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ABSTRACT

When a machine learning (ML) model exhibits poor quality (e.g., poor accuracy or fairness),
the problem can often be traced back to errors in the training data. Being able to discover the
data examples that are the most likely culprits is a fundamental concern that has received a
lot of attention recently. One prominent way to measure "data importance" with respect to
model quality is the Shapley value. Unfortunately, existing methods only focus on the ML
model in isolation, without considering the broader ML pipeline for data preparation and
feature extraction, which appears in the majority of real-world ML code. This presents a
major limitation to applying existing methods in practical settings. In this paper, we propose
Datascope, a method for efficiently computing Shapley-based data importance over ML
pipelines. We introduce several approximations that lead to dramatic improvements in terms
of computational speed. Finally, our experimental evaluation demonstrates that our methods
are capable of data error discovery that is as effective as existing Monte Carlo baselines, and
in some cases even outperform them. We release our code as an open-source data debugging
library available at|github.com/easeml/datascope.

1 INTRODUCTION

Data quality issues have been widely recognized to be among the main culprits for underperforming
machine learning (ML) models, especially when it comes to tasks that are otherwise considered
solved by ML (Liang et al., 2022; Ilyas & Chu, 2019). A common type of data errors are wrong
labels. For example, biomedical images can be misdiagnosed due to human error which results in
label errors. Many systematic methods have been developed to repair data errors (Rekatsinas et al.,
2017} [Krishnan et al.,|2017). Unfortunately, in many practical scenarios, repairing data in a reliable
manner requires human labor, especially if humans have been involved in producing the original data.
The high cost of this data debugging process has led to a natural question — Can we prioritize data
repairs based on some notion of importance which leads to the highest quality improvements for the
downstream model?

In recent years, several approaches have emerged to answer these questions. One line of work suggests
expressing importance using influence functions (Koh & Liang| 2017) which is essentially a gradient-
based approximation of the leave-one-out (LOO) method. Here, the importance of a training data
example is expressed as the difference in the model quality score observed after removing that data
example from the training set. This quality difference is referred to as the marginal contribution of that
data example. Another line of work proposes Shapley value as a measure of importance (Ghorbani &
Zoul, 2019; Jia et al., 2019bj [2021)) that has a long history in game theory (Shapley, [1951). In the
context of data importance, it can be seen as a generalization of LOO. Namely, instead of measuring
the marginal contribution over the entire training set, we measure it over every subset of the training
set and then compute a weighted average. Apart from having many useful theoretical properties, the
Shapley value was shown to be very effective in many data debugging scenarios (Jia et al.| 2021).

On the flip side, because the Shapley value requires enumerating exponentially many subsets, com-
puting it is intractable in practical settings. There have been different ways to approximate this
computation. This includes Monte Carlo (MC) sampling (Ghorbani & Zou, 2019) or group test-
ing (Jia et al., 2019b) to sample subsets of training data, train models as black boxes on those subsets,
compute marginal contributions of training data examples, and aggregate the results to compute the
final approximated result. Unfortunately, re-training the model can be quite costly, especially for large
models. Some methods try to overcome this by leveraging proxy models such as K-nearest neighbors
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Figure 1: Existing data debugging methods were designed to compute data importance of already
preprocessed data. In typical real-world scenarios, data errors occur in source datasets, before being
passed through a data preparation pipeline. The goal of our work is to help close that gap.

(KNN) (Jia et al.| 20194a) and exploiting its simple structure to derive dynamic programming (DP)
algorithms for computing the Shapley value.

One major trait of the existing work in this space is that it primarily focuses on computing the
importance of data examples in the prepared training dataset. This poses a challenge in practical
settings where data errors typically occur earlier in the data preparation process. In most realistic
scenarios, this process involves taking one or more source training datasets, joining them together
if needed, and applying a composition of data preprocessing operators (Figure T). The simplest
operators may represent a 1-1 map of input dataset elements to output dataset elements (referred to as
tuples in the data management literature). Some operators, such as the data augmentation operator,
fork the data by converting a single input data tuple into multiple output tuples. On the other hand, an
output tuple of a join operator can be the product of multiple input tuples. Finally, some operators
involve a reduce operation which involves computing some intermediate result based on the entire
input dataset (e.g. the mean and standard deviation) and then applying that result to output tuples.

This new setting impacts existing approximation methods in several ways. Firstly, given that it is
a black box approach, Monte Carlo sampling (Ghorbani & Zou, 2019)) can directly be applied to
this setting. However, this comes with the computational cost of re-running the data preprocessing
operators for every subset of the training data that we sample. Depending on the complexity of
the preprocessing pipeline, this cost can be quite significant. Secondly, the existing KNN-based
Shapley approximation method (Jia et al.,|2019a)) strictly relies on the ability to independently remove
tuples from the prepared training dataset in order to compute their marginal contributions. Given the
aforementioned complexity induced by preprocessing operators, the tractability result of the previous
KNN-based method does not hold directly in this new setting. Therefore, a novel analysis is needed
to see whether the Shapley value computation can be made tractable depending on the structure of
the data preprocessing pipeline.

Contributions. In this paper, we focus on studying the relationship between the structure of ML
pipelines and our ability to efficiently compute Shapley values of source data examples. We make use
of data provenance (Green et al.,2007; Cheney et al.,|2009), a simple yet powerful theoretical toolkit
for tracing individual data examples as they pass through a data processing pipeline. We propose
ease.ml/datascope, a framework for modeling the interdependence between tuples induced by data
preprocessing operators. Our contributions can be summarized as follows:

* We apply the notion of data provenance to ML pipelines in order to relate the input and output
datasets as a function of the pipeline structure. We introduce the notion of a “canonical pipeline”
which we simply define as a distinct pipeline structure that lends itself to efficiently relating pipeline
inputs and outputs, as well as efficiently computing Shapley values. We identify three classes of
canonical pipelines: map, fork and one-to-many join. (section 3))

* We show how approximating pipelines as canonical leads to significant speed-ups of Monte Carlo
methods for Shapley computation. We also demonstrate how the majority of real-world ML
pipelines can be approximated as canonical.

* We combine canonical pipelines with the K-nearest neighbor as a proxy model. We show how
canonical pipelines can be compiled into efficient counting oracles and used to derive PTIME
Shapley computation algorithms. Under this framework, the KNN Shapley method from prior work
represents a special case applicable to map pipelines.

* We conduct an extensive experimental evaluation by applying all considered Shapley computation
methods to the task of repairing noisy labels in various real-world datasets. We conclude that in
most cases our method is able to achieve solid performance in terms of reducing the cost of label
repair while demonstrating significant improvements in computational runtime. (section 5)
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2 PROBLEM: COMPUTING THE SHAPLEY VALUE OVER ML PIPELINES

Shapley Value. Let D;, be a training dataset and u some utility function used to express the value of
any subset of Dy, by mapping it to a real number. Then, the Shapley value, denoting the importance
of atuple t; € Dy, is defined as

o(t:) = o Cocoge (T ) @@U{E) - u®). o

Intuitively, the importance of t; for a subset D C Dy,.\{t;} is measured as the difference between
the utility w(D U {t;}) with t; and the utility (D) without t;. The Shapley value takes a weighted
average of all of the 2/P++I=1 possible subsets D C D;,.\{t;}, which enables it to have a range of
desired properties that significantly benefit data debugging tasks, often leading to more effective data
debugging mechanisms compared to other leave-one-out methods.

Quality of ML Pipelines. As mentioned, the utility function « is defined to measure the value of
any subset of Dy,., which in our context corresponds to the source training dataset. We assume that
this dataset can be made up of multiple sets of tuples (e.g. a multi-modal dataset involving a set of
images and a table with metadata). The validation dataset D, is defined in a similar manner.

Then, let f be a data preprocessing pipeline that transforms any training data subset D C Dy, into a
set of tuples {t; = (4, y:) }ic[rs) made up of M feature and label pairs that the ML training algorithm
A takes as input. Finally, we obtain a trained ML model A o f(D) which we can evaluate using some
model quality metric. Based on this, we can define the utility function u used to express the value of
a training data subset D as a measure of the quality of an ML pipeline A o f(D) when scored using
Dyqi- Formally, we write this as

’U,(D) = m(A o f(D)7 f(Dval)) (2

Here, m can be any model quality metric such as accuracy or a fairness metric such as equalized
odds difference. Note that, for simplicity, we assume that we are applying the same pipeline to both
the training data subset D and the validation dataset D,,,;. In general, these two pipelines can differ
as long as the data format of f(D,,;) is readable by the trained ML model. For example, a data
augmentation operation is typically applied to training data only (as is the case in our experiments).

Core Technical Problem. In this work, we focus on the ML pipeline utility v defined in
and we ask the following question: How can we approximate the structure of u in order to obtain
Shapley-based data importance that is (1) computationally fast; and (2) effective at downstream data
debugging tasks?

3 CANONICAL ML PIPELINES

In this section, we take a closer look at a data preprocessing pipeline f that can, in principle, contain
an arbitrarily complex set of data processing operators. This complexity can result in a heavy overhead
on the cost of computing the Shapley value. This overhead comes from having to re-evaluate the
pipeline many times for different training data subsets. In this section, we describe a framework for
minimizing that overhead by solving a concrete technical problem.

Problem 1. We are given a training dataset D;,., a data preprocessing pipeline f, and the output set
f (D). For an arbitrary subset D C D, and some tuple ¢’ € (D, ), decide whether ¢’ € f(D) in
time O(1) w.r.t. |Dy,|.

It is easy to see how solving this problem virtually removes the cost of computing the pipeline output
of an arbitrary training data subset. Next, we describe a reduced version of the data provenance
framework (Green et al., 2007; |Cheney et al.,2009) which we will apply to solve this problem.

3.1 DATA PROVENANCE FOR ML PIPELINES

We define a set of binary variables A and associate a variable a; € A with every training data tuple
t € Dy,. Each subset D C Dy, can be defined using a value assignment v(a) — {0, 1}, where
v(a;) = 1 means that t € D. We can use Dy,-[v] to denote D. We write V4 to denote the set of all
the 214/ possible value assignments. Next, with every tuple t' € f(D,,.) we associate a “provenance
polynomial” py which is a logical formula with variables in A (e.g. a; + a2 - as). For a given
value assignment v, we define an evaluation function eval, (py) — {0, 1} which simply follows the
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Figure 2: (a-c) Three types of canonical pipelines where data provenance allows us to efficiently
compute subsets. (d) A majority of real-world ML pipelines (Psallidas et al.,2019) either already
exhibit a canonical pipeline pattern, or are easily convertible to it using our approximation scheme.

standard logical reduction rules to determine the truthiness of py given v. For a tuple t' € f(Dy,.)
and a value assignment v, we define ' € f(Dy.[v]) iff eval,(py) = 1. It is easy to see that we can
directly apply this framework to solve [Problem 1} However, to respect the O(1) time complexity, |p|
must be O(1) w.r.t. |Dy,|. Injsubsection 3.2| we explore when this condition is met.

