
A Fast Optimization View: Reformulating Single Layer Attention in LLM Based
on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time

Yeqi Gao1 Zhao Song2,* Weixin Wang3,† Junze Yin4,‡

1University of Washington, 2University of California, Berkeley
3Johns Hopkins University, 4Boston University

*magic.linuxkde@gmail.com, †weixinw1@uci.edu,‡junze@bu.edu

Abstract

Large language models (LLMs) have played a
pivotal role in revolutionizing various facets of
our daily existence. Solving attention regression
is a fundamental task in optimizing LLMs. In this
work, we focus on providing a provable guarantee
for the one-layer attention network objective func-
tion: given input matrices of a layer, A1, A2, A3 ∈
Rn×d, our goal is to minimize the loss function:

L(X,Y) =

n∑

j0=1

d∑

i0=1

(⟨⟨exp(Aj0x),1n⟩−1

· exp(Aj0x), A3Y∗,i0⟩ − bj0,i0)
2,

where Aj0 ∈ Rn×d2

is the j0-th block of the
Kronecker product of A1 and A2. The matrix
B ∈ Rn×d represents the output of a layer, and
bj0,i0 ∈ R is the (j0, i0)-th entry of B. Y∗,i0 ∈ Rd

is the i0-th column vector of Y , and x ∈ Rd2

is the
vectorization of X .
In self-attention, Q,K, V ∈ Rd×d represent the
weight matrices for the query, key, and value, re-
spectively. Unlike prior works that relied on sim-
plified and single-variable versions of the attention
computation problem, our multivariate loss func-
tion analyzes a complete and unsimplified attention
layer, treating all these weights as variables, where
X = QK⊤ ∈ Rd×d and Y = V ∈ Rd×d. We
propose an iterative greedy algorithm to train a
neural network using the loss function L(X,Y),
achieving an error bound of ϵ ∈ (0, 0.1). The algo-
rithm runs in Õ((Tmat(n, n, d) + Tmat(n, d, d) +
d2ω) log(1/ϵ)) time, where Tmat(a, b, c) denotes
the time complexity of multiplying an a× b matrix
with a b× c matrix, and ω ≈ 2.37 is the exponent
of matrix multiplication.

1 INTRODUCTION

Large language models (LLMs) like GPT-1 [Radford et al.,
2018], BERT [Devlin et al., 2019], GPT-2 [Radford et al.,
2019], GPT-3 [Brown et al., 2020], ChatGPT [OpenAI,
2022], GPT-4 [OpenAI, 2023], OPT [Zhang et al., 2022],
Llama [Touvron et al., 2023a], and Llama 2 [Touvron et al.,
2023b] have demonstrated impressive capabilities in natu-
ral language processing (NLP). These models understand
and generate complex language, enabling a wide range of
applications such as sentiment analysis [Zhang et al., 2024],
language translation [Alyafeai et al., 2023], question an-
swering [Bian et al., 2024], and text summarization [Liu and
Demberg, 2023]. Despite their high-quality performance,
there remains untapped potential in optimizing and training
these massive models, making it a challenging endeavor in
the present day.

The primary technical foundation supporting the capabilities
of LLMs is the attention matrix A ∈ Rn×n [Radford et al.,
2018, Vaswani et al., 2017, Brown et al., 2020, Devlin et al.,
2019]. The central concept of attention is to learn representa-
tions that emphasize the most relevant parts of the input. To
be more specific, the attention mechanism finds the correla-
tions of the query vectors and the key vectors using the inner
product. The attention weights are then determined based
on the similarity of this comparison, indicating the relative
importance of each input token. These attention weights are
used to compute weighted averages of the value vectors, re-
sulting in the output representation. By leveraging attention,
LLMs acquire the ability to focus on the crucial aspects
of the input, allowing them to gather pertinent information
more efficiently and precisely. This capability enables LLMs
to process longer texts and comprehend intricate semantic
relationships. Notably, the self-attention mechanism enables
LLMs to establish connections between various segments of
the input sequence, enhancing their contextual understand-
ing. Mathematically, the attention computation is defined as
follows:

Definition 1.1 (The ℓ-th layer forward computation). Let

n, d be positive integers, where n denotes the number of
input tokens and d represents the dimensionality of the token
embeddings. Let 1n be the n-dimensional vector whose
entries are all 1. Let diag : Rn → Rn×n be a function: each
entry of the vector in Rn is mapped to the diagonal entry
of the matrix in Rn×n and other entries of this matrix are
all 0’s. Given weights Q,K, V ∈ Rd×d, we let Xℓ ∈ Rn×d

denote the ℓ-th layer input and Xℓ+1 ∈ Rn×d is as follows:

Xℓ+1 ← D−1 exp(XℓQK⊤X⊤
ℓ)XℓV

where D := diag(exp(XℓQK⊤X⊤
ℓ)1n) and exp(A)i,j =

exp(Ai,j) for all matrices A.

Traditionally, D−1 exp(XℓQK⊤X⊤
ℓ)︸ ︷︷ ︸

:=A

∈ Rn×n is denoted

by Softmax(QK⊤
√
d
) ∈ Rn×n, where each entry of A repre-

sents how much focus one part of the input should pay to
another part. D−1 is used to normalize each row of the at-
tention matrix, i.e., the sum of each row of D−1A ∈ Rn×n

is equal to 1. XℓV ∈ Rn×d is the value matrix that stores
the representations or features of each input element. This
results in an output representing a combination of the input
values, with more important values (as determined by the
attention mechanism) contributing more to the final output.
In Definition 1.1, we fully expand the Softmax unit and
change the notation system from the traditional definition
to highlight the focus of our paper, which is to look for
X = QK⊤ ∈ Rd×d and Y = V ∈ Rd×d that minimizes
the following optimization problem with respect to attention
computation:

Definition 1.2 (Attention optimization). Let B ∈ Rn×d and
X,Y ∈ Rd×d. Given inputs A1, A2, A3 ∈ Rn×d, we define
the attention optimization minX,Y ∈Rd×d L(X,Y) as:

min
X,Y ∈Rd×d

∥D(X)−1 exp(A1XA⊤
2)A3Y −B∥2F ,

where the diagonal matrix D(X) ∈ Rn×n is defined as
D(X) := diag(exp(A1XA⊤

2)1n).

Here, X = QK⊤ and Y = V are the weights we want to
learn, while A1, A2, A3 are the inputs of a layer Xℓ, and
B is the output layer Xℓ+1. Solving the attention optimiza-
tion problem exactly takes O(n2d) time. Since the attention
matrix A = exp(A1XA⊤

2) has n2 entries, explicitly com-
puting all entries of A makes it impossible to achieve a
sub-quadratic time algorithm. In real-world applications,
n ≫ d [Alman and Song, 2023], so prior works mainly
focus on approximating the attention computation to obtain
a sub-quadratic time algorithm in n.

Limitations of Prior Works Attention computation has
been analyzed in many recent works [Alman and Song,
2023, Brand et al., 2024, Gao et al., 2025b, Deng et al.,
2023b, Song et al., 2024a, Deng et al., 2023a, Gao et al.,

2023a,c], but none of them provide a complete approxima-
tion of the full version of the attention optimization problem.
Each of these works simplifies the problem (Definition 1.2)
using different strategies. For example, Zandieh et al. [2023],
Brand et al. [2024] merge A1X and A3Y into a single ma-
trix, respectively, by approximating

D(X)−1 exp(QK⊤)V.

Kacham et al. [2023] replaces the exp function in Defini-
tion 1.2 with polynomials. Another major branch of studies
on attention regression simplification focuses on the softmax
regression problem, where the matrix A3Y is completely
ignored, along with its variants.

Definition 1.3 (Single softmax regression [Deng et al.,
2023a] and multiple softmax regression [Gao et al., 2023b]).
Given a matrix A ∈ Rn×d and a vector c ∈ Rn, the single
softmax regression problem is defined as

Part 1. min
x∈Rd

∥⟨exp(Ax),1n⟩−1 exp(Ax)− c∥22.

Let D(X) ∈ Rn×n be defined as in Definition 1.2 and
C ∈ Rn×n. Given A1, A2 ∈ Rn×d and X ∈ Rd×d, the
multiple softmax regression problem is defined as

Part 2. min
X∈Rd×d

∥D(X)−1 exp(A1XA⊤
2)− C∥2F .

Based on the observation in Gao et al. [2023b,c], the equa-
tion in Part 1 of Definition 1.3 can be viewed as a single row
of the equation in Part 2 of Definition 1.3. When studying
multiple softmax regression, Deng et al. [2023b] impose
an additional assumption by considering only symmetric
matrices:

D(X)−1 exp(A2A
⊤
2),

but in exchange, they consider the stronger ℓ∞ norm in
multiple softmax regression. Gao et al. [2025c, 2023b] re-
spectively study the rescaled version of single and multiple
softmax regression, namely

min
x∈Rd

∥ exp(Ax)− ⟨exp(Ax),1n⟩c∥22

and

min
X∈Rd×d

∥ exp(A1XA⊤
2)−D(X)C∥2F .

We note that all of these softmax-related regression prob-
lems consider simpler variants to achieve sub-quadratic time
algorithms: they focus only on single-variable loss functions.
Specifically, they minimize the loss by adjusting the weights
of the key and query matrix, X = QK⊤, while ignoring
the weight of the value matrix, Y = V . However, simpli-
fying the attention optimization problem in this way may
significantly degrade model performance, potentially requir-
ing additional training or fine-tuning. This, in turn, creates
deployment challenges [Dong et al., 2023]. Therefore, it is
natural to ask:

min
X,Y ∈ Rd×d∥ (n D(X)

n

)
−1

× exp (n A1

d

× d X

d

× d A⊤
2

n

) × n A3

d

× d Y

d

− n B

d

∥ 2
F

n D(X)

n

= diag (exp (n A1

d

× d X

d

× d A⊤
2

n

) × n 1n)
Figure 1: The visualization of the attention optimization problem (see Definition 1.2). Let A1, A2, A3, B ∈ Rn×d and
X,Y ∈ Rd×d. We first get exp(A1XA⊤

2) ∈ Rn×n by multiplying A1, X , and A⊤
2 . Then, we have D(X) ∈ Rn×n by

computing diag(exp(A1XA⊤
2)1n). After that, we multiply D(X)−1, exp(A1XA⊤

2), A3, and Y and subtract B from their
product. Finally, we compute the minimum of the Frobenius norm of their difference. The blue rectangles represent the
n× d matrices, the purple rectangle represents the n-dimensioal vector, the red squares represent the d× d matrices, and the
green squares represent the n× n diagonal matrices.

How fast can we optimize the training process of the
attention matrix without making any simplification to

Definition 1.2?

Our Result Although Alman and Song [2023] shows
that a one-step forward approximation of attention can be
achieved in o(n2) time without explicitly formulating the
n × n matrix, the speed at which the loss function can be
optimized via iterative methods remains an open problem.
Therefore, in this paper, we provide a complete, unsimplified
analysis of the attention optimization problem as defined in
Definition 1.2–a task that, to the best of our knowledge, has
not been previously undertaken. Additionally, we establish
a provable guarantee for optimizing the attention function
in the case of a single-layer attention network.

Theorem 1.4 (Informal version of our main theorem (The-
orem L.1)). Given A1, A2, A3 ∈ Rn×d, there exists an
algorithm (Algorithm 1) that runs in O((Tmat(n, d, n) +
Tmat(n, d, d) + d2ω) log(1/ϵ)) and solves the attention op-
timization problem (Defintion 1.2) up to ϵ accuracy with
probability 1− 1/poly(n). Here ω ≈ 2.371.

Optimizing the attention objective is a necessary subprob-
lem that needs to be solved as part of the overall LLM
training process, even if it’s not sufficient on its own due to
the presence of additional layers. Developing faster, more
scalable algorithms for attention optimization can help re-
duce the computational burden of training LLMs.

To establish the correctness of our algorithm, we con-
duct a comprehensive analysis of the positive semi-definite

1ω denotes the exponent of matrix multiplication [Williams,
2012, Le Gall, 2014, Alman and Williams, 2021, Duan et al.,
2023, Le Gall, 2024, Williams et al., 2024], Tmat(a, b, c) denotes
the time of multiplying an a × b size matrix with another b × c
size matrix, and Tmat(n, n, n) = nω . See more details of matrix
multiplication notation in Section A.7.

(PSD) property and the Lipschitz continuity of the Hes-
sian matrix constructed from the attention matrix. These
two properties provide the necessary assurance for employ-
ing TensorSRHT and Newton’s method, ensuring both fast
computation and convergence, respectively.

Notation We use N to denote the set of positive integers.
Let n, d ∈ N. We define [n] := {1, 2, . . . , n}. Let x, y ∈ Rd.
For all i ∈ [d], we define xi ∈ R as the i-th entry of x. We
define ⟨·, ·⟩ : Rd×Rd → R as ⟨x, y⟩ := ∑d

i=1 xiyi. For all
p ∈ {1, 2,∞}, we define ∥x∥p := (

∑
i∈[d] |xi|p)1/p. We

use 1d and 0d to denote the d-dimensional vectors whose
entries are all 1’s and 0’s, respectively.

Let A ∈ Rn×d. For all i ∈ [n] and j ∈ [d], we use Ai,j ∈ R
to denote the (i, j)-th entry of A, use Ai,∗ ∈ Rd and A∗,j ∈
Rn to denote vectors, where (Ai,∗)j = Ai,j = (A∗,j)i. We
use A⊤ ∈ Rd×n to denote the transpose of the matrix A.
For X ∈ Rd×d, we define x = vec(X) ∈ Rd2

as Xi,j =
vec(X)(i−1)×d+j . For x ∈ Rd, we define diag(x) ∈ Rd×d

as diag(x)i,i = xi, for all i ∈ [d] and other entries of
diag(x) are all 0’s. ∥A∥F ∈ R and ∥A∥ ∈ R denote the
Frobenius norm and the spectral norm of A ∈ Rn×d, re-
spectively, where ∥A∥F :=

√∑
i∈[n]

∑
j∈[d] |Ai,j |2 and

∥A∥ := maxx∈Rd ∥Ax∥2/∥x∥2. Let A ∈ Rn2×d2

. For each
j1 ∈ [n], we use Aj1 ∈ Rn×d2

to denote one n× d2 block
from A ∈ Rn2×d2

. Let C,D ∈ Rd×d be symmetric matri-
ces, C ⪰ D if for all y ∈ Rd, y⊤Cy ≥ y⊤Dy. C is said to
be a positive semidefinite (PSD) matrix if y⊤Cy ≥ 0. We
use Id to denote the d× d identity matrix. Let A ∈ Rn1×d1

and B ∈ Rn2×d2 . We define the Kronecker product be-
tween matrices A and B, denoted A ⊗ B ∈ Rn1n2×d1d2 ,
as (A⊗B)(i1−1)n2+i2,(j1−1)d2+j2 is equal to Ai1,j1Bi2,j2 ,
where i1 ∈ [n1], j1 ∈ [d1], i2 ∈ [n2], j2 ∈ [d2].

Roadmap In Section 2, we introduce related research
work. In Section 3, we provide an overview of the techniques
we will use throughout the rest of the paper. In Section 4, we
present a discussion of our theoretical results. In Section 5,
we draw a conclusion for this paper.

2 RELATED WORK

Attention Transformer models, proposed by Vaswani et al.
[2017], revolutionized attention computation with their self-
attention mechanism. This allowed for parallel processing
of input sequences and captured long-range dependencies
more effectively than previous recurrent architectures. After
that, there has been a substantial body of work on attention
computation [Deng et al., 2023b, Alman and Song, 2023,
Zandieh et al., 2023, Chen et al., 2021, Li et al., 2023c,
Brand et al., 2024, Kitaev et al., 2020]. Notably, recent re-
search by Zandieh et al. [2023], Chen et al. [2021], Kitaev
et al. [2020] employs Locality Sensitive Hashing (LSH)
techniques to approximate attention mechanisms. In par-
ticular, Zandieh et al. [2023] introduces KDEformer, an
efficient algorithm for approximating dot-product attention.
This algorithm provides provable spectral norm bounds and
outperforms various pre-trained models. Additionally, cur-
rent research explores both static and dynamic approaches
to calculating attention, as evidenced by the works of Brand
et al. [2024] and Alman and Song [2023]. Furthermore, Li
et al. [2023c] delves into the regularization of hyperbolic
regression problems, which involve functions like exp, sinh,
and cosh. Deng et al. [2023b] proposes randomized and de-
terministic algorithms for reducing the dimensionality of
attention matrices in LLMs, achieving high accuracy while
significantly reducing feature dimensions.

Additionally, numerous studies have attempted to analyze
theoretical attention from the perspectives of optimization
and convergence [Li et al., 2023b, Gao et al., 2023a, Snell
et al., 2021, Zhang et al., 2020a]. Li et al. [2023b] investi-
gated how transformers acquire knowledge about word co-
occurrence patterns. Gao et al. [2023a] focused on studying
regression problems inspired by neural networks that em-
ploy exponential activation functions. Snell et al. [2021] an-
alyzed why models occasionally prioritize significant words
and explained how the attention mechanism evolves during
the training process. Zhang et al. [2020a] demonstrated that
the presence of a heavy-tailed noise distribution contributes
to the bad performance of stochastic gradient descent (SGD)
compared to adaptive methods.

Theoretical LLMs There are numerous amount of works
focusing on the theoretical aspects of LLMs. In Reif et al.
[2019], the syntactic representations of the attention matrix
and the individual word embeddings are presented, together
with the mathematical justification of elucidating the ge-
ometrical properties of these representations. Hewitt and

Manning [2019] introduces a structural probe that analyzes,
under the linear transformation of a word representation
space of a neural network, whether or not syntax trees are
embedded.

Cai et al. [2021], Liu et al. [2024], Rafailov et al. [2023],
Kaplan et al. [2020] study the optimization of LLMs. Cai
et al. [2021] proposes a new algorithm called ZO-BCD.
It has favorable overall query complexity and a smaller
computational complexity in each iteration. Liu et al. [2024]
creates a simple and scalable second-order optimizer, called
Sophia. In different parts of the parameter, Sophia adapts
to the curvature. This may be strongly heterogeneous for
language modeling tasks. The bound of the running time
does not rely on the condition number of the loss.

Other theoretical LLM papers study the knowledge and
skills of LLMs. Wang et al. [2022] analyzes distinct “skill"
neurons, which are regarded as robust indicators of down-
stream tasks when employing the process of soft prompt-
tuning, as discussed in Li and Liang [2021], for language
models. Dai et al. [2021] finds a positive relationship be-
tween the activation of these neurons and the expression
of their corresponding facts, through analyzing BERT. Si-
multaneously, Burns et al. [2023] employs a fully unsuper-
vised approach to extract latent knowledge from a language
model’s internal activations. In addition, Hase et al. [2023]
and Meng et al. [2022] show that in the feed-forward layers
of pre-trained models, language models localize knowledge.
Xie et al. [2022] explores the feasibility of selecting a spe-
cific subset of layers for modification and determining the
optimal location for integrating a classifier. Li et al. [2023d]
demonstrates that large trained transformers exhibit sparsity
in their feedforward activations. Zero-th order algorithm for
training LLM has been analyzed [Malladi et al., 2023, Deng
et al., 2024, Zelikman et al., 2023].

A notable line of research is analyzing the theoretical limits
of LLMs and discussing how to overcome these limitations.
Recent works have shown that a wide range of LLM ar-
chitectures fall into a weaker class of logical circuits Li
et al. [2024, 2025a], Chen et al. [2024a, 2025c], which res-
onates with similar results in other neural architectures Li
et al. [2025b], Ke et al. [2025], and such limitation may
be improved by chain-of-thought Li et al. [2024] or posi-
tional encoding Yang et al. [2025]. Another line of research
shows that Transformers may not be able to learn the sup-
port set of some simple Boolean functions under gradient
descent Chen et al. [2025a,b], Hu et al. [2025e], Kim and
Suzuki [2025] without the help of chain-of-thoughts. There
are also works discussing the conditions deciding whether
we can approximate Transformer computation efficiently,
such as bounded entries Alman and Song [2023, 2024a,b,
2025a,b], statistical rates Hu et al. [2025d, 2024], and model
pruning Frantar and Alistarh [2023], Liang et al. [2025], Gao
et al. [2025a]. These theoretical results extend to universal
approximation Kratsios et al. [2022], Chen et al. [2025d],

Liu et al. [2025], Hu et al. [2025a], model tuning Hu et al.
[2025b,c], and in-context learning Wu et al. [2025b,a].

LLMs Application and Evaluation Recently, there has
been much interest in developing LLM-based systems for
conversational AI and task-oriented dialogue, like Google’s
Meena chatbot Rathee [2020], Microsoft 365 Copilot
Spataro [2023], Adobe firefly, Adobe Photoshop, GPT series
Radford et al. [2018, 2019], Brown et al. [2020], OpenAI
[2022, 2023], and BERT Devlin et al. [2019]. Moreover, nu-
merous fine-tuning methods such as Hu et al. [2022], Meng
et al. [2024], Cao and Song [2025] appear in order to adapt
models for different conversational tasks better.

Moreover, LLM evaluation is also a popular research area.
Within the field of NLP, LLMs are evaluated based on natu-
ral language understanding Bang et al. [2023], Liang et al.
[2023], Laskar et al. [2023], Choi et al. [2023], reasoning
Bian et al. [2024], Wu et al. [2023], Xu et al. [2025a], nat-
ural language generation Wang et al. [2023b], Qin et al.
[2023a], Liu and Demberg [2023], Chia et al. [2023], Chen
et al. [2023], and multilingual tasks Abdelali et al. [2024],
Ahuja et al. [2023], Lai et al. [2023], Zhang et al. [2023].
Robustness Li et al. [2023a], Wang et al. [2023a], Zhao
et al. [2023], ethics Cao et al. [2023], biases Ferrara [2023],
and trustworthiness Hagendorff and Fabi [2023] are also
important aspects. More specifically, the abilities of LLMs
in social science Deroy et al. [2023], Frank [2023], Nay
et al. [2023], mathematics Arora et al. [2023], Dao and
Le [2023], Wei et al. [2023], Bubeck et al. [2023], science
Castro Nascimento and Pimentel [2023], Guo et al. [2023],
engineering Bubeck et al. [2023], Liu et al. [2023a], Pal-
lagani et al. [2023], Sridhara et al. [2023], and medical
applications Chervenak et al. [2023], Johnson et al. [2023]
are evaluated. LLMs are also core for different modalities,
including speech Chen et al. [2024b], Ju et al. [2024], im-
age Ho et al. [2020], Rombach et al. [2022], Cao et al.
[2025a] and video Brooks et al. [2024], Yang et al. [2024],
Cao et al. [2025b]. Evaluation on these multi-modal as-
pects of language models includes image generation Lin
et al. [2024], Cao et al. [2025c], video generation Guo et al.
[2025a,b,c], and multi-modal reasoning Xu et al. [2025b],
Tie et al. [2025].

Sketching Sketching is a powerful tool that is used to
accelerate the performance of machine learning algorithms
and optimization processes. The fundamental concept of
sketching is to partition a large input matrix into a signifi-
cantly smaller sketching matrix but still preserve the main
characteristics of the original matrix. Therefore, the algo-
rithms may work with the smaller matrix instead of the
huge original, which leads to a substantial reduction in pro-
cessing time. Many previous works have studied sketching,
proposed sketching algorithms, and supported these algo-
rithms with robust theoretical guarantees. For example, the
Johnson-Lindenstrauss lemma is proposed by Johnson and

Lindenstrauss [1984]: it shows that under a certain high-
dimensional space, projecting points to a lower-dimensional
subspace may preserve the pairwise distances between these
points. This mathematical property becomes the foundation
of the development of faster algorithms for tasks such as
nearest neighbor search. In addition, as explained in Ailon
and Chazelle [2006], the Fast Johnson-Lindenstrauss Trans-
form (FJLT) introduces a specific family of structured ran-
dom projections that can be applied to a matrix in input
sparsity time.

More recently, sketching has been applied to many numeri-
cal linear algebra tasks, such as linear regression [Clarkson
and Woodruff, 2013, Nelson and Nguyên, 2013], online
optimization problems [Reddy et al., 2021], training neu-
ral networks [Song et al., 2024b, Xiao et al., 2018, Song
et al., 2021b, Gao et al., 2024, Brand et al., 2021], reinforce-
ment learning [Wang et al., 2020, Xu et al., 2023], tensor
decomposition [Song, 2019, Song et al., 2019, Deng et al.,
2023d], relational database [Qin et al., 2022], low-rank ap-
proximation [Boutsidis and Woodruff, 2014, Makarychev
et al., 2020, Meng and Mahoney, 2013, Andoni et al., 2018,
Song et al., 2017], distributed problems [Boutsidis et al.,
2016, Woodruff and Zhong, 2016], weighted low rank ap-
proximation [Razenshteyn et al., 2016, Gu et al., 2024, Song
et al., 2025], CP decomposition [Ma and Solomonik, 2021],
regression inspired by softmax [Li et al., 2023c, Gao et al.,
2025c, Sinha et al., 2023, Deng et al., 2023a], and Kronecker
product regression [Reddy et al., 2022].

3 TECHNIQUE OVERVIEW

In this section, we introduce the primary technique em-
ployed in this paper. This serves as a summary of our the-
oretical analysis, which is deferred to the Appendix due to
space limitations.

Specifically, in Section 3.1, we present the key mathematical
properties used to analyze the attention optimization prob-
lem, as defined in Definition 1.2. In Section 3.2, we describe
the techniques for constructing and analyzing the essential
properties of our main algorithm (see Algorithm 1).

3.1 THEORETICAL ANALYSIS

Big Picture In this section, we provide an overview of
the key techniques used in our theoretical analysis. Our
analysis of this multivariate loss function relies on a novel
technique that leverages support vector machines (SVM) to
reformulate the loss function:

∥D(X)−1 exp(A1XA⊤
2)A3Y −B∥2F

into the form of inner products and Kronecker product
n∑

j0=1

d∑

i0=1

(⟨⟨exp(Aj0x),1n⟩−1

· exp(Aj0x), A3Y∗,i0⟩ − bj0,i0)
2. (1)

We define

• u(x)j0 := exp(Aj0 x),

• α(x)j0 := ⟨exp(Aj0 x),1n⟩,
• f(x)j0 := α(x)−1

j0
u(x)j0 ,

• h(Y)i0 := A3Y∗,i0 , and

• c(x, y)j0,i0 := ⟨f(x)j0 , h(y)i0⟩ − bj0,i0 .

to decompose Eq. (1) into small parts and compute their
gradient and Hessian respectively. Unlike prior works that
focus on single-variable loss functions [Gao et al., 2025b,
Deng et al., 2023b, Song et al., 2024a, Deng et al., 2023a,
Gao et al., 2023a,c,b], our multivariate loss function has a

more complex Hessian matrix: H =

[
Hx,x Hx,y

Hy,x Hy,y

]
. We

first present how we decompose the Hessian into blocks
(X,Y). Then, we show that the diagonal sub Hessian ma-
trices Hx,x, Hy,y ∈ Rd2×d2

are positive semi-definite and
provide an upper bound on the spectral norm of the off-
diagonal sub Hessian matrices Hx,y, Hy,x ∈ Rd2×d2

. Next,
we demonstrate that the full Hessian matrix H ∈ R2d2×2d2

,
consisting of the sub matrices Hx,x, Hx,y, Hy,x, and Hy,y,
is also positive semi-definite. Finally, we introduce tech-
niques for proving that the Hessian is Lipschitz.

