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Abstract

Constructing fast samplers for unconditional diffusion and flow-matching models
has received much attention recently; however, existing methods for solving inverse
problems, such as super-resolution, inpainting, or deblurring, still require hundreds
to thousands of iterative steps to obtain high-quality results. We propose a plug-and-
play framework for constructing efficient samplers for inverse problems, requiring
only pre-trained diffusion or flow-matching models. We present Conditional
Conjugate Integrators, which leverage the specific form of the inverse problem to
project the respective conditional diffusion/flow dynamics into a more amenable
space for sampling. Our method complements popular posterior approximation
methods for solving inverse problems using diffusion/flow models. We evaluate the
proposed method’s performance on various linear image restoration tasks across
multiple datasets, employing diffusion and flow-matching models. Notably, on
challenging inverse problems like 4× super-resolution on the ImageNet dataset,
our method can generate high-quality samples in as few as 5 conditional sampling
steps and outperforms competing baselines requiring 20-1000 steps. Our code will
be publicly available at https://github.com/mandt-lab/c-pigdm.

1 Introduction

Iterative refinement models, such as diffusion generative models and flow matching methods [Sohl-
Dickstein et al., 2015, Ho et al., 2020, Song et al., 2020, Lipman et al., 2023, Albergo and Vanden-
Eijnden, 2023], have seen increasing popularity in recent months, and much effort has been invested
in accelerating unconditional sampling in these models [Pandey et al., 2024, Shaul et al., 2024, Sauer
et al., 2024, Karras et al., 2022, Salimans and Ho, 2022, Zhang and Chen, 2023, Lu et al., 2022, Song
et al., 2021]. However, while most efficient samplers have been designed in the unconditional setup,
current methods for solving inverse problems, such as deblurring, inpainting, or super-resolution,
still require hundreds to thousands of neural network evaluations to achieve the highest perceptual
quality. Moreover, in addition to a score function evaluation, a class of existing methods for solving
inverse problems using pre-trained unconditional iterative refinement models often involves expensive
Jacobian-vector products [Song et al., 2022, Chung et al., 2022a], making a single sampling step
quite expensive and therefore, intolerably slow for most practical applications.
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Figure 1: Illustration of Conditional Conjugate Integrators for Fast Sampling in Inverse Problems.
Given an initial sampling latent xts at time ts, our sampler projects the diffusion/flow dynamics
to a more amenable space for sampling using a projector operator Φ which is conditioned on the
degradation operator H and the sampling guidance scale w. The diffusion/flow sampling is then
performed in the projected space. Post completion, the generated sample in the projected space is
transformed back into the original space using the inverse of the projection operator, yielding the
final generated sample. We define the form of the operator Φ in Section 2.2. Conditional Conjugate
Integrators can significantly speed up sampling in challenging inverse problems and can generate
high-quality samples in as few as 5 NFEs as compared to existing baselines, which require from
20-1000 NFEs (see Section 3).

This paper presents a principled framework for designing efficient samplers for guided sampling in
iterative refinement models, accelerating existing samplers like ΠGDM by an order of magnitude.
We present our framework for inverse problems where the degradation operator is known and might
be corrupted with additional noise. Crucially, our transformations do not require any re-training and
merely rely on some algebraic manipulations of the equations to be simulated.

Intuitively, we expand on the concept of Conjugate Integrators [Pandey et al., 2024] by projecting the
conditional generation process in inverse problems to another space that might be better conditioned
for faster sampling (See Figure 1). To this end, we separate the linear and non-linear components
in the generation process and parameterize the transformation by analytically solving the linear
coefficients. By the end of the sampling procedure, we map back to the original sampling space,
leading to the concept of Conditional Conjugate Integrators that apply to various iterative refinement
models such as diffusion models, flows, and interpolants.

In more detail, our main contributions are as follows.

• Conditional Conjugate Integrators: We repurpose the recently proposed Conjugate In-
tegrator framework [Pandey et al., 2024] for fast guided sampling in iterative refinement
models (diffusions and flows) for linear inverse problems and refer to it as Conditional Con-
jugate Integrators. Next, we design a specific parameterization of the proposed framework,
which encodes the structure of the linear inverse problem in the sampler design itself.

• Theoretical Analysis: Our parameterization exhibits theoretical properties that help us
identify key parameters for sampler design. More specifically, we show that our parameteri-
zation (by design) enables recovering high-frequency details early on during sampling. This
further enables fast-guided sampling while maintaining good sample quality in the context
of inverse problems.