Redefining the Shapley value. Using this framework, we can rewrite the Shapley value as:
Al-1 1
o(t;) = ﬁ ZUEVA\{,,,” (|st‘p(v)|) w(Dyr[v; a; < 1]) — u(Dy[v; a; + 0]) 3)

The notation [v; a; < X] for X € {0, 1} means that we augment v with v(a;) = X. Also, we define
the support of v as supp(v) :={a € A : v(a) = 1}.

3.2 APPROXIMATION: ML PIPELINES ARE CANONICAL

As mentioned above, solving[Problem 1]in O(1) time depends on |p;| being O(1) w.r.t. |Dy,|. This
does not necessarily hold true for an arbitrary pipeline f. However, it does hold true for some classes
of pipelines, which we refer to as canonical pipelines. Hence, if we approximate the pipeline f as
canonical, then we can solve The three classes of canonical pipelines that we identified to
be useful in the context of this work are: map, fork, and one-to-many join pipelines (Figure 2)).

Map pipelines. This is the simplest form of pipeline where each input tuple ¢ € Dy,. corresponds to
at most one output tuple t' € f(Dy,.), after passing through an optional per-tuple mapping function
u(t) — t' (Figure 2a). Examples of such pipelines include missing value indicators, polynomial
feature generators, pre-trained embeddings, etc.

Fork pipelines. In this pipeline, each input tuple ¢ € D,, can be associated with multiple output
tuples t' € f(Dy,), but a single output tuple is associated with a single input tuple . A
prominent example is a data augmentation pipeline that outputs several slightly altered versions of
every input tuple.

One-to-many Join pipelines. This pipeline contains table join operators like the one in

Here, the training dataset Dy, = {D;, Dy, . - ., Dq, } is made up of multiple tuple sets that form a
"star schema". This means that any training example tuple ¢ € D; can be joined with no more than
one tuple from each of the auxiliary tables D, ..., D,, . Note that, for this pipeline, the provenance

polynomial of each output tuple is a Boolean product of variables associated with all tuples that were

joined to produce that output tuple (Figure 2¢).

3.3 APPROXIMATING REAL ML PIPELINES

Even though many real-world pipelines can be directly represented as our canonical pipelines, there
is still a solid amount that cannot be represented. Nevertheless, upon taking a closer look, we can
identify a class of pipelines that we might be able to approximately represent. These are the pipelines
that exhibit an estimator-transformer pattern f(D) = map(reduce(D), D). Specifically, they are
made up of some reduce operation performed on the entire dataset which produces some intermediate
data, which is used to parameterize a map operation which is performed on individual tuples. An
example of such a pipeline is a min-max scaler, where the reduce step computes min and max
statistics for each feature, which are then used to re-scale individual tuples.

The reduce step of this pipeline causes every output tuple to depend on every input tuple, which does
not fit into our canonical pipeline framework. However, we can still approximate such pipelines by
isolating the intermediate data produced by reduce(Dy,). Then, conditioned on that intermediate
data, we can re-define our pipeline f to be a conditional map pipeline f* as follows:

f(D) = map(reduce(D), D) — f*(D) = map(reduce(D;,), D).

Evaluation of Effectiveness. We evaluate our method of approximating pipelines as canonical and
apply it directly to compute the Shapley value using the Truncated Monte Carlo (TMC) sampling
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Dataset: Folktables Adult;  Pipeline: Random Augment + Missing Indicator + Standard Scaler + K-Means
(a) Target Model: XGBoost (b) Target Model: Logistic Regression
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Figure 3: An ML pipeline with an estimator-transformer pattern approximated as a canonical pipeline
can achieve comparable performance on a label repair task, with significantly faster runtime.

method (Ghorbani & Zou, [2019). We run the evaluation for 10 and 100 Monte Carlo iterations
(x10/x100). We can see that our approach exhibits comparable performance with significant gains in
computational runtime (Figure 3). See[section 5|for more details about the experimental protocol.

Statistics of Real-world Pipelines. A natural question is how common these families of pipelines
are in practice. [Figure 2d|illustrates a case study that we conducted using 500K real-world pipelines
provided by Microsoft (Psallidas et al.l 2019). We divide pipelines into three categories: (1) “pure”
map/fork pipelines, based on our definition of canonical pipelines; (2) “conditional” map/fork
pipelines, which are comprised of a reduce operator that can be effectively approximated using the
scheme we just described; and (3) other pipelines, which contain complex operators that cannot be
approximated. We observe that a vast majority of pipelines we encountered in our case study fall into
the first two categories that we can effectively approximate using our canonical pipelines framework.

4 SHAPLEY VALUE OVER CANONICAL PIPELINES

In[section 3| we described an approach for treating the data preprocessing pipeline f as a white box
which led us to directly attainable performance improvements of Monte Carlo Shapley methods.
However, these methods still rely on treating the model A as a black box and retraining it for different
training data subsets, which often results in slow runtime. In this section, we are interested in PTIME
algorithms that give orders of magnitude faster runtime and thus open the door for interactive data
debugging. Specifically, we focus on the following technical problem:

Problem 2. We are given a training dataset D;,., a data preprocessing pipeline f and a model quality
metric m computed over a given validation dataset D,,,;. Compute the Shapley value (as defined in

of a given tuple ¢; € Dy, for the ML pipeline utility (as defined in in time

polynomial w.r.t. |Dy,.| and Dy

We will now explore additional approximations we can make on the model .4 as well as the model
quality metric m. Specifically, we replace the model with a KNN classifier, and we assume that
the quality metric has a specific additive structure. We then sketch the outline of a solution to the
given problem that leverages these approximations. It should be noted that although prior work has
explored the idea of using the KNN proxy model for PTIME algorithms (Jia et al., 2019a), to the best
of our knowledge, the work presented in this paper is the first to analyze the relationship between the
structure of different types of ML pipelines and the computational complexity of the Shapley value
computation. A brief discussion about the limitations of prior work is presented in

4.1 APPROXIMATION: THE MODEL IS KNN AND THE MODEL QUALITY METRIC IS ADDITIVE

Here we define two structures which we will use as building blocks for approximating ML pipelines:
the KNN model and additive model quality metrics. In the following section we will show how these
building blocks can be leveraged to provide PTIME algorithms for computing Shapley values.
K-Nearest Neighbor (KNN) Model. We provide a specific definition of the KNN model in order to
facilitate our further analysis. Given some set of training tuples D and a validation tuple ?,,;, the
KNN model Ak nn (D) can be defined as follows:

Arnn(D)(tvar) = argmax, oy, (tally (D ‘ top g (D | tq,al),twl) (y)) “4)

Here, top (D | tyqr) returns a tuple ¢ € D that takes the K-th position when ranked by similarity
with the validation tuple ¢,,,;. Furthermore, tally(D | ¢, t,q;) tallies up the class labels of all tuples
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in D that have similarity with ¢,,; higher or equal to tx. It returns ~, a label tally vector that is
indexed by class labels (i.e. v : J — N). Note that the sum of all elements in v must be K. Given a
set of classes ), we define I'y, i to be the set of all possible label tally vectors. Finally, assuming a
standard majority voting scheme, argmax,  y, returns the predicted class label with the highest tally.

Additive Model Quality Metric. We say that a model quality metric is additive if there exists a
tuple-wise metric m such that m can be written as:

(A FD) FDua)) = 0+ ey (40 1)) . oo )

Here, w is a scaling factor that can depend only on D,,4;. The tuple-wise metric mr : (Ypred, tval) —
[0, 1] takes a validation tuple t,,; € Dyq; as well as a class label Ypred € Y predicted by the model
for t,4;. It is easy to see that some popular utilities, such as validation accuracy, are additive, e.g.,
the accuracy utility is simply defined by plugging mr(Ypred, (Tval, Yvat)) = L{Ypred = Yvar} and
w := 1/|Dyq] into[Equation 5} Injsubsection E.3| we show even more examples of such metrics.

4.2 COMPUTING THE SHAPLEY VALUE

We now outline our approach to computing the Shapley value of a training data tuple ¢; € Dy, using
our approximation described in[subsection 3.2]and [subsection 4.1] We start off from [Equation 3|and
plug in u as defined in Next, since we assume that our model quality metric is additive,
we plug in m as deﬁne By rearranging the sums, we can write the Shapley formula
as o(t;) = w - Ztmzef(Dm) ©(ts, tyal), Where o(t;, tyqr) is a validation tuple-wise Shapley value.
Under the assumption that our model is KNN, we can plug in A as defined in[Equation 4] rearrange
the sums, and arrive at the following definition of ¢ (¢;, t,q:):

Al 1Al-1y L
o(tistvar) = \qu| Zt’,t”ef(D,,T) Z‘u:‘l (‘ (‘1 1) Z'y’,"/”EFyVK ma(Y, 7" | toar) - w(a, ¥,y | tis toar, ', 7). (6)

We define ma (Y, 7" | tyar) := mT(argmaxyey'y”(y), tyal) — mT(argmaxyey'y'(y), tyar) as the
differential metric.

Counting Oracles. The function w in[Equation 6|is a counting oracle which we introduce to help us
isolate and analyze the exponential sum from [Equation 3| We define it as:

woy 7" [ tistuars ) = > 1{a = supp(v)] }
VEVA\ (a;}

<]1{t’ = topg (f(Derlv; a; < 0]) | tual)} : ]1{15” = topg (f(Der[v; a; ¢ 1]) | tval)} )

4]1{7’ = tally (f(Dir[v;a; < 0)) | ¢/, tval)} . l{wr” = tally (f(Der[v; a; 1)) [ 7 tyar) }

Intuitively, the counting oracle is a function that returns the number of value assignments with exactly
« variables set to 1, and the label tally of the top-K tuples will be exactly v" when ¢t; is included in
the training dataset, and v’ when it is excluded. By looking at we can observe that all
the sums are polynomial w.r.t. the size of data. Thus, we arrive at the following theorem (which we
prove in[Appendix E):

Theorem 4.1. If we can compute the counting oracle w as defined in[Equation 7|in time polynomial
w.r.t. |Dy| and |Dyqil, then we can compute the Shapley value of a tuple t; € Dy, in time polynomial
w.r.t. |Dy| and | Dyail-

The above theorem outlines a solution of given that we can find a PTIME solution for
computing the counting oracle. Next, we cover a solution that models the problem as a model
counting problem by leveraging a data structure which we call Additive Decision Diagrams (ADD’s).