Problem Reformulation Using SVM The initial works
[Deng et al., 2023a, Gao et al., 2025c, Song et al., 2024a]
on attention regression problems consider the simplest ℓ2
norm, such as minx∈Rd ∥⟨exp(Ax),1n⟩−1 exp(Ax)− c∥22
(Part 1 of Definition 1.3), which corresponds to a single
row of the full attention matrix. Inspired by the tensor trick
from Diao et al. [2018, 2019],

vec(A1XA⊤
2) = (A1 ⊗A2) vec(X) ∈ Rn2

,

later works [Gao et al., 2023c,b] consider a slightly
more complicated version of the Part 1 equation, namely
the Frobenius norm of the whole matrix, such as
minX∈Rd×d ∥D(X)−1 exp(A1XA⊤

2) − C∥2F (Part 2 of
Definition 1.3). In particular, instead of using a single rescal-
ing factor (Part 1), we now have n rescaling factors (Part
2). We split exp((A1 ⊗A2) vec(X)) ∈ Rn2

into n chunks,
each of size n, and apply the same rescaling factor within
each chunk.

Remark 3.1. For a matrix A = A1 ⊗ A2 ∈ Rn2×d2

, we
can split it into n blocks, where the first block A1 ∈ Rn×d2

contains the first n rows of A, the second block A2 ∈ Rn×d2

contains the next n rows of A, and so on. The j0-th block
Aj0 ∈ Rn×d2

contains the rows from (j0−1)n+1 to j0n of
A, and the n-th block An ∈ Rn×d2

contains the rows from
(n− 1)n+ 1 to n2 of A.

Note that while the tensor trick is necessary for considering
matrix norm regression, it is not sufficient to account for
the value matrix A3Y in the attention optimization problem
(Definition 1.2). Therefore, we take a step further by incorpo-
rating both the SVM and the tensor trick to reformulate the
entire equation of the attention optimization problem. The
standard SVM objective function [Joachims, 2006, Chang
and Lin, 2001, Gu et al., 2025, Tarzanagh et al., 2023] in op-
timization can be viewed as the product of a summation over
a batch of inner products. Inspired by this, we define n func-
tions f(x)j0 = ⟨exp(Aj0 x),1n⟩−1 exp(Aj0 x) ∈ Rn (see
Definition A.10) for each j0 ∈ [n] and d functions h(Y)i0 =

A3Y∗,i0 ∈ Rn (see Definition A.11), where Aj0 ∈ Rn×d2

is
one n× d2 block from A. Here, x is the vectorization of X ,
and y is the vectorization of Y . Then the objective function
in Definition 1.2, ∥D(X)−1 exp(A1XA⊤

2)A3Y −B∥2F , can
be turned into

n∑

j0=1

d∑

i0=1

(⟨f(x)j0 , h(Y)i0⟩ − bj0,i0)
2 (2)

where bj0,i0 is the entry of matrix B ∈ Rn×d. We call this
formulation SVM-inspired formulation.

Split Hessian Into Blocks (X,Y) In the fast approxima-
tion and convergence guarantee of the training process for
the attention matrix, the PSD property is a key focus in Sec-
tion C. Unlike single or multiple softmax regression or their
variants [Deng et al., 2023a, Gao et al., 2023b, 2025c], both
the weights X and Y (as defined in Definition 1.2) need to
be considered, which significantly increases the complexity
of the analysis. Therefore, our Hessian matrix discussed in
Section C has the following format

H =

[
Hx,x Hx,y

Hy,x Hy,y

]

To establish the positive semi-definite property, we will
examine the properties of the matrix above individually.

Positive Semi-Definite For Hessian Hx,x, Hy,y The pos-
itive semi-definite of Hx,x, Hy,y constitutes a crucial initial
step in the proof outlined in Lemma C.1. These Hessian are
discussed in detail in Section F and Section G. However,
proving the PSD property for Hx,x and Hy,y in the context
of the attention optimization problem is non-trivial. The
challenges arise from the complex structure of the attention
mechanism and the presence of the exponential function in
the loss formulation (Definition 1.2).

To tackle these challenges, we dive deep into the structure
of Hx,x and Hy,y (see Section F and Section G for details).
We express these matrices in terms of the constituent func-
tions of the attention mechanism, such as the exponential
function, the softmax function, and the key-query-value
transformations. This fine-grained representation allows us
to analyze the PSD property at a granular level. Another key

insight in our analysis is the role of the regularization term
(see details in Section A.6) in the loss function. By carefully
choosing the regularization weight, we can ensure that it
dominates any potentially negative contributions from the
complex attention terms. This is a delicate balancing act, as
the regularization weight needs to be large enough to en-
force the PSD property, but not so large that it overwhelms
the attention signal [Li et al., 2023b, Deng et al., 2023a].

Leveraging this insight, we derive lower bounds on the
regularization weight that guarantee the PSD property for
Hx,x and Hy,y (Lemma G.1 and Lemma F.1 respectively).
These bounds are expressed in terms of the spectral norms
of the attention matrices and the minimum singular values
of the key-query-value transformations. By ensuring that
the regularization weight exceeds these bounds, we can
provably establish the PSD property: there exists a real
number l > 0 such that

H(x) = Hx,x ⪰ l · Id2 and H(y) = Hy,y ⪰ l · Id2 .

Upper Bounds for the Spectral Norm of Hx,y, Hy,x

Hx,y and Hy,x blocks capture the intricate interaction be-
tween the weights X and Y in the attention mechanism.
Bounding their influence is crucial for ensuring the overall
positive semi-definite (PSD) property of the Hessian and
the convergence of our optimization algorithm. To establish
the spectral upper bound of Hx,y , we can decompose Hx,y

into {Gi}4i=1 as described in Lemma I.10. Another impor-
tant technique in our analysis is the use of the boundedness
properties of the attention functions. We show that the ex-
ponential function and the softmax function, when applied
to bounded inputs, produce outputs with controlled spectral
norms. This allows us to propagate the boundedness through
the complex matrix expressions in Hx,y .

Leveraging these insights, we derive a spectral upper
bound for each component in Lemma I.10, namely
maxi∈[n] ∥Gi∥ ≤ R2, where R is a constant that de-
pends on the spectral norms of the attention matrices. Us-
ing these component-wise bounds, we then derive a tight
spectral upper bound for the full off-diagonal block Hx,y,
∥H(x, y)∥ ≤ nd · 10R2 Given this upper bound, our final
focus in the proof of the positive semi-definite property
(PSD) will be as follows.

PSD for Hessian H The challenge in establishing the
PSD property for H lies in the complex interplay between
its constituent blocks: Hx,x, Hx,y , Hy,x, and Hy,y . Each of
these blocks has its own intricate structure, involving the
attention matrices, the exponential function, and the softmax
normalization. Moreover, the off-diagonal blocks Hx,y and
Hy,x introduce cross-term interactions that can potentially
disrupt the PSD property.

To tackle this challenge, we employ a carefully orchestrated
analysis that leverages the properties of the individual blocks

and their interrelationships. Our strategy is to show that
the PSD property of the diagonal blocks Hx,x and Hy,y is
strong enough to compensate for any potentially negative
contributions from the off-diagonal blocks.

With the PSD property of the diagonal blocks and the spec-
tral bounds on the off-diagonal blocks in hand, we then
embark on the final step of proving the PSD property for the
full Hessian H through using

[
u⊤ v⊤

]
H

[
u
v

]

= u⊤Hx,xu+ v⊤Hy,yv + u⊤Hx,yv + v⊤Hy,xu,

for any arbitrary u, v ∈ Rd2

.

Consequently, based on the positive semi-definite property
of the diagonal matrix, the computation of the off-diagonal
part of the matrix does not affect the positivity of the entire
matrix, thereby establishing a positive semi-definite. With
α1, α2, α3 as the bound of the matrix above respectively in
Lemma C.1, we have the following result

H ⪰ min{α1 − α3, α2 − α3} · I2d2

Given the relationship of {ai}3i=1 as discussed above, the
positive semi-definite property of the Hessian matrix is es-
tablished.

Lipschitz Property for Hessian The Lipschitz property
of the Hessian is determined by the upper bound and Lip-
schitz property of the basic functions that constitute the
Hessian matrix H . Since H has three parts Hx,x, Hx,y and
Hy,y. In Section G, due to H(y) is independent of y, the
Lipschitz property can be easily established. For details of
others, we refer the readers to read Section I.

To compute the Lipschitz continuity of Hx,x, we begin
by providing a brief explanation. In our proof, we first
establish upper bounds for the functions u(x), c(x), and
f(x) in Lemma E.4, which together form the matrix Hx,x

(as detailed in Section A.3). Importantly, we ensure that
these basic functions possess the Lipschitz property in
Lemma E.5. Using the foundational components mentioned
above, we can decompose Hx,x into 4 distinct parts de-
noted as {Gk}4k=1. We will leverage the Lipschitz prop-
erty of the basic functions above and a method intro-
duced below. The following task is extensively involved
in the Lipschitz proof (for each Gk), we want to bound
|∏t

i=1 βi(x)−
∏t

i=1 βi(x̃)|, which has an upper bound as:

t−1∑

j=0

|
j∏

i=0

βi(x̃)

t∏

i′=j+1

βi′(x)−
j+1∏

i=1

βi(x̃)

t+1∏

i′=j+2

βi′(x)|

where assume that β0(x) = 1 and βt+1(x) = 1 for con-
venience. We will then proceed to establish the Lipschitz
continuity of Hx,x

K∑

k=1

∥Gk(x, y)−Gk(x̃, ỹ)∥

≤ n1.5 exp(20R2)(∥x− x̃∥2 + ∥y − ỹ∥2)

3.2 ALGORITHM

Algorithm 1 Our Algorithm

1: procedure TRAININGALGORITHM(A1, A2, A3) ▷
Theorem 1.4

2: Let x(0), y(0) ∈ Rd2

denote initialization point.
3: for t = 0→ T − 1 do
4: /*Forward*/
5: Compute h(y(t)) ∈ Rn×d ▷ Tmat(n, d, d) time
6: Compute f(x(t)) ∈ Rn×n ▷ Tmat(n, d, n)

time
7: Compute c(x(t), y(t)) ∈ Rn×d (based on

f(x(t)), h(y(t))) ▷ Tmat(n, d, d) time
8: /*Gradient*/
9: Compute g(x(t)) based on Lemma B.4 ▷
Tmat(n, d, n) + Tmat(n, d, d) time

10: Compute g(y(t)) based on Lemma B.5 ▷
Tmat(n, d, n) + Tmat(n, d, d) time

11: /*Hessian*/
12: Compute H̃ via TensorSRHT ▷ Õ(nd+ d2ω)
13: /*Update*/

14:

[
x(t+ 1)
y(t+ 1)

]
←

[
x(t)
y(t)

]
−
[
g(x(t))
g(y(t))

]
H̃−1 ▷

O(d2ω)
15: end for
16: return

[
x(T)
y(T)

]

17: end procedure

In this section, we present the techniques for constructing
and analyzing the properties of our algorithm (see Algo-
rithm 1). First, we present our technique for simplifying
the computation of the attention matrix. Then, we display
the techniques for the gradient and Hessian computation.
After that, we delve into the primary contribution of our
work: TensorSRHT fast approximation for Hessian. Finally,
we combine the running time of all of the previous parts
(forward function, gradient, Hessian, inverse of approxi-
mate Hessian) and conclude the total running time of our
algorithm (see Algorithm 1).

Forward Computation To simplify the computation of
the attention matrix, we can decompose the computation
process into three components: f , c, and h as defined in
Section A.2. The forward computation can then be com-
pleted in O(Tmat(n, d, d) + Tmat(n, n, d)) time, as stated
in Lemma B.3.

Gradient Computation We can compute the gradient in
Section B as follows:

dL(x, y)

dx
= vec(A⊤

1 p(x, y)A2),

for some matrix p(x, y) ∈ Rn×n. Here A⊤
1 p(x, y)A2 can be

computed in Tmat(n, d, n) + Tmat(d, n, d) time. Similarly,

dL(x, y)

dy
= vec(A⊤

3 q̃(x, y)),

which also takes Tmat(n, n, d) + Tmat(n, d, d) time. We
will now establish the overall running time for gradient
computation. By utilizing the results from Lemma B.4 and
Lemma B.5, we can efficiently compute the gradients of
g(x(t)) and g(y(t)) in Tmat(n, d, n) + Tmat(n, d, d) time.

Straightforward Hessian Computation Computing the
Hessian in straightforward way would take Tmat(d

2, n2, d2)
time, because we need to explicitly write down A⊤ A ∈
Rd2×d2

where A ∈ Rn2×d2

. This is too slow, we use sketch-
ing ideas to speed up this running time. Using sketching
matrices to speed up the Hessian computation has been ex-
tensively studied in convex and non-convex optimization
[Jiang et al., 2021, Lee et al., 2019, Song and Yu, 2021, Gu
and Song, 2022, Gu et al., 2025, Qin et al., 2023b].

TensorSRHT Fast Approximation for Hessian Now,
let’s delve into the key contribution of this paper. Given that
A = A1 ⊗A2 ∈ Rn2×d2

, the time complexity of regression
becomes prohibitively expensive. Our contribution aims to
execute a fast approximation to significantly reduce the time
complexity when using the Newton Method. We construct
our TensorSRHT sketching matrix S ∈ Rm×n2

by

S =
1√
m
P · (QD1 ⊗QD2),

where P ∈ {0, 1}m×n2

contains only one 1 at a ran-
dom coordinate, Q is a n × n Hadamard matrix, and
D1, D2 are two n × n independent diagonal matrices
with diagonals that are each independently set to be a
Rademacher random variable (uniform in {−1, 1}). We
choose m = O(ϵ−2d2 log3(nd/ϵδ))≪ n2, where ϵ > 0 is
the accuracy parameter and δ ∈ (0, 1) is the failure prob-
ability, so S A ∈ Rm×d2

is a much smaller matrix com-
pared with A ∈ Rn2×d2

. Therefore, using S A, we can
construct a sparse Hessian. This reduces the time from
Tmat(d

2, n2, d2) down to Õ(nd)+Tmat(d
2, d2, d2)2. Addi-

tionally, Ahle et al. [2020], Song et al. [2021a] show that
with m = O(ϵ−2d2 log3(nd/ϵδ)), the TensorSRHT sketch-
ing matrix S is an oblivious subspace embedding, which
may further implies that with high probability (1− δ), the
sketched Hessian H̃ approximates the true Hessian H with
bounded error in terms of ϵ.

2We consider the regime n ≫ d in the paper which is the
most common setting in practice because n is the length of the
document, and d is feature dimension.

Overall Time Building upon the aforementioned prop-
erties, we can apply the Newton Method in Section K to
establish convergence for the regression problem. In Sum-
mary, we know that

• Computing forward function Tmat(n, n, d) +
Tmat(n, d, d) time (Lemma B.3)

• Computing gradient takes Tmat(n, n, d)+Tmat(n, d, d)
time (Lemma B.4 and Lemma B.5)

• Compute Hessian takes Õ(nd) + Tmat(d
2, d2, d2)

(Lemma J.6)

• Compute g times inverse of approximate Hessian, this
can be done in Tmat(d

2, d2, d2) = d2ω

The total time can be expressed as Õ(Tmat(n, d, n) +
Tmat(n, d, d) + d2ω) log(1/ϵ), for ω ≈ 2.37.

4 DISCUSSION

Attention Formulation. In this paper, our attention for-
mulation in Definition 1.1 exactly matches the softmax atten-
tion in the traditional notation system Vaswani et al. [2017],
with only some basic notational differences. Specifically,
recalling Definition 1.1, we compute the query-key atten-
tion matrix as D−1 exp(XℓQK⊤X⊤

ℓ)︸ ︷︷ ︸
:=A

, where D−1A recov-

ers the computation Softmax(Q̃K̃⊤
√
d
) (with Q̃ := XℓWQ,

K̃ := XℓWK) in Vaswani et al. [2017].

The key difference is that we use Q and K to denote WQ

and WK , and we use A to denote the numerator part of the
softmax computation in each row, while D−1 normalizes
each row. This means that our theoretical result is highly
practical, with perfect alignment to the Transformers used
in real LLMs.

Generalization to Multi-Layer Attention. Our main re-
sult in Theorem 1.4 can be easily generalized to the mul-
tilayer case. To show this, we first consider the recursive
attention computation in Definition 1.1:

Xℓ+1 ← D−1 exp(XℓQK⊤X⊤
ℓ)XℓV,

where each layer computes its output based on the previous
layer’s input and the weight matrices.

In this paper, our result states that given any arbitrary Xℓ

we treat the weights QK⊤ and V as variables, and we can
output a good approximation of Xℓ+1 denoted as (see Defi-
nition 1.2). In another work Deng et al. [2023c], they treat
the input Xℓ as a variable and study the training. Since our
formulation and algorithm treat Xℓ as an input and do not
assume anything specific about its origin, and we can di-
rectly combine our result with attention training in Deng
et al. [2023c], our results apply to any layer in the network.

Therefore, our methods naturally extend to multi-layer at-
tention by applying them iteratively at each layer.

Justification of Assumptions. In this work, our goal is to
design an efficient algorithm that can be applied to a broader
range of modern transformer architectures. Consequently,
our method does not rely on strict assumptions, requiring
only assumptions on good initialization points of x0 and y0
(see Definition K.1) and on the regularization term ∥(W ⊗
I)(A1 ⊗A2)x∥22 + ∥WA3y∥2F in Definition A.14.

Both assumptions can be easily satisfied in practice. Specifi-
cally, the first assumption can be met by spending additional
effort in selecting a suitable initialization point, while the
second is a standard practice in attention optimization Gao
et al. [2025c], Li et al. [2023b] and widely accepted in the
broader field of optimization. These assumptions are also
weaker than those in previous works, as we do not rely
on conditions such as d = O(log n), d = o(log2 n), or
bounded entry assumptions as in Alman and Song [2023],
Zandieh et al. [2023], nor do we overly simplify the prob-
lem as in Song et al. [2024a], Gao et al. [2025c], Deng et al.
[2023a].

5 CONCLUSION

In this paper, we make several important contributions to
optimizing attention mechanisms in LLMs by providing
the first complete analysis of an unsimplified single-layer
attention optimization problem. Unlike previous work that
simplified the problem by fixing certain components, our
work treats all weight matrices Q,K, V as variables, offer-
ing a more comprehensive theoretical understanding. We
introduce a novel approach that combines tensor tricks and
SVM-inspired formulation to reformulate the attention op-
timization problem in a more tractable way. This reformu-
lation allows us to develop new theoretical insights while
maintaining the full complexity of the attention mechanism.
Our main technical achievement is developing an algorithm
that can solve the attention optimization problem up to ϵ ac-
curacy in Õ((Tmat(n, n, d)+Tmat(n, d, d)+d2ω) log(1/ϵ))
time, where Tmat represents matrix multiplication time, n
is the sequence length, d is the embedding dimension, and
ω ≈ 2.37 is the matrix multiplication exponent. These guar-
antees are established through careful analysis of the pos-
itive semi-definite properties of the Hessian matrix, Lip-
schitz continuity of the Hessian, and the application of
TensorSRHT techniques for fast approximation.

In conclusion, we provide theoretical insights into attention
optimization and present a concrete algorithm with prov-
able guarantees. While the immediate practical applications
may be limited by the single-layer constraint, the analytical
techniques and theoretical framework developed here could
serve as building blocks for future work on more complex
attention architectures.

Acknowledgements

The authors would like to thank the anonymous reviewer of
UAI 2025 for their highly insightful suggestions.

References

Ahmed Abdelali, Hamdy Mubarak, Shammur Absar Chowd-
hury, Maram Hasanain, Basel Mousi, Sabri Boughor-
bel, Yassine El Kheir, Daniel Izham, Fahim Dalvi, Majd
Hawasly, et al. Benchmarking Arabic AI with large lan-
guage models. In EACL, 2024.

Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen,
Rasmus Pagh, Ameya Velingker, David P Woodruff, and
Amir Zandieh. Oblivious sketching of high-degree poly-
nomial kernels. In SODA, 2020.

Kabir Ahuja, Harshita Diddee, Rishav Hada, Millicent
Ochieng, Krithika Ramesh, Prachi Jain, Akshay Nambi,
Tanuja Ganu, Sameer Segal, Mohamed Ahmed, Kalika
Bali, and Sunayana Sitaram. MEGA: Multilingual evalu-
ation of generative AI. In EMNLP, 2023.

Nir Ailon and Bernard Chazelle. Approximate nearest neigh-
bors and the fast johnson-lindenstrauss transform. In
STOC, 2006.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A conver-
gence theory for deep learning via over-parameterization.
In ICML, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the
convergence rate of training recurrent neural networks.
In NeurIPS, 2019b.

Josh Alman and Zhao Song. Fast attention requires bounded
entries. In NeurIPS, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of
gradient computation for training large language models.
In NeurIPS, 2024a.

Josh Alman and Zhao Song. How to capture higher-order
correlations? generalizing matrix softmax attention to
kronecker computation. In ICLR, 2024b.

Josh Alman and Zhao Song. Fast rope attention: Combining
the polynomial method and fast fourier transform. arXiv
preprint arXiv:2505.11892, 2025a.

Josh Alman and Zhao Song. Only large weights (and not
skip connections) can prevent the perils of rank collapse.
arXiv preprint arXiv:2505.16284, 2025b.

Josh Alman and Virginia Vassilevska Williams. A refined
laser method and faster matrix multiplication. In SODA,
2021.

Josh Alman, Zhao Song, Ruizhe Zhang, and Danyang Zhuo.
Bypass exponential time preprocessing: Fast neural net-
work training via weight-data correlation preprocessing.
In NeurIPS, 2024.

Zaid Alyafeai, Maged S Alshaibani, Badr AlKhamissi,
Hamzah Luqman, Ebrahim Alareqi, and Ali Fadel.
Taqyim: Evaluating Arabic NLP tasks using ChatGPT
models. arXiv preprint arXiv:2306.16322, 2023.

Ehsan Amid and Manfred K Warmuth. Winnowing with
gradient descent. In COLT, 2020a.

Ehsan Amid and Manfred KK Warmuth. Reparameterizing
mirror descent as gradient descent. In NeurIPS, 2020b.

Alexandr Andoni, Chengyu Lin, Ying Sheng, Peilin Zhong,
and Ruiqi Zhong. Subspace embedding and linear regres-
sion with orlicz norm. In ICML, 2018.

Daman Arora, Himanshu Gaurav Singh, and Mausam. Have
LLMs advanced enough? a challenging problem solving
benchmark for large language models. In EMNLP, 2023.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ru-
osong Wang. Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural
networks. In ICML, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R
Salakhutdinov, and Ruosong Wang. On exact compu-
tation with an infinitely wide neural net. In NeurIPS,
2019b.

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic
mirror descent on overparameterized nonlinear models.
IEEE Transactions on Neural Networks and Learning
Systems, 2021.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang
Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji,
Tiezheng Yu, Willy Chung, et al. A multitask, multi-
lingual, multimodal evaluation of ChatGPT on reasoning,
hallucination, and interactivity. In AACL, 2023.

Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie Lu,
and Ben He. ChatGPT is a knowledgeable but inexperi-
enced solver: An investigation of commonsense problem
in large language models. In COLING, 2024.

Song Bian, Zhao Song, and Junze Yin. Federated empir-
ical risk minimization via second-order method. arXiv
preprint arXiv:2305.17482, 2023.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant.
Implicit regularization for deep neural networks driven
by an ornstein-uhlenbeck like process. In COLT, 2020.

Christos Boutsidis and David P Woodruff. Optimal CUR
matrix decompositions. In STOC, 2014.

Christos Boutsidis, David P Woodruff, and Peilin Zhong.
Optimal principal component analysis in distributed and
streaming models. In STOC, 2016.

Jan den van Brand and Zhao Song. A
√
n passes stream-

ing algorithm for solving bipartite matching exactly.
Manuscript, 2023.

Jan van den Brand. A deterministic linear program solver
in current matrix multiplication time. In SODA, 2020.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri
Weinstein. Training (overparametrized) neural networks
in near-linear time. In ITCS, 2021.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm
and hardness for dynamic attention maintenance in large
language models. In ICML, 2024.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. Video generation models as world simulators,
2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee,
Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks
of artificial general intelligence: Early experiments with
GPT-4. arXiv preprint arXiv:2303.12712, 2023.

Peter Bürgisser, Michael Clausen, and Mohammad A
Shokrollahi. Algebraic complexity theory. Springer Sci-
ence & Business Media, 1997.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt.
Discovering latent knowledge in language models without
supervision. In ICLR, 2023.

HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao
Yin. A zeroth-order block coordinate descent algorithm
for huge-scale black-box optimization. In ICML, 2021.

Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong
Wang, Di He, Zhihua Zhang, and Liwei Wang. Gram-
gauss-newton method: Learning overparameterized neu-
ral networks for regression problems. arXiv preprint
arXiv:1905.11675, 2019.

Yang Cao and Zhao Song. Sorsa: Singular values and
orthonormal regularized singular vectors adaptation of
large language models. arXiv preprint arXiv:2409.00055,
2025.

Yang Cao, Xiaoyu Li, and Zhao Song. Grams: Gradient
descent with adaptive momentum scaling. arXiv preprint
arXiv:2412.17107, 2024.

Yang Cao, Bo Chen, Xiaoyu Li, Yingyu Liang, Zhizhou Sha,
Zhenmei Shi, Zhao Song, and Mingda Wan. Force match-
ing with relativistic constraints: A physics-inspired ap-
proach to stable and efficient generative modeling. arXiv
preprint arXiv:2502.08150, 2025a.

Yang Cao, Zhao Song, and Chiwun Yang. Video la-
tent flow matching: Optimal polynomial projections for
video interpolation and extrapolation. arXiv preprint
arXiv:2502.00500, 2025b.

Yong Cao, Li Zhou, Seolhwa Lee, Laura Cabello, Min Chen,
and Daniel Hershcovich. Assessing cross-cultural align-
ment between ChatGPT and human societies: An empiri-
cal study. arXiv preprint arXiv:2303.17466, 2023.

Yuefan Cao, Xuyang Guo, Jiayan Huo, Yingyu Liang, Zhen-
mei Shi, Zhao Song, Jiahao Zhang, and Zhen Zhuang.
Text-to-image diffusion models cannot count, and prompt
refinement cannot help. arXiv preprint arXiv:2503.06884,
2025c.

Cayque Monteiro Castro Nascimento and André Silva Pi-
mentel. Do large language models understand chemistry?
a conversation with ChatGPT. Journal of Chemical Infor-
mation and Modeling, 2023.

Chih-Chung Chang and Chih-Jen Lin. Training v-support
vector classifiers: theory and algorithms. Neural compu-
tation, 2001.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu,
Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali
Shrivastava, and Christopher Re. Mongoose: A learnable
lsh framework for efficient neural network training. In
ICLR, 2021.

Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhen-
mei Shi, and Zhao Song. Circuit complexity bounds
for RoPE-based transformer architecture. arXiv preprint
arXiv:2411.07602, 2024a.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao
Song. Bypassing the exponential dependency: Looped
transformers efficiently learn in-context by multi-step
gradient descent. In AISTATS, 2025a.

Bo Chen, Zhenmei Shi, Zhao Song, and Jiahao Zhang.
Provable failure of language models in learning major-
ity boolean logic via gradient descent. arXiv preprint
arXiv:2504.04702, 2025b.

Sanyuan Chen, Shujie Liu, Long Zhou, Yanqing Liu,
Xu Tan, Jinyu Li, Sheng Zhao, Yao Qian, and Furu Wei.
Vall-e 2: Neural codec language models are human par-
ity zero-shot text to speech synthesizers. arXiv preprint
arXiv:2406.05370, 2024b.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and
Ruifeng Xu. Exploring the use of large language models
for reference-free text quality evaluation: A preliminary
empirical study. IJCNLP, 2023.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and
Zhao Song. The computational limits of state-space mod-
els and mamba via the lens of circuit complexity. In
CPAL, 2025c.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and
Zhao Song. Fundamental limits of visual autoregressive
transformers: Universal approximation abilities. In ICML,
2025d.

Joseph Chervenak, Harry Lieman, Miranda Blanco-
Breindel, and Sangita Jindal. The promise and peril of
using a large language model to obtain clinical informa-
tion: ChatGPT performs strongly as a fertility counseling
tool with limitations. Fertility and Sterility, 2023.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. Instructeval: Towards holistic evaluation of
instruction-tuned large language models. arXiv preprint
arXiv:2306.04757, 2023.

Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and David
Jurgens. Do LLMs understand social knowledge? evalu-
ating the sociability of large language models with socket
benchmark. In EMNLP, 2023.

Matthias Christandl, François Le Gall, Vladimir Lysikov,
and Jeroen Zuiddam. Barriers for rectangular matrix
multiplication. Computational complexity, 2025.

Kenneth L Clarkson and David P Woodruff. Low-rank
approximation and regression in input sparsity time. In
STOC, 2013.

Michael B Cohen. Nearly tight oblivious subspace embed-
dings by trace inequalities. In SODA, 2016.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving
linear programs in the current matrix multiplication time.
In STOC, 2019.

Don Coppersmith. Rapid multiplication of rectangular ma-
trices. SIAM Journal on Computing, 1982.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang,
and Furu Wei. Knowledge neurons in pretrained trans-
formers. arXiv preprint arXiv:2104.08696, 2021.

Alex Damian, Tengyu Ma, and Jason D Lee. Label noise
SGD provably prefers flat global minimizers. In NeurIPS,
2021.

Xuan-Quy Dao and Ngoc-Bich Le. Investigating the ef-
fectiveness of ChatGPT in mathematical reasoning and
problem solving: Evidence from the vietnamese national

high school graduation examination. arXiv preprint
arXiv:2306.06331, 2023.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention
scheme inspired softmax regression. arXiv preprint
arXiv:2304.10411, 2023a.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Ran-
domized and deterministic attention sparsification algo-
rithms for over-parameterized feature dimension. arXiv
preprint arXiv:2304.04397, 2023b.

Yichuan Deng, Zhao Song, Shenghao Xie, and Chiwun
Yang. Unmasking transformers: A theoretical approach
to data recovery via attention weights. arXiv preprint
arXiv:2310.12462, 2023c.

Yichuan Deng, Zhao Song, and Junze Yin. Faster robust
tensor power method for arbitrary order. arXiv preprint
arXiv:2306.00406, 2023d.

Yichuan Deng, Zhao Song, Lichen Zhang, and Ruizhe
Zhang. Efficient algorithm for solving hyperbolic pro-
grams. arXiv preprint arXiv:2306.07587, 2023e.

Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao
Song. Zero-th order algorithm for softmax attention opti-
mization. Big Data, 2024.

Aniket Deroy, Kripabandhu Ghosh, and Saptarshi Ghosh.
How ready are pre-trained abstractive models and LLMs
for legal case judgement summarization? arXiv preprint
arXiv:2306.01248, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff.
Sketching for kronecker product regression and p-splines.
In AISTATS, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and
David Woodruff. Optimal sketching for kronecker prod-
uct regression and low rank approximation. In NeurIPS,
2019.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun
Zhao, Jin Tan, Zhicong Huang, Cheng Hong, Tao Wei,
and Wenguang Cheng. Puma: Secure inference of llama-
7b in five minutes. arXiv preprint arXiv:2307.12533,
2023.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh.
Gradient descent provably optimizes over-parameterized
neural networks. In ICLR, 2019.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix
multiplication via asymmetric hashing. In FOCS, 2023.

Emilio Ferrara. Should ChatGPT be biased? challenges and
risks of bias in large language models. arXiv preprint
arXiv:2304.03738, 2023.

Michael C Frank. Baby steps in evaluating the capacities
of large language models. Nature Reviews Psychology,
2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot. In
ICML, 2023.

François Le Gall and Florent Urrutia. Improved rectangular
matrix multiplication using powers of the coppersmith-
winograd tensor. In SODA, 2018.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-
parameterized exponential regression. arXiv preprint
arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learn-
ing for attention scheme: from single softmax regression
to multiple softmax regression via a tensor trick. arXiv
preprint arXiv:2307.02419, 2023b.

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A
peer-to-peer decentralized large language models. arXiv
preprint arXiv:2308.10502, 2023c.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A
sublinear adversarial training algorithm. In ICLR, 2024.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast
optimization view: Reformulating single layer attention
in llm based on tensor and svm trick, and solving it in
matrix multiplication time. In UAI, 2025a.

Yeqi Gao, Zhao Song, Xin Yang, Ruizhe Zhang, and Yufa
Zhou. Fast quantum algorithm for attention computation.
In QIP, 2025b.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm
for rescaled hyperbolic functions regression. In AISTATS,
2025c.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp
solver. arXiv preprint arXiv:2211.06033, 2022.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low
rank matrix completion via robust alternating minimiza-
tion in nearly linear time. In ICLR, 2024.

Yuzhou Gu, Zhao Song, and Lichen Zhang. Faster algo-
rithms for structured linear and kernel support vector
machines. In ICLR, 2025.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan
Srebro. Characterizing implicit bias in terms of optimiza-
tion geometry. In ICML, 2018.

Taicheng Guo, Kehan Guo, Zhengwen Liang, Zhichun Guo,
Nitesh V Chawla, Olaf Wiest, Xiangliang Zhang, et al.
What can large language models do in chemistry? a com-
prehensive benchmark on eight tasks. In NeurIPS, 2023.

Xuyang Guo, Zekai Huang, Jiayan Huo, Yingyu Liang,
Zhenmei Shi, Zhao Song, and Jiahao Zhang. Can you
count to nine? a human evaluation benchmark for count-
ing limits in modern text-to-video models. arXiv preprint
arXiv:2504.04051, 2025a.

Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao
Zhang, and Jiale Zhao. T2vphysbench: A first-principles
benchmark for physical consistency in text-to-video gen-
eration. arXiv preprint arXiv:2505.00337, 2025b.

Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao
Zhang, and Jiale Zhao. T2vtextbench: A human evalu-
ation benchmark for textual control in video generation
models. arXiv preprint arXiv:2505.04946, 2025c.

Thilo Hagendorff and Sarah Fabi. Human-like intuitive be-
havior and reasoning biases emerged in language models–
and disappeared in chatgpt. Nature computational sci-
ence, 2023.

Jeff Z HaoChen, Colin Wei, Jason Lee, and Tengyu Ma.
Shape matters: Understanding the implicit bias of the
noise covariance. In COLT, 2021.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghande-
harioun. Does localization inform editing? surprising
differences in causality-based localization vs. knowledge
editing in language models. In NeurIPS, 2023.

John Hewitt and Christopher D Manning. A structural probe
for finding syntax in word representations. In NAACL,
2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. In NeurIPS, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language
models. In ICLR, 2022.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, ,
Zhao Song, and Han Liu. On statistical rates and provably
efficient criteria of latent diffusion transformers (DiTs).
In NeurIPS, 2024.

Jerry Yao-Chieh Hu, Hude Liu, Hong-Yu Chen, Weimin
Wu, and Han Liu. Universal approximation with softmax
attention. arXiv preprint arXiv:2504.15956, 2025a.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song,
and Han Liu. Computational limits of low-rank adapta-
tion (lora) fine-tuning for transformer models. In ICLR,
2025b.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani,
Chenyang Li, Zhao Song, and Han Liu. Fundamental
limits of prompt tuning transformers: Universality, capac-
ity and efficiency. In ICLR, 2025c.

Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao
Huang, Minshuo Chen, and Han Liu. On statistical rates
of conditional diffusion transformers: Approximation,
estimation and minimax optimality. In ICLR, 2025d.

Jerry Yao-Chieh Hu, Xiwen Zhang, Maojiang Su, Zhao
Song, and Han Liu. Minimalist softmax attention prov-
ably learns constrained boolean functions. arXiv preprint
arXiv:2505.19531, 2025e.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-
ntk: A neural tangent kernel-based framework for feder-
ated learning analysis. In ICML, 2021.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao,
and Ruizhe Zhang. Solving SDP faster: A robust IPM
framework and efficient implementation. In FOCS, 2022.

Sophie Huiberts, Yin Tat Lee, and Xinzhi Zhang. Upper and
lower bounds on the smoothed complexity of the simplex
method. In STOC, 2023.

Ziwei Ji and Matus Telgarsky. Risk and parameter
convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient
descent on nonseparable data. In COLT, 2019.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suf-
fices for gradient descent to achieve arbitrarily small test
error with shallow relu networks. In ICLR, 2020a.

Ziwei Ji and Matus Telgarsky. Directional convergence and
alignment in deep learning. In NeurIPS, 2020b.

Ziwei Ji and Matus Telgarsky. Characterizing the implicit
bias via a primal-dual analysis. In ALT, 2021.

Ziwei Ji, Miroslav Dudik, Robert E Schapire, and Matus
Telgarsky. Gradient descent follows the regularization
path for general losses. In COLT, 2020.

Ziwei Ji, Nathan Srebro, and Matus Telgarsky. Fast margin
maximization via dual acceleration. In ICML, 2021.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padman-
abhan, and Zhao Song. A faster interior point method for
semidefinite programming. In FOCS, 2020a.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai
Wong. An improved cutting plane method for convex
optimization, convex-concave games, and its applications.
In STOC, 2020b.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie
Zhang. A faster algorithm for solving general lps. In
STOC, 2021.

Thorsten Joachims. Training linear svms in linear time. In
KDD, 2006.

Douglas Johnson, Rachel Goodman, J Patrinely, Cosby
Stone, Eli Zimmerman, Rebecca Donald, Sam Chang,
Sean Berkowitz, Avni Finn, Eiman Jahangir, et al. Assess-
ing the accuracy and reliability of ai-generated medical
responses: an evaluation of the chat-gpt model. Research
square, 2023.

William B Johnson and Joram Lindenstrauss. Extensions
of lipschitz mappings into a hilbert space. Contemporary
mathematics, 1984.

Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin,
Dongchao Yang, Yanqing Liu, Yichong Leng, Kaitao
Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot
speech synthesis with factorized codec and diffusion mod-
els. arXiv preprint arXiv:2403.03100, 2024.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong.
Polysketchformer: Fast transformers via sketches for
polynomial kernels. arXiv preprint arXiv:2310.01655,
2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao
Song. Circuit complexity bounds for visual autoregressive
model. arXiv preprint arXiv:2501.04299, 2025.

Juno Kim and Taiji Suzuki. Transformers provably solve
parity efficiently with chain of thought. In ICLR, 2025.

Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oy-
mak, and Christos Thrampoulidis. Label-imbalanced and
group-sensitive classification under overparameterization.
In NeurIPS, 2021.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In ICLR, 2020.

Anastasis Kratsios, Behnoosh Zamanlooy, Tianlin Liu, and
Ivan Dokmanić. Universal approximation under con-
straints is possible with transformers. In ICLR, 2022.

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben Vey-
seh, Hieu Man, Franck Dernoncourt, Trung Bui, and
Thien Huu Nguyen. ChatGPT beyond English: Towards
a comprehensive evaluation of large language models in
multilingual learning. In EMNLP, 2023.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur Rah-
man, Md Amran Hossen Bhuiyan, Shafiq Joty, and
Jimmy Xiangji Huang. A systematic study and compre-
hensive evaluation of ChatGPT on benchmark datasets.
In ACL, 2023.

François Le Gall. Powers of tensors and fast matrix multi-
plication. In ISSAC, 2014.

François Le Gall. Faster rectangular matrix multiplication
by combination loss analysis. In SODA, 2024.

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, et al.
Generalized leverage score sampling for neural networks.
In NeurIPS, 2020.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A
faster cutting plane method and its implications for com-
binatorial and convex optimization. In FOCS, 2015.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empiri-
cal risk minimization in the current matrix multiplication
time. In COLT, 2019.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and
Tianyi Zhou. Fourier circuits in neural networks and
transformers: A case study of modular arithmetic with
multiple inputs. In AISTATS, 2025a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. In ACL, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei
Wang, and Jiahao Zhang. On the computational capability
of graph neural networks: A circuit complexity bound
perspective. arXiv preprint arXiv:2501.06444, 2025b.

Xinzhe Li, Ming Liu, Shang Gao, and Wray Buntine. A
survey on out-of-distribution evaluation of neural nlp
models. In IJCAI, 2023a.

Yuanzhi Li and Yingyu Liang. Learning overparameter-
ized neural networks via stochastic gradient descent on
structured data. In NeurIPS, 2018.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining
the regularization effect of initial large learning rate in
training neural networks. In NeurIPS, 2019.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do trans-
formers learn topic structure: Towards a mechanistic un-
derstanding. In ICML, 2023b.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regu-
larized exp, cosh and sinh regression problems. arXiv
preprint arXiv:2303.15725, 2023c.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What hap-
pens after SGD reaches zero loss?–a mathematical frame-
work. In ICLR, 2022.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain
of thought empowers transformers to solve inherently
serial problems. In ICLR, 2024.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li,
Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Felix Chern,
Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon:
On emergence of activation sparsity in transformers. In
ICLR, 2023d.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras,
Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak
Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic
evaluation of language models. Transactions on Machine
Learning Research, 2023.

Tengyuan Liang and Alexander Rakhlin. Just interpolate:
Kernel “ridgeless” regression can generalize. The Annals
of Statistics, 2020.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song,
and Yufa Zhou. Beyond linear approximations: A novel
pruning approach for attention matrix. In ICLR, 2025.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia,
Graham Neubig, Pengchuan Zhang, and Deva Ramanan.
Evaluating text-to-visual generation with image-to-text
generation. In ECCV, 2024.

Dongqi Liu and Vera Demberg. ChatGPT vs human-
authored text: Insights into controllable text summa-
rization and sentence style transfer. arXiv preprint
arXiv:2306.07799, 2023.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu
Ma. Sophia: A scalable stochastic second-order optimizer
for language model pre-training. In ICLR, 2024.

Hude Liu, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu.
Attention mechanism, max-affine partition, and universal
approximation. arXiv preprint arXiv:2504.19901, 2025.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. Is your code generated by ChatGPT really
correct? rigorous evaluation of large language models for
code generation. In NeurIPS, 2023a.

S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and
Tianyi Zhou. Space-efficient interior point method, with
applications to linear programming and maximum weight
bipartite matching. In ICALP, 2023b.

Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle
Ungar. Faster ridge regression via the subsampled ran-
domized hadamard transform. In NeurIPS, 2013.

Linjian Ma and Edgar Solomonik. Fast and accurate ran-
domized algorithms for low-rank tensor decompositions.
In NeurIPS, 2021.

Konstantin Makarychev, Aravind Reddy, and Liren Shan.
Improved guarantees for k-means++ and k-means++ par-
allel. In NeurIPS, 2020.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes. In
NeurIPS, 2023.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA:
Principal singular values and singular vectors adaptation
of large language models. In NeurIPS, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Be-
linkov. Locating and editing factual associations in GPT.
In NeurIPS, 2022.

Xiangrui Meng and Michael W Mahoney. Low-distortion
subspace embeddings in input-sparsity time and applica-
tions to robust linear regression. In STOC, 2013.

Edward Moroshko, Blake E Woodworth, Suriya Gunasekar,
Jason D Lee, Nati Srebro, and Daniel Soudry. Implicit
bias in deep linear classification: Initialization scale vs
training accuracy. In NeurIPS, 2020.

Alexander Munteanu, Simon Omlor, Zhao Song, and David
Woodruff. Bounding the width of neural networks via
coupled initialization a worst case analysis. In ICML,
2022.

Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro
Henrique Pamplona Savarese, Nathan Srebro, and Daniel
Soudry. Convergence of gradient descent on separable
data. In AISTATS, 2019.

John J Nay, David Karamardian, Sarah B Lawsky, Went-
ing Tao, Meghana Bhat, Raghav Jain, Aaron Travis Lee,
Jonathan H Choi, and Jungo Kasai. Large language mod-
els as tax attorneys: A case study in legal capabilities
emergence. arXiv preprint arXiv:2306.07075, 2023.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical
linear algebra algorithms via sparser subspace embed-
dings. In FOCS, 2013.

OpenAI. Optimizing language models for dialogue, 2022.

OpenAI. GPT-4 technical report, 2023.

Samet Oymak and Mahdi Soltanolkotabi. Toward moder-
ate overparameterization: Global convergence guarantees
for training shallow neural networks. IEEE Journal on
Selected Areas in Information Theory, 2020.

Rasmus Pagh. Compressed matrix multiplication. TOCT,
2013.

Vishal Pallagani, Bharath Muppasani, Keerthiram Muruge-
san, Francesca Rossi, Biplav Srivastava, Lior Horesh,
Francesco Fabiano, and Andrea Loreggia. Understanding
the capabilities of large language models for automated
planning. arXiv preprint arXiv:2305.16151, 2023.

Qian Qian and Xiaoyuan Qian. The implicit bias of adagrad
on separable data. In NeurIPS, 2019.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen,
Michihiro Yasunaga, and Diyi Yang. Is ChatGPT a
general-purpose natural language processing task solver?
In EMNLP, 2023a.

Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song,
Danyang Zhuo, and Shumo Chu. Adore: Differentially
oblivious relational database operators. In VLDB, 2022.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo.
An online and unified algorithm for projection matrix
vector multiplication with application to empirical risk
minimization. In AISTATS, 2023b.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are un-
supervised multitask learners. OpenAI blog, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Er-
mon, Christopher D Manning, and Chelsea Finn. Direct
preference optimization: Your language model is secretly
a reward model. In NeurIPS, 2023.

Kovid Rathee. Meet google meena, 2020.

Ilya Razenshteyn, Zhao Song, and David P Woodruff.
Weighted low rank approximations with provable guaran-
tees. In STOC, 2016.

Aravind Reddy, Ryan A Rossi, Zhao Song, Anup Rao, Tung
Mai, Nedim Lipka, Gang Wu, Eunyee Koh, and Nesreen
Ahmed. Online map inference and learning for non-
symmetric determinantal point processes. arXiv preprint
arXiv:2111.14674, 2021.

Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic
tensor product regression. In NeurIPS, 2022.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Vie-
gas, Andy Coenen, Adam Pearce, and Been Kim. Visual-
izing and measuring the geometry of BERT. In NeurIPS,
2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution im-
age synthesis with latent diffusion models. In CVPR,
2022.

Tamas Sarlos. Improved approximation algorithms for large
matrices via random projections. In FOCS, 2006.

Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical
abstraction for balancing the trade-off between creativity
and reality in large language models. arXiv preprint
arXiv:2306.02295, 2023.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt.
Approximating how single head attention learns. arXiv
preprint arXiv:2103.07601, 2021.

Zhao Song. Matrix theory: optimization, concentration,
and algorithms. PhD thesis, The University of Texas at
Austin, 2019.

Zhao Song and Zheng Yu. Oblivious sketching-based central
path method for solving linear programming problems.
In ICML, 2021.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank
approximation with entrywise ℓ1-norm error. In STOC,
2017.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative
error tensor low rank approximation. In SODA, 2019.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang.
Fast sketching of polynomial kernels of polynomial de-
gree. In ICML, 2021a.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocess-
ing help training over-parameterized neural networks? In
NeurIPS, 2021b.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up
sparsification using inner product search data structures.
arXiv preprint arXiv:2204.03209, 2022.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming
semidefinite programs: o(

√
n) passes, small space and

fast runtime. Manuscript, 2023.

Zhao Song, Junze Yin, and Lichen Zhang. Solving atten-
tion kernel regression problem via pre-conditioner. In
AISTATS, 2024a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training
multi-layer over-parametrized neural network in sub-
quadratic time. In ITCS, 2024b.

Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang.
Efficient alternating minimization with applications to
weighted low rank approximation. In ICLR, 2025.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya
Gunasekar, and Nathan Srebro. The implicit bias of gra-
dient descent on separable data. The Journal of Machine
Learning Research, 2018.

Jared Spataro. Introducing microsoft 365 copilot – your
copilot for work, 2023.

Giriprasad Sridhara, Ranjani H. G., and Sourav Mazumdar.
ChatGPT: A study on its utility for ubiquitous software en-
gineering tasks. arXiv preprint arXiv:2305.16837, 2023.

Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and
Navid Azizan. Mirror descent maximizes generalized
margin and can be implemented efficiently. In NeurIPS,
2022.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thram-
poulidis, and Samet Oymak. Transformers as support
vector machines. arXiv preprint arXiv:2308.16898, 2023.

Guiyao Tie, Xueyang Zhou, Tianhe Gu, Ruihang Zhang,
Chaoran Hu, Sizhe Zhang, Mengqu Sun, Yan Zhang,
Pan Zhou, and Lichao Sun. Mmmr: Benchmarking
massive multi-modal reasoning tasks. arXiv preprint
arXiv:2505.16459, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini.
Implicit regularization for optimal sparse recovery. In
NeurIPS, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In NeurIPS,
2017.

Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu. The
implicit bias for adaptive optimization algorithms on ho-
mogeneous neural networks. In ICML, 2021.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai
Zheng, Yidong Wang, Linyi Yang, Haojun Huang, Wei
Ye, Xiubo Geng, et al. On the robustness of ChatGPT:
An adversarial and out-of-distribution perspective. arXiv
preprint arXiv:2302.12095, 2023a.

Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang,
Dian Yu, Shuming Shi, and Zhaopeng Tu. Document-
level machine translation with large language models. In
EMNLP, 2023b.

Ruosong Wang, Peilin Zhong, Simon S Du, Russ R
Salakhutdinov, and Lin Yang. Planning with general
objective functions: Going beyond total rewards. In
NeurIPS, 2020.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou,
Zhiyuan Liu, and Juanzi Li. Finding skill neurons in pre-
trained transformer-based language models. In EMNLP,
2022.

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and
Bin Wang. Cmath: Can your language model pass
chinese elementary school math test? arXiv preprint
arXiv:2306.16636, 2023.

Virginia Vassilevska Williams. Multiplying matrices faster
than coppersmith-winograd. In STOC, 2012.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and
Renfei Zhou. New bounds for matrix multiplication: from
alpha to omega. In SODA, 2024.

David P Woodruff and Peilin Zhong. Distributed low rank
approximation of implicit functions of a matrix. In ICDE,
2016.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward
Moroshko, Pedro Savarese, Itay Golan, Daniel Soudry,
and Nathan Srebro. Kernel and rich regimes in over-
parametrized models. In COLT, 2020.

Weimin Wu, Teng-Yun Hsiao, Jerry Yao-Chieh Hu, Wenxin
Zhang, and Han Liu. In-context learning as conditioned
associative memory retrieval. In ICML, 2025a.

Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song,
and Han Liu. In-context deep learning via transformer
models. In ICML, 2025b.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. Reasoning or reciting? ex-
ploring the capabilities and limitations of language
models through counterfactual tasks. arXiv preprint
arXiv:2307.02477, 2023.

Chang Xiao, Peilin Zhong, and Changxi Zheng. Bour-
gan: Generative networks with metric embeddings. In
NeurIPS, 2018.

Shuo Xie, Jiahao Qiu, Ankita Pasad, Li Du, Qing Qu, and
Hongyuan Mei. Hidden state variability of pretrained
language models can guide computation reduction for
transfer learning. In EMNLP, 2022.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu,
and Erik Cambria. Are large language models really
good logical reasoners? a comprehensive evaluation and
beyond. IEEE Transactions on Knowledge and Data
Engineering, 2025a.

Weiye Xu, Jiahao Wang, Weiyun Wang, Zhe Chen, Wen-
gang Zhou, Aijun Yang, Lewei Lu, Houqiang Li, Xiaohua
Wang, Xizhou Zhu, et al. Visulogic: A benchmark for
evaluating visual reasoning in multi-modal large language
models. arXiv preprint arXiv:2504.15279, 2025b.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. A
tale of two efficient value iteration algorithms for solving
linear mdps with large action space. In AISTATS, 2023.

Songlin Yang, Yikang Shen, Kaiyue Wen, Shawn Tan,
Mayank Mishra, Liliang Ren, Rameswar Panda, and
Yoon Kim. Path attention: Position encoding via accu-
mulating householder transformations. arXiv preprint
arXiv:2505.16381, 2025.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xi-
aohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-
video diffusion models with an expert transformer. arXiv
preprint arXiv:2408.06072, 2024.

Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A
unifying view on implicit bias in training linear neural
networks. In ICLR, 2021.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi.
Kdeformer: Accelerating transformers via kernel density
estimation. In ICML, 2023.

Eric Zelikman, Qian Huang, Percy Liang, Nick Haber, and
Noah D Goodman. Just one byte (per gradient): A
note on low-bandwidth decentralized language model
finetuning using shared randomness. arXiv preprint
arXiv:2306.10015, 2023.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit,
Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Su-
vrit Sra. Why are adaptive methods good for attention
models? In NeurIPS, 2020a.

Lichen Zhang. Speeding up optimizations via data struc-
tures: Faster search, sample and maintenance. Master’s
thesis, Carnegie Mellon University, 2022.

Ruizhe Zhang and Xinzhi Zhang. A hyperbolic extension
of kadison-singer type results. In ICALP, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona
Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-
trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

Wenxuan Zhang, Sharifah Mahani Aljunied, Chang Gao,
Yew Ken Chia, and Lidong Bing. M3exam: A multilin-
gual, multimodal, multilevel benchmark for examining
large language models. In NeurIPS, 2023.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan,
and Lidong Bing. Sentiment analysis in the era of large
language models: A reality check. In NAACL, 2024.

Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao
Song, and Sanjeev Arora. Over-parameterized adversarial
training: An analysis overcoming the curse of dimension-
ality. In NeurIPS, 2020b.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongx-
uan Li, Ngai-Man Cheung, and Min Lin. On evaluating
adversarial robustness of large vision-language models.
In NeurIPS, 2023.

