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ABSTRACT

Traditional Dictionary Learning (DL) aims to approximate data vectors as sparse
linear combinations of basis elements (atoms) and is widely used in machine
learning, computer vision, and signal processing. To extend DL to graphs,
Vincent-Cuaz et al. 2021 proposed a method, called GDL, which describes the
topology of each graph with a pairwise relation matrix (PRM) and compares
PRMs via the Gromov–Wasserstein Discrepancy (GWD). However, the lack of ro-
bustness often excludes GDL from a variety of real-world applications since GWD
is sensitive to the structural noise in graphs. This paper proposes an improved
graph dictionary learning algorithm based on a robust Gromov–Wasserstein dis-
crepancy (RGWD) which has theoretically sound properties and an efficient nu-
merical scheme. Based on such a discrepancy, our dictionary learning algorithm
can learn atoms from noisy graph data. Experimental results demonstrate that our
algorithm achieves good performance on both simulated and real-world datasets.

1 INTRODUCTION

Dictionary learning (DL) seeks to learn a set of basis elements (atoms) from data and approximates
data samples by sparse linear combinations of these basis elements (Mallat, 1999; Mairal et al.,
2009; Tošić and Frossard, 2011), which has numerous machine learning applications including di-
mensionality reduction (Feng et al., 2013; Wei et al., 2018), classification (Raina et al., 2007; Mairal
et al., 2008), and clustering (Ramirez et al., 2010; Sprechmann and Sapiro, 2010), to name a few.

Although DL has received significant attention, it mostly focuses on vectorized data of the same
dimension and is not amenable to graph data (Xu, 2020; Vincent-Cuaz et al., 2021; 2022). Many
exciting machine learning tasks use graphs to capture complex structures (Backstrom and Leskovec,
2011; Sadreazami et al., 2017; Naderializadeh et al., 2020; Jin et al., 2017; Agrawal et al., 2018).
DL for graphs is more challenging due to the lack of effective means to compare graphs. Specifi-
cally, evaluating the similarity between one observed graph and its approximation is difficult, since
they are often with different numbers of nodes and the node correspondence across graphs is often
unknown (Xu, 2020; Vincent-Cuaz et al., 2021).

The seminal work of Vincent-Cuaz et al. (2021) proposed a DL method for graphs based on
the Gromov–Wasserstein Discrepancy (GWD) that is a variant of the Gromov–Wasserstein dis-
tance. Gromov–Wasserstein distance compares probability distributions supported on different met-
ric spaces using pairwise distances (Mémoli, 2011). By expressing each graph as a probability
measure and capturing the graph topology with a pairwise relation matrix (PRM), comparing graphs
can be naturally formulated as computing the GWD, since both the node correspondence and the
discrepancy of the compared graphs are calculated (Peyré et al., 2016; Xu et al., 2019b). However,
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observed graphs often contain structural noise including spurious or missing edges, which leads to
the differences between the obtained PRMs and the true ones (Donnat et al., 2018; Xu et al., 2019b).
Since GWD lacks robustness (Séjourné et al., 2021; Vincent-Cuaz et al., 2022; Tran et al., 2022),
the inaccuracies of PRMs may severely affect GWD and the effectiveness of DL in real-world ap-
plications.

Contributions. To handle the inaccuracies of PRMs, this paper first proposes a novel robust
Gromov–Wasserstein discrepancy (RGWD) which adopts a minimax formulation. We prove that the
inner maximization problem has a closed-form solution and derive an efficient numerical scheme to
approximate RGWD. Under suitable assumptions, such a numerical scheme is guaranteed to find
a δ-stationary solution within O( 1

δ2 ) iterations. We further prove that RGWD is lower bounded
and the lower bound is achieved if and only if two graphs are isomorphic. Therefore, RGWD can
be employed to compare graphs. RGWD also satisfies the triangle inequality which is of its own
interest and allows numerous potential applications. A robust graph dictionary learning (RGDL)
algorithm is thereby developed to learn atoms from noisy graph data, which assesses the quality of
approximated graphs via RGWD. Numerical experiments on both synthetic and real-world datasets
demonstrate that RGDL achieves good performance.

The rest of the paper is organized as follows. In Sec. 2, a comprehensive review of the background
is given. Sec. 3 presents RGWD and the numerical approximation scheme for RGWD. RGDL is
delineated in Sec. 4. Empirical results are demonstrated in Sec. 5. We finally discuss related work
in Sec. 6.

2 PRELIMINARY

2.1 OPTIMAL TRANSPORT

We first present the notation used throughout this paper and then review the definition of the
Gromov–Wasserstein distance that originates from the optimal transport theory (Villani, 2008; Peyre
and Cuturi, 2018).

Notation. We use bold lowercase symbols (e.g. x), bold uppercase letters (e.g. A), uppercase
calligraphic fonts (e.g. X ), and Greek letters (e.g. α) to denote vectors, matrices, spaces (sets), and
measures, respectively. 1d ∈ Rd is a d-dimensional all-ones vector. ∆d is the probability simplex
with d bins, namely the set of probability vectors ∆d =

{
a ∈ Rd+|

∑d
i=1 ai = 1

}
. A[i, :] and A[:, j]

are the ith row and the jth column of matrix A respectively. Given a matrix A, ‖A‖F and ‖A‖∞
denote its Frobenius norm and element-wise `∞-norm (i.e., ‖A‖∞ = maxi,j |Aij |), respectively.
The cardinality of set A is denoted by |A|. The bracketed notation JnK is the shorthand for integer
sets {1, 2, . . . , n}. A discrete measure α is denoted by α =

∑m
i=1 aiδxi , where δx is the Dirac

measure at position x, i.e., a unit of mass infinitely concentrated at x.

Gromov–Wasserstein distance. Optimal Transport addresses the problem of transporting one
probability measure towards another probability measure with the minimum cost (Villani, 2008;
Peyre and Cuturi, 2018). The induced cost defines a distance between the two probability measures.
Gromov–Wasserstein (GW) distance extends classic optimal transport to compare probability mea-
sures supported on different spaces (Mémoli, 2011). Let (X , dX ) and (Y, dY) be two metric spaces.
Given two probability measures α =

∑m
i=1 piδxi and β =

∑n
i′=1 qi′δyi′ where x1, x2, . . ., xm ∈ X

and y1, y2, . . ., yn ∈ Y , the r-GW distance between α and β is defined as

GWr(α, β) :=

(
min

T∈Π(p,q)

m∑
i,j=1

n∑
i′,j′=1

Dr
ii′jj′Tii′Tjj′

) 1
r

,

where the feasible domain of the transport plan T = [Tii′ ] is given by the set

Π(p,q) =
{
T ∈ Rm×n+

∣∣T1n = p,T>1m = q
}
,

and Dii′jj′ calculates the difference between pairwise distances, i.e., Dii′jj′ = |dX (xi,xj) −
dY(yi′ ,yj′)|.
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2.2 GRAPH REPRESENTATION AND COMPARISON

In this subsection, we formalize the idea of comparing graphs with GWD, which addresses the
challenges that graphs are often with different numbers of nodes and the node correspondence is
unknown (Xu et al., 2019b; Xu, 2020; Vincent-Cuaz et al., 2021).

Pairwise relation and graph representation. Given a graph G with n nodes, assigning each node
an index i ∈ JnK, G can be expressed as a tuple (C,p), where C ∈ Rn×n is a matrix encoding
the pairwise relations (e.g. adjacency, shortest-path, Laplacian, or heat kernel) and p ∈ ∆n is a
probability vector modeling the relative importance of nodes within the graph (Peyré et al., 2016;
Xu et al., 2019b; Titouan et al., 2019; Vincent-Cuaz et al., 2022).