• Empirical Results. Empirically, we show that our proposed sampler significantly improves
over baselines in terms of sampling efficiency on challenging benchmarks across inverse
problems like super-resolution, inpainting, and Gaussian deblurring. For instance, on a
challenging 4x superresolution task on the ImageNet dataset, our proposed sampler achieves
better sample quality at 5 steps, compared to 20-1000 steps required by competing baselines.
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Additionally, we extend the proposed framework for noisy and non-linear inverse problems
with qualitative demonstrations.

2 Fast Samplers for Inverse Problems using Diffusions/Flows.

2.1 Background and Problem Statement

Diffusion models define a continuous-time forward process (usually with an affine drift) to convert
data x0 ∈ Rd into noise. A learnable reverse process is trained to generate data from noise. In this
work, we only consider deterministic reverse processes specified as an ODE [Song et al., 2020],

dxt =

[
Ftxt −

1

2
GtG

⊤
t ∇xt

log pt(xt)

]
dt. (1)

The score is usually intractable and is approximated using a parametric estimator sθ(xt, t), trained
using denoising score matching [Vincent, 2011, Song and Ermon, 2019, Song et al., 2020]. Analo-
gously, one-sided stochastic interpolants [Albergo and Vanden-Eijnden, 2023] define an interpolant2

xt = αtx1 + γtz, where x1 ∼ pdata ,and z ∼ N (0, I) to define a transport map between
the generative prior (typically an isotropic Gaussian) and the data distribution. Interestingly, the
one-sided interpolant induces a vector field b(xt, t) = E[α̇tx1 + γ̇tz|xt], where α̇t, γ̇t represent the
time derivatives of αt and γt, respectively. The vector field b(.) is typically learned using a neural
network approximation bθ(xt, t). The deterministic interpolant process can then be specified as
dxt = bθ(xt, t) dt. Numerically solving these deterministic generative processes with a sufficient
sampling budget can generate plausible samples from noise.

Problem Statement. Given a noisy linear degradation process (we will consider non-linear processes
later) with a degradation operator H specified over an unobserved data point x0,

y = Hx0 + σyz, z ∼ N (0, I), x0 ∼ pdata, (2)

the goal is to recover the original signal x0. Additionally, given an unconditional pre-trained
diffusion or flow matching model, one approach for solving inverse problems is to infer the posterior
distribution over the data given the degraded observation, i.e., p(x0|y) ∝ p(y|x0)p(x0) by simulating
the conditional reverse process dynamics i.e.

Diffusion: dxt =
[
Ftxt −

1

2
GtG

⊤
t ∇xt log p(xt|y)

]
dt, (3)

Flows: dxt = b(xt,y, t)dt,

where ∇xt log p(xt|y) and b(xt,y, t) are the conditional score and velocity estimates, respec-
tively. One approach could be to directly model the conditional score or velocity estimates using
a conditional iterative refinement model [Saharia et al., 2022a,b]. However, such approaches are
problem-dependent, requiring expensive training pipelines to account for the lack of generalization
across inverse problems. Additionally, such methods rely on the availability of paired (xt,y) mea-
surements, which can be expensive to acquire. Alternatively, problem-agnostic methods leverage
pre-trained unconditional iterative refinement models to estimate the conditional score or velocity
fields and can generalize to different inverse problems without extra training. In this work, we restrict
our discussion to the latter and discuss estimating conditional score/velocity fields next.

Estimating Conditional Score/Velocity from Pretrained Models: For diffusion models, ap-
proximating the conditional score follows directly from Bayes Rule, i.e. ∇xt

log p(xt|y) ≈
sθ(xt, t) + wt∇xt

log p(y|xt) where wt is the guidance weight (or temperature) of the distribu-
tion p(y|xt). Analogously for interpolants (or flows), Pokle et al. [2023] propose the conditional
flow dynamics,

b(xt,y, t) ≈ bθ(xt, t) + wt
γt
αt

[
γtα̇t − γ̇tαt

]
∇xt

log p(y|xt). (4)

We include a formal proof for the result in Eqn. 4 from an interpolant perspective in Appendix A.1.
Since the conditional score and velocity estimates require approximating the term ∇xt log p(y|xt),
we discuss its estimation next.

2In this work, we use the terms interpolant and flows interchangeably.
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Estimation of the Noise Conditional Score ∇xt log p(y|xt): The noise conditional distribution
p(y|xt) can be represented as p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0. For problem-agnostic models, it

is common to approximate the posterior p(x0|xt) using an unimodal Gaussian distribution [Chung
et al., 2022a, Song et al., 2022]. In this work, we restrict our discussion to the posterior approximation
in ΠGDM [Song et al., 2022] and its flow variant [Pokle et al., 2023] (named as ΠGFM in our work),
p(x0|xt) ≈ N (x̂0, r

2
t Id), which yields the following estimate of the conditional score:

∇xt
log p(y|xt) =

∂x̂0

∂xt

⊤
H⊤(r2tHH⊤ + σ2

yId)
−1(y −Hx̂0), (5)

where x̂0 is the first-order Tweedie’s moment estimate [Stein, 1981]. Our choice of using the ΠGDM
approximation is motivated by its expressive posterior approximation p(x0|xt) compared to other
methods such as DPS or MCG. This makes it an excellent starting point for low-budget sampling.