Difan Zou and Quanquan Gu. An improved analysis of
training over-parameterized deep neural networks. In
NeurIPS, 2019.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan
Gu, Dean P Foster, and Sham Kakade. The benefits of
implicit regularization from sgd in least squares problems.
In NeurIPS, 2021.

A Fast Optimization View: Reformulating Single Layer Attention in LLM Based
on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time

(Supplementary Material)

Yeqi Gao1 Zhao Song2,* Weixin Wang3,† Junze Yin4,‡

1University of Washington, 2University of California, Berkeley
3Johns Hopkins University, 4Boston University

*magic.linuxkde@gmail.com, †weixinw1@uci.edu,‡junze@bu.edu

Roadmap. In Section A, we present the basic notations we use, some mathematical facts, and helpful definitions that
support the following proof. In Section B, we compute the gradients of the helpful functions defined earlier. In Section C,
we define the Hessian for further discussion. In Section D, we compute the Hessian matrix with respect to X . In Section E,
we demonstrate that the Hessian for X is Lipschitz. In Section F, we show that the Hessian matrix with respect to X is
positive semidefinite (PSD). In Section G, we compute the Hessian matrix with respect to Y and show that it is Lipschitz
and positive semidefinite (PSD). In Section H, we compute the Hessian matrix with respect to both X and Y . In Section I,
we demonstrate that the Hessian matrix with respect to both X and Y is Lipschitz. In Section J, we introduce some tensor
sketch techniques to obtain fast approximations of the Hessian. In Section K, we introduce the Newton step.

A PRELIMINARIES

In Section A.1, we present the basic mathematical properties of vectors, norms and matrices. In section A.2, we provide a
definition of L(X,Y). In Section A.3, we define a series of helpful functions with respect to X . In section A.4, we define a
series of helpful functions with respect to Y . In Section A.5, we define a series of helpful functions with respect to both
X and Y . In Section A.6, we define the regularization function. In Section A.7, we introduce facts related to fast matrix
multiplication.

Notation Now we define the basic notations we use in this paper.

First, we define the notations related to the sets. We use N to denote the set of positive integers, namely N := {1, 2, 3, . . . }.
Let n and d be in N. We define [n] := {1, 2, . . . , n}. We use R,Rn,Rn×d to denote the set containing all real numbers, all
n-dimensional vectors, and n× d matrices, whose entries are all in R. We use R+ to denote the set containing all positive
real numbers.

Then, we define the notations related to vectors. Let x, y ∈ Rd. For all i ∈ [d], we define xi ∈ R as the i-th entry of x.
We define ⟨·, ·⟩ : Rd × Rd → R as ⟨x, y⟩ := ∑d

i=1 xiyi, which is called the inner product between x and y. We define
x ◦ y ∈ Rd as (x ◦ y)i := xi · yi, for all i ∈ [d]. For all p ∈ {1, 2,∞}, we define ∥x∥p := (

∑
i∈[d] |xi|p)1/p, which is the ℓp

norm of x. We use 1d and 0d to denote the d-dimensional vectors whose entries are all 1’s and 0’s, respectively.

After that, we define the notations related to matrices. Let A ∈ Rn×d. For all i ∈ [n] and j ∈ [d], we use Ai,j ∈ R to
denote the entry of A at i-th row and j-th column, use Ai,∗ ∈ Rd and A∗,j ∈ Rn to denote vectors, where (Ai,∗)j =
Ai,j = (A∗,j)i. We use A⊤ ∈ Rd×n to denote the transpose of the matrix A, where A⊤

i,j = Aj,i. For X ∈ Rd×d, we define
x = vec(X) ∈ Rd2

as Xi,j = vec(X)(i−1)×d+j . For x ∈ Rd, we define diag(x) ∈ Rd×d as diag(x)i,i = xi, for all i ∈ [d]
and other entries of diag(x) are all 0’s. ∥A∥F ∈ R and ∥A∥ ∈ R denote the Frobenius norm and the spectral norm of
A ∈ Rn×d, respectively, where ∥A∥F :=

√∑
i∈[n]

∑
j∈[d] |Ai,j |2 and ∥A∥ := maxx∈Rd ∥Ax∥2/∥x∥2. Let A ∈ Rn2×d2

.

For each j1 ∈ [n], we use Aj1 ∈ Rn×d2

to denote one n × d2 block from A ∈ Rn2×d2

. Let C,D ∈ Rd×d be symmetric
matrices, C ⪰ D if for all y ∈ Rd, y⊤Cy ≥ y⊤Dy. C is said to be a positive semidefinite (PSD) matrix if y⊤Cy ≥ 0. We
use Id to denote the d× d identity matrix. nnz(A) represents the number of entries in the matrix A that are not equal to

zero. 0n×n ∈ Rn×n is a matrix, where for all i, j ∈ [n], (0n×n)i,j = 0.

Let n1, n2, d1, d2 be positive integers. Let A ∈ Rn1×d1 and B ∈ Rn2×d2 . We define the Kronecker product between
matrices A and B, denoted A ⊗ B ∈ Rn1n2×d1d2 , as (A ⊗ B)(i1−1)n2+i2,(j1−1)d2+j2 is equal to Ai1,j1Bi2,j2 , where
i1 ∈ [n1], j1 ∈ [d1], i2 ∈ [n2], j2 ∈ [d2]. mat : Rn2 → Rn×n is defined by Xi,j = mat(x)i,j := x(i−1)·n+j , and
vec = mat−1.

n X

n

= mat (n2 x) vec (n X

n

) = n2 x

Figure 2: The visualization of the functions mat : Rn2 → Rn×n and vec = mat−1 : Rn×n → Rn2

. We have x ∈ Rn2

and
X ∈ Rn×n. In this figure, we give an example of n = 3. In the left figure, by the function mat, the first three entries of the
vector x are mapped to X1,1, X1,2, and X1,3 respectively, the second three entries of the vector x are mapped to X2,1, X2,2,
and X2,3 respectively, and the third three entries of the vector x are mapped to X3,1, X3,2, and X3,3 respectively. For the
right figure, every entry in X is mapped to x by vec in the reverse pattern of mat.

A.1 BASIC FACTS

In this section, we will introduce the basic mathematical facts.

Fact A.1. Let a, b ∈ R.

For all vectors u, v, w ∈ Rn, we have

• ⟨u, v⟩ = ⟨u ◦ v,1n⟩ = u⊤diag(v)1n

• ⟨u ◦ v, w⟩ = ⟨u ◦ w, v⟩
• ⟨u ◦ v, w⟩ = ⟨u ◦ v ◦ w,1n⟩ = u⊤ diag(v)w

• ⟨u ◦ v ◦ w ◦ z,1n⟩ = u⊤ diag(v ◦ w)z
• u ◦ v = v ◦ u = diag(u) · v = diag(v) · u
• u⊤(v ◦ w) = v⊤(u ◦ w) = w⊤(u ◦ v) = u⊤ diag(v)w = v⊤ diag(u)w = w⊤ diag(u)v

• diag(u)⊤ = diag(u)

• diag(u) · diag(v) · 1n = diag(u)v

• diag(u ◦ v) = diag(u) diag(v)

• diag(u) + diag(v) = diag(u+ v)

• ⟨u, v⟩ = ⟨v, u⟩
• ⟨u, v⟩ = u⊤v = v⊤u

• a⟨w, v⟩+ b⟨u, v⟩ = ⟨aw + bu, v⟩ = ⟨v, aw + bu⟩ = a⟨v, w⟩+ b⟨v, u⟩.

Fact A.2. Let R > 0 be a real number.

For vectors x, y ∈ Rn and α ∈ R, we have

• ∥x ◦ y∥2 ≤ ∥x∥∞ · ∥y∥2
• ∥x∥∞ ≤ ∥x∥2 ≤

√
n∥x∥∞

• ∥ exp(x)∥∞ ≤ exp(∥x∥2)
• ∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2
• ∥αx∥2 ≤ |α| · ∥x∥2
• For any ∥x∥2, ∥y∥2 ≤ R, we have ∥ exp(x)− exp(y)∥2 ≤ exp(R) · ∥x− y∥2

Fact A.3. For any matrices X,Y ∈ Rn×n and for any vector x ∈ Rn, we have

• ∥X⊤∥ = ∥X∥
• ∥X∥ ≥ ∥Y ∥ − ∥X − Y ∥
• ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥
• ∥X · Y ∥ ≤ ∥X∥ · ∥Y ∥
• If X ⪯ α · Y , then ∥X∥ ≤ α · ∥Y ∥, for X and Y being PSD matrices and α > 0.

• ∥Y x∥2 ≤ ∥Y ∥ · ∥x∥2
Fact A.4. For any vectors u, v ∈ Rn, we have

• Part 1. uu⊤ ⪯ ∥u∥22 · In
• Part 2. diag(u) ⪯ ∥u∥2 · In
• Part 3. diag(u ◦ u) ⪯ ∥u∥22 · In
• Part 4. uv⊤ + vu⊤ ⪯ uu⊤ + vv⊤

• Part 5. uv⊤ + vu⊤ ⪰ −(uu⊤ + vv⊤)

• Part 6. (v ◦ u)(v ◦ u)⊤ ⪯ ∥v∥2∞uu⊤

• Part 7. diag(u ◦ v) ⪯ ∥u∥2∥v∥2 · In
Fact A.5. Let g, f : Rd → Rn and q : Rd → R.

Let x ∈ Rd be an arbitrary vector.

Let a ∈ R be an arbitrary real number.

Then, we have

• dq(x)a

dx = a · q(x)a−1 · dq(x)dx

• d∥f(x)∥2
2

dt = 2⟨f(x), df(x)
dt ⟩

• d⟨f(x),g(x)⟩
dt = ⟨df(x)dt , g(x)⟩+ ⟨f(x), dg(x)

dt ⟩
• d(g(x)◦f(x))

dt = dg(x)
dt ◦ f(x) + g(x) ◦ df(x)

dt (product rule for Hadamard product)

A.2 GENERAL DEFINITIONS

In this section, we introduce some general definitions.

Definition A.6 (Index summary). We use i to denote indices in [d2] range, and j to denote indices in [n2] range.

We use i0, i1, i2 to denote indices in [d], and j0, j1, j2 to denote indices in [n].

Definition A.7. If the following conditions hold

• Let A1 ∈ Rn×d.

• Let A2 ∈ Rn×d.

• Let A ∈ Rn2×d2

denote the Kronecker product between A1, A2

– For each j0 ∈ [n], we use Aj0 ∈ Rn×d2

to be one n× d2 block from A ∈ Rn2×d2

(see Remark 3.1).

• Let A3 ∈ Rn×d.

min
X ∈ Rd×d ∥ mat ((n2 D(X)⊗ In

n2

)
−1
× exp (n2

(A
1 ⊗

A
2)

vec(X
)

)) × n A3

d

× d Y

d

− n B

d

∥ 2

F

Figure 3: The visualization of a variation of Definition 1.2. Let A1, A2, A3, B ∈ Rn×d, X ∈ Rd×d, D(X) ∈ Rn×n (see
Figure 1 and Definition 1.2), and A = A1 ⊗ A2 ∈ Rn2×d2

. mat : Rn2 → Rn×n is defined by Xi,j = mat(x)i,j :=

x(i−1)·n+j , and vec = mat−1. We first get that (D(X)⊗ In)
−1 ∈ Rn2×n2

and multiply A with vec(X). Then, we multiply
(D(X) ⊗ In)

−1 ∈ Rn2×n2

with A · vec(X) ∈ Rn2

, which gives us a vector in Rn2

. We use mat to transform that into a
matrix in Rn×n. After that, we multiply this matrix with A3Y ∈ Rn×d. Finally, we compute the minimum of the Frobenius
norm of mat((D(X)⊗ In)

−1 · exp(A vec(X)))A3Y −B. In this figure, we give an example when n = 3: in the matrix
D(X) ⊗ In, the three light green squares (and their nearby white area) make up the first chunk, the three middle green
squares (and their nearby white area) make up the second chunk, and the three dark green squares (and their nearby white
area) make up the third chunk. The blue rectangles represent the matrices in Rn×d. The red rectangle represents the matrix
in Rd×d.

n∑
j0 = 1

d∑
i0 = 1

(⟨ n
f
(x
)
j
0 ,n

h
(Y

)
i
0

⟩ − bj0,i0)
2

n

f
(x
)
j
0

= ⟨ n
ex
p
(A

j
0 x

)

,
n 1n ⟩−1× n

ex
p
(A

j
0 x

)

n

h
(Y

)
i
0

= n A3

d

× d

Y
∗
,i

0

Figure 4: The visualization of Eq. (2). Let A1, A2, A3, B ∈ Rn×d and X,Y ∈ Rd×d. We have A = A1⊗A2 ∈ Rn2×d2

and
Aj0 ∈ Rn×d2

is the j0-th block of A. x = vec(X) ∈ Rd2

. First, we use the definition of f(x)j0 ∈ Rn (see Definition A.10)
and h(Y)i0 ∈ Rn (see Definition A.11) to compute them. Then, we find their inner produce and subtract the entry of B at
j0-th row and i0-column from the inner produce. Finally, we compute the square of this difference and add all of them from
i0 = 1 to i0 = d and from j0 = 1 to j0 = n. In this figure, we use blue rectangles to represent vectors, where the dark blue
represents f(x)j0 and h(Y)i0 , and the light blue represents the terms used to compute f(x)j0 and h(Y)i0 . The green square
represents the scalar. The red rectangle represents the matrix.

• Let B ∈ Rn×d and bj0,i0 denote the (j0, i0)-th entry in B ∈ Rn×d for each j0 ∈ [n] and i0 ∈ [d].

• Let X ∈ Rd×d.

Our final goal is to study the loss function, defined as:

L(X,Y) := 0.5 · ∥D(X)−1

︸ ︷︷ ︸
n×n

exp(A1XA⊤
2)︸ ︷︷ ︸

n×n

A3︸︷︷︸
n×d

Y︸︷︷︸
d×d

− B︸︷︷︸
n×d

∥2F

where

• D(X) ∈ Rn×n is defined as D(X) := diag(exp(A1XA⊤
2)1n) and

• for each j0 ∈ [n], D(X)j0 ∈ R is ⟨exp(Aj0 x),1n⟩, Aj0 ∈ Rn×d2

is the j0-th block of A ∈ Rn2×d2

, and x ∈ Rd2

is
the vectorization of X ∈ Rd×d

Further, for each j0 ∈ [n], i0 ∈ [d], we define L(X,Y)j0,i0 as follows:

L(X,Y)j0,i0 := 0.5(⟨⟨exp(Aj0 x),1n⟩−1 exp(Aj0 x), A3Y∗,i0⟩ − bj0,i0)
2

Using tensor-trick in Gao et al. [2023b,c], we can see that

L(X,Y) =

n∑

j0=1

d∑

i0=1

L(X,Y)j0,i0 .

A.3 HELPFUL DEFINITIONS WITH RESPECT TO X

Now, we introduce a few helpful definitions related to X ∈ Rd×d.

Definition A.8. Let A = A1 ⊗A2 ∈ Rn2×d2

, where A1, A2 ∈ Rn×d, and Aj0 ∈ Rn×d2

be one n× d2 block from A.

We define u(x)j0 : Rd2 → Rn as follows:

u(x)j0 := exp(Aj0 x)︸ ︷︷ ︸
n×1

.

Definition A.9. Let A = A1 ⊗A2 ∈ Rn2×d2

, where A1, A2 ∈ Rn×d, and Aj0 ∈ Rn×d2

be one n× d2 block from A.

We define α(x)j0 : Rd2 → R as:

α(x)j0 := ⟨exp(Aj0 x)︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩.

Definition A.10. Let α(x)j0 ∈ R be defined as in Definition A.9.

Let u(x)j0 ∈ Rn be defined as in Definition A.8.

We define f(x)j0 : Rd2 → Rn

f(x)j0 := α(x)−1
j0︸ ︷︷ ︸

scalar

u(x)j0︸ ︷︷ ︸
n×1

.

A.4 A HELPFUL DEFINITION WITH RESPECT TO Y

In this section, we introduce a helpful definition related to Y ∈ Rd×d.

Definition A.11. For each i0 ∈ [d], we define h()i0 : Rd×d → Rn as:

h(Y)i0 := A3︸︷︷︸
n×d

Y∗,i0︸︷︷︸
d×1

.

A.5 HELPFUL DEFINITIONS WITH RESPECT TO BOTH X AND Y

In this section, we introduce some helpful definitions related to both X ∈ Rd×d and Y ∈ Rd×d.

Definition A.12. We define c(x, y)j0,i0 : Rd2 × Rd2 → R as follows:

c(x, y)j0,i0 := ⟨f(x)j0 , h(y)i0⟩ − bj0,i0 .

Furthermore, we define c(x, :)j0,i0 as follows

c(x, :)j0,i0 := ⟨f(x)j0 , v⟩ − bj0,i0

for some fixed vector v ∈ Rn which doesn’t depend on x and also doesn’t depend on y.

Similarly, we also define c(:, y)j0,i0 as follows

c(:, y)j0,i0 := ⟨v, h(y)i0⟩ − bj0,i0

for some fixed vector v ∈ Rn which doesn’t depend on x and also doesn’t depend on y.

Definition A.13. We define

L(x, :)j0,i0 := 0.5c(x, :)2j0,i0

and

L(:, y)j0,i0 := 0.5c(:, y)2j0,i0

and

L(x, y)j0,i0 := 0.5c(x, y)2j0,i0

A.6 REGULARIZATION

In this section, we define the regularization loss we use.

Definition A.14. Let W ∈ Rn×n denote a positive diagonal matrix. We use the following regularization loss

∥(W ⊗ I)(A1 ⊗A2)x∥22 + ∥WA3y∥2F

Note that ∥WA3y∥2F =
∑d

i0=1 ∥WA3yi0∥22.

Adding this regularization term to the loss function L(X,Y) (see Definition A.7), we can ensure the positive definiteness of
this loss function (see Lemma G.1 and Lemma F.1).

A.7 FAST MATRIX MULTIPLICATION

We use Tmat(a, b, c) to denote the time of multiplying an a× b matrix with another b× c matrix. Fast matrix multiplication
Coppersmith [1982], Williams [2012], Le Gall [2014], Gall and Urrutia [2018], Christandl et al. [2025], Alman and Williams
[2021], Duan et al. [2023], Le Gall [2024], Williams et al. [2024] is a fundamental tool in theoretical computer science.

Fact A.15. O(Tmat(a, b, c)) = O(Tmat(b, a, c)) = O(Tmat(a, c, b)).

For k ∈ R+, we define ω(k) ∈ R+ to be the value such that ∀n ∈ N, Tmat(n, n, n
k) = O(nω(k)).

For convenience, we define three special values of ω(k). We define ω to be the fast matrix multiplication exponent, i.e.,
ω := ω(1). We define α ∈ R+ to be the dual exponent of matrix multiplication, i.e., ω(α) = 2. We define β := ω(2).

The following fact can be found in Lemma 3.6 of Jiang et al. [2020a], also see Bürgisser et al. [1997].

Fact A.16 (Convexity of ω(k)). The function ω(k) is convex.

B GRADIENT

In Section B.1, we show the gradient with respect to variables x. In Section B.2, we prove the gradient with respect to
variables y. In Section B.3, we compute running time of c, f, h. In Section B.4, we reformulate the gradient with respect to
X to compute time complexity. In Section B.5, we reformulate the gradient with respect to Y to compute time complexity.

B.1 GRADIENT FOR x

In this section, we compute the gradient for x. Most of the following gradient computations can be found in Gao et al.
[2023b,c].

Lemma B.1 (Gradient with respect to x). If the following conditions hold

• For each i ∈ [d2], let Aj0,i ∈ Rn denote the i-th column for Aj0 ∈ Rn×d

• Let u(x)j0 ∈ Rn be defined as Definition A.8

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let L(x, :)j0,i0 ∈ R be defined as Definition A.13

Then, for each i ∈ [d2], for each j0 ∈ [n], we have

• Part 1.

du(x)j0
dxi

= u(x)j0 ◦ Aj0,i

• Part 2.

dα(x)j0
dxi

= ⟨u(x)j0 ◦ Aj0,i,1n⟩

• Part 3.

df(x)j0
dxi

= f(x)j0 ◦ Aj0,i−f(x)j0 · ⟨f(x)j0 ,Aj0,i⟩

• Part 4. For a fixed vector v ∈ Rn (which doesn’t depend on x), we have

d⟨f(x)j0 , v⟩
dxi

= ⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩

d
dxi ⟨ n

f
(x
)
j
0

, n v ⟩ = ⟨ n

f
(x
)
j
0

◦ n

A
j
0
,i , n v ⟩ − ⟨ n

f
(x
)
j
0

, n v ⟩ × ⟨ n

f
(x
)
j
0

, n

A
j
0
,i ⟩

Figure 5: The visualization of Part 4 of Lemma B.1. We are given f(x)j0 , v,Aj0,i ∈ Rn. The left-hand side of the equation
is the derivative of the inner product of f(x)j0 and v with respect to xi ∈ R. For the right-hand side, we have three steps.
Step 1: we compute the Hadamard product of f(x)j0 and Aj0,i. Step 2: We find the inner product of this Hadamard product
and v. Step 3: We subtract the product of two inner products, one is of f(x)j0 and v and the other is of f(x)j0 and Aj0,i,
from the result of step 2. The purple rectangles represent the vector f(x)j0 . The red rectangles represent the vector v. The
green rectangles represent the vector Aj0,i.

• Part 5. For each i0 ∈ [d]

dc(x, :)j0,i0
dxi

= ⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩

• Part 6.

dL(x, :)j0,i0
dxi

= c(x, :)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩)

• Part 7. (for hessian diagonal term)

d⟨f(x)j0 ◦ Aj0,i, v⟩
dxi

= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i, v⟩ − ⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,i⟩

d
dxi ⟨ n

f
(x
)
j
0

◦ n

A
j
0
,i , n v ⟩ = ⟨ n

f
(x
)
j
0

◦ n

A
j
0
,i

◦ n

A
j
0
,i , n v ⟩ − ⟨ n

f
(x
)
j
0

◦ n

A
j
0
,i , n v ⟩ × ⟨ n

f
(x
)
j
0

, n

A
j
0
,i ⟩

Figure 6: The visualization of Part 7 of Lemma B.1. We are given f(x)j0 , v,Aj0,i ∈ Rn. First, we compute the Hadamard
product between f(x)j0 and Aj0,i. The left-hand side of the equation is the derivative of the inner product of this Hadamard
product and v with respect to xi ∈ R. For the right-hand side, we have four steps. Step 1: We compute the inner product
of the Hadamard product of f(x)j0 ,Aj0,i,Aj0,i and v. Step 2: We compute the inner product of the Hadamard product of
f(x)j0 ,Aj0,i and v. Step 3: We compute the inner product between f(x)j0 and Aj0,i. Step 4: We subtract the product of
steps 2 and 3 from step 1. The purple rectangles represent the vector f(x)j0 . The red rectangles represent the vector v. The
green rectangles represent the vector Aj0,i.

• Part 8. (for hessian off-diagonal term)

d⟨f(x)j0 ◦ Aj0,i, v⟩
dxl

= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩ − ⟨f(x)j0 ◦ Aj0,l, v⟩ · ⟨f(x)j0 ,Aj0,i⟩

• Part 9 (for hessian diagonal term, this can be obtained by using Part 4 as a black-box)

d⟨f(x)j0 ,Aj0,i⟩
dxi

= ⟨f(x)j0 ,Aj0,i ◦Aj0,i⟩ − ⟨f(x)j0 ,Aj0,i⟩ · ⟨f(x)j0 ,Aj0,i⟩

d
dxi ⟨ n

f
(x
)
j
0

, n

A
j
0
,i ⟩ = ⟨ n

f
(x
)
j
0

, n

A
j
0
,i

◦ n

A
j
0
,i ⟩ − ⟨ n

f
(x
)
j
0

, n

A
j
0
,i ⟩ × ⟨ n

f
(x
)
j
0

, n

A
j
0
,i ⟩

Figure 7: The visualization of Part 9 of Lemma B.1. We are given f(x)j0 ,Aj0,i ∈ Rn. The left-hand side of the equation
is the derivative of the inner product of f(x)j0 and Aj0,i with respect to xi ∈ R. For the right-hand side, we have three
steps. Step 1: we compute the Hadamard product of Aj0,i and Aj0,i. Step 2: We find the inner product of f(x)j0 and this
Hadamard product. Step 3: We subtract the square of inner product of f(x)j0 and Aj0,i from the result of step 2. The purple
rectangles represent the vector f(x)j0 . The green rectangles represent the vector Aj0,i.

• Part 10 (for hessian off-diagonal term, this can be obtained by using Part 4 as a black-box)

d⟨f(x)j0 ,Aj0,i⟩
dxl

= ⟨f(x)j0 ,Aj0,i ◦Aj0,l⟩ − ⟨f(x)j0 ,Aj0,i⟩ · ⟨f(x)j0 ,Aj0,l⟩

Proof. Proof of Part 1. See Part 4 of Proof of Lemma 5.18 in Gao et al. [2023b] (Page 14).

Proof of Part 2. See Part 5 of Proof of Lemma 5.18 in Gao et al. [2023b] (Page 14).

Proof of Part 3. See Part 9 of Proof of Lemma 5.18 in Gao et al. [2023b] (page 15).

Proof of Part 4. See Part 14 of Proof of Lemma 5.18 in Gao et al. [2023b] (page 15).

Proof of Part 5.

Note that by Definition A.12, we have

c(x, :)j0,i0 := ⟨f(x)j0 , v⟩ − bj0,i0 (3)

Therefore, we have

dc(x, :)j0,i0
dxi

=
d(⟨f(x)j0 , v⟩ − bj0,i0)

dxi

=
d⟨f(x)j0 , v⟩

dxi

= ⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩,

where the first step comes from Eq. (3), the second step follows from dbj0,i0

dxi
= 0, and the third step is due to Part 4.

Proof of Part 6. Noted that by Definition A.13, we have

L(x, :)j0,i0 = 0.5c(x, :)2j0,i0 (4)

Therefore, we have

dL(x, :)j0,i0
dxi

=
d(0.5c(x, :)2j0,i0)

dxi

= c(x, :)j0,i0
dc(x, :)

dxi

= c(x, :)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩),

where the first step is due to Eq. (4), the second step is because of chain rule of derivative, the last step comes from Part 5.

Proof of Part 7.

We have

d⟨f(x)j0 ◦ Aj0,i, v⟩
dxi

= ⟨d(f(x)j0 ◦ Aj0,i)

dxi
, v⟩

= ⟨df(x)j0
dxi

◦ Aj0,i, v⟩

= ⟨(f(x)j0 ◦ Aj0,i−f(x)j0 · ⟨f(x)j0 ,Aj0,i⟩) ◦ Aj0,i, v⟩
= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i−f(x)j0 · ⟨f(x)j0 ,Aj0,i⟩ ◦ Aj0,i, v⟩
= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i, v⟩ − ⟨f(x)j0 · ⟨f(x)j0 ,Aj0,i⟩ ◦ Aj0,i, v⟩
= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i, v⟩ − ⟨f(x)j0 ,Aj0,i⟩ · ⟨f(x)j0 ◦ Aj0,i, v⟩

where the first step is due to Fact A.5, the second step comes from Fact A.5, the third step is because of Part 4, the fourth
step is owing to simple algebra, the fifth step follows from Fact A.1, and the last step comes from Fact A.1.