Gromov–Wasserstein Discrepancy. GWD can be derived from the 2-GW distance by replacing
the metrics with pairwise relations (Xu et al., 2019b; Vincent-Cuaz et al., 2022). More specifically,
given an observed source graph Gs and a target graph Gt that can be expressed as (Cs,ps) and
(Ct,pt) respectively, GWD is defined as

GWD
(
(Cs,ps), (Ct,pt)

)
=

(
min

T∈Π(ps,pt)

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′)
2Tii′Tjj′

) 1
2

,

where ns and nt are the numbers of nodes of Gs and Gt respectively. GWD computes both a soft
assignment matrix between the nodes of the two graphs and a notion of discrepancy between them.
For conciseness, we abbreviate GWD

(
(Cs,ps), (Ct,pt)

)
to GWD(Cs,Ct) in the sequel.

2.3 DICTIONARY LEARNING

Traditional DL approximates data vectors as sparse linear combinations of basis elements (atoms)
(Mallat, 1999; Mairal et al., 2009; Tošić and Frossard, 2011; Jiang et al., 2015), and is usually
formulated as

min
D∈C,W

K∑
k=1

∥∥∥X[:, k]−
M∑
m=1

wkmD[:,m]
∥∥∥2

2
+ λΩ(wk), (1)

where X ∈ Rd×K is the data matrix whose columns represent samples, the matrix D ∈ Rd×M
contains M atoms to learn and is constrained to the following set

C = {D ∈ Rd×M |∀m ∈ JMK, ‖D[:,m]‖2 ≤ 1},

W ∈ RM×K is the new representation of data whose kth-column wk = [wkm]m∈JMK stores the
embedding of the kth sample, and λΩ(wk) promotes the sparsity of wk. Such a formulation only
applies to vectorized data.

Recently, Xu 2020 proposes to approximate graphs via the highly non-linear GW barycenter. Specif-
ically, given a dataset of K graphs which has PRMs {Ck}k∈JKK such that Ck ∈ Rnk×nk , the basis
elements {C̄m}m∈JMK are learned by solving

min
{C̄m}m∈JMK,{wk}k∈JKK

K∑
k=1

GWD2

(
Ck,B

(
wk, {C̄m}m∈JMK

))
,

where wk ∈ ∆M is referred to as the embedding of the kth graph Gk, and the GW barycenter
B
(
wk, {C̄m}m∈JMK

)
gives the approximation of Gk and is defined as

B
(
wk, {C̄m}m∈JMK

)
= argmin

B

M∑
m=1

wkm GWD2(B, C̄m).

Therefore, a complex bi-level optimization problem is involved, which is computationally inefficient
(Vincent-Cuaz et al., 2021).
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DL for graphs. To overcome the above computational issues, Vincent-Cuaz et al. 2021 proposed
GDL which approximates each graph as a weighted sum of PRMs and is formulated as

min
{C̄m}m∈JMK,{wk}k∈JKK

K∑
k=1

GWD2
(
Ck,

M∑
m=1

wkmC̄m
)

+ λΩ(wk),

where each atom C̄m is a na×na matrix. In contrast to the `2 loss in Eq. (1), GWD is used to assess
the quality of the linear representation

∑M
m=1 w

k
mC̄m for k ∈ JKK. However, the observed graphs

often contain noisy edges or miss some edges in real-world applications (Clauset et al., 2008; Xu
et al., 2019b; Shi et al., 2019; Piccioli et al., 2022), which leads to the inaccuracies of the PRMs Ck,
that is, the deviation between Ck and the true PRM Ck∗. Since GWD lacks robustness (Séjourné
et al., 2021; Vincent-Cuaz et al., 2022; Tran et al., 2022), the quality of the learned dictionary may
be severely affected.

3 ROBUST GROMOV–WASSERSTEIN DISCREPANCY

To deal with the inaccuracies of PRMs, this section defines a robust variant of GWD, referred to as
RGWD. The properties of RGWD are rigorously analyzed. We then derive a theoretically guaran-
teed numerical scheme for calculating RGWD approximately. Due to the limit of space, all proofs
can be found in the appendix.

Definition 1 Given an observed source graph Gs and a target graph Gt that can be expressed as
(Cs,ps) and (Ct,pt) respectively, RGWD is defined by the solution to the following problem

RGWD
(
(Cs,ps), (Ct,pt), ε

)
=
(

min
T∈Π(ps,pt)

max
E∈Uε

f(T,E;Cs,Ct)
) 1

2

,

where the objective f(·) is given by

f(T,E;Cs,Ct) =

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′ − Ei′j′)2Tii′Tjj′ ,

and the perturbation E is in the bounded set Uε = {E|E = E> and ‖E‖∞ ≤ ε}.

RGWD requires the sought transport plan to have low transportation costs for all perturbation E in
set Uε. For succinctness, we omit Cs and Ct in f(T,E;Cs,Ct) in the following.

3.1 PROPERTIES OF RGWD

The properties of RGWD are presented as follows. Firstly, although RGWD involves a non-convex
non-concave minimax optimization problem, the inner maximization problem has a closed-form
solution, which allows an efficient numerical scheme for RGWD. Secondly, RGWD has a lower
bound that is achieved if and only if the expressions of compared graphs are identical up to a per-
mutation, which implies RGWD can be employed to evaluate the similarity between one observed
graph and its approximation in DL. Thirdly, RGWD satisfies the triangle inequality, which allows
numerous potential applications including clustering (Elkan, 2003; HajKacem et al., 2019), metric
learning (Pitis et al., 2019), and Bayesian learning (Moore, 2000; Xiao et al., 2019). Finally, arbi-
trarily changing the node orders does not affect the value of RGWD. More formally, we state the
properties in the following theorem.

Theorem 1 Given an observed source graph Gs and a target graph Gt that can be expressed as
(Cs,ps) and (Ct,pt) respectively, RGWD satisfies

1. for all T ∈ Π(ps,pt), E(T) = [Ei′j′(T)] where

Ei′j′(T) =

{
ε, if

∑ns

i,j=1 Tii′Tjj′(C
s
ij − Ct

i′j′) ≤ 0,

−ε, otherwise.

solves the inner maximization problem
max
E∈Uε

f(T,E).
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2. RGWD is lower bounded, that is,

RGWD
(
(Cs,ps), (Ct,pt), ε

)
≥ ε,

where the equality holds if and only if there exists a bijective π∗ : JnsK → JntK such that
ps
i = pt

π∗(i) for all i ∈ JnsK and Cs
ij = Ct

π∗(i)π∗(j) for all i, j ∈ JnsK.

3. The triangle inequality holds for RGWD, i.e.,

RGWD
(
(C1,p1), (C3,p3), ε

)
≤RGWD

(
(C1,p1), (C2,p2), ε

)
+ RGWD

(
(C2,p2), (C3,p3), ε

)
.

4. RGWD is invariant to the permutation of node orders, i.e., for all permutation matrices Qs

and Qt,

RGWD
(
(Cs,ps), (Ct,pt), ε

)
= RGWD

(
(Qs>CsQs,Qs>ps), (Qt>CtQt,Qt>pt), ε

)
.

As is implied by Theorem 1, RGWD does not define a distance between metric-measure spaces.
Firstly, the identity axiom is not satisfied. Secondly, the symmetry generally does not hold either,
which we exemplify below.

Example 1 (Asymmetry of RGWD) Consider the case ps = pt = [ 0.5
0.5 ], Cs = [ 0 1

1 0 ], Ct =
[ 0 4
4 0 ]. Then RGWD

(
(Cs,ps), (Ct,pt), 1

)
= 11.5 with the solution given by T∗ = [ 0.25 0.25

0.25 0.25 ]

and E∗ = [−1 1
1 −1 ]. In contrast, RGWD

(
(Ct,pt), (Cs,ps), 1

)
= 10.5 with T∗ = [ 0.25 0.25

0.25 0.25 ] and
E∗ = [−1 −1

−1 −1 ]. One has RGWD
(
(Cs,ps), (Ct,pt), 1

)
6= RGWD

(
(Ct,pt), (Cs,ps), 1

)
.