2.2 Conditional Conjugate Integrators

Conjugate Integrators The main idea in conjugate integrators [Pandey et al., 2024] is to project
the diffusion dynamics in Eqn. 1 into another space where sampling might be more efficient. The
projected diffusion dynamics can then be solved using any numerical ODE solver. On completion, the
dynamics can be projected back to the original space to generate samples from the data distribution. To
this end, Pandey et al. [2024] introduce an invertible time-dependent affine transformation x̄t = Atxt.
Interestingly, conjugate samplers have theoretical connections to prior work in fast sampling for
unconditional diffusion models [Song et al., 2021, Zhang and Chen, 2023, Lu et al., 2022]. We refer
the readers to Pandey et al. [2024] for exact details.

2.2.1 Conjugate Integrators for Inverse Problems

Next, we design conjugate integrators for linear inverse problems. For simplicity, we discuss
noiseless inverse problems, σy = 0, and defer the discussion of noisy inverse problems to Section
2.4. Furthermore, due to space constraints, we present our analysis for diffusion models and defer the
discussion of flows to Appendix B. Lastly, without loss of generality, we assume the standard score
network parameterization, sθ(xt, t) = Cout(t)ϵθ(xt, t) where Cout(t) is the notation from the score
precondition defined in Karras et al. [2022].

A straightforward way to define conditional conjugate integrators is to treat the score estimate
∇xt

log p(y|xt) as a black-box i.e., ignore the structure of the inverse problem. For this case, we
formally specify the conjugate integrator formulation as,
Proposition 1. (Extended ΠGDM) For the conditional diffusion dynamics defined in Eqn. 3,
introducing a diffeomorphism, x̄t = Atxt, where,

At = exp

(∫ t

0

Bs − Fsds

)
, Φt = −

∫ t

0

1

2
AsGsG

⊤
s Cout(s)ds, (6)

induces the following projected diffusion dynamics,

dx̂t = AtBtA
−1
t x̂tdt+ dΦtϵθ (xt, t)−

wtr
−2
t

2
GtG

⊤
t

∂x̂0

∂xt

⊤
(H†y − P x̂0)dt, (7)

where H† = H⊤(HH⊤)−1 and P = H⊤(HH⊤)−1H represent the pseudoinverse and the
orthogonal projector operators for the degradation operator H . (Proof in Appendix A.2)

Similar to Pandey et al. [2024], the matrix Bt is a design choice. We refer to the formulation in
Eqn. 7 as Extended ΠGDM since for Bt = 0, the ODE in Eqn. 7 becomes equivalent to the ΠGDM
formulation proposed in Song et al. [2022]. This is because, for Bt = 0, Conjugate Integrators are
equivalent to DDIM [Song et al., 2021] (See Pandey et al. [2024] for proof). Therefore, the projected
diffusion dynamics in Eqn. 7 already present a more generic framework for designing samplers for
inverse problems over ΠGDM. In this work, we only explore the parameterization in Eqn. 7 for
Bt = 0 and hence refer to it simply as ΠGDM (analogously ΠGFM for flows; see Appendix B).

One characteristic of the formulation in Eqn. 7 is the black-box nature of the conditional score
∇xt log p(y|xt). However, the inherent linearity in the conditional score can be used to design better
conditioned (more on this in Section 2.3) conjugate integrators, which we illustrate formally in the
form of the following result.
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Proposition 2. (Conjugate ΠGDM) Given a noiseless linear inverse problem with σy = 0, a design
matrix B : [0, 1] → Rd×d, and the conditional score ∇xt log p(y|xt) approximated using Eqn. 5,
introducing the transformation x̄t = Atxt, where

At = exp
[ ∫ t

0

Bs −
(
Fs +

wsr
−2
s

2µ2
s

GsG
⊤
s P

)
ds
]
, (8)

induces the following projected diffusion dynamics:

dx̄t = AtBtA
−1
t x̄tdt+ dΦyy + dΦsϵθ(xt, t) + dΦj

[
∂xt

ϵθ(xt, t)(H
†y − P x̂0)

]
, (9)

where exp(.) denotes the matrix exponential, H†, and P are the pseudoinverse and projector
operators (as defined previously). Proof in Appendix A.3.

