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Abstract—Diet plays a crucial role in preventing chronic
diseases such as type 2 diabetes and heart disease. Most existing
diet monitoring systems require manual input or raise privacy
concerns by continuously recording video data that often captures
the user’s face or the surrounding environment. In this paper,
we present a chest-mounted wearable device that preserves user
privacy while passively tracking dietary intake using a Time-
of-Flight (ToF) sensor. Captured RGB images are masked using
ToF depth data to isolate food items and eliminate background
elements. A FOMO-based food detection model achieved an F1
score of 96% and a mean Average Precision (mAP) of 74%
on masked images, outperforming its performance on unmasked
RGB inputs. Also, ToF depth frames were used to build an
eating gesture recognition model that achieved 88% accuracy,
indicating reliable identification of eating gestures. All models and
image processing steps were executed on-device, demonstrating
the feasibility of the system. This work presents a novel approach
for real-time dietary monitoring that addresses both user privacy
and food detection accuracy in a wearable health system.

I. INTRODUCTION

Diet plays a vital role in everyone’s life, significantly influ-
encing health outcomes and the risk of chronic diseases such as
type 2 diabetes (T2D), cardiovascular disease, and obesity [1].
Numerous studies have established a strong connection be-
tween eating habits and overall health, highlighting diet as a
key determinant in the development and management of these
diseases [2], [3]. Type 2 diabetes, in particular, is a chronic
disease that affects millions worldwide, with an estimated
462 million people affected worldwide [4]. Self-monitoring
of dietary intake has been shown to be especially effective in
facilitating change in diet behavior and improving glycemic
control [5]. With diet, activity, and metabolism closely linked,
tracking tools should support behavior change with minimal
burden and align with real-life habits.

Over the years, numerous methods have been developed
to monitor diet and eating habits in real time, offering live
feedback to promote healthier behaviors and enhance self-
awareness [6]. However, some wearable systems designed for
dietary monitoring pose security risks, as they often collect
sensitive health data [7], [8]. Additionally, many of these
devices adopt a smartwatch form factor, which can be uncom-
fortable for extended use, reducing user convenience and long-
term adherence [9]. A major concern with current food intake
monitoring systems is the inherent privacy risk of unintention-

ally capturing individuals’ faces during meal tracking. This
issue is particularly critical when data is processed off-device,
increasing the risk of unauthorized access, misuse, and identity
exposure [10]. Furthermore, many existing systems focus on
capturing visible food rather than eating gestures, resulting in
unnecessary on-device storage consumption, increased battery
usage, and a failure to capture the core behavior of intake. The
reliance on constant video recordings in certain systems not
only presents ethical issues but also results in data overload,
which complicates post-processing, making it time-consuming
and inefficient in resource-limited environments [11].

Even though the recent work by Doulah et al. [12] demon-
strates that their system effectively captures food intake events
and detects non-eating scenarios using machine learning tech-
niques, it still has several limitations. During food intake
sessions, the system frequently captures the user’s face or
nearby individuals within the frame, raising privacy concerns
despite attempts to filter out irrelevant frames. Additionally,
the system’s usability is restricted by its spectacle-based form
factor, which is unsuitable for many users. Similarly, sensors
that detect chewing [13] and bio-impedance systems such
as iEat [14] both rely on continuous skin contact, making
them uncomfortable for long-term use. While they can identify
intake activities with good accuracy in controlled settings,
their performance is sensitive to noise, electrode placement,
and utensil choice, which limits their practicality in real-world
environments.

In this paper, we present a wearable device that passively
captures and stores images of meals consumed in a manner
that preserves privacy to track the diets of participants. Un-
like continuous food monitoring systems that risk capturing
people’s faces through live video feeds, our system captures
images only during detected eating gestures. This approach,
enabled by a Time-of-Flight (ToF) sensor, ensures that image
capture occurs only when a user is actively eating, thus
conserving storage and battery resources. The captured images
and their depth information are processed to detect regions
containing food. Background elements such as people’s faces
are masked using ToF depth data, retaining only the food item
for analysis. This approach provides strong privacy protection
and addresses the limitations of existing wearable systems that
risk exposing sensitive visual data.
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Fig. 1. Diagram of the methodological framework; (a) Chest-level wearable device that collects food data along with its depth information. (b) Components
and sensors in the enclosure. (¢) We mask the RGB data to protect the privacy of the background elements using the ToF depth map and feed it to an on-device
food object detection. (d) We collect depth information from the ToF sensor during eating sessions and process it for eating gesture recognition.