Counting Oracle as Model Counting over ADD’s. We use Additive Decision Diagram (ADD) to
compute the counting oracle w; ;- (Equation 7). An ADD represents a Boolean function ¢ : V4 —

€ U {oo} that maps value assignments v € V4 to elements of some set £ or a special invalid element
oo (see|Appendix C|for more details). For our purpose, we define £ := {1, ..., |A|} x 'y x x 'y k.

Then, we define a function over Boolean inputs ¢ (v | t;, , tyar, t',t") as follows:

00, if ' & Dyrlv;a; + 0],
¢(U | ti7 tvalv t/7 t,/) =4 00, if ¢/ ¢ Dtv‘ [U§ a; < 1]7
(a,7',7"), otherwise,

(®)

a = [supp(v)|, 7 = tally(DtT[U;ai «~ 0], tml), = tally(DtT[v; a; < 1] | t”,tval).
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Dataset: Folktables Adult Pipeline: Random Augment + Missing Indicator + Standard Scaler + K-Means
(a) Target Model: XGBoost (b) Target Model: Logistic Regression
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Figure 4: Computing the Shapley value by using KNN as a proxy model can achieve comparable
performance on a label repair task, with orders of magnitude faster runtime.

If we can construct an ADD that computes ¢(v | ¢;, tyai, t',t"), then the model counting operation
on that ADD exactly computes w(c, ', v" | t;, tyar, ', t"). As the complexity of model counting is
O(IN] - |€]) (see[Equation 12)) and |&| is polynomial in the data size, we have the following result:

Theorem 4.2. If we can represent the ¢y (v) in with an ADD of size polynomial in | A
and | DI |, we can compute the counting oracle Wy in time polynomial of |A| and D .
A proof is provided in[Appendix E| For specific canonical pipelines, we have the following corollaries.

Corollary 4.1. (One-to-Many Join Pipelines) For the K-NN accuracy utility and a one-to-many
join pipeline, which takes as input two datasets, D and Dp, of total size |Dr|+ |Dp| = N and
outputs a joined dataset of size O(N), the Shapley value can be computed in O(N*) time.

Corollary 4.2. (Fork Pipelines) For the K-NN accuracy utility and a fork pipeline, which takes
as input a dataset of size N and outputs a dataset of size M, the Shapley value can be computed in
O(M?2N?) time.

Corollary 4.3. (Map Pipelines) For the K-NN accuracy utility and a map pipeline, which takes as
input a dataset of size N, the Shapley value can be computed in O(N?) time.

Evaluation of Effectiveness. We evaluate our method of computing the Shapley value by using
KNN as a proxy model (Figure 4). We can see that its effectiveness is comparable even when applied
to the task of label repair over pipelines that have different models. On the other hand, we can see
that the computational cost is orders of magnitude lower when compared to MC methods.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of our method by applying it to a common data debugging scenario
— label repair. The goal of this empirical study was to validate that: (1) our approximations enable
significantly faster computation of Shapley values, and (2) in spite of any inherent biases, these
approximations still manage to enable effective data debugging.

5.1 EXPERIMENTAL SETUP

Protocol. We conduct a series of experimental runs that simulate a real-world importance-driven data
debugging workflow. We developed a custom experimental infrastructure based on dcbench (Eyuboglu
et al.| 2022)). In each experimental run, we select a dataset, pipeline, model, and data repair method.
If a dataset does not already have human-generated label errors, we follow the protocol of |Li et al.
(2021) and Jia et al.[(2021) and artificially inject 50% of label noise. We compute the importance
using a validation dataset and use it to prioritize our label repairs. We divide the range between 0%
data examined and 100% data examined into 100 checkpoints. At each checkpoint, we measure the
quality of the given model on a separate test dataset using some metric (e.g. accuracy). We also
measure the time spent on computing importance scores for the entire training dataset. We repeat
each experiment 10 times and report the median as well as the 90-th percentile range (either shaded
or with error bars).

Data Debugging Methods. We apply various methods of computing data importance:

* Random — Importance is a random number and thus we apply data repairs in random order.

e TMC x10/x100 — Shapley values computed using the Truncated Monte-Carlo (TMC)
method (Ghorbani & Zoul 2019)), with 10 and 100 Monte-Carlo iterations, respectively.

* Datascope TMC x10 / x100 — This applies our method of approximating pipelines using data
provenance over canonical pipelines to the TMC method of computing the Shapley value.
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Figure 5: Under our framework it is possible to optimize for model quality metrics other than
accuracy. Here we show a commonly used fairness metric — equalized odds difference (lower is
better). Given that approximating this metric is more complex, optimal results are achieved by using
KNN Interactive which recomputes the Shapley value after each data repair checkpoint.

» Datascope KNN — This is our method for efficiently computing the Shapley value over ML
pipelines by using the KNN as a proxy model.

» Datascope KNN Interactive — While the above methods compute importance only once at the
beginning of the repair process, the speed of our method allows us to recompute the importance
after each data repair checkpoint.

Data Preprocessing Pipelines. We Table 1: Data preprocessing pipelines used in experiments.
obtained a dataset with about 500K
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along with the operators they
are made up of. Some pipelines are purely canonical, while some involve a reduce operation.

5.2 RESULTS

In this section, we highlight some of the most interesting results of our empirical analysis and point
out some key insights that we can draw. A more extensive experimental analysis is presented in
We start off with three general scenarios: (1) accuracy-driven label repair; (2) fairness-
driven label repair to demonstrate usage of different model quality metrics; and (3) label repair in
deep learning scenarios. In each one, we study the tradeoff between computational cost of any data
repair approach, and the labor cost, which is measured as the amount of data repairs that need to be
conducted to deliver the biggest improvement of model quality. Finally, we conduct a scalability
analysis of our algorithm to showcase its potential for handling large datasets.

Improving Accuracy. In this set of experiments, our goal is to improve model accuracy with targeted
label repairs. In we show one example workflow for the FolkUCI Adult dataset and the
pipeline from Figure 1 without the join operator. We evaluate our KNN-based method over pipelines
that contain two different ML models: LogisticRegression and XGBoost. We can draw two key
conclusions about our KNN-based algorithm. Firstly, given that our KNN-based method is able to
achieve comparable performance to Monte Carlo-based methods, we can conclude that KNN can
indeed serve as a good proxy model for computing the Shapley value. Secondly, it is able to achieve
this performance at only a fraction of the computational cost which makes it even more compelling.

Improving Accuracy and Fairness. Next, we explore the relationship between accuracy and fairness
when performing label repairs. In these experiments, we use tabular datasets that have a ‘sex’ feature
that we use to compute group fairness using equalized odds difference (Hardt et al.,[2016). In[Figure 3|
we explore the tradeoff between two data debugging goals — the left panel illustrates the behavior of
optimizing for accuracy whereas the right panel illustrates the behavior of optimizing for fairness. We
first notice that being able to debug specifically for fairness is important because for some datasets
improving accuracy does not necessarily improve the fairness of the trained model. Secondly, we
can see that even when we do optimize for fairness, not all methods will end up being successful.
The best-performing method is Datascope KNN Interactive which is the only one that recomputes
the Shapley value at each of the 100 checkpoints (due to the speed of our KNN-based method). It
is likely that the complexity of the equalized odds difference as a metric makes it challenging to
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Figure 6: The KNN proxy can offer effective data debugging in various deep-learning scenarios.

compute the Shapley value. Especially since some interventions on the dataset might end up shifting
the optimal path, and only by recomputing are we able to detect this shift.

Deep learning pipelines. We also measured the effectiveness of our approximation methods in
several scenarios that involve deep learning models. In[Figure 6a we use a pre-trained ResNet-18
model as the target model. We fine-tune it for 5 epochs on a noisy label dataset and see that Datascope
KNN fares favorably compared to random label repair. shows the result of applying a
pre-trained embedding model and evaluating both the Datascope KNN and the Datascope TMC
approximations, where the KNN proxy again shows good performance. Finally, in|[Figure 6c|we
show how our method can be used to repair labels of a dataset used as a support set for a one-shot
learning neural network. We use the matching networks model (Vinyals et al.,|2016) which employs
a learned “distance metric” between examples in the test set and those in the support set. This allows
us to replace the standard Euclidean distance metric in our KNN proxy model with a custom one and
achieve effective label repairs with efficiently computed Shapley values.

Scalability. We evaluate the speed of our al-
gorithm for larger training datasets. We test
the runtime for various sizes of the training set
(10k-11M), the validation set (100-10k), and the }
number of features (100-1%). As expected, the R Toinigesze ™ astorse soe " Number of Features
impact of the training set size and validation
set size is roughly linear (Figure[7). Even for
large datasets, our method can compute Shapley
scores in minutes.
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10! 10!
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Figure 7: Scalability analysis of our Datascope
KNN Shapley algorithm over different training set,
validation set, and feature vector sizes.

6 RELATED WORK

Targeted data repairs have been studied for some time now. Apart from the work mentioned in
a notable piece of work is CleanLab which leverages confident learning to make targeted
repairs of noisy labels (Northcutt et al., 2021). Our work focuses on the Shapley value given it was
shown to be applicable to many scenarios (Jia et al.,[2021). Apart from the data valuation scenario,
the Shapley value has also been used for computing feature importance (Lundberg & Leel 2017). On
the other hand, the scope of our work is data importance over ML pipelines.

Debugging data pipelines has started receiving some attention recently. Systems such as Data X-Ray
can debug data processing pipelines by finding groups of data errors that might have the same
cause (Wang et al.,[2015)). Another example is mlinspect which also uses data provenance as an
abstraction for automatically analyzing data preprocessing pipelines and discovering data distribution
errors (Grafberger et al.} 2022). A system called Rain leverages influence functions as a method for
analyzing pipelines comprising of a model and a post-processing query (Wu et al.,[2020). Rain also
uses data provenance as a key ingredient, but their focus is on queries that take as input predictions of
a model that has been trained directly on the source data.

7 CONCLUSION AND OUTLOOK

In this paper, we propose lease.ml/datascope, a framework for representing a wide range of ML
pipelines that appear in real-world scenarios with the end goal of efficiently computing the Shapley
value of source data examples. We show how this framework can be leveraged to provide significant
speed-ups to Monte Carlo-based methods for Shapley value computation. Furthermore, we provide
PTIME algorithms for computing the Shapley value using the KNN proxy model for several classes
of ML pipelines. Finally, we empirically demonstrate that our methods achieve significant speed-ups
over previously developed baselines while demonstrating competitive performance in a downstream
data debugging task. Our code is available at|github.com/easeml/datascope.


https://ease.ml/datascope
https://github.com/easeml/datascope
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A DISCUSSION ABOUT THE LIMITATIONS OF PRIOR WORK

In this section, we provide a brief outline of the existing KNN approximation method for computing
the Shapley value (Jia et al., 2019a)) which was instrumental in laying the foundation for applying
the KNN proxy model to Shapley computation. However, as we argue in this paper, this work is not
directly applicable to ML pipelines as defined in this paper. Note that our goal here is to offer only
intuition as to why it is the case, and thus we are leaving out many technical details. In
we present how the results in (Jia et al.| [2019a) can be seen as a special case for computing Shapley
values using the 1-NN proxy model.