In this case, the coefficients Φy, Φj , and Φs depend on time t and the degradation operator H
(See Appendix A.3 for full definitions). Intuitively, by including information about the degradation
operator H and the guidance scale in the transformation At in Eqn. 8, we incorporate the specific
structure of the inverse problem in the sampler design, which can have several advantages (more on
this in Section 2.3). Moreover, the matrix Bt is a design choice of our parameterization (we will
discuss exact choices in Section 2.2.2). We refer to this parameterization as C-ΠGDM (analogously
C-ΠGFM for flows; see Appendix B). In this work, we restrict our discussion to this parameterization
and discuss some practical and theoretical aspects next.

2.2.2 Practical Design Choices

Choice of Diffusions and Flows: While our proposed integrators are applicable to generic diffusion
processes [Dockhorn et al., 2022, Pandey and Mandt, 2023] and flows [Ma et al., 2024], we restrict
follow-up discussion to VP-SDE [Song et al., 2020] diffusion for which Ft = − 1

2βtId,Gt =
√
βtId

and OT-flows [Liu et al., 20223, Lipman et al., 2023] for which αt = t, γt = 1− t. For our score
network parameterization, we set Cout(t) = −1/σt, corresponding to the standard ϵ-prediction [Ho
et al., 2020, Song et al., 2020] parameterization in diffusion models.

Choice of Bt: Similar to Pandey et al. [2024], we set Bt = λId, where λ is a time-invariant scalar
hyperparameter tuned during inference for optimal sample quality.

Choice of wt: Similar to prior work [Song et al., 2022, Pokle et al., 2023], we use an adaptive guidance
weight schedule. For diffusion models, we use wt = wµ2

t r
2
t where r2t =

σ2
t

µ2
t+σ2

t
. Analogously, for

flows, we set wt = wα2
t r

2
t where r2t =

γ2
t

α2
t+γ2

t

Having an extra multiplicative factor of µ2
t (for VP-SDE) or α2

t (for flows) stabilizes the numerical
computation of coefficients in Eqn. 9 before sampling. We tune the static guidance weight w during
inference for optimal sample quality.

Choice of Start Time: Given a degradation output y, it is common to start diffusion or flow
sampling at τ < T or τ > 0, respectively [Chung et al., 2022b, Song et al., 2022, Pokle et al., 2023].
Consequently, we initialize the diffusion sampling process as xτ = µτH

†y + στz. Analogously for
flows, we initialize sampling at xτ = ατH

†y + γτz.

Choice of the ODE Solver: Unless specified otherwise, we use the Euler discretization scheme for
C-ΠG(D/F)M samplers.

We illustrate a generic C-ΠGDM sampling routine in Algorithm 1 and include additional implemen-
tation details in Appendix D. Next, we present some theoretical aspects of our proposed method.

2.3 Theoretical Aspects

With the simplifications in Section 2.2.2, the transformation At in Eqn. 8 simplifies to:

At = exp
[ ∫ t

0

(
λ+

1

2
βs

)
dsId −

w

2

(∫ t

0

βsds
)
P
]
, (10)

where P = H⊤(HH⊤)−1H is an orthogonal projection operator.
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Algorithm 1 Conjugate ΠGDM sampling

1: Input: Corrupted observation y, Corruption operator H , Denoiser ϵθ(., .), Choice of Bt, NFE budget N ,
Timestep discretization {ti}Ni=0, Diffusion kernel p(xt|x0) = N (µtx0, σ

2
t Id), Start time τ .

2: Output: Clean sample x̂0

3: Pre-Compute {Ati}Ni=0 (Eqn. 8) ▷ Pre-compute coefficients
4: Pre-Compute {Φi

y,Φ
i
s,Φ

i
j}Ni=0 (see App. A.3)

5: z ∼ p(xT ) ▷ Draw initial samples from the generative prior
6: x = µτH

†y + στz ▷ Initialize using the pseudoinverse (See Chung et al. [2022b])
7: x̄ = Aτx ▷ Initial Projection Step

8: for n = 0 to N − 1 do
9: h = (tn+1 − tn) ▷ Time step differential

10: x = A−1
tn

x̄

11: x̂0 = 1
µtn

[x− σtnϵθ(x, tn)] ▷ Tweedie’s Estimate

12: vl = hAtnBtnA
−1
tn

x̄+ (Φn+1
y −Φn

y )y ▷ Linear drift

13: vnl = (Φn+1
s −Φn

s )ϵθ(x, tn) + (Φn+1
j −Φn

j )
[
∂xϵθ(x, tn)(H

†y − P x̂0)
]

▷ Non-Linear drift
14: x̄ = x̄+ vl + vnl ▷ Euler Update
15: end for

return x = A−1
tN

x̄ ▷ Project back to original space when done

Computing At: While computing the matrix exponential in Eqn. 10 might seem non-trivial, it
has several interesting properties that make it tractable to compute. More specifically, the matrix
exponential in Eqn. 10 can be simplified as (Proof in Appendix A.4),