Example 1 showcases that RGWD is asymmetric even if ns = nt.

3.2 NUMERICAL SCHEME OF RGWD

We derive a gradient based numerical scheme to solve RGWD by exploiting the property that the
inner maximization problem has a closed-form solution, which is summarized in Algorithm 1. In
each iteration, Eτ that solves the inner problem for current Tτ is calculated. Then, the transport
plan is updated using the projected gradient descent.

Algorithm 1 Projected Gradient Descent for RGWD

1: Input: Initialization T0, step-size η, number of iterations N .
2: Output: Estimated optimal transport plan T̂ and its corresponding perturbation Ê.
3: for τ = 0, 1, . . . , N − 1 do
4: Find Eτ that maximizes f(Tτ ,E).
5: Update the transport plan via

Tτ+1 = ProjΠ(ps,pt)

(
Tτ − η∇Tf(Tτ ,Eτ )

)
,

where the partial gradient takes the form

∇Tf(Tτ ,Eτ ) =2
(
Cs �Cs

)
Tτ1

nt

1n
t>

21n
s

1n
s>

Tτ

((
Ct + Eτ

)
�
(
Ct + Eτ

))
−4CsTτ

(
Ct + Eτ

)
,

with � denoting the element-wise multiplication.
6: end for
7: Pick τ uniformly at random from {1, 2, . . . , T}.
8: Set T̂← Tτ .
9: Find Ê that maximizes f(T̂,E).

To present the convergence guarantee of Algorithm 1, we introduce the notion of the Moreau en-
velope. The stationarity of any function h(x) can be quantified by the norm of the gradient of its
Moreau envelope hλ(x) = minx′ h(x′) + 1

2λ‖x − x′‖2. The following theorem gives the conver-
gence rate of Algorithm 1 and the proof is deferred to the appendix.
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Theorem 2 Define φ(·) = maxE∈Uε f(·,E). The output T̂ of Algorithm 1 with step-size η = γ√
N+1

satisfies

E
[
‖∇φ1/2l(T̂)‖2

]
≤ 2

φ1/2l(T0)−minT∈Π(ps,pt) φ(T) + lL2γ2

γ
√
N + 1

,

where l =
√

2 max{10n3U2
1 + 6n3U1ε+ 4nU1U2 + 4n3ε2, 6n2U1U2 + 2U2

2 + 4n2U2ε} and L =√
2 max{(4U1+2ε)U2

2n
3, 2(2U1+ε)2U2n

3} with n = max{ns, nt}, U1 = max{‖Cs‖∞, ‖Ct‖∞}
and U2 = max{‖pt‖2,maxT′∈Π(ps,pt) ‖T′‖F }.

When U1 and ε are of the orderO( 1
n3 ), both l and L are of the orderO(1) and Theorem 2 states that

an δ-stationary solution can be obtained withinO( 1
δ2 ) iterations. Note that we can multiply Cs, Ct,

and ε by the same number without affecting the resulted transport plan.

4 ROBUST GRAPH DICTIONARY LEARNING

The problem of learning a robust dictionary for graph data is now formulated as follows. Given a
dataset of K graphs expressed by {(Ck,pk)}k∈JKK, estimating the optimal dictionary is formalized
by

min
{C̄m}m∈JMK,{wk}k∈JKK

K∑
k=1

RGWD2

(( M∑
m=1

wkmC̄m, p̄
)
, (Ck,pk), ε

)
− λ‖wk‖2, (2)

where {C̄m}m∈JMK and {wk}k∈JKK are the dictionary and graph embeddings respectively, and p̄

is obtained by sorting and averaging {pk}k∈JKK following Xu et al. (2019a). To resolve (2), we
propose a nested iterative optimization algorithm that is summarized in Algorithm 2. The main idea
is that the dictionary and embeddings are updated alternatingly. We discuss some crucial details
below.

Algorithm 2 Robust Graph Dictionary Learning (RGDL)

1: Input: The dataset {Ck,pk}k∈JKK, the initial dictionary {C̄m}m∈JMK, the number of iterations
T , mini-batch size b.

2: Output: The learned dictionary {C̄m}m∈JMK.
3: for t = 0, 1, . . . , T − 1 do
4: Sample a mini-batch of graphs whose indices are denoted by B such that |B| = b.
5: for k ∈ B do
6: Initialize wk = 1

M 1M and Tk = p̄pk
>.

7: repeat
8: Calculate (Tk, Ek) via Algorithm 1 with fixed wk.
9: Compute wk solving (4) for the fixed Tk and Ek with conditional gradient.

10: until Convergence
11: end for
12: Update the atom C̄m for m ∈ JMK with stochastic gradient ∇̂C̄m which has the form

∇̂C̄m =
2

b

∑
k∈B

wkm

( M∑
m′=1

wkm′C̄
m′ � p̄p̄> −Tk(Ck + Ek)Tk>

)
. (3)

13: end for

Solving wk. We now formulate the problem of obtaining the embedding of the kth graph Gk when
the dictionary is fixed and the PRM is inaccurate. Given dictionary {C̄m}m∈JMK where each C̄m ∈
Rna×na

, the embedding of Gk expressed by (Ck,pk) is calculated by solving

min
wk∈∆M

RGWD2

(( M∑
m=1

wkmC̄m, p̄
)
, (Ck,pk), ε

)
− λ‖wk‖2, (4)
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where λ ≥ 0 induces a negative quadratic regularization promoting sparsity on the simplex (Li
et al., 2020; Vincent-Cuaz et al., 2021). When wk is fixed, updating Tk and Ek can be solved by
Algorithm 1 whose convergence is guaranteed by Theorem 2. For fixed Tk and Ek, the problem of
updating wk is a non-convex problem that can be tackled by a conditional gradient algorithm. Note
that for non-convex problems, the conditional gradient algorithm is proved to converge to a local
stationary point (Lacoste-Julien, 2016). Such a procedure is described from Line 5 to Line 11 in
Algorithm 2, which we observe converges within tens of iterations empirically.

Stochastic updates. To enhance computational efficiency, each atom is updated with stochastic
estimates of the gradient. At each stochastic update, b embedding learning problems are solved
independently for the current dictionary using the procedure stated above, where b is the size of the
sampled mini-batch. Each atom is then updated using the stochastic gradient given in Eq. (3). Note
that the symmetry of each atom is preserved as long as the initialized atom is symmetric, since the
stochastic gradients are symmetric.

5 EXPERIMENTS

This section provides empirical evidence that RGDL performs well in the unsupervised graph clus-
tering task on both synthetic and real-world datasets1. The heat kernel matrix is employed for the
PRM since it captures both global and local topology and achieves good performance in many tasks
(Donnat et al., 2018; Tsitsulin et al., 2018; Chowdhury and Needham, 2021).

5.1 SIMULATED DATASETS

We first test RGDL in the graph clustering task on datasets simulated according to the well-studied
Stochastic Block Model (SBM) (Holland et al., 1983; Wang and Wong, 1987). RGDL is compared
against the following state-of-the-art graph clustering methods: (i) GDL (Vincent-Cuaz et al., 2021)
learns graph dictionaries via GWD; (ii) Gromov–Wasserstein Factorization (GWF) (Xu, 2020) that
approximates graphs via GW barycenters; (iii) Spectral Clustering (SC) of Shi and Malik (2000);
Stella and Shi (2003) applied to the matrix with each entry storing the GWD between two graphs.