The polynomial time approximation to computing Shapley values using the KNN proxy model
established by [ia et al.[(2019a)) relies on several assumptions that do not hold in the context of
fork/join pipelines. The prediction of the KNN model (and by extension its accuracy) for any training
data (sub)set is strictly dependent on the labels of the top-K data examples that are most similar
to some validation example t,,,; for which the KNN model is supposed to predict the label (and by
extension result in a measurement of the accuracy of this prediction). To compute the Shapley value
of a training data example t; € Dy, we need to know the accuracy difference (i.e. the marginal
contribution) that occurs when adding that data example to every possible subset D C D,,.. In
simple terms, the method in (Jia et al.,[2019a) computes the Shapley value of an input data example
by first sorting all data examples according to their similarity with ¢,,;. After that, it relies on the
observation that in order for ¢; to end up in the top-K (and thus have a chance of impacting the
prediction accuracy of some subset D C Dy,.), of all data examples that are higher than ¢; in the
sorting order, at most (K — 1) can be present in D. It then computes how many subsets D C D, of
size « satisfy this condition. Specifically, if ¢; takes the j-th position in the sorting order, then the

number of such subsets is (/) ("2*7/-7). Finally, it includes the Shapley weighing factor along

with some combinatorial tricks to combine all this into a simple formula:

[Der| _
P(tistvar) = Z (mT(y(ti)7tml) — mT(y(tj)7tUal)) (%i;])

As we can see, this method strictly expects that adding ¢; to any subset of D;,. will always result
in either 0 or 1 data examples being added to the top-K and that the choice between 0 and 1
strictly depends on the number of data examples that come before ¢; in the sorting order. Two core
assumptions lie behind this expectation: (1) adding ¢; to a subset of D;,. will always result in exactly
one additional data example being passed to KNN, and (2) the presence of any data example in the
KNN training set is caused by the presence of exactly one data example in Dy,.. The first assumption
allows us to separate data examples into those that come before ¢; in the sorting order and those that
come after. The second assumption allows us to count subsets using binomial coefficients. If any
of the two assumptions do not hold, then the simple combinatorial formula is no longer applicable
because the data examples passed to KNN are no longer independent from each other. Map pipelines
do not break these assumptions. On the other hand, fork pipelines break the first assumption, and join
pipelines break both the first and the second assumption.

In this work, we examine the broader setting of ML pipelines which comes with several open
questions. If any single training data examples ¢; € Dy, is associated with e.g. 10 data examples that
are passed to KNN, and they are all intertwined in the sorting order, how do we efficiently compute
the number of subsets D C D;,. where adding a specific data example ¢; will result in altering the
accuracy of the KNN prediction? If a data example that gets passed to KNN is the result of joining
two data examples ¢; ; and 2 ; from separate source datasets D and Dy, but ¢ ; is also joined with
other examples from D, that make up even more output data examples, so removing ¢ 1 from the
training dataset will result in one data example not being passed to KNN but removing ¢ ; will result
in more than one not being passed, how do we efficiently compute the number of subsets where
adding ¢, ; will alter the KNN prediction? Do things change in the case of multi-class classification?
Can we use model quality metrics other than accuracy? To answer these open questions, we employed
all the theoretical components described in this paper, including provenance polynomials, ADD’s, and
model counting oracles. The theoretical insight we would like to convey is that all these components
are fundamental to solving this problem and that this is the correct level of abstraction for analyzing
ML pipelines and developing PTIME algorithms.
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B DISCcUSSION ABOUT TYPES OF ML PIPELINE OPERATORS

Here we provide an overview of types of pipeline operators that can be found in ML workflows. We
base this discussion on operatos that can be found in the scikit-learn and ML.NET frameworks, as
well as commonly used operators that can be found in real-world ML code.

Unary Map: These are functions that map single value inputs to single value outputs. Examples
include:

* Log - Computes a logarithm of the input.

* Missing Value Indicator - returns a Boolean that indicates if the input is a missing value or not
(e.g. MissingIndicator in scikit-learn).

* Stopword Remover - takes an input list of string tokens and removes the ones that correspond to
stop-words (e.g. "the", "and", etc); the list of stop words is specified as an additional argument
(e.g. StopWordsRemovingTransformer in ML .NET)

Binary Numerical and Logical Map: These are common mathematical operators such as addition,
subtraction, multiplication, division, logical and, logical or, equality test, etc.

Multi-Value Map: Values containing multiple elements are taken as inputs and produced as outputs.
A key example is a vector normalizing operator which maps a vector input to a vector output.

Tuple Filter Map: These operators remove tuples from the dataset based on the result of some unary
map operation. Since these operators map a single tuple to either a single output tuple or to nothing,
they are categorized as map filters. Examples include:

* Missing Value Filter - Removes tuples that contain missing values.
* Range Filter - Removes tuples where values of a specified column are outside a given range.

Numerical Aggregate Reduce: This operator takes an entire column and reduces it into a single
numerical value. Examples include summation, counting, mean value, standard deviation, as well as
minimal and maximal element selector operators.

Unary Map with Reduce Elements: These operator function similarly to regular unary map
operators. However, their mapping operation is dependent on performing some numerical aggregate
reduce operation beforehand. Examples include:

* Min-Max Scaler - Scales column values to a 0-1 range based on minimal and maximal
element values which represent the pre-computed reduce element (e.g. MinMaxScaler in
scikit-learn).

» Standardization Scaler - Same as the min-max scaler but transforms elements based on the
pre-computed mean and standard deviation values (e.g. StandardScaler in scikit-learn).

* One-Hot Encoder - Encodes numerical features as a one-hot numerical array. Depends on a
pre-computed list of unique column element values.

* TD-IDF Encoder - Converts textual values into their Term Frequency - Inverse Document
Frequency encodings. This operator depends on a pre-computed dictionary of token frequencies.

Data Augmentation Fork: This can be any data augmentation operator that maps input tuples to
some specified number of output tuples. Examples include: random noise injection, randomly shifting
or rotating images, removing or replacing characters in text to simulate misspelling, etc.

One-to-Many Join: Join operators compute a matching between two sets of tuples D4 and Dpg, and
for each pair of matched input tuples produce a single output tuple. In general there are no constraints
on the kinds of matchings that can be performed. However, the specific type of join we describe here,
referred to as one-to-many type join requires that tuples from one of the two sets (e.g. D 4) can be
matched with at most one tuple from the other set (e.g. Dp). At the same time, tuples from Dp can
be matched with multuple tuples from D 4.

C PRELIMINARY: ADDITIVE DECISION DIAGRAMS (ADD’S)

In this section, we describe a type of decision diagram that we use as a tool for compact representation
of functions over Boolean inputs. The process of translating functions into data structures for easier
analysis is referred to as knowledge compilation. We briefly describe this in the context of our work,
and then go over the data structure we use in our methods — Additive Decision Diagrams.

Knowledge Compilation. Our approach to computing the Shapley value will rely upon being able to
construct functions over Boolean inputs ¢ : V4 — &, where £ is some finite value set. We require
an elementary algebra with 4+, —, - and / operations to be defined for this value set. Furthermore,
we require this value set to contain a zero element 0, as well as an invalid element co representing
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an undefined result (e.g. a result that is out of bounds). We then need to count the number of value
assignments v € V4 such that ¢(v) = e, for some specific value e € £. This is referred to as the
model counting problem, which is #P complete for arbitrary logical formulas [Valiant| (1979); |Arora
& Barak| (2009). For example, if A = {a1, as, a3}, we can define £ = {0, 1,2, 3,00} to be a value
set and a function ¢(v) := v(ay) + v(az) + v(as3) corresponding to the number of variables in A
that are set to 1 under some value assignment v € V4.

Knowledge compilation|Cadoli & Donini| (1997) has been developed as a well-known approach to
tackle this model counting problem. It was also successfully applied to various problems in data
management Jha & Suciu| (2011). One key result from this line of work is that, if we can construct
certain polynomial-size data structures to represent our logical formula, then we can perform model
counting in polynomial time. Among the most notable of such data structures are decision diagrams,
specifically binary decision diagrams |[Lee| (1959)); Bryant| (1986) and their various derivatives Bahar|
et al.| (1997); Sanner & McAllester| (2005); [Lai et al.|(1996). For our purpose in this paper, we use the
additive decision diagrams (ADD), as detailed below.

Additive Decision Diagrams (ADD). We define a simplified version of the affine algebraic decision
diagrams|Sanner & McAllester| (2005). An ADD is a directed acyclic graph defined over a set of nodes
N and a special sink node denoted as [J. Each node n € N is associated with a variable a(n) € A.
Each node has two outgoing edges, ¢y, (n) and cg(n), that point to its low and high child nodes,
respectively. For some value assignment v, the low/high edge corresponds to v(a) = 0/v(a) = 1.
Furthermore, each low/high edge is associated with an increment wy,/w g that maps edges to elements
of £.

Note that each node n € N represents the root of a subgraph and defines a Boolean function. Given
some value assignment v € V4 we can evaluate this function by constructing a path starting from
n and at each step moving towards the low or high child depending on whether the corresponding
variable is assigned O or 1. The value of the function is the result of adding all the edge increments
together. [Figure 8a| presents an example ADD with one path highlighted in red. Formally, we can
define the evaluation of the function defined by the node n as follows:
0, ifn="0,
eval,(n) := { wr(n) + eval,(cp(n)) if v(z(n)) =0, )
wg(n) +eval,(cg(n)) if v(z(n)) = 1.

In our work, we focus specifically on ADD’s that are full and ordered. A diagram is full if every
path from root to sink encounters every variable in A exactly once. For example, in
we see a full diagram over the set of variables A = {a1,1,01,2,02,1,02,2,a23}. If any of the
variables in A has no node associated with it, then the diagram is not considered full. On the
other hand, an ADD is ordered when on each path from root to sink variables always appear
in the same order. For this purpose, we define 7 : A — {1,...,|A|} to be a permutation of
variables that assigns each variable a € A an index. For example, in [Figure 8a| the variable order
isT={a1,1 = l,a12 — 4,a21 — 2,a22 — 3,a23 +— b}. Itis possible, for example, to swap
the two nodes on the left side that correspond to az ; and as 2. This, however, makes the diagram
unordered, which dramatically complicates certain operations (e.g. the diagram summation operation
that we will describe shortly).