II. METHODS

Figure 1 illustrates our chest-level wearable, which captures
RGB and ToF data with cameras enclosed in a compact case.
ToF depth maps are used to mask far-distance objects for pri-
vacy before food detection using Faster Objects, More Objects
(FOMO) [15], and also support eating gesture recognition.

A. System Design

The main objective of our design is to record RGB videos
during the eating sessions. For good data collection, the
feed must be as fast and continuous as possible. Adopting a
compact form factor improves the user experience by making
the device small and lightweight, also making it a more reliable
and practical system.

The core of the system is built on an XIAO ESP32S3
Sense microcontroller, selected for its compact size, onboard
Wi-Fi, and camera support. We used an OV5640 camera to
capture the raw RGB images and the VL53L8CX ToF sensor
to capture the depth array. The ToF sensor communicates over
the I12C interface, delivering real-time depth data that is used
to mask distant or irrelevant regions of the RGB frame. These
masked frames are then logged onto an SD card or streamed
via SoftAP Wi-Fi, depending on the operation phase.

A DS3231 RTC module synchronized timestamps between
depth and RGB frames, enabling accurate post-processing for
gesture recognition and behavioral monitoring. The system is
powered by a 500 mAh LiPo battery, providing portability
and on-the-go data capture. For system integration, a custom-
made PRISM board is produced to house the ESP32S3 Sense,
the ToF sensor, the RTC, and an SD card interface. All
I2C peripherals and GPIO sections are integrated in this
board, which simplifies the wiring and improves reliability for
prolonged deployments.

To facilitate user inspection or debugging, the ESP32S3
intermittently switches to SoftAP mode, establishing a local
Wi-Fi hotspot. While in this mode, live RGB frames are
transmitted over HTTP to connected devices. After a set
period, Wi-Fi is turned off to save power, and the system
reverts to SD-based logging.

B. Usability Study

1) Participants: The study comprised 31 meal sessions with
15 participants instructed to eat naturally while wearing the
device. The system was tested in various environmental con-
ditions, including 21 indoor meals, 5 in low-light conditions,
and 5 outdoor sessions in direct sunlight, collecting 21,052
images. The data was split into 70% training, 15% validation,
and 15% testing with a near-balanced distribution of 10,500
positive and 10,552 negative samples.

2) Procedures: Participants were provided with three identi-
cal devices for data collection. Each device was chest-mounted
with magnets, providing an unobstructed view of the plate
and food. This placement of the device replicates the natural
perspective of diners. Before each session, participants were
instructed to eat normally without enforcing their posture
relative to the camera. After each session, the data were
evaluated to assess sensor accuracy, food visibility, and system
performance under varying lighting conditions.
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Fig. 2. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
of the ToF sensor at different distances. The plot illustrates increasing error
trends with distance, reflecting the sensor’s reduced accuracy at longer ranges.

IIT. RESULTS

As illustrated in Figure 2, the ToF sensor demonstrates high
accuracy at shorter distances, with error increasing progres-
sively as distance grows. Both MAE and RMSE metrics cap-



tured this trend, corresponding with the expected reduction of
precision in depth measurements with an increase in distance.
To compute these metrics, an object was positioned at the
center, and the Time of Flight (ToF) measurements were taken
in comparison with the ground truth distances. Table I shows
the ToF sensor’s SNR metrics, indicating a high signal-to-
noise ratio and reliable depth measurements under the tested
conditions.

TABLE I
SNR METRICS OF THE TOF SENSOR

Value
74.36
37.42 dB

Metric
SNR (Linear)
SNR (dB)

A. Food Detection Performance

To evaluate the impact of depth-based cropping on food
detection performance, we trained two FOMO object detec-
tion models [15] under identical configurations. One model
used full-frame RGB images, while the other employed ToF
sensor depth-masked images. In the masked version, the outer
regions of the image, determined by the ToF sensor’s depth
measurement, were blacked out. This enabled the model to
concentrate on the region that is closest to the user and where
food is more likely to be present.
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Fig. 3. Comparison of metrics between models trained on unmasked RGB
images and ToF-masked images. The masked model highlights the effective-
ness of ToF-based masking in enhancing food detection accuracy.