Table 1: Average (stdev) ARI scores for the first scenario of synthetic datasets.

balanced unbalanced
σ 0.05 0.10 0.15 0.05 0.10 0.15

GDL 0.119(0.017) 0.031(0.012) 0.016(0.006) 0.049(0.019) 0.018(0.004) 0.018(0.001)
GWF 0.071(0.007) 0.034(0.003) 0.008(0.001) 0.052(0.020) 0.014(0.001) 0.015(0.001)

SC 0.057(0.002) 0.033(0.002) 0.010(0.001) 0.054(0.024) 0.015(0.004) 0.010(0.001)
RGDL(ε=0.01) 0.316(0.005) 0.161(0.005) 0.052(0.002) 0.246(0.013) 0.039(0.009) 0.024 (0.001)
RGDL(ε=0.1) 0.853(0.003) 0.756(0.018) 0.439(0.015) 0.765(0.022) 0.694(0.046) 0.499(0.016)
RGDL(ε=0.2) 0.975(0.025) 0.879(0.023) 0.736(0.020) 0.866(0.023) 0.815(0.028) 0.770(0.016)
RGDL(ε=0.3) 0.975(0.025) 0.879(0.023) 0.869(0.013) 0.943(0.001) 0.916(0.027) 0.848(0.061)
RGDL(ε=10) 0.975(0.025) 0.950(0.000) 0.950(0.000) 0.943(0.001) 0.943(0.001) 0.943(0.001)
RGDL(ε=30) 0.781(0.046) 0.779(0.070) 0.728(0.085) 0.723(0.067) 0.698(0.057) 0.666(0.040)

Dataset generation. We consider two scenarios of inaccuracies. In the first scenario (S1), Gaussian
noise is added into the heat kernel matrix of each graph. More specifically, denoting the heat kernel
matrix of the kth graph as Ck∗ for k ∈ JKK, the PRM available to DL methods is Ck = Ck∗ +Z+
Z> where each entry Zij of Z is sampled from the Gaussian distribution N (0, σ). In the second
scenario (S2), we randomly add ρ|E| edges into the graph and then randomly remove ρ|E| edges
while keeping the graph connected, where E is the edge set of the graph. The heat kernel matrix is
then constructed for the modified graph. Such two scenarios allow us to study the performance of
RGDL against different scales of inaccuracies. In both S1 and S2, we generate two datasets, both of
which involve three generative structures (also used to label graphs): dense (only one community),
two communities, and three communities. We fix p = 0.1 as the probability of inter-community
connectivity and 1− p as the probability of intra-community connectivity. The first dataset includes
20 graphs for each generative structure and thus is referred to as the balanced dataset. The second

1Code available at https://github.com/cxxszz/rgdl.
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Table 2: Average (stdev) ARI scores for the second scenario of synthetic datasets.

balanced unbalanced
ρ 0.00 0.05 0.10 0.00 0.05 0.1

GDL 0.260(0.020) 0.187(0.013) 0.024(0.004) 0.152(0.008) 0.018(0.001) 0.005(0.001)
GWF 0.182(0.006) 0.086(0.004) 0.027(0.005) 0.020(0.005) 0.016(0.002) 0.010(0.002)

SC 0.204(0.002) 0.129(0.017) 0.016(0.005) 0.129(0.008) 0.013(0.001) 0.011(0.005)
RGDL(ε=0.01) 0.451(0.014) 0.449(0.016) 0.449(0.016) 0.401(0.002) 0.401(0.002) 0.399(0.000)
RGDL(ε=0.1) 1.000(0.000) 1.000(0.000) 0.975(0.025) 1.000(0.000) 1.000(0.000) 1.000(0.000)
RGDL(ε=0.2) 1.000(0.000) 1.000(0.000) 0.975(0.025) 1.000(0.000) 1.000(0.000) 1.000(0.000)
RGDL(ε=0.3) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
RGDL(ε=10) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
RGDL(ε=30) 0.896(0.070) 0.888(0.080) 0.857(0.044) 0.864(0.057) 0.827(0.043) 0.816(0.074)

dataset consists of 12, 18, and 30 graphs for the three generative structures respectively, and is hence
named as the unbalanced dataset. The number of graph nodes is uniformly sampled from [30, 50].
The magnitude of the observed PRM Ck satisfies ‖Ck‖∞ ≤ 15.

Evaluating the performance. The learned embeddings of the graphs are used as input for a k-
means algorithm to cluster graphs. We use the well-known Adjusted Rand Index (ARI) (Hubert and
Arabie, 1985; Steinley, 2004), to evaluate the quality of clustering by comparing it with the graph
labels. RGDL with varied ε is compared against GDL, GWF, and SC. RGDL, GDL and GWF use
three atoms which are R6×6 matrices. We run each method for 5 times and report the averaged ARI
scores and the standard deviations. Experimental results reported in Table 1 and Table 2 demonstrate
RGDL outperforms baselines significantly.

Influence of ε. RGDL with moderate ε values outperforms baseline methods by a large margin
and is more robust to the noise. Even when ε is relatively small (ε=0.01), RGDL achieves better
performance than baselines. Increasing ε within a suitable range can boost ARI and RGDL is not
sensitive to the choice of ε. If ε becomes too large, the performance of RGDL slowly decreases.
In practice, when a small quantity of data labels are available, ε can be chosen according to the
performance on this small subset of data.
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Figure 1: ARI scores vs. time on MUTAG (left), BZR(middle), and Peking 1(right) datasets.

5.2 REAL-WORLD DATASETS

We further use RGDL to cluster real-world graphs. We consider widely utilized benchmark datasets
including MUTAG (Debnath et al., 1991), BZR (Sutherland et al., 2003), and Peking 1 (Pan et al.,
2016). The labels of the graphs are employed as the ground truth to evaluate the estimated clustering
results. For each dataset, the size of the atoms is set as the median of the numbers of graph nodes
following Vincent-Cuaz et al. (2021). The number of atoms M is set as M = β(# classes) where
β is chosen from {2, 3, 4, 5}. RGDL is run with different values of ε. Specifically, ε is chosen from
{U, 10−1U, 10−2U, 10−3U} where U = maxk∈JKK ‖Ck‖∞.
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Results. The experimental results on real-world graphs are reported in Figure 1. RGDL with ε =
10−1U or ε = 10−2U outperforms baselines on all datasets, which implies that the observed graphs
contain structural noise and

[
10−2U, 10−1U

]
is often a suitable range for ε. The time required for

RGDL to converge is comparable to that of state-of-the-art of methods.

6 RELATED WORK

Unbalanced OT. Enhancing the robustness of the optimal transport plan has received wide atten-
tion recently (Balaji et al., 2020; Mukherjee et al., 2021; Le et al., 2021; Nietert et al., 2022; Chapel
et al., 2020; Séjourné et al., 2021; Vincent-Cuaz et al., 2022). Originally, robust variants of classical
OT were proposed to compare distributions supported on the same metric space (Balaji et al., 2020;
Mukherjee et al., 2021; Le et al., 2021; Nietert et al., 2022), which model the noise as outlier supports
and reduce the influence of outlier supports by allowing mass destruction and creation. Following
the same spirit, variants of the GW distance that also relax the marginal constraints were proposed
(Chapel et al., 2020; Séjourné et al., 2021; Vincent-Cuaz et al., 2022). However, these methods do
not take the inaccuracies of the pairwise distances/similarities into account. The proposed RGWD
aims to handle such cases.

Graph representation learning and graph comparison. Comparing graphs often requires learn-
ing meaningful graph representations. Some methods manually design representations that are in-
variant under graph isomorphism (Bagrow and Bollt, 2019; Tam and Dunson, 2022). Such rep-
resentations are often sophisticated and require domain knowledge. Graph neural network-based
methods learn the representations of graphs in an end-to-end manner (Scarselli et al., 2008; Zhang
et al., 2018; Lee et al., 2018; Errica et al., 2019), which however requires a large amount of labeled
data. Another family of methods that uses graph representations implicitly is referred to as graph
kernels (Shervashidze et al., 2009; Vishwanathan et al., 2010). GWD and its variants based methods
can estimate the node correspondence and provide an interpretable discrepancy between compared
graphs (Xu et al., 2019b; Titouan et al., 2019; Barbe et al., 2020; Chapel et al., 2020). In this paper,
we propose a novel graph dictionary learning method based on a robust variant of GWD to learn
representations of graphs which are useful in downstream tasks.