Diagram Diameter. We define the diameter of an ADD as the maximum number of nodes associated
with any single variable. Formally we can write:

diam(N) := max |{n € N :a(n) = a;}| (10)

We can immediately notice that the size of any ADD with a set of nodes A and variables A is
bounded by O(|A] - diam(N)).
Model Counting. We define a model counting operator

; (1D

where A[< m(a(n))] is the subset of variables in A that include a(n) and all variables that come
before it in the permutation 7. For an ordered and full ADD, count.(n) satisfies the following
recursion:

count,(n) := HU € Val<r(a(n))] | evaly(n) = e}

1, ife=0andn =[],
counte(n) := ¢ 0, ife=occorn=0, (12)
counte_y,, (ny(cr(n)) + counte_y,, ny(ca(n)), otherwise.
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(a) ADD (b) Uniform ADD
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Figure 8: (a) An ordered and full ADD for computing ¢(v) = v(a1,1) - (v(az,1) + v(azz2)) +
v(a12) - v(az,3). (b) A uniform ADD for computing ¢(v) := 5 - (v(a1) + v(az) + v(asz)).

The above recursion can be implemented as a dynamic program with computational complexity
O(INT - 1€]).

shows a special case of a full and ordered ADD, which we call a uniform ADD. It is
structured as a chain with one node per variable, where all low increments equal zero and all high
increments equal some constant £ € £. For this type of ADD, we can perform model counting in
constant time, assuming that we have a precomputed table of factorials of size O(]A/]) that allows us
to compute binomial coefficients in constant time. The count, operator for a uniform ADD can be

defined as
matm)yif emod B =0
count,(n) := ( e/E ). ife mo' ’ (13)
0 otherwise.

Intuitively, if we observe the uniform ADD shown in[Figure 8b] we see that the result of an evaluation

must be a multiple of 5. For example, to evaluate to 10, the evaluation path must pass a high edge

exactly twice. Therefore, in a 3-node ADD with root node n g, the result of countqo(ng) will be
3

exactly (2)

Special Operations on ADD’s. Given an ADD with node set A/, we define two operations that will
become useful later on when constructing diagrams for our specific scenario:

1. Variable restriction, denoted as N'[a; < V], which restricts the domain of variables A by forcing
the variable a; to be assigned the value V. This operation removes every node n € A/ where
a(n) = a; and rewires all incoming edges to point to the node’s high or low child, depending on
whether V' =1 or V = 0. The resulting diagram will have between 1 and diam(A) nodes less
than the original diagram, depending on the number of nodes associated with variable a;.

2. Diagram summation, denoted as N7 + N3, where A7 and N5 are two ADD’s over the same
(ordered) set of variables A. ordered in the same way. It starts from the respective root nodes
n1 and ne, and produces a new node n := n; + ns. We then apply the same operation to child
nodes. Therefore, c,(n1 + ng) := cr(n1) + c(n2) and cy(ny + n2) := cg(n1) + ca(na).
Also, for the increments, we can define wy,(ny + ng) := wr(n1) + wr,(n2) and wy (ng + ng) :=
wg (n1)+wg (n2). The size of the resulting diagram is bounded by O (| A|-diam(N7 )-diam(N3)).
A proof of this claim is presented in

D CONSTRUCTING POLYNOMIAL-SIZE ADD’S FOR ML PIPELINES

[Algorithm T| presents our main procedure COMPILEADD that constructs an ADD for a given dataset
D made up of tuples annotated with provenance polynomials. This is achieved by invoking the
procedure COMPILEADD(D, A, t;, tyqi) constructs an ADD with node set N that computes

(v ti,tval,t') = {OO’ if ' ¢ Dlv]),

14
tally(D[v] | t/,tyai), otherwise. 14

16



Published as a conference paper at ICLR 2024

Algorithm 1 Compiling a provenance-tracked dataset into ADD.

1: function COMPILEADD
2: inputs

3: D, provenance-tracked dataset;
4: A, set of variables;
5: t;, boundary tuple;
6: tyal, validation tuple;
7: outputs
8: N, nodes of the compiled ADD;
9: begin
10: N« {}

11: P<—{(a1,a2) €A :3J; €D,y Ep(ti) N ag Ep(ti)}
12: Ay < GETLEAFVARIABLES(P)
13: for Ao € GETCONNECTEDCOMPONENTS(P) do

14: A+ A \ Ap

15: N’ <~ CONSTRUCTADDTREE(A')

16: D+ {t'eD: pt')UAc #0}

17: for v € V4 do

18: N¢ < CONSTRUCTADDCHAIN(Ac N Ap)
19: for n € N¢ do

20: v« vU{a(n) = 1}

21: wg(n) < {t €D : evalyp(t’) =1 A o(t/,tvar) = o(tis tvar) }
22: end for

23: N’ < APPENDTOADDPATH(N', N¢, v)
24: end for

25: N < APPENDTOADDROOT(N, )

26: end for
27 for a’ € p(t) do

28: for n € N where a(n) = a’ do
29: wr,(n) < oo

30: end for

31: end for

32: return A/
33: end function

We provide a more detailed description of [Algorithm I|in[subsection D.1}

To construct the function defined in we need to invoke COMPILEADD once more by
passing t” instead of ¢’ in order to obtain another diagram A/, The final diagram is obtained as a
result of N'[a; < 0] + N"[a; < 1]. In other words, by performing a diagram summation operation
over diagrams N’ (with variable restriction a; < 0) and N’ (with variable restriction a; + 1). The
size of the resulting diagram will still be bounded by O(|D]).

We can now examine different types of canonical pipelines and see how their structures are reflected
onto the structure of ADD’s. In summary, we can construct an ADD with polynomial-size for
canonical pipelines, and therefore, by the computation of the corresponding counting
oracles is in PTIME.

One-to-Many Join Pipeline. In a star database schema, this corresponds to a join between a fact
table and a dimension table, where each tuple from the dimension table can be joined with multiple
tuples from the fact table. It can be represented by an ADD similar to the one in|Figure 8a

Corollary D.1. For the K-NN accuracy utility and a one-to-many join pipeline, which takes as input
two datasets, Dy and Dp, of total size |Dp| + |Dp| = N and outputs a joined dataset of size O(N),
the Shapley value can be computed in O(N*) time.

Proof. This follows from the observation that in[ATgorithm T} each connected component A will be
made up of one variable corresponding to the dimension table and one or more variables corresponding
to the fact table. Since the fact table variables will be categorized as "leaf variables", the expression
Ac \ Ay in Line[14| will contain only a single element — the dimension table variable. Consequently,
the ADD tree in A/ will contain a single node. On the other side, the Ac N Ay expression will
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contain all fact table variables associated with that single dimension table variable. That chain will
be added to the ADD tree two times for two outgoing branches of the single tree node. Hence, the
ADD segment will be made up of two fact table variable chains stemming from a single dimension
table variable node. There will be O(|Dp|) partitions in total. Given that the fact table variables are
partitioned, the cumulative size of their chains will be O(|Dp|). Therefore, the total size of the ADD
with all partitions joined together is bounded by O(|Dp| + |Dr|) = O(N).

Given fact and combining it with[Theorem 4.2 we know that the counting oracle can be computed in
time O(NN) time. Finally, given|Theorem 4.1|and the structure of [Equation 6| we can observe that
the counting oracle is invoked O(/N*?) times. As a result, we can conclude that the total complexity

of computing the Shapley value is O(N*). Here, we assume that we have a precomputed table of
factorials from 1 to [V that allows us to compute the binomial coefficient in constant time. O

Fork Pipeline. The key characteristic of a pipeline f that contains only fork or map operators is
that the resulting dataset f(D) has provenance polynomials with only a single variable. This is due
to the absence of joins, which are the only operator that results in provenance polynomials with a
combination of variables.

Corollary D.2. For the K-NN accuracy utility and a fork pipeline, which takes as input a dataset of
size N and outputs a dataset of size M, the Shapley value can be computed in O(M?N?) time.

Proof. The key observation here is that, since all provenance polynomials contain only a single
variable, there is no interdependency between them, which means that the connected components
returned in Line [T3] of will each contain a single variable. Therefore, the size of the
resulting ADD will be O(N). Consequently, similar to the proof of the previous corollary, the
counting oracle can be computed in time O(N) time. In this case, the size of the output dataset is
O(M) which means that[Equation 6 will invoke the oracle O(M?2N) times. Therefore, the total time
complexity of computing the Shapley value will be O(M?2N?). Here, we assume that we have a
precomputed table of factorials from 1 to N that allows us to compute the binomial coefficient in
constant time. O

Map Pipeline. A map pipeline is similar to fork pipeline in the sense that every provenance
polynomial contains only a single variable. However, each variable now can appear in a provenance
polynomial of at most one tuple, in contrast to fork pipeline where a single variable can be associated
with multiple tuples. This additional restriction results in the following corollary:

Corollary D.3. For the K-NN accuracy utility and a map pipeline, which takes as input a dataset of
size N, the Shapley value can be computed in O(N?) time.

Proof. There are two arguments we need to make which will result in the reduction of complexity
compared to fork pipelines. The first argument is that given that each variable can appear in the
provenance polynomial of at most one tuple, having its value set to 1 can result in either zero or one
tuple contributing to the top-K tally. It will be one if that tuple is more similar than the boundary
tuple ¢ and it will be zero if it is less similar. Consequently, our ADD will have a chain structure
with high-child increments being either O or 1. If we partition the ADD into two chains, one with
all increments 1 and another with all increments 0, then we end up with two uniform ADD’s. As
shown in [Equation 13| model counting of uniform ADD’s can be achieved in constant time. The
only difference here is that, since we have to account for the support size of each model, computing
the oracle w(«, v, v"|ti, tvar, t', t"") for a given « will require us to account for different possible
ways to split « across the two ADD’s. However, since the tuple ¢ needs to be the boundary tuple,
which means it is the K -th most similar, there need to be exactly K — 1 variables from the ADD
with increments 1 that can be set to 1. This gives us a single possible distribution of « across two
ADD’s. Hence, the oracle can be computed in constant time.

As for the second argument, we need to make a simple observation. For map pipelines, given a
boundary tuple ¢’ and a tally vector 4" corresponding to the variable a; being assigned the value 0,
we know that setting this variable to 1 can introduce at most one tuple to the top-K. That could
only be the single tuple associated with a;. If this tuple has a lower similarity score than ¢, there
will be no change in the top-K. On the other side, if it has a higher similarity, then it will become
part of the top-K and it will evict exactly ¢’ from it. Hence, there is a unique tally vector "
resulting from a; being assigned the value 1. This means that instead of computing the counting

oracle w(a, v,y |ti, tvar, t', t"), we can compute the oracle w(a, v'|t;, tyal, t’). This means that, in
Equation 6| we can eliminate the iteration over ¢ which saves us an order of O(/N) in complexity.
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As aresult, will make O(N?) invocations to the oracle which can be computed in constant
time. Here, we assume that we have a precomputed table of factorials from 1 to NV that allows us
to compute the binomial coefficient in constant time. Hence, the final complexity of computing the
Shapley value will be O(N?).