Proof of Part 8.

We have

d⟨f(x)j0 ◦ Aj0,i, v⟩
dxl

= ⟨d(f(x)j0 ◦ Aj0,i)

dxl
, v⟩

= ⟨df(x)j0
dxl

◦ Aj0,i, v⟩

= ⟨(f(x)j0 ◦ Aj0,l−f(x)j0 · ⟨f(x)j0 ,Aj0,l⟩) ◦ Aj0,i, v⟩
= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l−f(x)j0 · ⟨f(x)j0 ,Aj0,l⟩ ◦ Aj0,i, v⟩
= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩ − ⟨f(x)j0 · ⟨f(x)j0 ,Aj0,l⟩ ◦ Aj0,i, v⟩
= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩ − ⟨f(x)j0 ,Aj0,l⟩ · ⟨f(x)j0 ◦ Aj0,i, v⟩

where the first step comes from Fact A.5, the second step is because of Fact A.5, the third step follows from Part 4, the
fourth step is due to simple algebra, the fifth step is owing to Fact A.1, and the last step comes from Fact A.1.

Proof of Part 9.

We have

d⟨f(x)j0 ,Aj0,i⟩
dxi

= ⟨df(x)j0
dxi

,Aj0,i⟩

= ⟨f(x)j0 ◦ Aj0,i−f(x)j0 · ⟨f(x)j0 ,Aj0,i⟩,Aj0,i⟩
= ⟨f(x)j0 ,Aj0,i ◦Aj0,i⟩ − ⟨f(x)j0 ,Aj0,i⟩ · ⟨f(x)j0 ,Aj0,i⟩

where the first step is due to Fact A.5, the second step comes from Part 4, and the last step is because of Fact A.1.

Proof of Part 10. We have

d⟨f(x)j0 ,Aj0,i⟩
dxl

= ⟨df(x)j0
dxl

,Aj0,i⟩

= ⟨f(x)j0 ◦ Aj0,l−f(x)j0 · ⟨f(x)j0 ,Aj0,l⟩,Aj0,i⟩
= ⟨f(x)j0 ,Aj0,i ◦Aj0,l⟩ − ⟨f(x)j0 ,Aj0,i⟩ · ⟨f(x)j0 ,Aj0,l⟩

where the first step comes from Fact A.5, the second step is owing to Part 4, and the last step is due to Fact A.1.

B.2 GRADIENT WITH RESPECT TO y

In this section, we compute the gradient with respect to y.

Lemma B.2. If the following conditions hold

• Let v ∈ Rn which doesn’t depend on x and also doesn’t depend on y.

• Let c(:, y)j0,i0 ∈ R be defined as Definition A.12.

• Let L(:, y)j0,i0 ∈ R be defined as Definition A.13.

• Let h(yi0) := A3︸︷︷︸
n×d

yi0︸︷︷︸
d×1

.

• Let h(yi0) = h(y)i0 for convenient

• Let A3,∗,i2 ∈ Rn denote the i2-th column of matrix A3 ∈ Rn×d for each i2 ∈ [d]

Then, we have

• Part 1. If i1 = i0

dh(yi0)

dyi1,i2
= A3,∗,i2

• Part 2. If i1 ̸= i0

dh(yi0)

dyi1,i2
= 0n

• Part 3. If i1 = i0

d⟨v, h(y)i0⟩
dyi1,i2

= ⟨v,A3,∗,i2⟩

• Part 4. If i1 ̸= i0

d⟨v, h(y)i0⟩
dyi1,i2

= 0

• Part 5. If i1 = i0

dc(:, y)j0,i0
dyi1,i2

= ⟨v,A3,∗,i2⟩

• Part 6. If i1 ̸= i0

dc(:, y)j0,i0
dyi1,i2

= 0

• Part 7. If i1 = i0

dL(:, y)j0,i0
dyi1,i2

= c(:, y)j0,i0⟨v,A3,∗,i2⟩

• Part 8. If i1 ̸= i0

dL(:, y)j0,i0
dyi1,i2

= 0

Proof. Proof of Part 1.

dh(yi0)

dyi1,i2
=

dA3yi0
dyi1,i2

= A3,∗,i2

where the first step is due to the definition of h(yi0) (see the Lemma statement), and the last step comes from that for
i ̸= i2,

d
dyi2

f(yi) = 0.

Proof of Part 2.

dh(yi0)

dyi1,i2
= 0n

where the first step is due to i1 ̸= i2.

Proof of Part 3.

d⟨v, h(y)i0⟩
dyi1,i2

= ⟨v, dh(yi0)
dyi1,i2

⟩

= ⟨v,A3,∗,i2⟩

where the first step comes from Fact A.5, the second step is due to the result of Part 1.

Proof of Part 4.

d⟨v, h(y)i0⟩
dyi1,i2

= ⟨v, dh(yi0)
dyi1,i2

⟩

= 0

where the first step is becaues of Fact A.5, the second step comes from the result of Part 2.

Proof of Part 5.

dc(:, y)j0,i0
dyi1,i2

=
d⟨v, h(y)i0⟩ − bj0,i0

dyi1,i2

=
d⟨v, h(y)i0⟩

dyi1,i2

= ⟨v,A3,∗,i2⟩

where the first step comes from the Definition A.12, the second step is because of dbj0,i0

dyi1,i2
= 0, and the last step is due to

Part 3.

Proof of Part 6.

dc(:, y)j0,i0
dyi1,i2

=
d⟨v, h(y)i0⟩ − bj0,i0

dyi1,i2

=
d⟨v, h(y)i0⟩

dyi1,i2

= 0

where the first step is due to the Definition A.12, the second step comes from dbj0,i0

dyi1,i2
= 0, and the last step is owing to Part

4.

Proof of Part 7.

dL(:, y)j0,i0
dyi1,i2

=
d0.5c(:, y)2j0,i0

dyi1,i2

= c(:, y)j0,i0 ·
dc(:, y)j0,i0

dyi1,i2

= c(:, y)j0,i0⟨v,A3,∗,i2⟩

where the first step is due to the Definition A.13, the second step comes from the chain rule of derivative, and the last step is
owing to Part 5.

Proof of Part 8.

dL(:, y)j0,i0
dyi1,i2

=
d0.5c(:, y)2j0,i0

dyi1,i2

= c(:, y)j0,i0 ·
dc(:, y)j0,i0

dyi1,i2

= 0

where the first step is because of the Definition A.13, the second step is due to the chain rule of derivative, and the last step
comes from Part 6.

B.3 COMPUTATION OF c, f, h

In this section, we explain how to compute c(x, y), f(x), h(y).

Lemma B.3. If the following conditions hold

• For each j0 ∈ [n], i0 ∈ [d], let c(x, y)j0,i0 ∈ R be defined as Definition A.12. (We can view c(x, y) as an n× d matrix)

• For each j0 ∈ [n], let f(x)j0 ∈ Rn be defined as Definition A.10. (We can view f(x) as an n× n matrix)

• For each i0 ∈ [d], let h(y)i0 ∈ Rn be defined as Definition A.11. (We can view h(y) as n× d matrix)

• Let A3 ∈ Rn×d

• We can view y as an d× d matrix

Then, we can compute f, h, c in O(Tmat(n, d, d) + Tmat(n, n, d)) time.

Proof. By definition A.11, we have

h(y)︸︷︷︸
n×d

= A3︸︷︷︸
n×d

y︸︷︷︸
d×d

. (5)

First h(y) ∈ Rn×d can be viewed as multiplying n × d matrix (A3) and d × d matrix (y), this can be computed in
Tmat(n, d, d).

We also have

f(x)︸︷︷︸
n×n

= D(X)−1

︸ ︷︷ ︸
n×n

exp(A1︸︷︷︸
n×d

X︸︷︷︸
d×d

A⊤
2︸︷︷︸

d×n

), and D(X) = diag(exp(A1XA⊤
2)1n) (6)

Then the computation of f(x) ∈ Rn×n can be done in Tmat(n, n, d) + Tmat(n, d, d).

n h(y)

d

= n A3

d

× d y

d

Figure 8: The visualization of Eq. (5). We have A3 ∈ Rn×d. h : Rd×d → Rn×d is a function, which maps the matrix
y ∈ Rd×d to h(y) by multiplying A3 and y. The red rectangles represent matrices which are the factors, and the blue
rectangle represents the matrix which is the product.

n f(x)

n

= (n D(X)

n

)
−1
× exp (n A1

d

× d X

d

× d A⊤
2

n

)

Figure 9: The visualization of Eq. (6). We have A1, A2 ∈ Rn×d, X ∈ Rd×d, and D(X) ∈ Rn×n (see Definition 1.2 and
Figure 1). First, we find the inverse of the matrix D(X) and compute exp(A1XA⊤

2) ∈ Rn×n, as shown in Figure 1. Then,
we multiply D(X)−1 and exp(A1XA⊤

2) to get f(x) ∈ Rn×n. The green squares represent the square matrices in Rn×n.
The blue rectangles represent the matrices in Rn×d (the dark blue denotes the transpose of the matrix in Rn×d). The red
square represents the square matrices in Rd×d.

Given that

c(x, y)︸ ︷︷ ︸
n×d

= f(x)︸︷︷︸
n×n

h(y)︸︷︷︸
n×d

− B︸︷︷︸
n×d

(7)

Then c can be done in Tmat(n, n, d).

n c(x, y)

d

= n f(x)

n

× n h(y)

d

− n B

d

Figure 10: The visualization of Eq. (7). Let f(x) ∈ Rn×n (see Figure 9) and h(y) ∈ Rn×d (see Figure 8). We have
B ∈ Rn×d. We multiply f(x) with h(y) and subtract B from their product to get c(x, y) ∈ Rn×d. The green square
represents the square matrices in Rn×n. The blue rectangles represent the matrix in Rn×d.

B.4 REFORMULATING GRADIENT (x) IN MATRIX VIEW

In this section, we reformulate the gradient x in the matrix’s view.

Lemma B.4. If the following conditions hold

• dL(x,y)j0,i0

dxi
= c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩)

• Let c(x, y) ∈ Rn×d

• Let f(x)j0 ∈ Rn

• Let v = h(y)i0 ∈ Rn

• Let dL(x,y)
dx =

∑n
j0=1

∑d
i0=1

dL(x,y)j0,i0

dx

• Let

q(x, y)j0 =

d∑

i0=1

c(x, y)j0,i0h(y)i0

then, we have

• Part 1.

dL(x, y)j0,i0
dx

= c(x, y)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d2×n

(diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

h(y)i0︸ ︷︷ ︸
n×1

• Part 2. Suppose c(x, y),A, f(x), h(y) are given, then dL(x,y)j0,i0

dx can be computed in O(nd2) time.

• Part 3.

dL(x, y)

dx
=

n∑

j0=1

A⊤
j0︸︷︷︸

d2×n

(diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

q(x, y)j0︸ ︷︷ ︸
n×1

• Part 4. Suppose c(x, y),A, f(x), h(y) are given, then dL(x,y)
dx ∈ Rd2

can be computed in Tmat(n, d, n)+Tmat(n, d, d)
time

Proof. Proof of Part 1.

From the Lemma statement, we have

dL(x, y)j0,i0
dxi

= c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩) (8)

Note that by Fact A.1, we have

⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ = A⊤
j0,i diag(f(x)j0)h(y)i0

and

⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩ = A⊤
j0,i f(x)j0f(x)

⊤
j0h(y)i0

Therefore, Eq. (8) becomes

dL(x, y)j0,i0
dxi

= c(x, y)j0,i0 · (A⊤
j0,i diag(f(x)j0)h(y)i0 − A⊤

j0,i f(x)j0f(x)
⊤
j0h(y)i0)

= c(x, y)j0,i0 · A⊤
j0,i(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)h(y)i0 ,

where the second step follows from simple algebra.

Thus, we complete the proof.

Proof of Part 2.

We first compute (diag(f(x)j0)− f(x)j0f(x)
⊤
j0
)h(y)i0 , this can be done in O(n) time.

Then we can compute the rest, it takes O(nd2) time.

Proof of Part 3 and Part 4.

Firstly, we can compute q(x, y)j0 ∈ Rn.

Recall from the Lemma statement, we have

q(x, y)j0 =

d∑

i0=1

c(x, y)j0,i0h(y)i0 . (9)

Let q(x, y)j0 ∈ Rn denote the j0-th column of q(x, y).

Then we have

q(x, y) = h(y)︸︷︷︸
n×d

c(x, y)⊤︸ ︷︷ ︸
d×n

This takes Tmat(n, d, n) time.

Then, we compute

p(x, y)j0 = (diag(f(x)j0)− f(x)j0f(x)j0)q(x, y)j0 . (10)

This takes O(n2) time in total.

We can show that

dL(x, y)

dx

=

n∑

j0=1

d∑

i0=1

dL(x, y)j0,i0
dx

=

n∑

j0=1

d∑

i0=1

c(x, y)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d2×n

(diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

h(y)i0︸ ︷︷ ︸
n×1

=

n∑

j0=1

A⊤
j0(diag(f(x)j0)− f(x)j0f(x)j0)q(x, y)j0

=

n∑

j0=1

A⊤
j0 p(x, y)j0

= vec(A⊤
1 p(x, y)A2)

where the first step is based on Definition A.7, the second step is because of Part 1, the third step is due to Eq. (9), the fourth
step follows from Eq. (10), and the last step due to tensor-trick.

Note that A⊤
1 p(x, y)A2 can be computed in Tmat(n, d, n) + Tmat(d, n, d) time.

B.5 REFORMULATING GRADIENT (y) IN MATRIX VIEW

In this section, we reformulate the gradient y in the matrix’s view.

Lemma B.5. If the following conditions hold

• if i1 = i0, dL(x,y)j0,i0

dyi1,i2
= c(x, y)j0,i0⟨f(x)j0 , A3,∗,i2⟩

• if i1 ̸= i0, dL(x,y)j0,i0

dyi1,i2
= 0

• Let dL(x,y)
dyi0,i2

=
∑n

j0=1 c(x, y)j0,i0⟨f(x)j0 , A3,∗,i2⟩
• Let q̃(x, y)i0 =

∑n
j0=1 f(x)j0c(x, y)j0,i0

Then we have

• Part 1.

dL(x, y)j0,i0
dyi0,i2

= A⊤
3,∗,i2︸ ︷︷ ︸
1×n

f(x)j0︸ ︷︷ ︸
n×1

c(x, y)j0,i0︸ ︷︷ ︸
scalar

• Part 2.

dL(x, y)

dyi0,i2
= A⊤

3,∗,i2︸ ︷︷ ︸
1×n

q̃(x, y)i0︸ ︷︷ ︸
n×1

• Part 3.

dL(x, y)

dy
= vec(A⊤

3︸︷︷︸
d×n

q̃(x, y)︸ ︷︷ ︸
n×d

)

• Part 4. Computing dL(x,y)
dy takes Tmat(n, n, d) + Tmat(n, d, d)

Proof. Proof of Part 1.

dL(x, y)j0,i0
dyi0,i2

= c(x, y)j0,i0⟨f(x)j0 , A3,∗,i2⟩

= A⊤
3,∗,i2f(x)j0c(x, y)j0,i0

where the first step comes from the assumption from the Lemma statement and the second step is based on Fact A.1.

Proof of Part 2.

dL(x, y)

dyi0,i2
=

n∑

j0=1

c(x, y)j0,i0⟨f(x)j0 , A3,∗,i2⟩

=

n∑

j0=1

A⊤
3,∗,i2f(x)j0c(x, y)j0,i0

= A⊤
3,∗,i2 q̃(x, y)i0

where the first step is due to the assumption from the Lemma statement, the second step is because of Fact A.1, and the last
step comes from the definition of q̃(x, y)i0 (see from the Lemma statement).

Proof of Part 3.

dL(x, y)

dy
= vec(A⊤

3 q̃(x, y))

where the first step comes from tensor trick based on Part 2.

Proof of Part 4. Computing q̃(x, y) ∈ Rn×d takes Tmat(n, n, d) time.

Computing A⊤
3 q̃(x, y) takes Tmat(n, d, d) time.

C HESSIAN

In this section, we provide more details related to Hessian.

Finally the hessian H ∈ R2d2×2d2

which can be written as

H =

[
Hx,x Hx,y

Hy,x Hy,y

]

where

• Hx,x ∈ Rd2×d2

is d2L
dxdx (see details in Section D)

• Hx,y , Hy,x ∈ Rd2×d2

is d2L
dxdy (see details in Section H)

• Hy,y ∈ Rd2×d2

is d2L
dydy (see details in Section G)

– We can view Hy,y =

Hy,y,1,1 0 0 · · · 0
0 Hy,y,2,2 0 · · · 0
0 0 Hy,y,3,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Hy,y,d,d

– where Hy,y,i0,i0 =
∑n

j0=1
d2Lj0,i0

dyi0,∗dyi0,∗
∈ Rd×d for each i0 ∈ [d]

Lemma C.1. If the following conditions hold

• Hx,x ⪰ α1Id2

• Hy,y ⪰ α2Id2

• ∥Hx,y∥ ≤ α3

• ∥Hy,x∥ ≤ α3

• Let α1 ≥ α3 > 0, α2 ≥ α3 > 0

Then we have

H ⪰ min{α1 − α3, α2 − α3} · I2d2

Proof. Let u, v ∈ Rd2

, then we have

[
u⊤ v⊤

]
H

[
u
v

]
= u⊤Hx,xu+ v⊤Hy,yv + u⊤Hx,yv + v⊤Hy,xu

≥ ∥u∥22 · α1 + ∥v∥22 · α2 + u⊤Hx,yv + v⊤Hy,xu

≥ ∥u∥22 · α1 + ∥v∥22 · α2 − ∥u∥2∥v∥2(∥Hx,y∥+ ∥Hy,x∥)
≥ ∥u∥22 · α1 + ∥v∥22 · α2 − ∥u∥2∥v∥22α3

≥ ∥u∥22 · α1 + ∥v∥22 · α2 − (∥u∥22 + ∥v∥22)α3

≥ (∥u∥22 + ∥v∥22) ·min{α1 − α3, α2 − α3}

where the first step is based on the expansion of H , the second step is due to Hx,x ⪰ α1Id2 , Hy,y ⪰ α2Id2 , the third step
comes from Fact A.2 and Fact A.3 , the fourth step is because of ∥Hx,y∥ ≤ α3, ∥Hy,x∥ ≤ α3, the fifth step is owing to
2∥u∥2∥v∥2 ≤ ∥u∥22 + ∥v∥22, and the last step is based on the simple algebra.

Thus, it implies

H ⪰ min{α1 − α3, α2 − α3} · I2d2

D HESSIAN FOR X

In Section D.1, we compute the Hessian matrix with respect to x. In Section D.2, we present a helpful lemma to simplify the
Hessian. In Section D.3, we define B(x), representing the Hessian.

D.1 HESSIAN

Now, we start to compute the Hessian matrix with respect to x.

Lemma D.1. If the following conditions hold

• Let γ(x)j0 := ⟨f(x)j0 , v⟩ (We define this notation for easy of writing proofs.)

Then we have for each i ∈ [d2], l ∈ [d2]

• Part 1. i = l Hessian diagonal term

d2Lj0,i0

dxidxi
= (⟨f(x)j0 ◦ Aj0,i, v⟩ − γj0(x) · ⟨f(x)j0 ,Aj0,i⟩)2

+ c(x, :)j0,i0 ·
(

+ ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i, v⟩(1− γj0(x))

− 2⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
+ 2⟨f(x)j0 ,Aj0,i⟩2 · γj0(x)
)

• Part 2. i ̸= l Hessian off-diagonal term

d2Lj0,i0

dxidxl
= (⟨f(x)j0 ◦ Aj0,i, v⟩ − γj0(x) · ⟨f(x)j0 ,Aj0,i⟩)

· (⟨f(x)j0 ◦ Aj0,l, v⟩ − γj0(x) · ⟨f(x)j0 ,Aj0,l⟩)
+ c(x, :)j0,i0 ·
(

+ ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩(1− ⟨f(x)j0 , v⟩))
− ⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,l⟩ − ⟨f(x)j0 ◦ Aj0,l, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
+ 2⟨f(x)j0 ,Aj0,i⟩⟨f(x)j0 ,Aj0,l⟩ · γj0(x)
)

Proof. Proof of Part 1.

At first, we have

d

dxi
(⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩)

=
d

dxi
⟨f(x)j0 ◦ Aj0,i, v⟩

︸ ︷︷ ︸
Part 7 of Lemma B.1

− (
d

dxi
⟨f(x)j0 , v⟩)

︸ ︷︷ ︸
Part 4 of Lemma B.1

·⟨f(x)j0 ,Aj0,i⟩

− (
d

dxi
⟨f(x)j0 ,Aj0,i⟩)

︸ ︷︷ ︸
Part 9 of Lemma B.1

·⟨f(x)j0 , v⟩

= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i, v⟩ − ⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
− (⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩) · ⟨f(x)j0 ,Aj0,i⟩
− (⟨f(x)j0 ◦ Aj0,i,Aj0,i⟩ − ⟨f(x)j0 ,Aj0,i⟩⟨f(x)j0 ,Aj0,i⟩) · ⟨f(x)j0 , v⟩

= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i, v⟩
− 2⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
+ 2⟨f(x)j0 ,Aj0,i⟩2 · ⟨f(x)j0 , v⟩
− ⟨f(x)j0 ◦ Aj0,i ◦Aj0,i, v⟩ · ⟨f(x)j0 , v⟩

where the first step is based on the product rule of derivative, the second step comes from Part 4, Part 7, and Part 9 of
Lemma B.1, and the last step is due to simple algebra.

Then we can show that

d

dxi
(
d

dxi
Lj0,i0)

=
d

dxi
(c(x, :)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩))

= (⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩)2

+ c(x, :)j0,i0 ·
d

dxi
(⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩),

where the first step comes from Part 6 of Lemma B.1 and the second step is due to Part 5 of Lemma B.1.

Combining the above two equations, we complete the proof.

Proof of Part 2.

Firstly, we can show that

d

dxl
(⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩)

=
d

dxl
⟨f(x)j0 ◦ Aj0,i, v⟩

︸ ︷︷ ︸
Part 8 of Lemma B.1

− (
d

dxl
⟨f(x)j0 , v⟩)

︸ ︷︷ ︸
Part 4 of Lemma B.1

·⟨f(x)j0 ,Aj0,i⟩

− (
d

dxl
⟨f(x)j0 ,Aj0,i⟩)

︸ ︷︷ ︸
Part 10 of Lemma B.1

·⟨f(x)j0 , v⟩

= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩ − ⟨f(x)j0 ◦ Aj0,l, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
− (⟨f(x)j0 ◦ Aj0,l, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,l⟩) · ⟨f(x)j0 ,Aj0,i⟩
− (⟨f(x)j0 ◦ Aj0,i,Aj0,l⟩ − ⟨f(x)j0 ,Aj0,i⟩⟨f(x)j0 ,Aj0,l⟩) · ⟨f(x)j0 , v⟩

= ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩
− ⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,l⟩ − ⟨f(x)j0 ◦ Aj0,l, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
+ 2⟨f(x)j0 ,Aj0,i⟩⟨f(x)j0 ,Aj0,l⟩ · ⟨f(x)j0 , v⟩
− ⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩ · ⟨f(x)j0 , v⟩

where the first step is owing to the product rule of derivative, the second step is based on Part 4, Part 8, and Part 10 of
Lemma B.1, and the last step comes from simple algebra.

We have

d

dxl
(
d

dxi
Lj0,i0)

=
d

dxl
(c(x, :)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩))

= (⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩)
· (⟨f(x)j0 ◦ Aj0,l, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,l⟩)

+ c(x, :)j0,i0 ·
d

dxl
(⟨f(x)j0 ◦ Aj0,i, v⟩ − ⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩)

Combining the above two equations, we complete the proof.

D.2 A HELPFUL LEMMA

In this section, we present a helpful Lemma.

Lemma D.2. We have

• Part 1.

⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩ = A⊤
j0,i︸︷︷︸

d2×n

diag(f(x)j0 ◦ v)︸ ︷︷ ︸
n×n

Aj0,l︸︷︷︸
n×d2

• Part 2.

⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,l⟩+ ⟨f(x)j0 ◦ Aj0,l, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
= A⊤

j0,i((f(x)j0 ◦ v)(f(x)j0)⊤ + f(x)j0(f(x)j0 ◦ v)⊤︸ ︷︷ ︸
rank−2

)Aj0,l

• Part 3.

⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ◦ Aj0,l, v⟩ = A⊤
j0,i (f(x)j0 ◦ v)(f(x)j0 ◦ v)⊤︸ ︷︷ ︸

rank−1

Aj0,l

• Part 4.

⟨f(x)j0 ,Aj0,i⟩ · ⟨f(x)j0 ,Aj0,l⟩ = A⊤
j0,i (f(x)j0)(f(x)j0)

⊤
︸ ︷︷ ︸

rank−1

Aj0,l

Proof. Proof of Part 1. We have

⟨f(x)j0 ◦ Aj0,i ◦Aj0,l, v⟩ = A⊤
j0,i diag(f(x)j0 ◦ v)Aj0,l

where the first step follows from Fact A.1.

Proof of Part 2. We have

⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ,Aj0,l⟩+ ⟨f(x)j0 ◦ Aj0,l, v⟩ · ⟨f(x)j0 ,Aj0,i⟩
= ⟨f(x)j0 ◦ v,Aj0,i⟩ · f(x)⊤j0 Aj0,l

+ ⟨f(x)j0 ◦ v,Aj0,l⟩ · A⊤
j0,i ·f(x)j0

= A⊤
j0,i ·(f(x)j0 ◦ v)(f(x)j0)⊤ Aj0,i

+ A⊤
j0,i f(x)j0(f(x)j0 ◦ v)⊤ Aj0,l

= A⊤
j0,i((f(x)j0 ◦ v)(f(x)j0)⊤

+ f(x)j0(f(x)j0 ◦ v)⊤)Aj0,l

where the first step follows from Fact A.1, the second step follows from Fact A.1, and the last step follows from the simple
algebra.

Proof of Part 3. We have

⟨f(x)j0 ◦ Aj0,i, v⟩ · ⟨f(x)j0 ◦ Aj0,l, v⟩ = ⟨f(x)j0 ◦ v,Aj0,i⟩⟨f(x)j0 ◦ v,Aj0,l⟩
= A⊤

j0,i(f(x)j0 ◦ v)(f(x)j0 ◦ v)⊤ Aj0,l

where the first step follows from Fact A.1, and the last step follows from Fact A.1.

Proof of Part 4. We have

⟨f(x)j0 ,Aj0,i⟩ · ⟨f(x)j0 ,Aj0,l⟩ = A⊤
j0,i f(x)j0f(x)

⊤
j0 Aj0,l

where the first step follows from Fact A.1.

D.3 DEFINING B(x)

In this section, we formally define B(x).