Non-linear combination of atoms. Classic DL methods are linear in the sense that they attempt
to approximate each vectorized datum by a linear combination of a few basis elements. Recently,
non-linear operations were also considered. In order to exploit the non-linear nature of data,
Autoencoder-based methods encode them to low-dimensional vectors using neural networks, and
decode data with another neural network (Hinton and Salakhutdinov, 2006; Hu and Tan, 2018). An-
other family of methods replace the linear combinations by geodesic interpolations (Boissard et al.,
2011; Bigot et al., 2013; Seguy and Cuturi, 2015; Schmitz et al., 2018). More closely related to
our work, Xu 2020 proposed to approximate graphs via the GW barycenter of graph atoms, which
however involves a complicated and computational demanding optimization problem.

Projection robust OT. To improve the convergence of empirical Wasserstein distances
(Rüschendorf, 1985) to population ones, a group of methods project the distributions to informa-
tive low-dimensional subspaces (Paty and Cuturi, 2019; Lin et al., 2020; 2021), which involves
solving min-max or max-min problems. This paper considers distributions supported on different
metric spaces and does not project distributions.

7 CONCLUSION

In this paper, we propose a novel graph dictionary learning algorithm that is robust to the structural
noise of graphs. We first propose a robust variant of GWD, referred to as RGWD, which involves
a minimax optimization problem. Exploiting the fact that the inner maximization problem has a
closed-form solution, an efficient numerical scheme is derived. Based on RGWD, a robust dictio-
nary learning algorithm for graphs called RGDL is derived to learn atoms from noisy graph data.
Numerical results on both simulated and real-world datasets demonstrate that RGDL achieves good
performance in the presence of structural noise.
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Gabriel Peyré, and Jean-Luc Starck. Wasserstein dictionary learning: Optimal transport-based
unsupervised nonlinear dictionary learning. SIAM Journal on Imaging Sciences, 11(1):643–678,
2018.

Vivien Seguy and Marco Cuturi. Principal geodesic analysis for probability measures under the
optimal transport metric. Advances in Neural Information Processing Systems, 28, 2015.

12



Published as a conference paper at ICLR 2023
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Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Semi-
relaxed gromov-wasserstein divergence and applications on graphs. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
RShaMexjc-x.

S Vishwanathan, N Schraudolph, R Kondor, and KM Borgwardt. Graph kernels. the journal ofma-
chine learning research. 2010.

Yuchung J Wang and George Y Wong. Stochastic blockmodels for directed graphs. Journal of the
American Statistical Association, 82(397):8–19, 1987.

13

https://openreview.net/forum?id=RShaMexjc-x
https://openreview.net/forum?id=RShaMexjc-x


Published as a conference paper at ICLR 2023

Xian Wei, Hao Shen, Yuanxiang Li, Xuan Tang, Fengxiang Wang, Martin Kleinsteuber, and Yi Lu
Murphey. Reconstructible nonlinear dimensionality reduction via joint dictionary learning. IEEE
transactions on neural networks and learning systems, 30(1):175–189, 2018.

Teng Xiao, Jiaxin Ren, Zaiqiao Meng, Huan Sun, and Shangsong Liang. Dynamic bayesian metric
learning for personalized product search. In Proceedings of the 28th ACM International Confer-
ence on Information and Knowledge Management, pages 1693–1702, 2019.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
partitioning and matching. In NeurIPS, 2019a.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein learning
for graph matching and node embedding. In ICML, 2019b.

Hongtengl Xu. Gromov-wasserstein factorization models for graph clustering. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pages 6478–6485, 2020.

Yangyang Xu. Iteration complexity of inexact augmented lagrangian methods for constrained con-
vex programming. Mathematical Programming, 185(1):199–244, 2021.

Pinar Yanardag and S Vishwanathan. Deep graph kernels in: Proceedings of the 21th acm sigkdd
international conference on knowledge discovery and data mining, 1365–1374. ACM, New York,
2015.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Tong Zhang, Yun Wang, Zhen Cui, Chuanwei Zhou, Baoliang Cui, Haikuan Huang, and Jian Yang.
Deep wasserstein graph discriminant learning for graph classification. In AAAI, pages 10914–
10922, 2021.

14



Published as a conference paper at ICLR 2023

Appendix
The appendix is organized as follows. We first provide omitted proofs in the main paper in Sec.
A. Then, algorithmic details are presented in Sec. B. Finally, Sec. C gives additional experimental
results.

A OMITTED PROOFS

Theorem 1 Given an observed source graph Gs and a target graph Gt that can be expressed as
(Cs,ps) and (Ct,pt) respectively, RGWD satisfies

1. for all T ∈ Π(ps,pt), E(T) = [Ei′j′(T)] where

Ei′j′(T) =

{
ε, if

∑ns

i,j=1 Tii′Tjj′(C
s
ij − Ct

i′j′) ≤ 0,

−ε, otherwise.

solves the inner maximization problem

max
E∈Uε

f(T,E).

2. RGWD is lower bounded, that is,

RGWD
(
(Cs,ps), (Ct,pt), ε

)
≥ ε,

where the equality holds if and only if there exists a bijective π∗ : JnsK → JntK such that
ps
i = pt

π∗(i) for all i ∈ JnsK and Cs
ij = Ct

π∗(i)π∗(j) for all i, j ∈ JnsK.

3. The triangle inequality holds for RGWD, i.e.,

RGWD
(
(C1,p1), (C3,p3), ε

)
≤RGWD

(
(C1,p1), (C2,p2), ε

)
+ RGWD

(
(C2,p2), (C3,p3), ε

)
.

4. RGWD is invariant to the permutation of node orders, i.e., for all permutation matrices Qs

and Qt,

RGWD
(
(Cs,ps), (Ct,pt), ε

)
= RGWD

(
(Qs>CsQs,Qs>ps), (Qt>CtQt,Qt>pt), ε

)
.

Proof: (i) The objective can be rewritten as follows,

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′ − Ei′j′)2Tii′Tjj′

=

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′)
2Tii′Tjj′ +

nt∑
i′,j′=1

( ns∑
i,j=1

Tii′Tjj′E
2
i′j′ − 2

ns∑
i,j=1

Tii′Tjj′(C
s
ij − Ct

i′j′)Ei′j′

)

=

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′)
2Tii′Tjj′ +

nt∑
i′,j′=1

(
pt
i′p

t
j′E

2
i′j′ − 2

ns∑
i,j=1

Tii′Tjj′(C
s
ij − Ct

i′j′)Ei′j′

)
,

(5)
which by the property of quadratic functions yields the closed-form solution E(T) = [Ei′j′(T)],
where

Ei′j′(T) =

{
ε, if

∑ns

i,j=1 Tii′Tjj′(C
s
ij − Ct

i′j′) ≤ 0,

−ε, otherwise.

It is easy to verify that the such a choice guarantees the symmetry of E(T).