D.1 DETAILS OF[ALGORITHM 1l

In this section, we examine the method of compiling a provenance-tracked dataset f(D;,.) that results
from a pipeline f. The crux of the method is defined in [Algorithm T| which is an algorithm that takes
a dataset f(Dy,) with provenance tracked over a set of variables A, a boundary tuple ¢ € f(Dy,)
and a validation tuple t,4; € f(Dyai). The result is an ADD that computes the following function:

(oo, it & F(Dulo]),
O | tistoar, ') := {tally( F(Dulv]) | ¥, toat),  otherwise.

Assuming that all provenance polynomials are actually a single conjunction of variables and that the
tally is always a sum over those polynomials, it tries to perform factoring by determining if there are
any variables that can be isolated. This is achieved by first constructing the set of "leaf variables"
Ay, (Line[T2)). No pair of variables in Ay, ever appears in the same provenance polynomial. In graph
theory, this set is also known as the "independent set". We use a heuristic approach to construct this
set that prioritizes the least frequently occurring variables and completes them in O(N) time. We
then iterate over each "connected component” A¢ (Line[I3) where any two variables are "connected"
if they are ever in the same provenance polynomial. Then we get the set A’ = Ac \ Az which
contains variables that cannot be isolated (because they appear in polynomials in multiple tuples with
multiple different variables). We form a group that will be treated as one binary vector and based on
the value of that vector we would take a specific path in the tree. We thus take the group of variables
and call the CONSTRUCTADDTREE function to construct an ADD tree (Line[I5).

Every path in this tree corresponds to one value assignment to the variables in that tree. Then, for
every path we call the CONSTRUCTADDCHAIN to build a chain made up of the isolated variables and
call APPENDTOADDPATH to append them to the leaf of that path (Line[23). For each variable in the
chain, we also define an increment that is defined by the number of tuples that will be more similar
than the boundary tuple ¢’ and also have their provenance polynomial "supported" by the path. We
thus construct a segment of the final ADD made up of different components. We append this segment
to the final ADD using the APPENDTOADDRoOOT function. We don’t explicitly define these functions

but we illustrate their functionality in [Figure 9]

15)

E ADDITIONAL PROOFS AND DETAILS
E.1 PROOF OF[THEOREM 4.1l

Proof. This theorem can easily be proven by observing the structure of the Shapley value of a tuple

t; for a single validation tuple t,4;, as we defined it in
%a(tivtval) = ﬁ Zt’.t”ef(Dw) Zlfz‘l (‘Al;l) ' ZW’.’WEFMK mA(’Yla'Y” ‘ tval) . w(a7,y/’,y// | tistvals tlvt”)~

We can notice that it is made up of several sums: (1) the left-most one is a sum over ¢',t" € f(Dy,)
which for a canonical pipeline f is a set of cardinality in O(|D;,|); (2) the next one is a sum over | A|
elements which is O(|D;,|) according to the definition of A given insubsection 3.1} and finally (3)
the right-most sum is over 7/,v” € I'y x where I'y f is the set of all |)|-dimensional label tally
vectors which can be defined as T'y c := {y € NI : K > 3. +;} and can be treated as constant
since it does not depend on |D;,.|. As we can see, given that all sums in ©(t;, tyq) are O(|Dyr|),
then it is safe to conclude that if we can compute w(a, v, vy" | t;, tyal, t',t”) in time polynomial w.r.t
|Dy,|, then we can also compute (t;,tyq;) in time polynomial in |Dy,.|. Finally, as mentioned in
, the Shapley value for a tuple ¢; can be computed as p(t;) = w - Ztm,ef(sz) ©(t;, tyar) Which
contains a sum over O(|D,q;|) elements (given that the pipeline f is canonical). Hence, we can see
that the Shapley value can be computed in time polynomial in |Dy,.| and |D,,4;|, which concludes our
proof. O

E.2 PROOF OF[IHEOREM 4.2

Model Counting for ADD’s. We start off by proving that[Equation 12]correctly performs model
counting.
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Figure 9: An example of ADD compilation functions.

Lemma E.1. For a given node n € N of an ADD and a given value e € &, [Equation 12| correctly
computes count.(n) which returns the number of assignments v € V4 such that eval,(n) = e.
Furthermore, when computing count.(n) for any n € N, the number of computational steps is
bounded by O(|N| - |€)).

Proof. We will prove this by induction on the structure of the recursion.

(Base case.) Based on[Equation 9] when n = [ we get eval, (n) = 0 for all v. Furthermore, when

n = [, the set V4 [a>7r(a(n)) = 0| contains only one value assignment with all variables set to zero.
Hence, the model count will equal to 1 only for e = 0 and it will be 0 otherwise, which is reflected in

the base cases of

(Inductive step.) Because our ADD is ordered and full, both ¢y, (n) and ¢y (n) are associated with the
same variable, which is the predecessor of a(n) in the permutation 7. Based on this and the induction
hypothesis, we can assume that

counte_,, (ny(cr(n)) = Hv € Vai<a(er(n))] | evaly(cr(n)) = e — wL(n)H
(16)
counte_y,, (ny(ca(n)) = Hv € Vai<a(en(n)) | evaly(ca(n)) =€ — wH(n)H

We would like to compute count,(n) as defined in[Equation 11] It computes the size of a set defined
over possible value assignments to variables in A[< a(n)]. The set of value assignments can be
partitioned into two distinct sets: one where a(n) <— 0 and one where a(n) <— 1. We thus obtain the
following expression:

count.(n) ::Hv € Vaj<a(my [a(n) « 0] | eval,(n) = e}’
} a7

+ HU € Vaj<a(m) [a(n) < 1] | eval,(n) = e
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Based on|Equation 9} we can transform the eval, (n) expressions as such:
{” € Vai<a(er ()] | wr(n) + evaly (c(n)) = e}’

+ [{v € Vaigae oo | wr () + eval,(ea (n) = e}

Finally, we can notice that the set size expressions are equivalent to those in Therefore,
we can obtain the following expression:

count,(n) := count,_,, (ny(cr(n)) + counte_,, ) (ca(n)) (19)
which is exactly the recursive step in This concludes our inductive proof and we move
onto proving the complexity bound.

(Complexity.) This is trivially proven by observing that since count has two arguments, we can
maintain a table of results obtained for each n € N and e € £. Therefore, we know that we will
never need to perform more than O(|N| - |€]) invocations of count,(n).

count.(n) :=

(18)

O

ADD Construction. Next, we prove that the size of an ADD resulting from diagram summation as
defined in[Appendix CJis linear in the number of variables.

The size of the diagram resulting from a sum of two diagrams with node sets N7 and N3 can be
loosely bounded by O(| N1 |-|Nz|) assuming that its nodes come from a combination of every possible
pair of operand nodes. However, given the much more narrow assumptions we made in the deﬁnltlon
of the node sum operator, we can make this bound considerably tighter. As mentioned in[Appendix C|
the size of any ADD with set of nodes N and variables A is bounded by O(| 4] - diam(N\)). We can
use this fact to prove a tighter bound on the size of an ADD resulting from a sum operation:

Lemma E.2. Given two full ordered ADD’s with nodes N1 and Na, noth defined over the set of
variables A, the number of nodes in N1 + N3 is bounded by O(|A| - diam(N7) - diam(N53)).

Proof. 1t is sufficient to show that diam(N; + AN2) = O(diam(N7) - diam(N3)). This is a direct
consequence of the fact that for full ordered ADD’s the node sum operator is defined only for nodes
associated with the same variable. Since the only way to produce new nodes is by merging one node
in V1 with one node in N5, and given that we can merge nodes associated with the same variable, the
number of nodes associated with the same variable in the resulting ADD equals the product of the
corresponding number of nodes in the constituent ADD’s. Since the diameter is simply the upper
bound of the number of nodes associated with any single variable, the same upper bound in the
resulting ADD cannot be larger than the product of the upper bounds of constituent nodes. O

Computing the Oracle using ADD’s. Finally, we prove the correctness of [Theorem 4.2]
Lemma E.3. Given an Additive Decision diagram with root node n(t;,tyq,t, t” that com-
iquanon

putes the Boolean function ¢(v|t;,tyq,t',t") as defined in the counting oracle
w(a, ¥,y [ti, tyar, t', t'") defined in can be computed as:

w(o, v,y [ts, toar, t', ") == countq s 4y (n(tis toar, ') (20)

Proof. Given a training dataset Dy, and a data preprocessing pipeline f, we have f(D;,.) as the
output of that pipeline and input to an ML model. Let us define f(Ds,)[>o(. t,.,) t'] € f(Dsr) as
a set of tuples in f(Dy,) with similarity to a validation tuple ¢,,; higher or equal than that of ¢/,
formally f(Di)[>o(. t,0) t'] = {t" € f(Dsr) 2 (", tyar) > o(t',tyar)}. Similarly to f(Dy,.),
the semantics of f(Ds,)[> 4. +,.,) t'] is also that of a set of possible candidate sets. Given a value
assignment v, we can obtain f(Ds,.[v])[> 4. +,.,) t'] from f(Dy,[v]). For convenience, we also define
J(Der)[Z o tua) t'][=¢ y] as a subset of f(Dsy)[>5(. 1,,,) '] With only tuples that have label y.
Given these definitions, we can define several equivalences. First, for top - we have:

(¢ = top (FDule) [ tuw) ) = (¢ € F(Durlo]) A |F(Durl L VIl =K) @

In other words, for ¢’ to be the tuple with the K -th highest similarity in f (Dtr [v]), it needs to be a
member of f(D;,[v]) and the number of tuples with similarity greater or equal to ¢’ has to be exactly
K. Similarly, we can define the equivalence for tally (-|t/, t,yq1):

(+ = tally (Do) | 10at) ) 4= (0 € V7 = | FPur DBt = 8]l ) @2)
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This is simply an expression that partitions the set f(Dy,[v])[>4(.,+,.,) t'] based on y and tallies
!

them up. The next step is to define an equivalence for (t' = topy (f(De[v]) | toar)) A (v =
tally(f(Dsr[v]) | t',tvar)). We can notice that since |7'| = K, if we have (Vy € YV, =
|f(Der[V])[Zo( 10y t'][=¢ yl|) then we can conclude that (|f(Dy[v])[>0(. t,.) ]l = K) is
redundant. Hence, we can obtain:

(¢ = toprc (FDurlo) | toat) ) A (v = ally (F(Durlol]) | £, tut)) <= (¥ € FDurle))) A (Y € P,y = [F(Durlo)[2 [=c 9]])
(23)

According to we can reformulate the right-hand side of the above equivalence as:

(t':topK(f(Dtr[v])\tml)>/\(7’:tally(f(DtT[v])\t’,tml)) — (t’e f(DtT)[v])/\(’y’:tally(f(l)tr[v])\t',tval))
(24)