At = exp(κ1(t))
[
Id+(exp(κ2(t))−1)P

]
, κ1(t) =

∫ t

0

(
λ+

1

2
βs

)
ds, κ2(t) = −w

2

∫ t

0

βsds,

(11)
where exp(.) in Eqn. 11 represents the scalar exponential. Furthermore, the integrals in Eqn. 11 are
trivial to compute analytically or numerically, making At easier to compute. Moreover, A−1

t can
also be compactly represented as,

A−1
t = exp(−κ1(t))

[
Id + (exp(−κ2(t))− 1)P

]
, (12)

and is also tractable to compute. Due to the tractability of At and A−1
t , the projected diffusion

dynamics in C-ΠGDM are straightforward to simulate numerically.

Intuition behind At: Next, we analyze several theoretical properties of the transformation matrix
At in Eqn. 11. More specifically,

x̄t = Atxt = exp(κ1(t))
[
xt − (1− exp(κ2(t)))Pxt

]
, (13)

Since P = H⊤(HH⊤)−1H is an orthogonal projector, the matrix Id − P is also an orthogonal
projector which projects any vector v in the nullspace of P . Therefore, we can decompose the state
xt into two orthogonal components xt = Pxt + (Id − P )xt. Plugging this form in Eqn. 13,

x̄t = exp(κ1(t))
[
(Id − P )xt + exp(κ2(t))Pxt

]
, (14)

Intuitively, near t = T (i.e., at the start of reverse diffusion sampling), for a large static guidance
weight w, exp(κ2(t)) → 0. In this limit, from eqn. 14, x̄t ≈ (Id − P )xt. This implies that for a
large guidance weight w, the diffusion dynamics are projected into the nullspace of the projection
operator P . Intuitively, for an inverse problem like superresolution, this implies that near the start
of the diffusion process, the projected diffusion dynamics correspond to the denoising of the high-
frequency details missing in Pxt. This is because the projector operation, Pxt = H†Hxt can be
interpreted as the pseudoinverse of the noisy degraded state xt, and, therefore, (Id −P )xt represents
the high-frequency details missing from the signal component in Pxt.

Moreover, near t = 0 (i.e., near the end of reverse diffusion sampling), assuming the guidance weight
w is not too large, both coefficients exp(κ1(t)) and exp(κ2(t)) → 1, which implies x̄t ≈ xt. This
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implies that near t = 0, diffusion happens in the original space, which can prevent over-sharpening
artifacts towards the end of sampling. Therefore, we hypothesize that a large w can also lead to
over-sharpened results near the end of sampling, resulting in artifacts in the generated samples.
Therefore, introducing the projection At as defined in Eqn. 10, introduces a tradeoff in the choice of
w to control for sample quality. Lastly, since the parameter λ controls the magnitude of x̄t, it exhibits
a similar tradeoff. Indeed, we will empirically demonstrate these tradeoffs in Section 3.3. While our
discussion has been limited to diffusion models, a similar theoretical intuition also holds for flows
(See Appendix B for proof).

2.4 Extension to Noisy and Non-Linear Inverse Problems

While our discussion has been primarily in the context of noiseless linear inverse problems, the
conditional Conjugate Integrator framework can also be extended to develop samplers for noisy linear
and non-linear inverse problems. We provide a more detailed explanation for the same in App. C.

3 Experiments

Next, we empirically demonstrate that our proposed samplers C-ΠGDM/GFM outperform recent
baselines on linear image restoration tasks regarding sampling speed vs. quality tradeoff. We then
present ablation experiments highlighting the key parameters of our samplers. Lastly, we present
design choices for solving noisy and non-linear inverse problems using our proposed framework.

Models and Dataset: For diffusion models, we utilize an unconditional pre-trained ImageNet [Deng
et al., 2009] checkpoint at 256×256 resolution from OpenAI [Dhariwal and Nichol, 2021]3. For
evaluations on the FFHQ dataset Karras et al. [2019], we use a pre-trained checkpoint from Choi
et al. [2021] also at 256×256 resolution. For flow model comparisons, we utilize three publicly
available model checkpoints from Liu et al. [20223]4, trained on the AFHQ-Cat [Choi et al., 2020],
LSUN-Bedroom Yu et al. [2015], and CelebA-HQ [Karras et al., 2018] datasets. Each flow model
was trained at a pixel resolution of 256× 256. For diffusion models, we conduct evaluations on a 1k
subset of the evaluation set. For flows, we conduct evaluations on the entire validation set.