(ii) We now prove the lower boundedness. By Eq. (5), we have

min
T∈Π(ps,pt)

max
E∈Uε

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij−Ct

i′j′−Ei′j′)2Tii′Tjj′ ≥ min
T∈Π(ps,pt)

ns∑
i,j=1

nt∑
i′,j′=1

Tii′Tjj′ε
2 = ε2.
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Note that when there exists a bijective π∗ : JnsK → JntK such that ps
i = pt

π∗(i) for all i ∈ JnsK and

Cs
ij = Ct

π∗(i)π∗(j) for all i, j ∈ JnsK, choosing the transport plan T̂ = [T̂ii′ ] where

T̂ii′ =

{
ps
i , if i′ = π∗(i),

0, otherwise,

we have for all i′, j′ ∈ JntK,

ns∑
i,j=1

T̂ii′ T̂jj′(C
s
ij − Ct

i′j′) = T̂π∗−1(i′)i′ T̂π∗−1(j′)j′

(
Cs
π∗−1(i′)π∗−1(j′) − C

t
i′j′

)
= 0,

which implies that Ei′j′(T) = ε for all i′, j′ ∈ JntK. We then have

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′ − Ei′j′)2T̂ii′ T̂jj′ =

ns∑
i,j=1

(Cs
ij − Ct

π∗(i)π∗(j) − ε)
2T̂iπ∗(i)T̂jπ∗(j) = ε2.

Therefore, in such a case, RGWD
(
(Cs,ps), (Ct,pt), ε

)
= ε. On the other hand, when such a

bijective does not exist,

RGWD
(
(Cs,ps), (Ct,pt), ε

)
≥

√√√√ε2 + min
T∈Π(ps,pt)

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′)
2Tii′Tjj′ > ε,

where the strict inequality is due to the fact that
∑ns

i,j=1

∑nt

i′,j′=1(Cs
ij − Ct

i′j′)
2Tii′Tjj′ > 0.

(iii) Thirdly, we prove the triangle inequality. Given tuples (C1,p1), (C2,p2), and (C3,p3)
which have the node numbers n1, n2, and n3 respectively, let (T∗12,E∗12), (T∗23,E∗23), and
(T∗13,E∗13) be the solutions of RGWD

(
(C1,p1), (C2,p2), ε

)
, RGWD

(
(C2,p2), (C3,p3), ε

)
,

and RGWD
(
(C1,p1), (C3,p3), ε

)
. Define T13 = [T 13

i1i3
] where

T 13
i1i3 =

n2∑
i2=1

T ∗12
i1i2

T ∗23
i2i3

p2
i2

.

Then we have

RGWD
(
(C1,p1), (C3,p3), ε

)
≤

√√√√ n1∑
i1,j1=1

n3∑
i3,j3=1

(
C1
i1j1
− C3

i3j3
− E∗13

i3j3

)2
T 13
i1i3

T 13
j1j3

=

√√√√ n1∑
i1,j1=1

n3∑
i3,j3=1

(
C1
i1j1
− C3

i3j3
− E∗13

i3j3

)2 n2∑
i2=1

T ∗12
i1i2

T ∗23
i2i3

p2
i2

n2∑
j2=1

T ∗12
j1j2

T ∗23
j2j3

p2
j2

=

√√√√ n1∑
i1,j1=1

n2∑
i2,j2=1

n3∑
i3,j3=1

(
C1
i1j1
− C2

i2j2
+ C2

i2j2
− C3

i3j3
− E∗13

i3j3

)2T ∗12
i1i2

T ∗23
i2i3

p2
i2

T ∗12
j1j2

T ∗23
j2j3

p2
j2

≤

√√√√ n1∑
i1,j1=1

n2∑
i2,j2=1

n3∑
i3,j3=1

(
C1
i1j1
− C2

i2j2

)2T ∗12
i1i2

T ∗23
i2i3

p2
i2

T ∗12
j1j2

T ∗23
j2j3

p2
j2

+

√√√√ n1∑
i1,j1=1

n2∑
i2,j2=1

n3∑
i3,j3=1

(
C2
i2j2
− C3

i3j3
− E∗13

i3j3

)2T ∗12
i1i2

T ∗23
i2i3

p2
i2

T ∗12
j1j2

T ∗23
j2j3

p2
j2

=

√√√√ n1∑
i1,j1=1

n2∑
i2,j2=1

(
C1
i1j1
− C2

i2j2

)2
T ∗12
i1i2

T ∗12
j1j2

+

√√√√ n2∑
i2,j2=1

n3∑
i3,j3=1

(
C2
i2j2
− C3

i3j3
− E∗13

i3j3

)2
T ∗23
i2i3

T ∗23
j2j3

≤RGWD
(
(C1,p1), (C2,p2), ε

)
+ RGWD

(
(C2,p2), (C3,p3), ε

)
.

16



Published as a conference paper at ICLR 2023

(iv) Finally, we prove the invariance to the node order permutation. Denote the solution to the
objective of RGWD by T∗ = [T ∗ii′ ] and E∗ = [E∗i′j′ ], which implies

E∗i′j′ =

{
ε, if

∑ns

i,j=1 T
∗
ii′T

∗
jj′(C

s
ij − Ct

i′j′) ≤ 0,

−ε, otherwise,

and

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′ − E∗i′j′)2T ∗ii′T
∗
jj′ ≤ max

E∈Uε

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′ − Ei′j′)2Tii′Tjj′ ,

for all T ∈ Π(ps,pt). The two permutation operations can be equivalently denoted as two bijectives
πs and πt. Denote

C̃s = [C̃s
ij ] where C̃s

ij = Cs
πs−1(i)πs−1(j),

C̃t = [C̃t
i′j′ ] where C̃t

i′j′ = Ct
πt−1(i′)πt−1(j′),

Ẽ∗ = [Ẽ∗i′j′ ] where Ẽ∗i′j′ = E∗πt−1(i′)πt−1(j′),

T̃∗ = [T̃ s
ii′ ] where T̃ s

ii′ = T ∗πs−1(i)πt−1(i′).

We first prove Ẽ∗ solves the inner maximization problem for T̃∗. For all i′, j′ ∈ JntK, when∑
ij T̃
∗
ii′ T̃

∗
jj′(C̃

s
ij − C̃t

i′j′) ≤ 0, we have
∑
ij T
∗
iπt−1(i′)

T ∗
jπt−1(j′)

(Cs
ij − Ct

πt−1(i′)πt−1(j′)
) ≤ 0,

which is consistent withẼ∗i′j′ = ε. The case when
∑
ij T̃
∗
ii′ T̃

∗
jj′(C̃

s
ij − C̃t

i′j′) > 0 is similar. Since

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′ − E∗i′j′)2T ∗ii′T
∗
jj′ =

ns∑
i,j=1

nt∑
i′,j′=1

(C̃s
ij − C̃t

i′j′ − Ẽ∗i′j′)2T̃ ∗ii′ T̃
∗
jj′

and

max
E∈Uε

ns∑
i,j=1

nt∑
i′,j′=1

(Cs
ij − Ct

i′j′ − Ei′j′)2Tii′Tjj′ = max
E∈Uε

ns∑
i,j=1

nt∑
i′,j′=1

(C̃s
ij − C̃t

i′j′ − Ei′j′)2T̃ii′ T̃jj′ ,

where T̃ii′ = Tπs−1(i)πt−1(i′), T̃∗ and Ẽ∗ solve the optimization problem of
RGWD

(
(Qs>CsQs,Qs>ps), (Qt>CtQt,Qt>pt), ε

)
.

�

To prove Theorem 2, we require the following lemma.

Lemma 3 f(·) is l-smooth and L-Lipschitz, where l =
√

2 max{10n3U2
1 + 6n3U1ε + 4nU1U2 +

4n3ε2, 6n2U1U2 + 2U2
2 + 4n2U2ε} and L =

√
2 max{(4U1 + 2ε)U2

2n
3, 2(2U1 + ε)2U2n

3} with
n = max{ns, nt}, U1 = max{‖Cs‖∞, ‖Ct‖∞} and U2 = max{‖pt‖2,maxT′∈Π(ps,pt) ‖T′‖F }.