Definition D.3. If the following conditions hold

• Let γj0(x) = ⟨f(x)j0 , v⟩

We define B(x) ∈ Rn×n as follows

B(x) :=B1
diag

+B1
rank +B2

rank +B3
rank

where

• B1
diag := (1− γj0(x)) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)

and

• B1
rank := −(2γj0(x) + c(x, :)j0,i0) · ((f(x)j0 ◦ v)f(x)⊤j0 + f(x)j0(f(x)j0 ◦ v)⊤)

• B2
rank := (2γj0(x)c(x, :)j0,i0 + γj0(x)

2) · f(x)j0f(x)⊤j0
• B3

rank := (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤

Lemma D.4. Let B(x) be defined as Definition D.3, then we have

d2Lj0,i0

dxdx
= A⊤

j0︸︷︷︸
d2×n

B(x)︸ ︷︷ ︸
n×n

Aj0︸︷︷︸
n×d2

Proof. The proof follows by combining Lemma D.1 and Lemma D.2.

E LIPSCHITZ PROPERTY OF Hx,x

In Section E.1, we present the main results of the Lipschitz property of Hx,x. In Section E.2, we summarize the results from
following steps 1-9. In Section E.3, we compute the upper bound of basic functions for the following proof. In Section E.4, we
compute the Lipschitz Property of basic functions for the following proof. In Section E.5, we analyze the first step of Lipschitz
function c(x, :)j0,i0 · diag(f(x)j0 ◦ v). In Section E.6, we analyze the second step of Lipschitz function −γj0(x) · c(x, :
)j0,i0 · diag(f(x)j0 ◦ v). In Section E.7, we analyze the third step of Lipschitz function −2γj0(x) · (f(x)j0 ◦ v)f(x)⊤j0 .
In Section E.8, we analyze the fourth step of Lipschitz function −c(x, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0 . In Section E.9, we
analyze the fifth step of Lipschitz function −2γj0(x) · f(x)j0(f(x)j0 ◦ v)⊤. In Section E.10, we analyze the sixth step of
Lipschitz function −c(x, :)j0,i0) · f(x)j0(f(x)j0 ◦ v)⊤. In Section E.11, we analyze the seventh step of Lipschitz function
2γj0(x)c(x, :)j0,i0 · f(x)j0f(x)⊤j0 . In Section E.12, we analyze the eighth step of Lipschitz function γj0(x)

2 · f(x)j0f(x)⊤j0 .
In Section E.13, we analyze the nineth step of Lipschitz function (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤.

E.1 MAIN RESULT

In this section, we present the main result of the Lipschitz property.

Lemma E.1. If the following conditions hold

• Let Hj0,i0 =
d2Lj0,i0

dxdx : Rd2 → Rd2×d2

• Let H =
∑n

j0=1

∑d
i0=1 Hj0,i0 (because L =

∑n
j0=1

∑d
i0=1 Lj0,i0)

• Let A ∈ Rn2×d2

and u(x)j0 ∈ Rn be defined as Definition A.8

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R

• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let M := exp(O(R2 + log(nd)))

Then, we have for all x, x̃ ∈ Rd2

• Part 1. For each j0 ∈ [n], i0 ∈ [d]

∥Hj0,i0(x)−Hj0,i0(x̃)∥ ≤M · ∥x− x̃∥2

• Part 2.

∥H(x)−H(x̃)∥ ≤M · ∥x− x̃∥2

Proof. Proof of Part 1. We have

∥Hj0,i0(x)−Hj0,i0(x̃)∥ ≤
9∑

k=1

∥A⊤
j0 ∥ · ∥Gk(x)−Gk(x̃)∥ · ∥Aj0 ∥

≤ 9R2 · n1.5 exp(20R2)

≤ n1.5 exp(30R2)

where the first step follows from definition of Hj0,i0(x), the second step follows from Lemma E.2, and last step follows
from simple algebra.

Proof of Part 2.

Then, we have

∥H(x)−H(x̃)∥ ≤
n∑

j0=1

d∑

i0=1

∥Hj0,i0(x)−Hj0,i0(x̃)∥

≤ nd · n1.5 exp(30R2)

where the first step follows from triangle inequality and H =
∑n

j0=1

∑d
i0=1 Hj0,i0 , and the second step follows from Part

1.

E.2 SUMMARY OF NINE STEPS

In this section, we provide a summary of the nine-step calculation of Lipschitz for different matrix functions.

Lemma E.2. If the following conditions hold

• G1(x) = c(x, :)j0,i0 · diag(f(x)j0 ◦ v)
• G2(x) = −γj0(x) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)
• G3(x) = −2γj0(x) · (f(x)j0 ◦ v)f(x)⊤j0
• G4(x) = −c(x, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0
• G5(x) = −2γj0(x) · f(x)j0(f(x)j0 ◦ v)⊤ (The proof of this is identical to G3)

• G6(x) = −c(x, :)j0,i0 · f(x)j0(f(x)j0 ◦ v)⊤ (The proof of this is identical to G4)

• G7(x) = 2γj0(x)c(x, :)j0,i0 · f(x)j0f(x)⊤j0
• G8(x) = γj0(x)

2 · f(x)j0f(x)⊤j0
• G9(x) = (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤

Then, we have

max
k∈[9]

∥Gk(x)−Gk(x̃)∥ ≤ n1.5 exp(20R2).

Proof. The proof follows from Lemma E.7, Lemma E.8, Lemma E.9, Lemma E.10, Lemma E.11, Lemma E.12, Lemma E.13,
Lemma E.14, and Lemma E.15.

E.3 A CORE TOOL: UPPER BOUND FOR SEVERAL BASIC FUNCTIONS

In this section, we analyze the upper bound of several basic functions.

Lemma E.3 (Lemma 8.9 in Deng et al. [2023a] page 44 and Lemma 6.2 in Gao et al. [2023b] page 20). Provided that the
subsequent requirements are satisfied

• Let A ∈ Rn2×d2

satisfy maxj0∈[n] ∥Aj0 ∥ ≤ R

• Let x ∈ Rd2

satisfy that ∥x∥2 ≤ R

• We define u(x) as Definition A.8

• Let β be the greatest lower bound of ⟨u(x)j0 ,1n⟩

Then we have

β ≥ exp(−R2).

Lemma E.4 (Basic Functions Upper Bound). If the following conditions hold,

• Let u(x)j0 ∈ Rn be defined as Definition A.8

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• Let β be the greatest lower bound of ⟨u(x)j0 ,1n⟩
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R

• ∥Aj0 ∥ ≤ R

• ∥x∥2 ≤ R

• |bj0,i0 | ≤ R

• Let R ≥ 4

• ∥v∥2 ≤ R2

Then we have: for all x ∈ Rd2

• Part 1. ∥u(x)j0∥2 ≤
√
n · exp(R2)

• Part 2. |α(x)j0 | ≤ n exp(R2)

• Part 3. |α(x)j0 |−1 ≤ exp(R2)

• Part 4. ∥f(x)j0∥2 ≤ 1

• Part 5. |γ(x)j0 | ≤ R2

• Part 6. |c(x, :)j0,i0 | ≤ 2R2

Proof. We present our proof as follows.

Proof of Part 1. We have

∥u(x)j0∥2 = ∥ exp(Aj0 x)∥2
≤ √n · ∥ exp(Aj0 x)∥∞
≤ √n · exp(∥Aj0 x∥2)
≤ √n · exp(R2)

where the first step follows from Definition A.8, the second step is based on Fact A.2, the third step follows from Fact A.2,
and the fourth step is because of ∥Aj0 ∥ ≤ R and ∥x∥2 ≤ R (see from the Lemma statement).

Proof of Part 2. We have

|α(x)j0 | = |⟨u(x)j0 ,1n⟩|
≤ √n · ∥u(x)j0∥2
≤ √n · √n · exp(R2)

= n exp(R2)

where the first step is due to Definition A.9, the second is based on Fact A.2, the third step follows from Part 1. and the
forth step follows from simple algebra.

Proof of Part 3.

We have

|α−1(x)j0 | =
1

⟨u(x)j0 ,1n⟩

≤ 1

β

≤ exp(R2)

where the first step is because of Definition A.9, the second step follows from the definition of β and the third step is due to
Lemma E.3.

Proof of Part 4. We have

∥f(x)j0∥2 ≤ ∥f(x)j0∥1
= 1

where the first step follows from Fact A.2, the second step is due to Definition A.10

Proof of Part 5. We have

|γ(x)j0 | = |⟨f(x)j0 , v⟩|
≤ ∥f(x)j0∥2 · ∥v∥2
≤ 1 ·R2

= R2

where the first step follows from the definition of γ(x)j0 (see from the Lemma statement), the second step follows from
Cauchy–Schwarz inequality, the third step follows from Part 2 and the upper bound for the ℓ2 norm of v (from the Lemma
statement), and the last step follows from simple algebra.

Proof of Part 6. We have

|c(x, :)j0,i0 | = |⟨f(x)j0 , v⟩ − bj0,i0 |
≤ |γj0(x)− bj0,i0 |
≤ |γj0(x)|+ |bj0,i0 |
≤ R2 +R

≤ 2R2

where the first step is based on Definition A.12, the second step is because of the definition of γj0(x), the third step follows
from triangle inequality, the fourth step is based on Part 6 and |bj0,i0 | ≤ R (see from the Lemma statement), and the last
step follows from R ≥ 1.

E.4 A CORE TOOL: LIPSCHITZ PROPERTY FOR SEVERAL BASIC FUNCTIONS

In this section, we analyze the Lipschitz property of several basic functions.

Lemma E.5 (Basic Functions Lipschitz Property). If the following conditions hold,

• ∥v∥2 ≤ R2

• ∥Aj0 ∥ ≤ R

• Let β be the greatest lower bound of ⟨u(x)j0 ,1n⟩
• Let β−1 ≤ exp(R2)

• Let R ≥ 4

• Let ∥x∥2 ≤ R and ∥x̃∥2 ≤ R.

Then, we have: for all x, x̃ ∈ Rd2

• Part 1. ∥u(x)j0 − u(x̃)j0∥2 ≤
√
n exp(2R2) · ∥x− x̃∥2

• Part 2. |α(x)−1 − α−1(x̃)| ≤ n exp(4R2) · ∥x− x̃∥2
• Part 3. ∥f(x)j0 − f(x̃)j0∥2 ≤ n1.5R exp(6R2) · ∥x− x̃∥2
• Part 4. |γ(x)j0 − γ(x̃)j0 | ≤ n1.5 exp(7R2) · ∥x− x̃∥2
• Part 5. |c(x, :)j0,i0 − c(x̃, :)j0,i0 | ≤ n1.5 exp(7R2) · ∥x− x̃∥2

Proof. Proof of Part 1.

We have

∥u(x)j0 − u(x̃)j0∥2 = ∥ exp(Aj0 x)− exp(Aj0 x̃)∥2
≤ exp(∥Aj0 x∥2) · ∥Aj0(x− x̃)∥2
≤ √n exp(R2) · ∥Aj0(x− x̃)∥2
≤ √n exp(R2) · ∥Aj0 ∥ · ∥x− x̃∥2

≤ √nR exp(R2) · ∥x− x̃∥2,

where the first step is due to Definition A.8, the second step is because of Fact A.2, the third step is based on Fact A.2, the
fourth step follows from Fact A.3, and fifth step is due to ∥Aj0 ∥ ≤ R.

Proof of Part 2

We have

|α(x)−1
j0
− α(x̃)−1

j0
| ≤ α(x)−1α(x̃)−1 · |α(x)− α(x̃)|
≤ β−2 · |α(x)− α(x̃)|
≤ β−2 · |⟨u(x)j0 ,1n⟩ − ⟨u(x̃)j0 ,1n⟩|
≤ β−2 · √n∥u(x)j0 − u(x̃)j0∥2
≤ 2β−2 · nR exp(R2)∥x− x̃∥2
≤ n exp(4R2) · ∥x− x̃∥2

where the first step is due to simple algebra, the second step is due to β ≥ ⟨u(x)j0 ,1n⟩, the third step follows from Definition
of α(x) (see Definition A.9), the fourth step is based on Fact A.1 and Fact A.2, the fifth step is because of Part 1, and the
sixth step follows from R > 4 and β−1 ≤ exp(R2).

Proof of Part 3.

We have

∥f(x)j0 − f(x̃)j0∥2 = ∥α(x)−1
j0

u(x)j0 − α(x̃)−1
j0

u(x̃)j0∥2
≤ ∥α(x)−1

j0
u(x)j0 − α(x̃)−1

j0
u(x)j0∥2 + ∥α(x̃)−1

j0
u(x)j0 − α(x̃)−1

j0
u(x̃)j0∥2

= |α(x)−1
j0
− α(x̃)−1

j0
| · ∥u(x)j0∥2 + |α(x̃)−1

j0
| · ∥u(x)j0 − u(x̃)j0∥2

≤ n1.5 exp(6R2) · ∥x− x̃∥2
where the first step is due to Definition A.10, the second step is based on triangle inequality, the third step follows from
Fact A.2, the fourth follows from combination of Part 1, Part 2 and Lemma E.4.

Proof of Part 4.

We have

|γj0(x)− γj0(x̃)| = |⟨f(x)j0 , v⟩ − ⟨f(x̃)j0 , v⟩|
≤ |⟨f(x)j0 − f(x̃)j0 , v⟩|
≤ ∥v∥2 · ∥f(x)j0 − f(x̃)∥2
≤ n1.5 exp(7R2) · ∥x− x̃∥2

where the first step is based on the definition of γj0(x), the second is because of Fact A.1, the third step is due to
Cauchy–Schwarz inequality, and the last step follows from Part 3, ∥v∥ ≤ R2 and R ≥ 4.

Proof of Part 5.

We have

|c(x, :)j0,i0 − c(x̃, :)j0,i0 | = |⟨f(x)j0 , v⟩ − ⟨f(x̃)j0 , v⟩|
≤ |γj0(x)− γj0(x̃)|
≤ n1.5 exp(7R2) · ∥x− x̃∥2

where the first step follows from Definition A.12, the second step is based on the definition of γj0(x) and the last step
follows from Part 4.

For convenient, we define

Definition E.6. We define R0 as follows

R0 := n1.5 exp(10R2).

E.5 CALCULATION: STEP 1 LIPSCHITZ FOR MATRIX FUNCTION c(x, :)j0,i0 · diag(f(x)j0 ◦ v)

In this section, we introduce our calculation of Lipschitz for c(x, :)j0,i0 · diag(f(x)j0 ◦ v).

Lemma E.7. If the following conditions

• Let G1(x) = c(x, :)j0,i0 · diag(f(x)j0 ◦ v)
• Let R0 be defined as Definition E.6

• Let A ∈ Rn2×d2

and u(x)j0 ∈ Rn be defined as Definition A.8

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

Then, we have

∥G1(x)−G1(x̃)∥ ≤ 10R4 ·R0 · ∥x− x̃∥2

Proof. We define

G1,1 = c(x, :)j0,i0 · diag(f(x)j0 ◦ v)− c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)
G1,2 = c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)− c(x̃, :)j0,i0 · diag(f(x̃)j0 ◦ v)

we have

∥G1,1∥ = ∥c(x, :)j0,i0 · diag(f(x)j0 ◦ v)− c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)∥
≤ |c(x, :)j0,i0 − c(x̃, :)j0,i0 | · ∥ diag(f(x)j0 ◦ v)∥
≤ R2 · |c(x, :)j0,i0 − c(x̃, :)j0,i0 |
≤ R2R0 · ∥x− x̃∥2

where the first step is based on definition G1,1, the second step is due to Fact A.3, the third step follows from Lemma E.4,
and the fourth step is because of Lemma E.5.

Additionally, we have

∥G1,2∥ = ∥c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)− c(x̃, :)j0,i0 · diag(f(x̃)j0 ◦ v)∥
≤ |c(x̃, :)j0,i0 | · ∥v∥2 · ∥ diag(f(x)j0)− diag(f(x̃)j0)∥
≤ 2R4 · ∥f(x)j0 − f(x̃)j0∥2
≤ 2R4 ·R0 · ∥x− x̃∥2

where the first step is because of definition of G1,2, the second step is due to Fact A.3, the third step follows from Lemma E.4,
and the fourth step is because of Lemma E.5.

Combining the above two equations, we complete the proof.

E.6 CALCULATION: STEP 2 LIPSCHITZ FOR MATRIX FUNCTION −γj0(x) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)

In this section, we introduce our calculation of Lipschitz for −γj0(x) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v).

Lemma E.8. If the following conditions hold

• Let G2(x) = −γj0(x) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• Let R ≥ 4

Then, we have

∥G2(x)−G2(x̃)∥ ≤ 10R4 ·R0∥x− x̃∥2

Proof. We define

G2,1 = − γj0(x) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)− (−γj0(x̃)) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)
G2,2 = − γj0(x̃) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)− (−γj0(x̃)) · c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)
G2,3 = − γj0(x̃) · c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)− (−γj0(x̃)) · c(x̃, :)j0,i0 · diag(f(x̃)j0 ◦ v)

We have

∥G2,1∥ = ∥(−γj0(x)) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)− (−γj0(x̃)) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)∥
≤ |γj0(x)− γj0(x̃)| · |c(x, :)j0,i0 | · ∥ diag(f(x)j0 ◦ v)∥
≤ 2R4 · ∥γj0(x)− γj0(x̃)∥
≤ 2R4 ·R0 · ∥x− x̃∥2,

where the first step is because of definition of G2,1, the second step is due to Fact A.3, the third step follows from Lemma E.4,
and the fourth step is because of Lemma E.5.

Additionally, we have

∥G2,2∥ = ∥ − γj0(x̃) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)− (−γj0(x̃)) · c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)∥
≤ ∥γj0(x̃) · diag(f(x̃)j0 ◦ v)∥ · ∥c(x, :)j0,i0 − c(x̃, :)j0,i0∥
≤ R4 · |c(x, :)j0,i0 − c(x̃, :)j0,i0 |
≤ R4R0 · ∥x− x̃∥2

where the first step is because of definition of G2,2, the second step is due to Fact A.3, the third step follows from Lemma E.4,
and the fourth step is because of Lemma E.5.

Additionally, we have

∥G2,3∥ = ∥ − γj0(x̃) · c(x̃, :)j0,i0 · diag(f(x)j0 ◦ v)− (−γj0(x̃)) · c(x̃, :)j0,i0 · diag(f(x̃)j0 ◦ v)∥
≤ ∥γj0(x̃)∥ · ∥c(x̃, :)j0,i0∥ · ∥c(x, :)j0,i0 − c(x̃, :)j0,i0∥
≤ 2R4 ·R0 · ∥x− x̃∥2

where the first step is because of definition of G2,3, the second step is due to Fact A.3, the third step follows from Lemma E.4
and Lemma E.5.

Combining all the above equations finish the proof.

E.7 CALCULATION: STEP 3 LIPSCHITZ FOR MATRIX FUNCTION −2γj0(x) · (f(x)j0 ◦ v)f(x)⊤j0

In this section, we introduce our calculation of Lipschitz for −2γj0(x) · (f(x)j0 ◦ v)f(x)⊤j0 .

Lemma E.9. If the following conditions hold

• Let G3(x) = −2γj0(x) · (f(x)j0 ◦ v)f(x)⊤j0 .

• Let R0 be defined in Definition E.6.

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

Then, we have

∥G3(x)−G3(x̃)∥ ≤ 10R4 ·R0∥x− x̃∥2

Proof. We define

G3,1 = − 2γj0(x) · (f(x)j0 ◦ v)f(x)⊤j0 − (−2γj0(x̃) · (f(x)j0 ◦ v)f(x)⊤j0)
G3,2 = − 2γj0(x̃) · (f(x)j0 ◦ v)f(x)⊤j0 − (−2γj0(x̃) · (f(x̃)j0 ◦ v)f(x)⊤j0)
G3,3 = − 2γj0(x̃) · (f(x̃)j0 ◦ v)f(x)⊤j0 − (−2γj0(x̃) · (f(x̃)j0 ◦ v)f(x̃)⊤j0)

For G3,1, we have

∥G3,1∥ ≤ 2 · |γ(x)j0 − γ(x̃)j0 | · ∥f(x)j0 ◦ v∥2 · ∥f(x)j0∥2
≤ 2R0 ·R2∥x− x̃∥2

where the first step is based on Fact A.3 and the second step is due to Lemma E.4 and Lemma E.5.

Similarly, we have

∥G3,2∥ ≤ 2R0 ·R4∥x− x̃∥2

and

∥G3,3∥ ≤ 2R0 ·R4∥x− x̃∥2

E.8 CALCULATION: STEP 4 LIPSCHITZ FOR MATRIX FUNCTION −c(x, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0

In this section, we introduce our calculation of Lipschitz for −c(x, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0 .

Lemma E.10. If the following conditions hold

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let G4(x) = −c(x, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0
Then, we have

∥G4(x)−G4(x̃)∥ ≤ 10R4 ·R0∥x− x̃∥2

Proof. We define

G4,1 = − c(x, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0 − (−c(x̃, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0)
G4,2 = − c(x̃, :)j0,i0 · (f(x)j0 ◦ v)f(x)⊤j0 − (−c(x̃, :)j0,i0 · (f(x̃)j0 ◦ v)f(x)⊤j0)
G4,3 = − c(x̃, :)j0,i0 · (f(x̃)j0 ◦ v)f(x)⊤j0 − (−c(x̃, :)j0,i0 · (f(x̃)j0 ◦ v)f(x̃)⊤j0)

For G4,1, we have

∥G4,1∥ ≤ R2 ·R0 · ∥x− x̃∥2

For G4,2, we have

∥G4,2∥ ≤ 2R4 ·R0 · ∥x− x̃∥2

For G4,3, we have

∥G4,3∥ ≤ 2R4 ·R0 · ∥x− x̃∥2

E.9 CALCULATION: STEP 5 LIPSCHITZ FOR MATRIX FUNCTION −2γj0(x) · f(x)j0(f(x)j0 ◦ v)⊤

In this section, we introduce our calculation of Lipschitz for −2γj0(x) · f(x)j0(f(x)j0 ◦ v)⊤.

Lemma E.11. If the following conditions hold

• Let R0 be defined as Definition E.6

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let G5(x) = −2γj0(x) · f(x)j0(f(x)j0 ◦ v)⊤

Then, we have

∥G5(x)−G5(x̃)∥ ≤ 10R4 ·R0∥x− x̃∥2

Proof. This proof is similar to the proof of Lemma E.9, so we omit it here.

E.10 CALCULATION: STEP 6 LIPSCHITZ FOR MATRIX FUNCTION −c(x, :)j0,i0 · f(x)j0(f(x)j0 ◦ v)⊤

In this section, we introduce our calculation of Lipschitz for −c(x, :)j0,i0 · f(x)j0(f(x)j0 ◦ v)⊤.

Lemma E.12. If the following conditions hold

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let G6(x) = −c(x, :)j0,i0 · f(x)j0(f(x)j0 ◦ v)⊤

Then, we have

∥G5(x)−G5(x̃)∥ ≤ 10R4 ·R0∥x− x̃∥2

Proof. This proof is similar to the proof of Lemma E.10, so we omit it here.

E.11 CALCULATION: STEP 7 LIPSCHITZ FOR MATRIX FUNCTION 2γj0(x)c(x, :)j0,i0 · f(x)j0f(x)⊤j0

In this section, we introduce our calculation of Lipschitz for 2γj0(x)c(x, :)j0,i0 · f(x)j0f(x)⊤j0 .

Lemma E.13. If the following conditions hold

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let G7(x) = 2γj0(x)c(x, :)j0,i0 · f(x)j0f(x)⊤j0
Then, we have

∥G7(x)−G7(x̃)∥ ≤ 10R4R0∥x− x̃∥2

Proof. We define

G7,1 = 2γj0(x)c(x, :)j0,i0 · f(x)j0f(x)⊤j0 − 2γj0(x̃)c(x, :)j0,i0 · f(x)j0f(x)⊤j0
G7,2 = 2γj0(x̃)c(x, :)j0,i0 · f(x)j0f(x)⊤j0 − 2γj0(x̃)c(x̃, :)j0,i0 · f(x)j0f(x)⊤j0
G7,3 = 2γj0(x̃)c(x̃, :)j0,i0 · f(x)j0f(x)⊤j0 − 2γj0(x̃)c(x̃, :)j0,i0 · f(x̃)j0f(x)⊤j0
G7,4 = 2γj0(x̃)c(x̃, :)j0,i0 · f(x̃)j0f(x)⊤j0 − 2γj0(x̃)c(x̃, :)j0,i0 · f(x̃)j0f(x̃)⊤j0

For G7,1, we have

∥G7,1∥ = ∥2γj0(x)c(x, :)j0,i0 · f(x)j0f(x)⊤j0 − 2γj0(x̃)c(x, :)j0,i0 · f(x)j0f(x)⊤j0∥
≤ 2|γj0(x)− γj0(x̃)|∥c(x, :)j0,i0 · f(x)j0f(x)⊤j0∥
≤ 2R0 · |c(x, :)j0,i0 | · ∥f(x)j0∥ · ∥f(x)⊤j0∥∥x− x̃∥2
≤ 2R0 · 2R2 · ∥x− x̃∥2

where the first step is due to the definition of G7,1, the second step is because of Fact A.3, the third step is based on Part 4
of Lemma E.5 and Fact A.3, and the last step comes from Part 4 and Part 6 of Lemma E.4.

Similarly, for G7,2, we have

∥G7,2∥ ≤ 2R0 ·R2 · ∥x− x̃∥2

For G7,3, we have

∥G7,3∥ ≤ 2R0 · 2R4 · ∥x− x̃∥2

For G7,4, we have

∥G7,4∥ ≤ 2R0 · 2R4 · ∥x− x̃∥2

E.12 CALCULATION: STEP 8 LIPSCHITZ FOR MATRIX FUNCTION γj0(x)
2 · f(x)j0f(x)⊤j0

In this section, we introduce our calculation of Lipschitz for γj0(x)
2 · f(x)j0f(x)⊤j0 .

Lemma E.14. If the following conditions hold

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R

• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let G8,1 = γj0(x)
2 · f(x)j0f(x)⊤j0

Then, we have

∥G8(x)−G8(x̃)∥ ≤ 10R4R0∥x− x̃∥2

Proof. We define

G8,1 = γj0(x)γj0(x) · f(x)j0f(x)⊤j0 − γj0(x̃)γj0(x) · f(x)j0f(x)⊤j0
G8,2 = γj0(x̃)γj0(x) · f(x)j0f(x)⊤j0 − γj0(x̃)

2 · f(x)j0f(x)⊤j0
G8,3 = γj0(x̃)

2 · f(x)j0f(x)⊤j0 − γj0(x̃)
2 · f(x̃)j0f(x)⊤j0

G8,4 = γj0(x̃)
2 · f(x̃)j0f(x)⊤j0 − γj0(x̃)

2 · f(x̃)j0f(x̃)⊤j0

We can show that

max
i∈[4]
∥G8,i∥ ≤ R4 ·R0 · ∥x− x̃∥2

E.13 CALCULATION: STEP 9 LIPSCHITZ FOR MATRIX FUNCTION (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤

In this section, we introduce our calculation of Lipschitz for (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤.