Tasks and Metrics: We evaluate our samplers qualitatively (see Figure 2) and quantitatively
on three challenging linear inverse problems under the noiseless setting. Firstly, we test Image
Super-Resolution, enhancing images from bicubic-downsampled 64× 64 pixels to 256× 256 pixels.
Secondly, we assess Image Inpainting performance on images with a fixed free-form center mask.
Lastly, we evaluate our samplers on Gaussian Deblurring, applying a Gaussian kernel with σ = 3.0
across a 61×61 window. We evaluate the performance of each task based on three perceptual metrics:
FID [Heusel et al., 2017], KID [Bińkowski et al., 2018] and LPIPS [Zhang et al., 2018].

Methods and Baselines: We assess the sample quality of our proposed C-ΠGDM and C-ΠGFM
samplers using 5, 10, and 20 sampling steps (denoted as Number of Function Evaluations (NFE)).
We conduct an extensive search to optimize the parameters w, λ and τ to identify the best-performing
configuration based on sample quality. For diffusion baselines, we include DDRM [Kawar et al.,
2022], DPS [Chung et al., 2022a], and ΠGDM [Song et al., 2022]. As recommended for DPS [Chung
et al., 2022a], we use NFE=1000 for all tasks. For DDRM, we adhere to the original implementation
and run it with ηb = 1.0 and η = 0.85 at NFE=20. We test our implementation of ΠGDM (see
Section 2.2), with NFE values of 5, 10, and 20 and use the recommended guidance schedule of
wt = r2t across all tasks. For flow models, we consider the recently proposed method inspired by
ΠGDM running on OT-ODE path by Pokle et al. [2023] (which we refer to as ΠGFM; see Appendix
B), and similarly run it with NFE values of 5, 10, and 20. We optimize all baselines by conducting an
extensive grid search over w and τ for the best performance (in terms of sample quality).

3.1 Quantitative Results

We present the results of our method applied to inverse problems in Table 1, specifically using the
CelebA-HQ dataset for flow-based models and the ImageNet dataset for diffusion-based models. For

3https://github.com/openai/guided-diffusion
4https://github.com/gnobitab/RectifiedFlow
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Flow Results NFE LPIPS↓ KID×10−3 ↓ FID↓

C-ΠGFM ΠGFM C-ΠGFM ΠGFM C-ΠGFM ΠGFM

Inpainting
5 0.125 0.240 17.6 167.0 26.95 161.49

10 0.074 0.188 8.0 86.6 14.64 94.91
20 0.065 0.144 4.6 54.4 10.93 65.39

Super-Resolution
5 0.063 0.091 5.5 17.5 13.08 21.84

10 0.058 0.076 3.6 12.2 10.65 16.73
20 0.064 0.069 3.9 3.5 11.07 10.23

Deblurring
5 0.083 0.114 3.7 10.9 12.86 18.97

10 0.077 0.088 5.0 7.0 14.41 15.09
20 0.080 0.073 7.9 3.1 17.10 11.35

Diffusion Results C-ΠGDM ΠGDM DPS DDRM C-ΠGDM ΠGDM DPS DDRM C-ΠGDM ΠGDM DPS DDRM

Super-Resolution
5 0.220 0.306

0.252 0.318
2.7 6.3

5.8 14.1
37.31 49.06

38.18 51.6410 0.206 0.252 1.6 4.8 34.22 44.30
20 0.207 0.222 1.7 2.5 34.28 37.36

Deblurring
5 0.272 0.349

0.619 0.336
3.89 14.1

59.5 12.3
44.42 63.94

139.58 62.5310 0.272 0.294 3.6 5.3 43.37 47.80
20 0.268 0.259 3.5 4.2 43.70 44.20

Table 1: Comparison between Conjugate ΠG(D/F)M and other baselines for noiseless linear inverse
problems. Top: Flow models (CelebA-HQ) and Bottom: Diffusion Models (ImageNet). Entries in
bold show the best performance for a given sampling budget.

a comprehensive review of additional results across different datasets, please refer to Appendix E.
Our method consistently surpasses other approaches across all sampling budgets (indicated by NFE)
for the inpainting task. Similarly, our flow-based sampler (C-ΠGFM) exhibits superior perceptual
quality for image super-resolution at NFEs of 5 and 10. The ΠGFM model only reaches comparable
performance at higher NFEs. Remarkably, our diffusion-based sampler C-ΠGDM outperforms all
baselines across the entire range of NFEs. Notably, C-ΠGDM outperforms competing baselines
requiring 20-1000 NFEs in just 5 sampling steps on the challenging ImageNet dataset, demonstrating
a significant speedup in sampling speed while preserving sample quality. A similar pattern is observed
in the image deblurring task, where the performance of ΠGDM/ΠGFM approaches that of our method
only when the NFE is increased to 20 steps.