Proof: (i) We first prove that f(·) is L-Lipschitz. For all T,T′ ∈ Π(ps,pt) and E,E′ ∈ Uε,∣∣f(T,E)− f(T′,E′)
∣∣

≤
∣∣∣ ∑
iji′j′

(Cs
ij − Ct

i′j′ − Ei′j′)2Tii′Tjj′ −
∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′Tjj′
∣∣∣

+
∣∣∣ ∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′Tjj′ −
∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′T
′
jj′

∣∣∣
+
∣∣∣ ∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′T
′
jj′ −

∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2T ′ii′T
′
jj′

∣∣∣.
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For the first term,∣∣∣ ∑
iji′j′

(Cs
ij − Ct

i′j′ − Ei′j′)2Tii′Tjj′ −
∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′Tjj′
∣∣∣

=
∣∣∣ ∑
iji′j′

(Cs
ij − Ct

i′j′ − Ei′j′ + Cs
ij − Ct

i′j′ − E′i′j′)(E′i′j′ − Ei′j′)Tii′Tjj′
∣∣∣

≤
∑
iji′j′

∣∣Cs
ij − Ct

i′j′ − Ei′j′ + Cs
ij − Ct

i′j′ − E′i′j′
∣∣∣∣E′i′j′ − Ei′j′ ∣∣Tii′Tjj′

≤(4U1 + 2ε)U2
2n

2
∑
i′j′

∣∣E′i′j′ − Ei′j′ ∣∣.
For the second term,∣∣∣ ∑

iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′Tjj′ −
∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′T
′
jj′

∣∣∣
≤
∑
iji′j′

|Cs
ij − Ct

i′j′ − E′i′j′ |2
∣∣Tii′ ∣∣∣∣Tjj′ − T ′jj′∣∣

≤(2U1 + ε)2U2

∑
iji′j′

∣∣Tjj′ − T ′jj′ ∣∣
≤(2U1 + ε)2U2n

2
∣∣Tjj′ − T ′jj′ ∣∣.

For the third term,∣∣∣ ∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2Tii′T
′
jj′ −

∑
iji′j′

(Cs
ij − Ct

i′j′ − E′i′j′)2T ′ii′T
′
jj′

∣∣∣
≤(2U1 + ε)2U2n

2
∣∣Tjj′ − T ′jj′ ∣∣.

Combining the three relations above, we have∣∣f(T,E)− f(T′,E′)
∣∣

≤max
{

(4U1 + 2ε)U2
2n

2, (2U1 + ε)2U2n
2
}(∑

i′j′

|E′i′j′ − Ei′j′ |+
∑
jj′

|Tjj′ − T ′jj′ |
)

≤L
√
‖E−E′‖2F + ‖T−T′‖2F .

(ii) Now we prove that f(·) is l-smooth, which requires finding a constant l satisfying∥∥∥∥∥
[
vec
(
∇Tf(T,E)

)
vec
(
∇Ef(T,E)

)]− [vec
(
∇Tf(T′,E′)

)
vec
(
∇Ef(T′,E′)

)]∥∥∥∥∥
2

≤ l
∥∥∥∥[vec(T)

vec(E)

]
−
[
vec(T′)
vec(E′)

]∥∥∥∥
2

,

where vec(X) means the vectorization of matrix X and [ ab ] denotes the concatenation of vectors a
and b. Since the left hand side satisfies∥∥∥∥∥

[
vec
(
∇Tf(T,E)

)
vec
(
∇Ef(T,E)

)]− [vec
(
∇Tf(T′,E′)

)
vec
(
∇Ef(T′,E′)

)]∥∥∥∥∥
2

=
√
‖∇Tf(T,E)−∇Tf(T′,E′)‖2F + ‖∇Ef(T,E)−∇Ef(T′,E′)‖2F

≤‖∇Tf(T,E)−∇Tf(T′,E′)‖F + ‖∇Ef(T,E)−∇Ef(T′,E′)‖F ,

and the right hand side satisfies

l

∥∥∥∥[vec(T)
vec(E)

]
−
[
vec(T′)
vec(E′)

]∥∥∥∥
2

=l
√
‖E−E′‖2F + ‖T−T′‖2F

≥ l√
2
‖E−E′‖F +

l√
2
‖T−T′‖F ,
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it suffices to find a constant l satisfying

‖∇Tf(T,E)−∇Tf(T′,E′)‖F+‖∇Ef(T,E)−∇Ef(T′,E′)‖F ≤
l√
2
‖E−E′‖F+

l√
2
‖T−T′‖F .

We bound ‖∇Tf(T,E)−∇Tf(T′,E′)‖F as follows,

‖∇Tf(T,E)−∇Tf(T′,E′)‖F
≤2n‖Cs �Cs‖F ‖T−T′‖F + 4‖Cs‖F ‖T(Ct + E)−T′(Ct + E′)‖F
+2n‖T(Ct + E)� (Ct + E)−T′(Ct + E′)� (Ct + E′)‖F .

For the first term,

2n‖Cs �Cs‖F ‖T−T′‖F ≤ 2n‖Cs‖2F ≤ 2n3U2
1 ‖T−T′‖F .

For the second term,

4‖Cs‖F ‖T(Ct + E)−T′(Ct + E′)‖F

≤4‖Cs‖F ‖T−T′‖F
(
‖Ct‖F + ‖E‖F

)
+ 4‖Cs‖F ‖T′‖F ‖E−E′‖F

≤(4n2U2
1 + 4n2U1ε)‖T−T′‖F + 4nU1U2‖E−E′‖F .

For the third term,

2n‖T(Ct + E)� (Ct + E)−T′(Ct + E′)� (Ct + E′)‖F
≤2n‖T(Ct + E)� (Ct + E)−T′(Ct + E)� (Ct + E)‖F
+2n‖T′(Ct + E)� (Ct + E)−T′(Ct + E′)� (Ct + E)‖F
+2n‖T′(Ct + E′)� (Ct + E)−T′(Ct + E′)� (Ct + E′)‖F
≤4n

(
‖Ct‖2F + ‖E‖2F

)
‖T−T′‖F + 2n‖T′‖F

(
‖Ct‖F + ‖E‖F

)
‖E−E′‖F

+2n‖T′‖F
(
‖Ct‖F + ‖E′‖F

)
‖E−E′‖F

≤
(
4n3U2

1 + 4n3ε2
)
‖T−T′‖F + (4n2U1U2 + 4n2U2ε)‖E−E′‖F

Since∇Ef(T,E) = 2(E+C>)ptpt>−2T>CsT,‖∇Ef(T,E)−∇Ef(T′,E′)‖F can be bounded
as follows,

‖∇Ef(T,E)−∇Ef(T′,E′)‖F
≤‖2(E−E′)‖F ‖pt‖2F + 4‖T‖F ‖Cs‖F ‖T−T′‖F
≤2U2

2 ‖(E−E′)‖F + 4nU1U2‖T−T′‖F
.

Combining the above four relations, we have

‖∇Tf(T,E)−∇Tf(T′,E′)‖F + ‖∇Ef(T,E)−∇Ef(T′,E′)‖F

≤max{10n3U2
1 + 6n3U1ε+ 4nU1U2 + 4n3ε2, 6n2U1U2 + 2U2

2 + 4n2U2ε}
(
‖E−E′‖F + ‖T−T′‖F

)
,

which yields the desired result.