As shown in Figure 3, the results demonstrate a significant
performance improvement with the ToF-masked input. The
masked model achieved a mean average precision (mAP)
of 73.4%, compared to 63.1% with unmasked RGB images.
Specifically, the F1 score increased from 92% (RGB) to
96% (Masked), indicating improved balance between precision
and recall. Although the full-frame RGB model performed
well overall, the ToF-masked model showed improvement in
suppressing noisy detections and maintaining consistency in
cluttered environments. This is because irrelevant background

areas masked in the images tend to have lower detection rates,
resulting in fewer falsely positive identifications and greater
inter-class confidence. This validates the assumption that using
spatial attention by means of depth-based masking increases
model robustness, especially in complex visuals.

Both models use a MobileNetV2-based architecture, which
includes a frozen ImageNet-trained backbone for streamlined
feature extraction. A GlobalAveragePooling2D layer is fol-
lowed by a dense head with 128 ReLU units and a final
Dense layer yielding six sigmoid values: four for bounding box
coordinates, one for object confidence, and one for binary class
(food/background). This architecture is particularly effective
for precise edge inference on 96 x 96 RGB and masked
images.

B. RGB Cropping Based on ToF Proximity

To evaluate the consistency and accuracy of our ToF-based
cropping method, we computed the Intersection-over-Union
(IoU) between the cropped region and manually annotated
food bounding boxes across the entire dataset. Our method
achieved a mean IoU of 0.712 with a standard deviation
of 0.08, indicating reliable and precise localization of food
regions across diverse meal scenarios. As shown in Figure 4
and Figure 5, the ToF-based masking utilizes depth proximity
to retain only the near-field regions, usually where food is
located, thus isolating the relevant area in the RGB frame. This
level of cropping enhances the effectiveness of subsequent
food detection. By analyzing only the relevant parts of the
RGB frame, rather than dealing with extensive background
clutter, computational resources are optimized, enhancing de-
tection accuracy.

Fig. 4. Visualization of predicted and ground truth bounding boxes over a
food item to illustrate Intersection-over-Union (IoU) calculation. Higher ToU
indicates better alignment with the ground truth.

C. Eating Gesture Detection Using ToF Sensing

The objective was to recognize the distinctive hand-to-
mouth movement executed when using eating utensils. The
participants had the device mounted on their chest while they
had their meals. The ToF sensor captured depth frames of size
8 x 8 at 5 Hz. The frames were subjected to median filtering to
remove noise and magnify the distracting movement patterns.
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Fig. 5. Distribution of IoU scores between the cropped regions and ground
truth food bounding boxes. Most samples fall within the 0.7-0.8 range,
indicating consistent and accurate cropping of food-relevant areas.

Eating gestures were identified as changes in depth zones,
with the hand being taken from the plate to the mouth. Each
gesture sample included 15 sequential ToF frames; therefore,
each gesture sample had a feature vector of 960 dimensions
(15 x 64). We applied a sliding window technique to segment
gestures in each session, allowing for overlap. We created
ground truth labels using RGB frames synchronized with RTC
by marking eating or non-eating gestures based on the hand’s
position relative to the food or mouth. ToF depth frames taken
during an eating gesture sequence are shown in Figure 6,
which captures the patterns correlating with hand movement.
The gesture classification model was trained using the Adam
optimizer with a binary cross-entropy loss function. This
lightweight fully connected model achieved a test accuracy of
88%, proving that ToF data can effectively capture temporal
hand dynamics during food intake. Importantly, this method
allows for the energy-efficient capture of RGB images only
while eating, thus conserving battery life, saving on memory,
enhancing privacy by minimizing irrelevant data collection,
and reducing data storage.
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Fig. 6. RGB frames and corresponding ToF depth maps showing an eating
gesture. The visible hand in depth maps highlights the ToF sensor’s ability to
capture user-proximal motion for gesture recognition.

I'V. CONCLUSION AND FUTURE WORK

This work presents a chest-mounted wearable with RGB and
ToF sensors that captures eating sessions and preserves privacy
by masking backgrounds while detecting food items. The
study shows the device works across lighting conditions while
preserving privacy, and that ToF-based masking improves food
detection by focusing on food regions. Future work includes
using ToF depth data to estimate food volume and calorie
intake. We also plan to add an Inertial Measurement Unit to
assess activity levels through (Metabolic Equivalent of Task)
MET values, which can further enhance calorie estimation
accuracy.
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