Lemma E.15. If the following conditions hold

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, :)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R

• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let G9(x) = (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤

Then, we have

∥G9(x)−G9(x̃)∥ ≤ 10R4R0∥x− x̃∥2

Proof. We define

G9,1 = (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤ − (f(x̃)j0 ◦ v) · (f(x)j0 ◦ v)⊤

G9,2 = (f(x̃)j0 ◦ v) · (f(x)j0 ◦ v)⊤ − (f(x̃)j0 ◦ v) · (f(x̃)j0 ◦ v)⊤

We can show that

max
i∈[2]
∥G9,i∥ ≤ R4 ·R0 · ∥x− x̃∥2

F HESSIAN FOR X IS PSD

In Section F.1, we present the main result of PSD bound for Hessian. In Section F.2, we show the PSD bound for B(x). In
this section, our focus will be on establishing the PSD bound for Hx,x. Throughout this section, we will use the symbol H
to represent Hx,x for the sake of simplicity.

F.1 MAIN RESULT

In this section, we introduce the main result of the PSD bound for Hessian.

Lemma F.1. If the following conditions hold

• Let j0 ∈ [n]

• Let i0 ∈ [d]

• Let Hj0,i0 =
d2Lj0,i0

dxdx ∈ Rd2×d2

• Let Bj0,i0(x) ∈ Rn×n be defined as Definition D.3.

– Therefore, Hj0,i0 = A⊤
j0 Bj0,i0(x)Aj0 ∈ Rd2×d2

• Let maxj0∈[n] ∥Aj0 ∥ ≤ R

• Let σmin be the smallest singular value. We define σmin(Amin) := minj0∈[n] σmin(Aj0).

• Let H =
∑n

j0=1

∑d
i0=1 Hj0,i0

• Let Hreg,j0,i0 = A⊤
j0(Bj0,i0(x) +W 2)Aj0 where W ∈ Rn×n is a positive diagonal matrix.

• Let Hreg =
∑n

j0=1

∑d
i0=1 Hreg,j0,i0

• Let C0 := 30R8 (be a local parameter in this lemma)

• Let l > 0 (denote the strongly convex parameter for hessian)

Then, we have

• Part 1. For each j0 ∈ [n], for each i0 ∈ [d]

−C0In ⪯ Bj0,i0(x) ⪯ C0In

• Part 2. For each j0 ∈ [n], for each i0 ∈ [d]

∥Hj0,i0(x)∥ ≤ C0R
2.

• Part 3. For each j0 ∈ [n], i0 ∈ [d], if minj1∈[n] wj1,j1 ≥ l
σmin(Aj0

)2 + C0, then we have

Hreg,j0,i0(x) ⪰ l · Id2

• Part 4. For each j0 ∈ [n], i0 ∈ [d], if minj1∈[n] wj1,j1 ≥ l
σmin(Aj0

)2 + 100 · C0, then we have

1.1 · (B(x)j0,i0 +W 2) ⪰W 2 ⪰ 0.9 · (B(x)j0,i0 +W 2)

and

1.1Hj0,i0 ⪰ Hreg,j0,i0 ⪰ 0.9Hj0,i0

• Part 5. For each j0 ∈ [n], i0 ∈ [d], if minj1∈[n] wj1,j1 ≥ l
ndσmin(Amin)2

+ C0, then we have

Hreg(x) ⪰ l · Id2

• Part 6. For each j0 ∈ [n], i0 ∈ [d], if minj1∈[n] wj1,j1 ≥ l
ndσmin(Amin)2

+ 100 · C0, then we have

1.1H ⪰ Hreg ⪰ 0.9H

Proof. Proof of Part 1.

It directly follows from Lemma F.2.

Proof of Part 2. We have

∥Hj0,i0∥ = ∥A⊤
j0 Bj0,i0(x)Aj0 ∥

≤ ∥Aj0 ∥2 · ∥Bj0,i0(x)∥
≤ R2 · ∥Bj0,i0(x)∥
≤ 30R10

where the first step follows from the Hj0,i0 = A⊤
j0 Bj0,i0(x)Aj0 , the second step follows from Fact A.3, the third step

follows from maxj0∈[n] ∥Aj0 ∥ ≤ R, and the last step follow from Part 1.

Proof of Part 3.

The proof is similar to Deng et al. [2023a].

Proof of Part 4.

The proof is similar to Deng et al. [2023a].

Proof of Part 5 and Part 6. It is because we can write H as summation of nd terms Hj0,i0 for all j0 ∈ [d], i0 ∈ [d].

F.2 PSD BOUND

In this section, we analyze the PSD bound for each of the Brank and Bdiag.

Lemma F.2. If the following condition holds

• B1
diag := (1− γj0(x)) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)

• B1
rank := −(2γj0(x) + c(x, :)j0,i0) · ((f(x)j0 ◦ v)f(x)⊤j0 + f(x)j0(f(x)j0 ◦ v)⊤)

• B2
rank := (2γj0(x)c(x, :)j0,i0 + γj0(x)

2) · f(x)j0f(x)⊤j0
• B3

rank := (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤

• |γ(x)j0 | ≤ R2

• |c(x, :)j0,i0 | ≤ 2R2

• ∥v∥2 ≤ R2

Then, we have

• Part 1.

−8R6 · In ⪯ B1
diag ⪯ 8R6 · In

• Part 2.

−16R8 · In ⪯ B1
rank ⪯ 16R8 · In

• Part 3.

−8R4 · In ⪯ B2
rank ⪯ 8R4 · In

• Part 4.

0 · In ⪯ B3
rank ⪯ 8R4 · In

Proof. Proof of Part 1.

B1
diag = (1− γj0(x)) · c(x, :)j0,i0 · diag(f(x)j0 ◦ v)
⪯ |1− γj0(x)||c(x, :)j0,i0 |∥f(x)j0∥2∥v∥2
⪯ 8R6 · In

where the first step follows from the definition of B1
diag, the second step follows from Fact A.4, and the last step follows

from Lemma E.4, |γ(x)j0 | ≤ R2, |c(x, :)j0,i0 | ≤ 2R2, and ∥v∥2 ≤ R2.

Proof of Part 2.

B1
rank = − (2γj0(x) + c(x, :)j0,i0) · ((f(x)j0 ◦ v)f(x)⊤j0 + f(x)j0(f(x)j0 ◦ v)⊤)
⪰ − |2γj0(x) + c(x, :)j0,i0 | · ((f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤ + f(x)j0f(x)

⊤
j0)

⪰ − 4R2 · (∥f(x)j0 ◦ v∥22 + ∥f(x)j0∥22)In
⪰ − 4R2(∥f(x)j0∥22∥v∥22 + ∥f(x)j0∥22)In
⪰ − 5R4 · In

where the first step follows from the definition of B1
rank, the second step follows from Fact A.4, the third step follows

from |γ(x)j0 | ≤ R2, |c(x, :)j0,i0 | ≤ 2R2 and Fact A.4, the fourth step follows from Fact A.1, and last step follows from
∥f(x)j0∥2 ≤ 1 (see Part 4 of Lemma E.4) and ∥v∥2 ≤ R2.

Proof of Part 3.

B2
rank = (2γj0(x)c(x, :)j0,i0 + γj0(x)

2) · f(x)j0f(x)⊤j0
⪯ |2γj0(x)c(x, :)j0,i0 + γj0(x)

2|∥f(x)j0∥22
⪯ 8R4 · In

where the first step follows from definition of B2
rank, the second step follows from Fact A.4, and the last step follows from

|γ(x)j0 | ≤ R2, |c(x, :)j0,i0 | ≤ 2R2 and Lemma E.4.

Proof of Part 4.

B3
rank = (f(x)j0 ◦ v) · (f(x)j0 ◦ v)⊤

⪯ ∥f(x)j0 ◦ v∥22
⪯ ∥f(x)j0∥22∥v∥22
⪯ 8R4 · In

where the first step follows from definition of B3
rank, the second step follows from Fact A.4, the third step follows from

Fact A.1, and the last step follows from ∥v∥2 ≤ R2 and Lemma E.4.

G HESSIAN FOR Y

In Section G.1, we present the hessian property with respect to Y . In Section G.2, we compute the Hessian matrix with
respect to Y for one j0, i0.

G.1 HESSIAN PROPERTY

In this section, we analyze the Hessian properties.

Lemma G.1. If the following conditions hold

• Let Bj0(x) = f(x)j0f(x)
⊤
j0
∈ Rn×n (because of Lemma G.2)

• Let B(x) =
∑n

j0=1 Bj0(x)

• Let Hj0,i0 =
d2Lj0,i0

dyi0
dyi0

= A⊤
3 Bj0(x)A3 ∈ Rd×d

• Let Hi0 ∈ Rd×d be Hi0 = d2L
dyi0dyi0

=
∑d

j0=1 Hj0,i0

• Let Hreg,i0 = A⊤
3 (B(x) +W 2)A3 where W ∈ Rn×n is a positive diagonal matrix

• Let H(y) ∈ Rd2×d2

be H(y) =

H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hd

Then, we have

• Part 1.

0 ⪯ Bj0(x) ⪯ In

• Part 2.

0 ⪯ B(x) ⪯ n · In

• Part 3. If minj1∈[n] w
2
j1,j1

≥ l
σmin(A3)2

Hreg,i0 ⪰ l · Id, H(y) ⪰ l · Id2

• Part 4. If minj1∈[n] w
2
j1,j1

≥ l
σmin(A3)2

+ 100n

0.9(W 2 +B(x)) ⪯W 2 ⪯ 1.1(W 2 +B(x))

• Part 5. Lipschitz, Due to H(y) is independent of y, then

∥H(y)−H(ỹ)∥ ≤ ∥y − ỹ∥2

Proof. For hessian closed-form, we can obtain them from Lemma G.2.

The proofs are straightforward, so we omit the details here.

G.2 HESSIAN FOR ONE j0, i0

In this section, we analyze the Hessian for the matrix Y with one j0, i0.

Lemma G.2. If the following conditions hold

• We define a temporary notation here v := f(x)j0 (for simplicity we drop the index j0 in the statement. Note that v
could have different meaning in other sections.)

• Let f(x)j0 be defined as Definition A.10.

• Let c(x, :)j0,i0 be defined as Definition A.12.

• Let h(y)i0 be defined as Definition A.11.

• Let Lj0,i0 be defined as Definition A.10.

Then, we have

• Part 1. For i1 = i2, the diagonal case

d2Lj0,i0

dyi0,i1dyi0,i1
= A⊤

3,∗,i1vv
⊤A3,∗,i1

• Part 2. For i1 ̸= i2, the off-diagonal case

d2Lj0,i0

dyi0,i1dyi0,i2
= A⊤

3,∗,i1vv
⊤A3,∗,i2

• Part 3. The d2Lj0,i0

dyi0
dyi0
∈ Rd×d

d2Lj0,i0

dyi0dyi0
= A⊤

3 vv
⊤A3

Proof. Proof of Part 1.

d2Lj0,i0

dyi0,i1dyi0,i1
=

d

dyi0,i1
(

d

dyi0,i1
Lj0,i0)

=
d

dyi0,i1
(c(:, y)j0,i0⟨v,A3,∗,i1⟩)

= ⟨v,A3,∗,i1⟩ · ⟨v,A3,∗,i1⟩
= A⊤

3,∗,i1vv
⊤A3,∗,i1

where the first step follows from simple algebra, the second step follows from Lemma B.2, the third step follows from
Lemma B.2, and the last step follows from Fact A.1.

Proof of Part 2.

d2Lj0,i0

dyi0,i2dyi0,i1
=

d

dyi0,i2
(

d

dyi0,i1
Lj0,i0)

=
d

dyi0,i2
(c(:, y)j0,i0⟨v,A3,∗,i1⟩)

= ⟨v,A3,∗,i2⟩ · ⟨v,A3,∗,i1⟩
= A⊤

3,∗,i1vv
⊤A3,∗,i2

where the first step follows from simple algebra, the second step follows from Lemma B.2, the third step follows from
Lemma B.2, and the last step follows from Fact A.1.

Proof of Part 3.

It follows by combining above two parts directly.

H HESSIAN FOR X AND Y

In Section H.1, we compute the Hessian matrix with respect to both X and Y . In Section H.2, we present several helpful
lemmas for the following proof. In Section H.3, we create B(x) for the further analysis.

H.1 COMPUTING HESSIAN

In this section, we compute the Hessian matrix for X and Y .

Lemma H.1. If the following conditions hold

• Let f(x)j0 be defined as Definition A.10.

• Let c(x, y)j0,i0 be defined as Definition A.12.

• Let h(y)i0 be defined as Definition A.11.

• Let Lj0,i0 be defined as Definition A.7.

Then, we have

• Part 1.

d

dyi0,i1
(
d

dxi
Lj0,i0) = ⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩

− ⟨f(x)j0 , A3,∗,i1⟩⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩
+ c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, A3,∗,i1⟩ − ⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ,Aj0,i⟩)

Proof. We can show

d

dyi0,i1
(
d

dxi
Lj0,i0)

=
d

dyi0,i1
(c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩))

=
d

dyi0,i1
(c(x, y)j0,i0) · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩)

+ (c(x, y)j0,i0) ·
d

dyi0,i1
(⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩)

= ⟨f(x)j0 , A3,∗,i1⟩ · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩)
+ c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, A3,∗,i1⟩ − ⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ,Aj0,i⟩)

= ⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩
− ⟨f(x)j0 , A3,∗,i1⟩⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩
+ c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, A3,∗,i1⟩ − ⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ,Aj0,i⟩)

where the first step is due to Part 6 of Lemma B.1, the second step comes from the product rule of derivative, the third step
is based on Lemma G.2, and the last step follows from simple algebra.

Thus, we complete the proof.

H.2 A HELPFUL LEMMA

In this section, we provide a helpful Lemma.

Lemma H.2. If the following conditions hold

• Let f(x)j0 be defined in Definition A.10.

• Let A ∈ Rn2×d2

be defined in Definition A.8.

• Let c(x, y)j0,i0 be defined as Definition A.12.

• Let h(y)i0 be defined as Definition A.11.

• Let Lj0,i0 be defined as Definition A.7.

Then, we have

• Part 1.

⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ = A⊤
j0,i(f(x)j0 ◦ h(y)i0)f(x)⊤j0A3,∗,i1

• Part 2.

⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩ = ⟨f(x)j0 , h(y)i0⟩ · A⊤
j0,i f(x)j0f(x)

⊤
j0A3,∗,i1

• Part 3.

⟨f(x)j0 ◦ A⊤
j0,i, A3,∗,i1⟩ = A⊤

j0,i diag(f(x)j0)A3,∗,i1

• Part 4.

⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ,Aj0,i⟩ = A⊤
j0,i f(x)j0f(x)

⊤
j0A3,∗,i1

Proof. Proof of Part 1.

⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ = ⟨f(x)j0 ◦ h(y)i0 ,Aj0,i⟩f(x)⊤j0A3,∗,i1

= A⊤
j0,i(f(x)j0 ◦ h(y)i0)f(x)⊤j0A3,∗,i1

where the first step follows from Fact A.1, and the second step follows from Fact A.1.

Proof of Part 2.

⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩ = ⟨f(x)j0 , h(y)i0⟩A⊤
j0,i f(x)j0f(x)

⊤
j0A3,∗,i1

where the first step follows from Fact A.1.

Proof of Part 3.

⟨f(x)j0 ◦ Aj0,i, A3,∗,i1⟩ = (f(x)j0 ◦ Aj0,i)
⊤A3,∗,i1

= (diag(f(x)j0)Aj0,i)
⊤A3,∗,i1

= A⊤
j0,i diag(f(x)j0)A3,∗,i1

where the first, second, and last step follows from Fact A.1.

Proof of Part 4.

⟨f(x)j0 , A3,∗,i1⟩ · ⟨f(x)j0 ,Aj0,i⟩ = A⊤
j0,i f(x)j0f(x)

⊤
j0A3,∗,i1

where the first step follows from Fact A.1.

H.3 CREATING B(x, y)

In this section, we give a formal definition of B(x, y).

Definition H.3. We define B(x, y)

B(x, y) = B1
diag +B1

rank +B2
rank +B1

rank

where

• B1
rank(x, y) = (f(x)j0 ◦ h(y)i0)f(x)⊤j0

• B2
rank(x, y) = −⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0

• B1
diag(x, y) = −c(x, y)j0,i0 diag(f(x)j0)

• B3
rank(x, y) = c(x, y)j0,i0f(x)j0f(x)

⊤
j0

Lemma H.4. If the following conditions

• Let B(x, y) be defined as Definition H.3.

Then, we have

• Part 1.

d2Lj0,i0

dyi0dx
= A⊤

j0 B(x, y)A3 ∈ Rd2×d

• Part 2. i1 ̸= i0

d2Lj0,i0

dyi1dx
= A⊤

j0 0n×nA3 ∈ Rd2×d = 0d2×d

Proof. Proof of Part 1. We have

d2Lj0,i0

dyi0,i2dxi
= A⊤

j0,i B(x, y)A3,∗,i2

where the first step follows from combining Lemma H.1 and Lemma H.2.

Then, we can have

d2Lj0,i0

dyi0dx
= A⊤

j0 B(x, y)A3

Proof of Part 2. We have

d2Lj0,i0

dyi1,i2dxi
= A⊤

j0,i 0n×nA3,∗,i2 = 0n×n

where the first step follows from combining Lemma H.1 and Lemma H.2.

Then, we can have

d2Lj0,i0

dyi1dx
= A⊤

j0 0n×nA3 = 0n×n

I LIPSCHITZ FOR HESSIAN OF x, y

In Section I.1, we present the main results of the Lipschitz property of Hx,y. In Section I.2, we summarize the results
from the following steps 1-4. In Section I.3, we compute the upper bound of basic functions for the following proof. In
Section I.4, we compute the Lipschitz Property of basic functions for the following proof. In Section I.5, we analyze the
first step of Lipschitz function (f(x)j0 ◦ h(y)i0)f(x)⊤j0 . In Section I.6, we analyze the second step of Lipschitz function
−⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0 . In Section I.7, we analyze the third step of Lipschitz function −c(x, y)j0,i0 diag(f(x)j0).
In Section I.8, we analyze the fourth step of Lipschitz function c(x, y)j0,i0f(x)j0f(x)

⊤
j0

. In Section I.9, we compute the
PSD upper bound for the Hessian matrix. In Section I.10, we summarize PSD upper bound of G(x, y).

I.1 MAIN RESULTS

In this section, we present the main result of Section I.

Lemma I.1. If the following conditions hold

• maxj0∈[n] ∥Aj0 ∥ ≤ R

• Let H(x, y)j0,i0 ∈ Rd2×d denote d2Lj0,i0

dxdyi0

• d2Lj0,i0

dxdyi1
= 0d2×d

• Let H(x, y) ∈ Rd2×d2

be

H(x, y) :=
[∑n

j0=1 Hj0,1(x, y)
∑n

j0=1 Hj0,2(x, y) · · · ∑n
j0=1 Hj0,d(x, y)

]

Then we have

• Part 1. For j0 ∈ [d], i0 ∈ [n]

∥H(x, y)j0,i0 −H(x̃, ỹ)j0,i0∥ ≤ n1.5 exp(20R2) · (∥x− x̃∥2 + ∥y − ỹ∥2)

• Part 2.

∥H(x, y)−H(x̃, ỹ)∥ ≤ n2.5d exp(20R2)(∥x− x̃∥2 + ∥y − ỹ∥2)

Proof. Proof of Part 1. It follows from Lemma I.2.

Proof of Part 2. We can show that

∥H(x, y)−H(x̃, ỹ)∥ ≤ nd · n1.5 exp(20R2)(∥x− x̃∥2 + ∥y − ỹ∥2)
where the first step follows from that we can write H as summation of nd terms Hj0,i0 for all j0 ∈ [d], i0 ∈ [d].

I.2 SUMMARY OF FOUR STEPS ON LIPSCHITZ FOR MATRIX FUNCTIONS

In this section, we summarize the four steps for analyzing the Lipschitz for different matrix functions.

Lemma I.2. If the following conditions hold

• G1(x, y) = (f(x)j0 ◦ h(y)i0)f(x)⊤j0
• G2(x, y) = −⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0
• G3(x, y) = −c(x, y)j0,i0 diag(f(x)j0)
• G4(x, y) = c(x, y)j0,i0f(x)j0f(x)

⊤
j0

Then, we have
4∑

k=1

∥Gk(x, y)−Gk(x̃, ỹ)∥ ≤ n1.5 exp(20R2)(∥x− x̃∥2 + ∥y − ỹ∥2)

Proof. The proof follows from Lemma I.5, Lemma I.6, Lemma I.7, and Lemma I.8.

I.3 A CORE TOOL: UPPER BOUND FOR SEVERAL BASIC FUNCTIONS

In this section, we give an upper bound for each of the basic functions.

Lemma I.3. If the following conditions hold

• Let f(y)j0 ∈ Rn be defined as Definition A.10.

• Let h(y)i0 ∈ Rn be defined as Definition A.11.

• Let c(x, y)j0,i0 ∈ R be defined as Definition A.12.

• Let R ≥ 4

• ∥A3∥ ≤ R

• ∥yi0∥ ≤ R

• ∥bj0,i0∥2 ≤ R

Then, we have

• Part 1. ∥h(y)i0∥2 ≤ R2

• Part 2. |c(x, y)j0,i0 | ≤ 2R2

Proof. Proof of Part 1.

∥h(y)i0∥2 = ∥A3yi0∥2
≤ ∥A3∥∥yi0∥2
≤ R2

where the first step is due to Definition A.11, the second step is based on Fact A.3 and the third step is because of Lemma E.4.

Proof of Part 2.

|c(x, y)j0,i0 | = |⟨f(x)j0 , h(y)i0⟩ − bj0,i0 |
≤ ∥f(x)j0∥2∥h(y)i0∥2 + |bj0,i0 |
≤ R2 +R

≤ 2R2

where the first step is because of Definition A.12, the second step is based on triangle inequality and Cauchy–Schwarz
inequality, the third step is due to Lemma E.4, and the last step follows from R ≥ 4.

I.4 A CORE TOOL: LIPSCHITZ PROPERTY FOR SEVERAL BASIC FUNCTIONS

In this section, we introduce the Lipschitz property for several basic functions.

Lemma I.4. If the following conditions hold

• Let f(y)j0 ∈ Rn be defined as Definition A.10.

• Let h(y)i0 ∈ Rn be defined as Definition A.11.

• Let c(x, y)j0,i0 ∈ R be defined as Definition A.12.

• Let R ≥ 4

• ∥A3∥ ≤ R

• ∥yi0∥ ≤ R

• ∥bj0,i0∥2 ≤ R

• Let R0 be defined as Definition E.6.

Then, we have

• Part 1. ∥h(y)i0 − h(ỹ)i0∥2 ≤ R∥y − ỹ∥2
• Part 2. |c(x, y)j0,i0 − c(x̃, y)j0,i0 | ≤ R2 ·R0∥x− x̃∥
• Part 3. |c(x, y)j0,i0 − c(x, ỹ)j0,i0)| ≤ R∥y − ỹ∥2

Proof. Proof of Part 1.

∥h(y)i0 − h(ỹ)i0∥2 = ∥A3yi0 −A3ỹi0∥2
≤ ∥A3∥∥yi0 − ỹi0∥2
≤ R∥y − ỹ∥2

where the first step follows from Definition A.11, the second step is based on Fact A.3, and the third step is due to Lemma E.4.

Proof of Part 2.

|c(x, y)j0,i0 − c(x̃, yj0,i0)| = |⟨f(x)j0 , h(y)i0⟩ − bj0,i0 − (⟨f(x̃)j0 , h(y)i0⟩ − bj0,i0)|
≤ ∥f(x)j0 − f(x̃)j0∥2∥h(y)i0∥2
≤ R2 ·R0∥x− x̃∥2

where the first step is due to Definition A.12, the second step follows from Cauchy–Schwarz inequality, and the third step is
because of Part 1 of Lemma I.3 and Part 3 of Lemma E.5.

Proof of Part 3.

|c(x, y)j0,i0 − c(x, ỹ)j0,i0)| = |⟨f(x)j0 , h(y)i0⟩ − bj0,i0 − (⟨f(x)j0 , h(ỹ)i0⟩ − bj0,i0)|
≤ ∥f(x)j0∥2 · ∥h(y)i0 − h(ỹ)i0∥2
≤ R∥y − ỹ∥2

where the first step follows from Definition A.12, the second step is due to Cauchy–Schwarz inequality and the third step is
because of Part 4 of Lemma E.4 and Part 1 of this Lemma.

I.5 CALCULATION: STEP 1 LIPSCHITZ FOR MATRIX FUNCTION (f(x)j0 ◦ h(y)i0)f(x)⊤j0

In this section, we calculate the Lipschitz for (f(x)j0 ◦ h(y)i0)f(x)⊤j0 .

Lemma I.5. If the following conditions

• Let G1(x, y) = (f(x)j0 ◦ h(y)i0)f(x)⊤j0
• Let R0 be defined in Definition E.6.

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, y)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R

• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

Then, we have

∥G1(x, y)−G1(x̃, ỹ)∥ ≤ 2R2 ·R0(∥x− x̃∥2 + ∥y − ỹ∥2)

Proof. We define

G1,1 = (f(x)j0 ◦ h(y)i0)f(x)⊤j0 − (f(x̃)j0 ◦ h(y)i0)f(x)⊤j0
G1,2 = (f(x̃)j0 ◦ h(y)i0)f(x)⊤j0 − (f(x̃)j0 ◦ h(ỹ)i0)f(x)⊤j0
G1,3 = (f(x̃)j0 ◦ h(ỹ)i0)f(x)⊤j0 − (f(x̃)j0 ◦ h(ỹ)i0)f(x̃)⊤j0

where the first step follows from definition of G1,1, the second step is based on Fact A.2 and the third step is due to
Lemma E.4.

We have

∥G1,1∥ = ∥(f(x)j0 ◦ h(y)i0)f(x)⊤j0 − (f(x̃)j0 ◦ h(y)i0)f(x)⊤j0∥
≤ ∥f(x)j0 − f(x̃)j0∥∞ · ∥h(y)i0∥2 · ∥f(x)j0∥2
≤ R2 ·R0∥x− x̃∥2

where the first step follows from definition of G1,1, the second step is due to Fact A.3, and the third step is based on
combining Lemma E.4, Lemma E.5, and Lemma I.3.

Also, we have

∥G1,2∥ = ∥(f(x̃)j0 ◦ h(y)i0)f(x)⊤j0 − (f(x̃)j0 ◦ h(ỹ)i0)f(x)⊤j0∥
≤ ∥f(x̃)j0∥2 · ∥h(y)i0 − h(ỹ)i0∥2 · ∥f(x)j0∥2
≤ R∥y − ỹ∥2

where the first step is based on definition of G1,2, the second step is because of Fact A.3, and the third step follows from
Lemma I.4.

Additionally,

∥G1,3∥ = ∥(f(x̃)j0 ◦ h(ỹ)i0)f(x)⊤j0 − (f(x̃)j0 ◦ h(ỹ)i0)f(x̃)⊤j0∥
≤ ∥f(x̃)j0∥2 · ∥h(ỹ)i0∥2 · ∥f(x)j0 − f(x̃)j0∥2
≤ R2 ·R0∥x− x̃∥2

where the first step follows from the definition of G1,3, the second step follows from Fact A.3, and the third step is because
of Lemma E.5.