�

Theorem 2 Define φ(·) = maxE∈Uε f(·,E). The output T̂ of Algorithm 1 with step-size η = γ√
N+1

satisfies

E
[
‖∇φ1/2l(T̂)‖2

]
≤ 2

φ1/2l(T0)−minT∈Π(ps,pt) φ(T) + lL2γ2

γ
√
N + 1

,

where l =
√

2 max{10n3U2
1 + 6n3U1ε+ 4nU1U2 + 4n3ε2, 6n2U1U2 + 2U2

2 + 4n2U2ε} and L =√
2 max{(4U1+2ε)U2

2n
3, 2(2U1+ε)2U2n

3} with n = max{ns, nt}, U1 = max{‖Cs‖∞, ‖Ct‖∞}
and U2 = max{‖pt‖2,maxT′∈Π(ps,pt) ‖T′‖F }.
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Proof: By the smoothness of f(·), for any T̃ ∈ Π(ps,pt) and Tτ from Algorithm 1, we have

φ(T̃) ≥ f(T̃,Eτ ) ≥ f(Tτ ,Eτ ) + 〈∇Tf(Tτ ,Eτ ), T̃−Tτ 〉 −
l

2
‖T̃−Tτ‖2F

= φ(Tτ ) + 〈∇Tf(Tτ ,Eτ ), T̃−Tτ 〉 −
l

2
‖T̃−Tτ‖2F .

(6)

Let T̂τ = argminT∈Π(ps,pt) φ(T) + l‖T−Tτ‖2F . We have

φ1/2l(Tτ+1) ≤ φ(T̂τ ) + l‖Tτ+1 − T̂τ‖2F
≤ φ(T̂τ ) + l‖Tτ − η∇Tf(Tτ ,Eτ )− T̂τ‖2F
≤ φ(T̂τ ) + l‖Tτ − T̂τ‖2F + 2lη〈∇Tf(Tτ ,Eτ ), T̂τ −Tτ 〉+ η2l‖∇Tf(Tτ ,Eτ )‖2F
≤ φ1/2l(Tτ ) + 2lη〈∇Tf(Tτ ,Eτ ), T̂τ −Tτ 〉+ η2l‖∇Tf(Tτ ,Eτ )‖2F

≤ φ1/2l(Tτ ) + 2ηl
(
φ(T̂τ )− φ(Tτ ) +

l

2
‖T̂τ −Tτ‖2F

)
+ η2lL2,

where the second line uses Lemma 3.1 of Bubeck et al. (2015) and the last line follows from (6).
Taking a telescopic sum over τ , we obtain

φ1/2l(TN ) ≤ φ1/2l(T0) + 2ηl

N∑
τ=0

(
φ(T̂τ )− φ(Tτ ) +

l

2
‖T̂τ −Tτ‖2F

)
+ η2lL2.

Rearranging this, we obtain

1

N + 1

N∑
τ=0

(
−φ(T̂τ )+φ(Tτ−

l

2
‖T̂τ−Tτ‖2F

)
≤
φ1/2l(T0)−minT∈Π(ps,pt) φ(T)

2ηlN
+
ηL2

2
. (7)

Since φ(T) + l‖T−Tτ‖2F is l-strongly convex, we have

− φ(T̂τ ) + φ(Tτ )− l

2
‖T̂τ −Tτ‖2F

≥ l
2
‖Tτ − T̂τ‖2F + φ(Tτ ) + l‖Tτ −Tτ‖2F −min

T

(
φ(T) + l‖T−Tτ‖2F

)
≥l‖Tτ − T̂τ‖2F =

1

4l
‖∇φ1/2l(Tτ )‖2F .

Plugging this in (7) and combining Lemma 3 proves the result.

�

B ALGORITHMIC DETAILS

The Projected Gradient Descent (PGD) consists of the following three steps in each iteration τ .

Find Eτ that maximizes f(Tτ ,E). By Theorem 1, we need to calculate an auxiliary matrix

G = T>τ C
sTτ −Ct �T>τ Tτ ,

where � denotes the element-wise multiplication. And we have

Ei′j′(Tτ ) =

{
ε, if Gi′j′ ≤ 0,

−ε, otherwise.

Such a step involves computational cost O(n3) where n = max{ns, nt}.

Gradient descent. Calculate Hτ = Tτ − η∇Tf(Tτ ,Eτ ) where

∇Tf(Tτ ,Eτ ) = 2
(
Cs �Cs

)
Tτ1

nt

1n
t>

+ 21n
s

1n
s>

Tτ

((
Ct + Eτ

)
�
(
Ct + Eτ

))
− 4CsTτ

(
Ct + Eτ

)
,

which also involves computational cost O(n3).
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Figure 2: PCA-based visualization of embeddings produced by GDL (left), GWF (middle), and
RGDL (right) respectively for the graphs in MUTAG dataset. The color of each point indicate the
type of the corresponding graph. RGDL achieves the best clustering results.

Projection into the feasible domain. This requires solving the following problem

min
T≥0

1

2
‖T−Hτ‖2F , s.t. T1n = p,T>1m = q.

This optimization problem has a strongly convex objective and linear constraints, and hence can be
solved efficiently via Augmented Lagrangian Method with computational complexity n2| log ρ|

ρ1/2
(Xu,

2021) where ρ measures the optimality, that is, the violation of the two linear constraints. When
ρ = O

(
1
n2

)
, this step also has cubic costs if we ignore the log term.

Therefore, the overall complexity of PGD obtaining a δ-stationary solution is O
(
n3

δ2 + n2| log ρ|
ρ1/2δ2

)
.

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL EXPERIMENTAL RESULTS OF GRAPH CLUSTERING

Visualization of graph embeddings. Since GDL, GWF, and RGDL can output graph embed-
dings, we further illustrate the embeddings generated by them respectively based on PCA. As is
shown in Figure 2, the embeddings of the two types of the graphs are less likely to be mixed to-
gether, which explains why RGDL achieves higher ARI values.

Sensitivity analysis of λ. As is discussed in Li et al. (2020); Vincent-Cuaz et al. (2021), the neg-
ative quadratic term can promote the sparsity of graph embeddings. We further conduct sensitivity
analysis of λ by varying the value in {0, 10−5, 10−4, 10−3, 10−2, 10−1}. As is shown in Table 3,
λ ∈

[
10−4, 10−2

]
often yields good performance. The experiments in the main paper are run with

λ = 10−3.

Table 3: ARI scores of RGDL with varied λ’s.

Datasets 0 10−5 10−4 10−3 10−2 10−1

MUTAG 0.4389 0.4561 0.4636 0.458 0.4661 0.4412
BZR 0.2515 0.2515 0.2707 0.2707 0.2707 0
Peking 1 0.1195 0.1195 0.1195 0.1195 0.1195 0.1079

C.2 GRAPH CLASSIFICATION

The learned embeddings of graphs can also be used in the graph classification task. RGDL is thus
compared against GDL (Vincent-Cuaz et al., 2021), GWF (Xu, 2020), and other state-of-the-art
graph classification methods including WGDL (Zhang et al., 2021) and GNTK (Du et al., 2019)
on the benchmark datasets MUTAG (Debnath et al., 1991), IMDB-B, and IMDB-M (Yanardag and
Vishwanathan, 2015). RGDL, GDL, and GWF use 3-NN as the classifier due to its simplicity. We
perform a 10-fold nested cross validation (using 9 folds for training, 1 for testing, and reporting the
average accuracy of this experiment repeated 10 times) by keeping same folds across methods.
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Table 4: Graph classification results.

Datasets RGDL GDL GWF WGDL GNTK
IMDB-B 77.7(1.5) 59.0(2.6) 53.0(6.2) 79.7(3.6) 76.9(3.6)
IMDB-M 52.9(2.5) 44.2(2.3) 42.0(3.7) 53.5(5.0) 52.8(4.6)
MUTAG 98.2(3.0) 89.5(5.3) 86.0(3.0) 94.7(2.6) 90.0(8.5)

The results are reported in Table 4 and RGDL outperforms or matches state-of-the-art methods.
RGDL outperforms GDL and GWF significantly, which indicates the necessity of taking into ac-
count the structural noise of observed graphs. Although WGDL and GNTK have similar perfor-
mance, they are more computation and memory demanding due to the usage of graph neural net-
works.
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