Soundness). Let AdvCore, {Advt} be the adversary classes. Define:

AdvA = AdvCore ∩
⋂
t∈T

Advt.

Then A is:

• Complete if any honest execution trace τ admits Π such that VA(τ,Π) = 1;

• Sound w.r.t. AdvA if
Pr

[
VA(τ̂ , Π̂) = 1 ∧ τ̂ not generated by A

]
≤ negl(λ).

Theorem B.4 (Composition Theorem). If each Pt, PCore is perfectly complete and sound w.r.t. its class Advt, then A is
complete and sound w.r.t. AdvA.

Sketch. Completeness follows by construction: honest agents produce valid subproofs, each of which verifies.

Soundness follows by union bound: any forgery implies a break of some Vt or VCore on an invalid tuple. Since all soundness
errors are negligible, their sum remains negligible across all m = n+

∑
kj sub-proofs.

9

C. Case Study: VeriTrade — A Verifiable Trading Agent
To illustrate the practical deployment of our framework, we implemented VERITRADE, an LLM-based trading agent whose
decisions and API interactions are independently verifiable. Each component is cryptographically bound via its Agent
Identity Document (AID), and every execution step is logged as part of a composable agent proof (τ,Π).

Agent Configuration. The agent consists of:

• a Core based on GPT-4o, accessed via the OpenAI API and verified using Web Proofs (TLSNotary),

• a tool for price lookups (PriceFeedAPI) backed by Coingecko,

• a local SNARK-based calculator (TradeSynthesizer) for synthesizing trades.

{
"agent_name": "VeriTradeBot",
"core": {

"model": "gpt-4o-2024-05-13",
"endpoint": "https://api.openai.com",
"hash": "sha256:d72f...9c",
"verifier": "TLSNotary"

},
"tools": [

{
"name": "PriceFeedAPI",
"endpoint": "https://api.coingecko.com",
"hash": "sha256:8a1b...f0",
"verifier": "TLSNotary"

},
{

"name": "TradeSynthesizer",
"hash": "sha256:6c55...79",
"verifier": {

"Groth16": {
"vk": "groth16-vk:3f7b9a..."

}
}

}
],
"verifiers": {

"TLSNotary": {
"version": "v0.1.0-alpha.10",
"key": "ecdsa-p256:04a1b2..."

}
},
"aid_hash": "sha256:27c8f3...42"

}

Figure 6. Sample of VERITRADE’s Agent Identity Document. Each component is uniquely bound to a verifier and hash.

Execution Steps. The VERITRADE agent follows a simple three-step workflow:

1. Tool call: Market data query. The agent queries Coingecko for live market data. The full HTTPS request is notarized
via TLSNotary (Web Proof).

2. Core call: Strategy synthesis. GPT-4o analyzes the market snapshot and proposes a trade strategy. The prompt and
response are attested with a Web Proof.

3. Tool call: Trade synthesis. A local binary (TradeSynthesizer) parses the model’s reply and synthesizes a concrete
trade instruction. The result is attested using a zk-SNARK.

A Proof of Autonomy of VeriTrade would thus be:
>>> Proof of Autonomy Content:
Proof 1: TLSNotary - PriceFeedAPI (https://api.coingecko.com)
Proof 2: TLSNotary - GPT-4o Reasoning (https://api.openai.com)
Proof 3: Groth16 - TradeSynthesize (local binary)

Figure 7. Partial agent proof registry for a single agent run. Each sub-proof can be verified independently.

Architecture Overview. We visualize the end-to-end workflow in Figure 5, where each interaction is tied to a verifiable
proof. The final agent proof is stored alongside the trade in an on-chain fund registry, enabling public verification.

10

local-execution proof (ZK/TEE) remote-call proof (Web Proof)

trusted API provider aggregated agent proof

Figure 8. Architecture of the VERITRADE agent. Steps (1)–(5) represent the full lifecycle: (1) notarised price fetch, (2) prompt assembly,
(3) LLM call with Web Proof, (4) notarised response, (5) trade accompanied with a zk-SNARK and verified by a third party. Red crosses
indicate potential tampering by a malicious host.

UI for End-Users. The frontend allows users to inspect historical trades and associated proofs (Figures 9, 10). These
views directly reference the public proof transcripts stored in IPFS.

Figure 9. VeriTrade’s UI allowing users to verify AI trading decisions (Overview).

11

Figure 10. VeriTrade’s UI allowing users to verify AI trading decisions (Details).

12