Combining all the above equations we complete the proof.

I.6 CALCULATION: STEP 2 LIPSCHITZ FOR MATRIX FUNCTION −⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0

In this section, we calculate the Lipschitz for −⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0 .

Lemma I.6. If the following conditions

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, y)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let G2(x, y) = −⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0
Then, we have

∥G2(x, y)−G2(x̃, ỹ)∥ ≤ 3R2R0(∥x− x̃∥2 + ∥y − ỹ∥2)

Proof. We define

G2,1 = − ⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0 − (−⟨f(x̃)j0 , h(y)i0⟩f(x)j0f(x)⊤j0)
G2,2 = − ⟨f(x̃)j0 , h(y)i0⟩f(x)j0f(x)⊤j0 − (−⟨f(x̃)j0 , h(ỹ)i0⟩f(x)j0f(x)⊤j0)
G2,3 = − ⟨f(x̃)j0 , h(ỹ)i0⟩f(x)j0f(x)⊤j0 − (−⟨f(x̃)j0 , h(ỹ)i0⟩f(x̃)j0f(x)⊤j0)
G2,4 = − ⟨f(x̃)j0 , h(ỹ)i0⟩f(x̃)j0f(x)⊤j0 − (−⟨f(x̃)j0 , h(ỹ)i0⟩f(x̃)j0f(x̃)⊤j0)

We have

∥G2,1∥ = ∥ − ⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0 − (−⟨f(x̃)j0 , h(y)i0⟩f(x)j0f(x)⊤j0)∥
≤ ∥f(x)j0 − f(x̃)j0∥2 · ∥h(y)i0∥2 · ∥f(x)j0∥2 · ∥f(x)j0∥2
≤ R2 ·R0∥x− x̃∥2

where the first step is based on the definition of G2,1, the second step follows from Fact A.1, and the third step is because of
Lemma E.4.

and

∥G2,2∥ = ∥ − ⟨f(x̃)j0 , h(y)i0⟩f(x)j0f(x)⊤j0 − (−⟨f(x̃)j0 , h(ỹ)i0⟩f(x)j0f(x)⊤j0)∥
≤ ∥f(x̃)j0∥2 · ∥h(y)i0 − h(ỹ)i0∥ · ∥f(x)j0∥2 · ∥f(x)j0∥2
≤ R∥y − ỹ∥2

where the first step is due to the definition of G2,1, the second step is based on Fact A.1, and the third step follows from
Lemma I.4.

Similarly, we have

∥G2,3∥ ≤ R2 ·R0∥x− x̃∥2
∥G2,4∥ ≤ R2 ·R0∥x− x̃∥2

Combining all the above equations we complete the proof.

I.7 CALCULATION: STEP 3 LIPSCHITZ FOR MATRIX FUNCTION −c(x, y)j0,i0 diag(f(x)j0)

In this section, we calculate the Lipschitz for −c(x, y)j0,i0 diag(f(x)j0).

Lemma I.7. If the following conditions

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, y)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R

• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let R0 be defined as Definition E.6.

• Let G3(x, y) = −c(x, y)j0,i0 diag(f(x)j0)

Then, we have

∥G3(x, y)−G3(x̃, ỹ)∥ ≤ 3R2 ·R0(∥x− x̃∥2 + ∥y − ỹ∥2)

Proof. We define

G3,1 = − c(x, y)j0,i0 diag(f(x)j0)− (−c(x̃, y)j0,i0 diag(f(x)j0))
G3,2 = − c(x̃, y)j0,i0 diag(f(x)j0)− (−c(x̃, ỹ)j0,i0 diag(f(x)j0))
G3,3 = − c(x̃, ỹ)j0,i0 diag(f(x)j0)− (−c(x̃, ỹ)j0,i0 diag(f(x̃)j0))

For G3,1, we have

∥G3,1∥ = ∥ − c(x, y)j0,i0 diag(f(x)j0)− (−c(x̃, y)j0,i0 diag(f(x)j0))∥
≤ |c(x, y)j0,i0 − c(x̃, y)j0,i0 | · ∥f(x)j0∥2
≤ R2 ·R0∥x− x̃∥2

where the first step follows from definition of G3,1, the second step is based on Fact A.2 and the third step is because of
Lemma I.4.

Similarly, we have

∥G3,2∥ ≤ R∥y − ỹ∥2
∥G3,3∥ ≤ 2R2 ·R0∥x− x̃∥2

Combining all the above equations we complete the proof.

I.8 CALCULATION: STEP 4 LIPSCHITZ FOR MATRIX FUNCTION c(x, y)j0,i0f(x)j0f(x)
⊤
j0

In this section, we calculate the Lipschitz for c(x, y)j0,i0f(x)j0f(x)
⊤
j0

.

Lemma I.8. If the following conditions

• Let α(x)j0 ∈ R be defined as Definition A.9

• Let f(x)j0 ∈ Rn be defined as Definition A.10

• Let c(x, y)j0,i0 ∈ R be defined as Definition A.12

• Let γ(x)j0 = ⟨f(x)j0 , v⟩ ∈ R
• ∥A1∥, ∥A2∥, ∥A3∥ ≤ R, ∥Aj0 ∥ ≤ R, ∥x∥2 ≤ R,|bj0,i0 | ≤ R, ∥v∥2 ≤ R2

• Let R ≥ 4

• Let R0 be defined in Definition E.6.

• Let G4(x, y) = c(x, y)j0,i0f(x)j0f(x)
⊤
j0

Then, we have

∥G4(x, y)−G4(x̃, ỹ)∥ ≤ 5R2 ·R0(∥x− x̃∥2 + ∥y − ỹ∥2)

Proof. We define

G4,1 = c(x, y)j0,i0f(x)j0f(x)
⊤
j0 − c(x̃, y)j0,i0f(x)j0f(x)

⊤
j0

G4,2 = c(x̃, y)j0,i0f(x)j0f(x)
⊤
j0 − c(x̃, ỹ)j0,i0f(x)j0f(x)

⊤
j0

G4,3 = c(x̃, ỹ)j0,i0f(x)j0f(x)
⊤
j0 − c(x̃, ỹ)j0,i0f(x̃)j0f(x)

⊤
j0

G4,4 = c(x̃, ỹ)j0,i0f(x̃)j0f(x)
⊤
j0 − c(x̃, ỹ)j0,i0f(x̃)j0f(x̃)

⊤
j0

For G4,1, we have

∥G4,1∥ = ∥c(x, y)j0,i0f(x)j0f(x)⊤j0 − c(x̃, y)j0,i0f(x)j0f(x)
⊤
j0∥

≤ |c(x, y)j0,i0 − c(x̃, y)j0,i0 | · ∥f(x)j0∥2 · ∥f(x)j0∥2

≤ R2 ·R0∥x− x̃∥2

where the first step is due to definition of G4,1, the second step is because of Fact A.2 and the third step follows from
Lemma E.4 and Lemma E.5.

Similarly, we have

∥G4,2∥ ≤ R∥y − ỹ∥2
∥G4,3∥ ≤ 2R2 ·R0∥x− x̃∥2
∥G4,4∥ ≤ 2R2 ·R0∥x− x̃∥2

Combining all the above equations we complete the proof.

I.9 PSD UPPER BOUND FOR HESSIAN x, y

In this section, we analyze the PSD upper bound for Hessian.

Lemma I.9. If the following conditions hold

• maxj0∈[n] ∥Aj0 ∥ ≤ R

• Let H(x, y)j0,i0 ∈ Rd2×d denote d2Lj0,i0

dxdyi0

• d2Lj0,i0

dxdyi1
= 0d2×d

• Let H(x, y) ∈ Rd2×d2

be

H(x, y) :=
[∑n

j0=1 Hj0,1(x, y)
∑n

j0=1 Hj0,2(x, y) · · · ∑n
j0=1 Hj0,d(x, y)

]

Then we have

• Part 1. For j0 ∈ [d], i0 ∈ [n]

∥H(x, y)j0,i0∥ ≤ 10R2

• Part 2.

∥H(x, y)∥ ≤ nd · 10R2

Proof. Proof of Part 1. It follows from Lemma I.10.

Proof of Part 2. We can show that

∥H(x, y)∥ =
d∑

j0=1

n∑

i0=1

∥H(x, y)j0,i0∥

≤ nd · 10R2

where the first step is due to the assumption of H(x, y), and the second step comes from Part 1.

I.10 UPPER BOUND ON HESSIAN SPECTRAL NORMS

In this section, we find the upper bound for the Hessian spectral norms.

Lemma I.10. If the following conditions hold

• G1(x, y) = (f(x)j0 ◦ h(y)i0)f(x)⊤j0
• G2(x, y) = −⟨f(x)j0 , h(y)i0⟩f(x)j0f(x)⊤j0

• G3(x, y) = −c(x, y)j0,i0 diag(f(x)j0)
• G4(x, y) = c(x, y)j0,i0f(x)j0f(x)

⊤
j0

Then, we have

• Part 1. ∥G1(x, y)∥ ≤ R2

• Part 2. ∥G2(x, y)∥ ≤ R2

• Part 3. ∥G3(x, y)∥ ≤ 2R2

• Part 4. ∥G4(x, y)∥ ≤ 2R2

• Part 5.
4∑

k=1

∥Gk(x, y)∥ ≤ 10R2

Proof. The proof is straightforward by using upper bound on each term

J GENERATING A SPECTRAL SPARSIFIER VIA TENSORSKETCH

Tensor type sketching has been widely used in problems Song et al. [2019], Diao et al. [2018, 2019], Ahle et al. [2020],
Song et al. [2021a, 2024b, 2022], Zhang [2022], Song et al. [2023]. Section J.1 presents the definition of oblivious subspace
embedding. In Section J.2, we give an overview of TensorSRHT and introduce its basic property. In Section J.3, we present
the definition of the property of TensorSparse. In Section J.4, we introduce the fast approximation for hessian via sketching.

J.1 OBLIVIOUS SUBSPACE EMBEDDING

We define oblivious subspace embedding,

Definition J.1 (Oblivious subspace embedding, Sarlos [2006]). We define (ϵ, δ, d, n)-Oblivious subspace embedding (OSE)
as follows: Suppose Π is a distribution on m × n matrices S, where m is a function of n, d, ϵ, and δ. Suppose that with
probability at least 1 − δ, for any fixed n × d orthonormal basis U , a matrix S drawn from the distribution Π has the
property that the singular values of SU lie in the range [1− ϵ, 1 + ϵ].

J.2 TENSORSRHT

We define a well-known sketching matrix family called TensorSRHT Lu et al. [2013], Ahle et al. [2020]. It has been used in
many optimization literature Song et al. [2021a, 2024b, 2022].

Definition J.2 (Tensor subsampled randomized Hadamard transform (TensorSRHT) Ahle et al. [2020], Song et al. [2021a]).
The TensorSRHT S : Rn × Rn → Rm is defined as

S :=
1√
m
P · (HD1 ⊗HD2),

where each row of P ∈ {0, 1}m×n2

contains only one 1 at a random coordinate and one can view P as a sampling matrix.
H is a n× n Hadamard matrix, and D1, D2 are two n× n independent diagonal matrices with diagonals that are each
independently set to be a Rademacher random variable (uniform in {−1, 1}).

It is known Ahle et al. [2020] that TensorSRHT matrices imply the OSE.

Lemma J.3 (Ahle et al. [2020], Song et al. [2021a] , see for example, Lemma 2.12 in Song et al. [2021a]). Let S be a
TensorSRHT matrix defined in Definition J.2. If

m = O(ϵ−2d2 log3(nd/ϵδ)),

then S is an (ϵ, δ, d2, n2)-OSE for degree-2 tensors.

Further for matrices A1, A2 ∈ Rn×d, S(A1 ⊗A2) can be computed in Õ(nd+md2) time.

J.3 TENSORSPARSE

Song et al. [2022] define TensorSparse by compose Sparse embedding Nelson and Nguyên [2013], Cohen [2016] with
tensor operation Pagh [2013].

Definition J.4 (TensorSparse, see Definition 7.6 in Song et al. [2022]). Let h1, h2 : [n]× [s]→ [m/s] be O(log 1/δ)-wise
independent hash functions and let σ1, σ2 : [n]× [s]→ {±1} be O(log 1/δ)-wise independent random sign functions. Then,
the degree two tensor sparse transform, S : Rn × Rn → Rm is given as:

Rr,(i,j) = ∃k ∈ [s] : σ1(i, k)σ2(j, k)/
√
s · 1[((h1(i, k) + h2(j, k)) mod m/s) + (k − 1)m/s = r]

Lemma J.5 (Theorem 7.10 in Song et al. [2022]). Let ϵ ∈ (0, 1) be precision parameter and δ ∈ (0, 1) be success
probability. Let S ∈ Rm×n2

be a TensorSparse matrix (Def. J.4). Suppose m = Ω(ϵ−2d2 log(n/δ)) and s = ϵ−1 log(n/δ),
then TensorSparse provides (ϵ, δ, d2, n2)-OSE.

Further for matrices A1, A2 ∈ Rn×d, S(A1 ⊗A2) can be computed in O((nnz(A1) + nnz(A2))s+md2) time

J.4 FAST APPROXIMATION FOR HESSIAN VIA SKETCHING

In this section, we present the fast approximation for hessian via sketching.

Lemma J.6. If the following conditions hold

• Let A1 ∈ Rn×d, let A2 ∈ Rn×d

• Let A = (A1 ⊗A2) ∈ Rn2×d2

• Let W ∈ Rn×n denote a positive diagonal matrix

• Let A1 = WA1

• Let A = (A1 ⊗A2) ∈ Rn2×d2

Then, we have

• Part 1.

A⊤(W 2 ⊗ In)A = A
⊤
A

• Part 2. For any constant ϵ ∈ (0, 0.1), there is an algorithm runs in Õ(nd+ d4) time to compute SA such that

(1− ϵ) · A⊤
A ⪯ A

⊤
S⊤SA ⪯ (1 + ϵ) · A⊤

A

holds with probability 1− δ.

• Part 3. For any ϵ ∈ (0, 0.1), there is an algorithm runs in Õ(nnz(A1) + nnz(A2) + d4) time to compute SA such that

(1− ϵ) · A⊤
A ⪯ A

⊤
S⊤SA ⪯ (1 + ϵ) · A⊤

A

holds with probability 1− δ.

Proof. Proof of Part 1.

We can show

A⊤(W 2 ⊗ In)A = A⊤(W ⊗ In) · (W ⊗ In)A

= ((W ⊗ In)(A1 ⊗A2))
⊤ · ((W ⊗ In)(A1 ⊗A2))

= (A1 ⊗A2)
⊤(A1 ⊗A2)

= A
⊤
A

where the first step follows from (W 2 ⊗ I) = (W ⊗ In) · (W ⊗ In) (where ⊗ operation and W is a diagonal matrix), the
second step follows from the definition of A,

the third step follows from the definition of A1, and the last step follows from the definition of A.

Proof of Part 2.

It follows from using Lemma J.3.

Proof of Part 3.

It follows from using Lemma J.5.

K ANALYSIS OF ALGORITHM 1

We introduce the concept of a (l,M)-good function in Section K.1 and discuss the notion of a well-initialized point.
Subsequently, we will present our approximation and update rule methods in Section K.2. In light of the optimization
problem introduced in Definition 1.2, we put forward Algorithm 1, and in this section, we establish the correctness and
convergence of the algorithm.

K.1 (l,M)-GOOD LOSS FUNCTION

We will now introduce the definition of a (l,M)-Good Loss Function. Next, let’s revisit the optimization problem defined in
Definition A.7 as follows:

L(X,Y) := 0.5 · ∥D(X)−1

︸ ︷︷ ︸
n×n

exp(A1XA⊤
2)︸ ︷︷ ︸

n×n

A3︸︷︷︸
n×d

Y︸︷︷︸
d×d

− B︸︷︷︸
n×d

∥2F

We will now demonstrate that our optimization function possesses the following properties.

Definition K.1 ((l,M)-good Loss function). For a function L : Rd → R, if the following conditions hold,

• Hessian is M -Lipschitz. If there exists a positive scalar M > 0 such that

∥∇2L(x, y)−∇2L(x̃, ỹ)∥ ≤M · (∥x− x̃∥2 + ∥y − ỹ∥2)

• l-local Minimum. Given l > 0 as a positive scalar. If there exists a vector x∗ ∈ Rd2

and y∗ ∈ Rd2

such that the
following holds

– ∇L(x∗, y∗) = 0d.
– ∇2L(x∗, y∗) ⪰ l · I2d2 .

• Good Initialization Point. Let x0 and y0 denote the initialization point. If r0 := (∥x0 − x∗∥2 + ∥y0 − y∗∥2) satisfies

r0M ≤ 0.1l.

we say L is (l,M)-good

Drawing upon Lemma C.1 and Lemma I.1, we can establish that our loss function (See Definition A.7) satisfies the
aforementioned assumption.

K.2 CONVERGENCE

After introducing the approximation method ’Sparsifier via TensorSketch’ in Section J, we will now proceed to introduce
the update method employed in Algorithm 1. In this section, we demonstrate the concept of approximate update and present
an induction hypothesis.

Definition K.2 (Approximate Update). The following process is considered by us
[
x(t+ 1)
y(t+ 1)

]
←

[
x(t)
y(t)

]
−
[
g(x(t))
g(y(t))

]
H̃−1

A tool from previous work is presented by us now.

Lemma K.3 (Iterative shrinking, a variation of Lemma 6.9 on page 32 of Li et al. [2023c]). If the following conditions hold

• Loss Function L is (l,M)-good (see Definition K.1).

• Let ϵ0 ∈ (0, 0.1) (see Lemma J.6).

• Let x∗, y∗ be defined in Definition K.1 and xt, yt be defined in Definition K.2.

• Let rt := ∥xt − x∗∥2 + ∥yt − y∗∥2.

• Let rt := M · rt
It follows that

rt+1 ≤ 2 · (ϵ0 + rt/(l − rt)) · rt.

In this context, where T denotes the total number of iterations in the algorithm, we require the following lemma based on
the induction hypothesis to apply Lemma K.3. This lemma is a well-established concept in the literature, and for further
details, you can refer to Li et al. [2023c].

Lemma K.4 (Induction hypothesis, Lemma 6.10 on page 34 of Li et al. [2023c]). If the following condition hold

• ϵ = 0.01 (see Lemma J.6)

• Let x∗, y∗ be defined in Definition K.1 and xt, yt be defined in Definition K.2.

• Let rt := ∥xt − x∗∥2 + ∥yt − y∗∥2.

• For each i ∈ [T], ri ≤ 0.4 · ri−1, for all i ∈ [t]

• Let l and M be Defined in Definition K.1

• M · ri ≤ 0.1l, for all i ∈ [t].

It follows that

• rt+1 ≤ 0.4rt

• M · rt+1 ≤ 0.1l

L MAIN THEOREM

In this section, we incorporate our analysis together and present our main Theorem.

Theorem L.1 (Main Theorem, Formal version of Theorem 1.4). If the following conditions hold:

• Let A1, A2, A3, B ∈ Rn×d.

• Let X,Y ∈ Rd×d.

• Let D(X) ∈ Rn×n be defined as D(X) := diag(exp(A1XA⊤
2)1n).

• Let ϵ ∈ (0, 0.1).

• Let ω ≈ 2.37.

• Let r0 = ∥x0 − x∗∥2 + ∥y0 − y∗∥2
Then, there exists an algorithm (see Algorithm 1) that runs in log(r0/ϵ) iterations and spends

Õ(Tmat(n, d, n) + Tmat(n, d, d) + d2ω)

per iteration and solves the attention optimization problem (defined in Definition 1.2):

min
X,Y ∈Rd×d

∥D(X)−1 exp(A1XA⊤
2)A3Y −B∥2F ,

and finally outputs x̃, ỹ such that

(∥x̃− x∗∥2 + ∥ỹ − y∗∥2) ≤ ϵ

with probability 1− 1/ poly(n).

Proof. This follows from combining Lemma B.4, Lemma B.5, Lemma B.3, Lemma C.1, Lemma E.1, Lemma F.1,
Lemma G.1, Lemma H.1, and Lemma I.1.

Number of iterations.

By Lemma K.4, we have that

(∥xT − x∗∥2 + ∥yT − y∗∥2) ≤ 0.4T (∥x0 − x∗∥2 + ∥y0 − y∗∥2)

By choosing T = log(r0/ϵ), the accuracy is satisfied.

Analysis of time complexity.

The analysis of the time complexity can be divided into two parts (forward computation and backward computation).

Proof of forward computation.

This follows from Lemma B.3, where we can compute f, h, c in

O(Tmat(n, d, d) + Tmat(n, n, d))

time.

Proof of gradient computation.

This follows from Lemma B.4 and Lemma B.5, which takes

O(Tmat(n, n, d) + Tmat(n, d, d))

time.

Proof of Hessian computation.

This follows from Lemma J.6, which takes

Õ(nd) + Tmat(d
2, d2, d2)

time.

Proof of g times inverse of approximate Hessian.

The running time of g times inverse of approximate hessian is as follows

Tmat(d
2, d2, d2) = d2ω

Therefore, for each iteration, the time spent is as follows

Õ(Tmat(n, d, n) + Tmat(n, d, d) + d2ω)

M MORE RELATED WORKS

Second-order Method Second-order method have been used for solving many convex optimization and non-convex
optimization problems, such as linear programming Cohen et al. [2019], Brand [2020], Jiang et al. [2021], Song and Yu
[2021], Gu and Song [2022], Huiberts et al. [2023], empirical risk minimization Lee et al. [2019], Qin et al. [2023b], support
vector machines Gu et al. [2025], cutting plan method Lee et al. [2015], Jiang et al. [2020b], semi-definite programming
Jiang et al. [2020a], Huang et al. [2022], Gu and Song [2022], Song et al. [2023], hyperbolic programming/polynomials
Deng et al. [2023e], Zhang and Zhang [2023], streaming algorithm Liu et al. [2023b], Brand and Song [2023], Song et al.
[2023], federated learning Bian et al. [2023].

Convergence and Deep Neural Network Optimization Many works focus on analyzing optimization, convergence guar-
antees, and training improvement. Li and Liang [2018] shows that stochastic gradient descent optimizes over-parameterized
neural networks on structured data, while Du et al. [2019] demonstrates that gradient descent optimizes over-parameterized
neural networks. In Allen-Zhu et al. [2019a], a convergence theory for over-parameterized deep neural networks via
gradient descent is developed. Allen-Zhu et al. [2019b] analyzes the convergence rate of training recurrent neural networks.
Arora et al. [2019a] provides a fine-grained analysis of optimization and generalization for over-parameterized two-layer
neural networks. Arora et al. [2019b] studies exact computation with an infinitely wide neural network. Cai et al. [2019]
proposes a Gram-Gauss-Newton method for optimizing over-parameterized neural networks. Zou and Gu [2019] improves
the analysis of the global convergence of stochastic gradient descent when training deep neural networks, requiring a
milder over-parameterization compared to prior research. Other research, such as Oymak and Soltanolkotabi [2020], Ji
and Telgarsky [2020a], Zhang et al. [2020b], focuses on optimization and generalization, while Gao et al. [2023a], Li et al.
[2023c] emphasize the convergence rate and stability. Works like Brand et al. [2021], Song et al. [2024b], Alman et al.
[2024], Munteanu et al. [2022], Zhang [2022], Cao et al. [2024] concentrate on specialized optimization algorithms and
techniques for training neural networks, and Lee et al. [2020], Huang et al. [2021] concentrate on leveraging neural network
structure.

Algorithmic Regularization There is a significant body of research exploring the latent bias inherent in gradient descent
when applied to separable classification tasks. This research typically employs logistic or exponentially-tailed loss functions
to maximize margins, as demonstrated in previous studies Ji and Telgarsky [2020b], Gunasekar et al. [2018], Kini et al.
[2021], Ji and Telgarsky [2021], Soudry et al. [2018], Moroshko et al. [2020], Nacson et al. [2019]. These novel findings
have also been applied to non-separable data through the utilization of gradient-based techniques Ji et al. [2020], Ji and
Telgarsky [2019, 2018]. Analysis of implicit bias in regression problems and associated loss functions is carried out using
methods such as mirror descent Yun et al. [2021], Amid and Warmuth [2020a,b], Vaskevicius et al. [2019], Sun et al. [2022],
Woodworth et al. [2020], Azizan et al. [2021], Gunasekar et al. [2018] and stochastic gradient descent HaoChen et al. [2021],
Li et al. [2022], Liang and Rakhlin [2020], Zou et al. [2021], Damian et al. [2021], Li et al. [2019], Blanc et al. [2020].
These findings extend to the implicit bias of adaptive and momentum-based optimization methods Ji et al. [2021], Wang
et al. [2021], Qian and Qian [2019].

	Introduction
	Related Work
	Technique Overview
	Theoretical Analysis
	Algorithm

	Discussion
	Conclusion
	Preliminaries
	Basic Facts
	General Definitions
	Helpful Definitions With Respect to
	A Helpful Definition With Respect to
	Helpful Definitions With Respect to Both and
	Regularization
	Fast Matrix Multiplication

	Gradient
	Gradient for
	Gradient With Respect to
	Computation of
	Reformulating Gradient () in Matrix View
	Reformulating Gradient () in Matrix View

	Hessian
	Hessian for
	Hessian
	A Helpful Lemma
	Defining

	Lipschitz Property of
	Main Result
	Summary of Nine Steps
	A Core Tool: Upper Bound for Several Basic Functions
	A Core Tool: Lipschitz Property for Several Basic Functions
	Calculation: Step 1 Lipschitz for Matrix Function
	Calculation: Step 2 Lipschitz for Matrix Function
	Calculation: Step 3 Lipschitz for Matrix Function
	Calculation: Step 4 Lipschitz for Matrix Function
	Calculation: Step 5 Lipschitz for Matrix Function
	Calculation: Step 6 Lipschitz for Matrix Function
	Calculation: Step 7 Lipschitz for Matrix Function
	Calculation: Step 8 Lipschitz for Matrix Function
	Calculation: Step 9 Lipschitz for Matrix Function

	Hessian for Is PSD
	Main Result
	PSD Bound

	Hessian for
	Hessian Property
	Hessian for One

	Hessian for and
	Computing Hessian
	A Helpful Lemma
	Creating

	Lipschitz for Hessian of
	Main Results
	Summary of Four Steps on Lipschitz for Matrix Functions
	A Core Tool: Upper Bound for Several Basic Functions
	A Core Tool: Lipschitz Property for Several Basic Functions
	Calculation: Step 1 Lipschitz for Matrix Function
	Calculation: Step 2 Lipschitz for Matrix Function
	Calculation: Step 3 Lipschitz for Matrix Function
	Calculation: Step 4 Lipschitz for Matrix Function
	PSD Upper Bound for Hessian
	Upper Bound on Hessian Spectral Norms

	Generating a Spectral Sparsifier via TensorSketch
	Oblivious Subspace Embedding
	TensorSRHT
	TensorSparse
	Fast Approximation for Hessian via Sketching

	Analysis Of Algorithm 1
	-Good Loss Function
	Convergence

	Main Theorem
	More Related Works