Interestingly, we observe a plateau in performance improvements at NFE=20 for both super-resolution
and deblurring tasks using our method. This suggests that while our method efficiently utilizes the
iterative model under a deterministic path with an Euler solver, further enhancements in performance,
particularly at higher NFEs, might require integrating stochastic sampling techniques or more
advanced solvers. This potential next step could unlock further gains from our approach in complex
image processing tasks.

3.2 Qualitative Results

Figure 2 presents a qualitative comparison between our proposed method and the ΠG(D/F)M baseline.
The inpainting results in the first column reveal that ΠGFM tends to introduce gray artifacts within the
inpainted areas. This issue may stem from the initialization of the parameter τ ; optimal performance
is achieved when τ ≥ 0.2, as established during our parameter tuning phase and corroborated by
Pokle et al. [2023]. Consequently, insufficient NFE means ΠGFM cannot effectively eliminate the
artifacts associated with the inpainting mask in our experiments. For image super-resolution, our
method excels in restoring fine details, particularly evident in high-frequency image components such
as human hair and wheat ears. Similarly, for the deblurring task, our method qualitatively outperforms
the baseline, especially in mitigating the over-smoothing artifacts (Figure 2, last column). Additional
examples are provided in Appendix E.4.

3.3 Ablation Studies

In this section, we further explore the impact of the hyperparameters w, λ, and τ , which were
identified during our tuning phase and link to the theoretical insights discussed in Section 2.3. We
recognize that τ is particularly task-specific and relatively straightforward to adjust. For instance,
tasks such as inpainting require a smaller τ to prevent masking artifacts, whereas tasks like super-
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Figure 2: Qualitative comparison between C-ΠG(D/F)M and ΠG(D/F)M baselines on five different
datasets. (a, b, c) Inpainting, De-blurring, and 4x Super-resolution with C-ΠGFM, respectively. (d,e)
4x Image Super-resolution and De-blurring with C-ΠGDM, respectively. (σy = 0, NFE=5)

resolution or deblurring benefit from a larger τ to ensure effective initialization. Consequently, our
discussion will primarily focus on the effects of w and λ. Figure 3 illustrates the impact of varying w
and λ on sample quality for image super-resolution on the CelebA-HQ and ImageNet datasets.

From Figure 3 we make the following observations. Firstly, for both C-ΠGDM and C-ΠGFM
samplers, we observe that the optimal value of λ can differ from λ = 0. This illustrates the
usefulness of parameterizing Bt in our sampler design. On the contrary, ΠGDM or ΠGFM samplers
do not have this flexibility and, therefore, yield sub-optimal sample quality at different sampling
budgets. Secondly, we observe that deviating from the optimal λ can lead to degradation in sample
quality. More specifically, we observed that deviating from our tuned value of λ leads to either
over-sharpening artifacts or blurry samples (See Figs. 7, 11). This is intuitive since λ controls the
scale of the transformation x̄t = Atxt (see Eqn. 14) and thus plays a significant role in conditioning
the projected diffusion dynamics. We observe a similar tradeoff on varying the static guidance weight
w where a large magnitude of w can lead to over-sharpened artifacts while a very small guidance
weight can lead to blurry samples (See Figs. 6, 10). These empirical observations are consistent with
our theoretical analysis in Section 2.3, confirming our theoretical intuition on the role of the sampler
parameters w and λ.

4 Related Works

Fast Unconditional Sampling: Recent research has significantly advanced the efficiency of the
sampling process in unconditional diffusion/flow models [Song et al., 2020, Lipman et al., 2023,
Manduchi et al., 2024]. One line of research involves designing efficient diffusion models to improve
sampling by design [Karras et al., 2022, Dockhorn et al., 2022, Pandey and Mandt, 2023, Song et al.,
2023]. Since our treatment of conditional Conjugate Integrators is quite generic, our method is readily
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Figure 3: Impact of λ and w on sampling quality. Red curves and labels represent the LPIPS scores,
while blue curves and labels indicate the FID scores.

compatible with most advancements in diffusion model design. Another line of work focuses on
distilling a student model from a teacher model, enabling sampling in even a single step [Salimans
and Ho, 2022, Meng et al., 2023, Sauer et al., 2024]. However, since these methods require expensive
re-training, there has been a significant interest in the development of fast samplers applicable to
pretrained diffusion/flow models [Liu et al., 2022, Pandey et al., 2024, Shaul et al., 2024, Zhang
and Chen, 2023, Lu et al., 2022, Song et al., 2021, Gonzalez et al., 2023]. Our work falls under the
latter line of research, where we develop fast conditional samplers that can be applied to pretrained
diffusion models.