We can construct a similar expression for ¢’ and v[a; = 1] so we cover four out of five predicates in
The remaining one is simply the support of the value assignment v which we will leave
intact. This leaves us with the following equation for the counting oracle:

way 7" [ttt = Y 1{a = [supp(v)] |

VEV A\ (a;)
-]l{t’ = topg (f(Der[via; + 0]) | t,,{,l)} . ]l{t" = topg (f(Der[v;a; < 1)) | tval)}
-Il{'y' = tally(f(D”[v; a; + 0]) | t’,tml)} . 11{7” = tally(f(DL,.[U; a; < 1)) | ", twl) }
(25)
We can use the Boolean function ¢(vlt;, tyar,t’,t") in[Equation 8|to simplify the above equation.
Notice that the conditions t' € f(Ds[v;a; < 0]) and t”" € f(Dyr[v;a; < 1]) are embedded in
the definition of ¢(v|t;, tyar, t’,t”) which will return oo if those conditions are not met. When the

conditions are met, ¢(v|t;, tyai, t', t") returns exactly the same triple («,y’,~"). Therefore it is safe
to replace the five indicator functions in the above formula with a single one as such:

W(Oéa’Y/a’Y” ‘ ti7tval,t/>t//) = Z ]]-{(047’7/a7//) = ¢(U|tiatvalat/7t//)} (26)
VEVA\{a;}

Given our assumption that ¢(v|t;, tyar,t',t”) can be represented by an ADD with a root node
n(t;, tyar, t', "), the above formula is exactly the model counting operation:

w(a, v " [ tis toar, ', ") := count gy (0t tyar, t', ")) 27
O

Theorem E.1. If we can represent the Boolean function ¢(v|t;, tyai,t',t") defined in[Equation §|
with an Additive Decision Diagram of size polynomial in |Dy,.| and | f (Dy,.)|, then we can compute

the counting oracle w(- | t;,tya1,t',t") in time polynomial in |Dy,| and | f (Dy,.)|.

Proof. This theorem follows from the two previously proved lemmas: [Lemma E.I|and[Lemma E.3|
Namely, as a result of we claim that model counting of the Boolean function
d(v|ti, tyar, t', ") is equivalent to computing the oracle result. On top of that, as a result of
we know that we can perform model counting in time linear in the size of the decision diagram. Hence,
if our function ¢(v|t;, tyar, t',t'") can be represented with a decision diagram of size polynomial in
the size of data, then we can conclude that computing the oracle result can be done in time polynomial
in the size of data. O

E.3 DETAILS ON ADDITIVE MODEL QUALITY METRICS

False Negative Rate Apart from accuracy which represents a trivial example of an additive utility,
we can show how some more complex utilities happen to be additive and can therefore be decomposed
according to[Equation 5] As an example, we use false negative rate (FNR) which can be defined as
such:

o 2 tpmef(onr) WA f(Der))(tvar) = 0} 1{y(tvar) = 1}
m(Dtr,Dval) = |{tval € Dyal : y(tval) = ].}| . @
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In the above expression we can see that the denominator only depends on D,,,; which means it can
be interpreted as the scaling factor w. We can easily see that the expression in the numerator neatly
fits the structure of [Equation 5|as long as we we define mr as mr (Ypred, (Tvals Yval)) = L{Ypred =
0}1{yya; = 1}. Similarly, we are able to easily represent various other utilities, including: false
positive rate, true positive rate (i.e. recall), true negative rate (i.e. specificity), etc. We describe an

additional example in [subsection 3.

Equalized Odds Difference We show how slightly more complex utilities can also be represented
as additive, with a little approximation, similar to the one described above. We will demonstrate
this using the “equalized odds difference” utility, a measure of (un)fairness commonly used in
research |Hardt et al.| (2016); Barocas et al.| (2019) that we also use in our experiments. It can be
defined as such:

m(Dt'm Dval) = maX{TPRA (DtraDvaZ)a FPRA (Dtm Dval)}- (29)

Here, TPRA and F' PR are true positive rate difference and false positive rate difference respec-
tively. We assume that each tuple ¢;. € f(Dy,) and t,q; € f(Dyai) have some sensitive feature g
(e.g. ethnicity) with values taken from some finite set {G1, G2, ...}, that allows us to partition the
dataset into sensitive groups. We can define T PR and F'P R respectively as

TPRAa (Dtr» Dual) = énie%)é T‘-P]%G1 (Dtra Dval) - éné% TPRG]- (Dtra Dval)a and
i i

. (30)
FPRA(Diy, Dyat) := éngéFPRG’ (Dtr, Dyal) — éné%FPRGJ (Dtry Dyal)-
i J

For some sensitive group G, we define T PR, and F'P R, respectively as:

s MA© S0 (tvat) = T (Evar) = 1} (tvar) = G
N l{tval € Dval : y(tval) =1A g(tval) = Gz}‘
. Ztvalef(Dval> 1{(Ao f(D))(tvar) = 1} 1{y(tvar) = 0}1{g(tvar) = Gi}
FPRGL (DtT7D17al) o I{tval S qu.l : y(tval) =0A g(tval) = G1}‘

For a given training dataset D;,., we can determine [Equation 29 whether PR or F PR is going
to be the dominant metric. Similarly, given that choice, we can determine a pair of sensitive groups
(Gmazs Gmin) that would end up be selected as minimal and maximal in Similarly to
the conversion shown in[subsection 3.3| we can treat these two steps as a reduce operation over the
whole dataset. Then, if we assume that this intermediate result will remain stable over subsets of D;,.,
we can approximatly represent the equalized odds difference utility as an additive utility.

As an example, let us assume that we have determined that 7P R dominates over F'PRa, and

similarly that the pair of sensitive groups (G a2, Gmin) Will end up being selected in|Equation 30
Then, our tuple-wise utility ur and the scaling factor w become

TPRGl (Dtm Dval) : s and

mT(ypTedy tval) = TPRG,MM,T (ypreda tval) - TPRGmm,T(ypT'edv tval)a
w = 1/|{tval € Dyar : y(tval) =1 /\g(tval) = Gi}‘7

where

TPRGi,T(ypredytval) = ]]-{ypred = l}l{y(tval) = 1}1{g<tval) == Gl}
A similar approach can be taken to define mr and w for the case when F'PRa dominates over
TPRA. Then, if we plug them into we obtain an approximate version of the equalized
odds difference utility as defined in This approximation relies on the stability of the

choices of min and max in and on the choice between TPR and FPR in

(both of which can be precomputed).

F SPECIAL CASE: COMPUTING SHAPLEY FOR 1-NEAREST-NEIGHBOR
CLASSIFIERS

We can significantly reduce the time complexity for 1-NN classifiers, an important special case of
K-NN classifiers that is commonly used in practice. For each validation tuple ¢,;, there is always
exactly one tuple that is most similar to ¢,,;. Below we illustrate how to leverage this observation to
construct the counting oracle. In the following, we assume that a; is the variable corresponding to the
tuple for which we hope to compute the Shapley value.
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Let ¢, represent the event when ¢ is the top-1 tuple:

¢e=pt)A  J\  -p(t). (31)
t,ef(Dtr)
o(t')>o(t)

For|[Equation 31|to be rrue (i.e. for tuple ¢ to be the top-1), all tuples ¢’ where o(t') > o(¢) need to be
absent from the pipeline output. Hence, for a given value assignment v, all provenance polynomials
that control those tuples, i.e., p(t’), need to evaluate to false.

We now construct the event

Orp = Pifa;/false] A ¢ la; /true],

where ¢;[a; /false] means to substitute all appearances of a; in ¢, to false. This event happens only
if if ¢ is the top-1 tuple when a; is false and ¢’ is the top-1 tuple when a; is true. This corresponds to
the condition that our counting oracle counts models for. Expanding ¢; ;/, we obtain

b= (pOA N p)laiffalsel A (p() A N\ (") )laiftrue]. (32)
t'" € f(Dir) t'" € f(Dir)
o(t'")>a(t) a(t")>a(t")

Note that ¢, ;» can only be true if p(¢') is true when a; is true and o(t) < o(t’'). As a result, all
provenance polynomials corresponding to tuples with a higher similarity score than that of ¢ need
to evaluate to false. Therefore, the only polynomials that can be allowed to evaluate to true are
those corresponding to tuples with lower similarity score than ¢. Based on these observations, we can
express the counting oracle for different types of ML pipelines.

Map Pipeline. In a map pipeline, the provenance polynomial for each tuple ¢ € f(Dy,.) is defined by
a single distinct variable a; € A. Furthermore, from the definition of the counting oracle (Equation 7),
we can see that w(-|t;, tyar, t', ') counts the value assignments that result in support size « and label
tally vectors " and v”. Given our observation about the provenance polynomials that are allowed to
be set to true, we can easily construct an expression for counting valid value assignments. Namely,
we have to choose exactly « variables out of the set {t’ € f(Ds.) : o(t,tyar) < o(ti, tyar)}, which
corresponds to tuples with a lower similarity score than that of ¢; (measured by the similarity function
o). This can be constructed using a binomial coefficient. Furthermore, when K = 1, the label tally '
is entirely determined by the top-1 tuple ¢’. The same observation goes for 7'/ and ¢”. To denote this,
we define a constant I';, parameterized by some label L. It represents a tally vector with all values
0 and only the value corresponding to label L being set to 1. We thus need to fix 7/ to be equal to
'y (and the same for 4"'). Finally, as we observed earlier, when computing w(-|t;, tyar, t', ") for
K =1, the provenance polynomial of the tuple ¢ must equal a;. With these notions, we can define
the counting oracle as

{t" € f(Du) = o(t" tvar) < o(ti, toar)}]
(&%

)1 =)
1{y' =Ty}

]1{’7” = Fy(t”) }
(33)

(4.)(0[7 7/7 ’y//|t7§7 tvala tl7 t//) = (

Note that we always assume (Z) = 0 for all @ < b. Given this, we can prove the following corollary

about map pipelines:

Corollary F.1. For the 1-NN accuracy utility and a map pipeline, which takes as input a dataset of
size N, the Shapley value can be computed in O(N log N) time.
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Proof. We start off by plugging in the oracle definition from into the Shapley value
computation

1 N1\ o
(p(tivt'ual) = N Z Z ( a ) Z mA(’Y » Y ‘tval)

4 Ef (D) a=1 T
<|{t/” € f(Drr) + ot tpar) < J(ti,twl)}|>
«
H{p(t") = a;}
{y =Ty}

1{y" =Ty}
(34)

As we can see, the oracle imposes hard constraints on the tuple ¢ and tally vectors 7' and v”. We
will replace the tally vectors with their respective constants and the tuple ¢ we will denote as t;
because it is the only tuple associated with a,;. Because of this, we can remove the sums that iterate
over them:

- t”/ c f(D r) : t,”7t'ua ti7tva
Oty tyal) = Z Z ( ) ma(Cyay, Dy, |tval)<|{ J(Di) + o . 1) <ol z)}|>
t’ef(D,
(35)

We could significantly simplify this equation by assuming the tuples in f (D) are sorted by decreasing
similarity. We then obtain:

—1 .
N —
¢(tistoa) = ZZ ( ) maTy;)s Dy, |fvaz)( N J) (36)

]zal

~1
We shuffle the sums a little by multiplying + ~ With ( ) and we expand ma based on its
definition in[subsection E.1] We also alter the limit of the innermost sum because v < N — 4. Thus,
we obtain:

P (i, tuar) i( t), tuar) — mT(y(t)twl))%@)_l(N;j) (37)

Jj=i a=1

The innermost sum in the above equation can be simplified by applying the so-called Hockey-stick

identity Ross|(1997). Specifically, (]O\f)_1 (") becomes (N) (N ). Then, SN (JJ\,’)_1 (N;O‘)

becomes (J]v ) - (]IJ\: ,)- Finally, we obtain the following formula:

N

i) = 32 (o6 tr) = mr(ots) 1)) () G8)

= J+1

As we can see, the above formula can be computed in O(N) iterations. Therefore, given that we
still need to sort the dataset beforehand, the overall complexity of the entire Shapley value amounts
to O(N log N). Here, we assume that we have a precomputed table of factorials from 1 to N that
allows us to compute the binomial coefficient in constant time. O

Computing the Shapley Value for the Entire Training Dataset. [Equation 38| represents a method
for computing the Shapley value for a single data example ¢;. When computing the Shapley value for
every tuple in a training dataset, given that the tuples are sorted according to similarity to ¢,,;, we
can notice that the sum in[Equation 38|exhibits the following recursive structure:

Pltistuat) =t toar) + (e (1) ) = mr (y(05), o)) (i-v[f)

If we take advantage of the above recursive structure, we can see that it is possible to compute the
Shapley value for all data examples in a single pass that takes O(N) time. Hence, since the overall
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computation will still be dominated by the sorting procedure, the time to compute the Shapley value
for all training tuples with respect to a single validation tuple t,4; is O(N log N).

Fork Pipeline. As we noted, both map and fork pipelines result in polynomials made up of only
one variable. The difference is that in map pipeline each variable is associated with at most one
polynomial, whereas in fork pipelines it can be associated with multiple polynomials. However, for
1-NN classifiers, this difference vanishes when it comes to Shapley value computation:

Corollary F.2. For the 1-NN accuracy utility and a fork pipeline, which takes as input a dataset of
size N, the Shapley value can be computed in O(N log N) time.

Proof. We will prove this by reducing the problem of Shapley value computation in fork pipelines to
the one of computing it for map pipelines. Let us have two tuples t;-yl, t;-’z € f(D), both associated
with some variable a; € A. That means that p(t} ;) = p(t] ,). If we examine [Equation 31} we notice
that it will surely evaluate to false if either o'(t’; ;) > o(t) or o(t; 5) > o(t). The same observation

holds for

Without loss of generality, assume o(t;1) > o(t;2). Then, o(t; 1) > o(t) implies o(t;2) > o(t).
As aresult, we only ever need to check the former condition without paying attention to the latter.
The outcome of this is that for all sets of tuples associated with the same variable, it is safe to ignore
all of them except the one with the highest similarity score, and we will nevertheless obtain the same
oracle result. Since we transformed the problem to one where for each variable we have to consider
only a single associated tuple, we have effectively reduced the problem to the one of computing
Shapley value for map pipelines. Consequently, we can apply the same algorithm and will end up
with the same time complexity. [

G DETAILS ABOUT THE EXPERIMENTAL PROTOCOL AND ADDITIONAL
EVALUATION RESULTS

Hardware and Platform. All experiments were conducted on an AMD EPYC 7742 2.25GHz CPU.
We ran each experiment in single-thread mode. All deep learning models were running on an NVIDIA
A100 GPU.

Datasets. We assemble a collection of widely used datasets with diverse modalities (i.e. tabular,
textual, and image datasets). summarizes the datasets that we used. In each experiment, we
subsample the dataset to 1 K training data examples by using different random seeds.

Table 2: Datasets characteristics

Dataset Modality | # Examples # Features II\‘I?)?SZI
UCI Adult (Kohavi et al.[[1996) tabular 49K 14 injected
FolkUCI Adult —(Ding et al.|[2021) tabular 1.6M 10 injected
FashionMNIST  (Xiao et al.|[2017) image 14K 28 x 28 injected
20NewsGroups  (Joachims||1996) text 1.9K 20K after TF-IDF | injected
DataPerf Vision(Mazumder et al.|[2022) | tabular 1.1 2048 le“;’r‘;‘r““
CIFAR — N (Wei et al.|2022) image 50K 32 x 32 x 3 le“;‘r‘;]r““

Models. We use three downstream ML models following the previous feature extraction pipelines:
XGBoost, LogisticRegression, and KNearestNeighbor. We use the LogisticRegression and
KNeighborsClassifier provided by the sklearn package. We set max_iter to 5,000 for
LogisticRegression and set n_neighbors to 1 for KNearestNeighbor.

Protocol. We conduct a series of experimental runs that simulate a real-world importance-driven
data debugging workflow. In each experimental run, we select a dataset, pipeline, target model, and
data repair method. If a dataset does not already have human-generated label errors, we follow the
protocol of [Li et al.|(2021) and Jia et al.[(2021) and artificially inject 50% of label noise. Label noise
injection is performed by selecting a random subset representing 50% of training data examples, and
replace the original label with some other valid label in a given dataset. Given the selected data repair
method, we compute the importance using a validation dataset. We use this computed iportance to
sort the training dataset. Data repairs will be conducted using this sorting order. If the repair method
is random, the data is sorted randomly. We divide the range between 0% data examined and 100%
data examined into 100 checkpoints. Specifically, at each checkpoint, we select the next batch out
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Dataset: UCI Adult; Pipeline: Identity; Model: Logstic Regression Dataset: UCI Adult; Pipeline: Standard Scaler; Model: Logistic Regression Dataset: UCI Adult; Pipeline: Logarithmic Scaler; Model: Logistic Regression
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Figure 10: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for accuracy. The model is logistic regression.

of a 100 batches of data examples ordered based on the importance-based sorting order. We repair
the labels in the given batch and we measure the quality of the given target model on a separate fest
dataset using some metric (e.g. accuracy). We also measure the time spent on computing importance
scores. At any given checkpoint, the label effort represents the portion of data that was covered in all
batches that were processed up to that checkpoint. We repeat each experiment 10 times with different
random seeds and report the median as well as the 90-th percentile range (either shaded or with error
bars).

G.1 ADDITIONAL LABEL REPAIR EXPERIMENTS

We present the results of an array of experiments that were conducted for the label repair scenario.
See [section J|for details on the experimental protocol. See[Figure 10 to[Figure T4]for experiments
where we focus on improving accuracy. See [Figure 15(to [Fig 0| for experiments that explore
the tradeoff between accuracy and fairness. Finally, in 0] we show more results for the label
repair experiments over deep learning embedding models for | image and text data.

Note about Fork Variants: We create a “fork” version of the above pipelines, by prepending each with
a DataProvider operator. It simulates distinct data providers, each providing a portion of the data.
The original dataset is split into a given number of groups (100 in our experiments). We compute the
importance of each group, and we conduct data repairs on entire groups all at once.

G.2 ADDITIONAL SCALABILITY EXPERIMENTS

We provide results of additional experiments where we attempt to measure the trends of both the label
repair efficiency and compute time, as a function of dataset size. To achieve this, instead of evaluating
on synthetic data, we evaluate on CIFAR-N, a real-world dataset with human-generated label noise
(Figure 23). We use logistic regression as a target model and the HOG transform pipeline for feature
extraction. We keep the training and test set size to 5K data exaples and we vary the training set size
from 1K to 32K. We can notice that for training set of size 32K, the TMC method requires around 1
day to complete with 10 Monte Carlo iterations and around 10 days with 100 iterations. At the same
time we can notice that the KNN approximation is able to complete in a matter of minutes.
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Figure 11: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for accuracy. The model is K-nearest neighbor.
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Figure 12: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for accuracy. The model is logistic regression.
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Figure 13: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for accuracy. The model is K-nearest neighbor.
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Figure 14: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for accuracy. The model is XGBoost.
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Figure 15: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for fairness. The model is logistic regression.
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Figure 16: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for fairness. The model is K-nearest neighbor.
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Figure 17: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for fairness. The model is logistic regression.
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Figure 18: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for fairness. The model is K-nearest neighbor.
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Figure 19: Label Repair experiment results over various combinations of datasets (1k samples) and

fork pipelines. We optimize for fairness. The model is XGBoost.
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Figure 20: Label repair experiment executed over pipelines based on deep learning embedding
models: ResNet-18 for image data, and the transformer based MiniLM for text data. Even though
pipeline was executed on a GPU, this execution time dominates the overall importance compute
times. Due to the long compute time of these pipelines we omit the vanilla black-box TMC methods.
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Figure 21: Label repair experiment executed over pipelines based on smaller deep learning embedding
models. This permitted us to run both the Canonpipe TMC and vanilla TMC methods, along with our
Canonpipe KNN method which still performs favorably compared to other baselines.
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Figure 22: Experiments where we use matching networks, a one-shot learning approach, as a target

model which we evaluate over the CifarN and FashionMNIST datasets.
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Figure 23: Evaluating how the label repair efficiency and compute time of Datascope scale as a
function of dataset size. On the left-hand side we show how many data examples need to be repaired
in order to recover 1/2 of the maximum possible accuracy on the given dataset. We can notice that
the KNN approximation is able to consistently achieve comparative label repair efficiency with orders

of magnitude less compute time.

35



	Introduction
	Problem: Computing the Shapley Value over ML Pipelines
	Canonical ML Pipelines
	Data Provenance for ML Pipelines
	Approximation: ML Pipelines are Canonical
	Approximating Real ML Pipelines

	Shapley Value over Canonical Pipelines
	Approximation: The Model is KNN and the Model Quality Metric is Additive
	Computing the Shapley Value

	Experimental Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusion and Outlook
	Discussion about the Limitations of Prior Work
	Discussion about Types of ML Pipeline Operators
	Preliminary: Additive Decision Diagrams (ADD's)
	Constructing Polynomial-size ADD's for ML Pipelines
	Details of Algorithm 1

	Additional Proofs and Details
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Details on Additive Model Quality Metrics

	Special Case: Computing Shapley for 1-Nearest-Neighbor Classifiers
	Details about the Experimental Protocol and Additional Evaluation Results
	Additional Label Repair Experiments
	Additional Scalability Experiments