Conditional Iterative Refinement Models have become prevalent for tasks requiring controlled
generation. These models often involve training specialized conditional diffusion models [Saharia
et al., 2022b, Yang and Mandt, 2023, Kong et al., 2021, Pandey et al., 2022, Preechakul et al., 2022,
Rombach et al., 2022, Podell et al., 2023, Ramesh et al., 2022, Peebles and Xie, 2023, Ma et al., 2024,
Esser et al., 2024, Chen et al., 2023] and may incorporate classifier-free guidance [Ho and Salimans,
2021] or classifier guidance [Dhariwal and Nichol, 2021, Song et al., 2020] for conditional sampling.
These approaches have also spurred research into solving inverse problems related to various image
degradation transformations, such as inpainting and super-resolution [Kawar et al., 2022, Chung
et al., 2022a, Song et al., 2022, Mardani et al., 2023, Pokle et al., 2023]. Although these methods
demonstrate promising outcomes, they are typically bottlenecked by a costly sampling process,
emphasizing the need for a fast sampler to address inverse problems efficiently. Recent work Xu
et al. [2024] employs a consistency model Song et al. [2023] to enhance posterior approximation,
but incorporating an additional model may deviate from our proposal of using a single pre-trained
model. DPM-Solver++ [Lu et al., 2023] also tackles the problem of accelerating guided sampling
in diffusion models. However, unlike [Lu et al., 2023], we incorporate the structure of the inverse
problem in the sampler design.

5 Discussion

We present a generic framework for designing samplers for accelerating guided sampling in iterative
refinement models. In this work, we explore a specific parameterization of this framework, which
incorporates the structure of the inverse problem in sampler design. We provide a theoretical intuition
behind our design choices and empirically justify its effectiveness in solving linear inverse problems
in as few as 5 sampling steps compared to 20-1000 NFEs required by competing baselines. While
our method can serve as an important step toward designing fast-guided samplers, there are several
important future directions. Firstly, our parameterization of the transform At can be more expressive
by learning it directly during the sampling stage. Secondly, in this work, we consider inverse problems
with a known degradation operator. Extending our framework for solving blind inverse problems
could be an important research direction. Lastly, it would be interesting to adapt our solvers to
techniques for solving inverse problems in latent diffusion models [Rout et al., 2024] to enhance
sampling efficiency further.

Broader Impact: While our work has the potential to make synthetic data generation accessible, the
techniques presented in this work should be used responsibly. Moreover, despite good sample quality
in a limited sampling budget, restoration can sometimes lead to artifacts in the generated sample
which can be undesirable in some domains like medical image analysis.
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A Proofs

A.1 Proof of Conditional flow dynamics

Proof. Given a one-sided interpolant, xt = αtx1 + γtz, x1 ∼ pdata, z ∼ N (0, I) satisfying
regularity conditions as stated in [Albergo et al., 2023], and a degraded signal y generated using Eqn.
2, the conditional velocity field b(xt,y, t) can be approximately estimated from the unconditional
velocity field bθ(xt, t) as [Pokle et al., 2023],

b(xt,y, t) ≈ bθ(xt, t) + wt
γt
αt

[
γtα̇t − γ̇tαt

]
∇xt

log p(y|xt) (15)

where wt represents a time-dependent scalar guidance schedule and σ̇t, α̇t represent the first-order
time derivatives of σt and αt, respectively. Our proof consists of two parts: Firstly, we establish
the connection between the unconditional velocity field b(xt, t) for the one-sided interpolant and
the score function s(xt, t) associated with the marginal distribution p(xt). Secondly, we use this
connection to estimate the conditional velocity b(xt,y, t) in terms of b(xt, t) to establish the
required result.

Connection between b(xt, t) and s(xt, t): For the one-sided interpolant, by definition,

xt = αtx1 + γtz x1 ∼ pdata, z ∼ N (0, I) (16)

Taking the expectation w.r.t p(x1, z) on both sides conditioned on the noisy state xt, we have,

xt = αtE[x1|xt] + γtE[z|xt] (17)

Furthermore, we have the following result from Albergo et al. [2023],

E[z|xt] = −γts(xt, t) (18)

where s(xt, t) represents the score function. From Eqns. 17, 18, it follows,

E[x1|xt] =
1

αt

[
xt + γ2

t s(xt, t)
]

(19)

Intuitively, the above result represents Tweedie’s estimate [Stein, 1981] for estimating x̂1 = E[x1|xt]
in the context of one-sided stochastic interpolants. Next, the one-sided interpolant also induces an
unconditional velocity field specified as:

b(xt, t) = α̇tE[x1|xt] + γ̇tE[z|xt]

= α̇tE[x1|xt]− γ̇tγts(xt, t) (20)

where γ̇t, α̇t represent the first-order time derivatives of γt and αt, respectively. Substituting the
result from Eqn. 19 into Eqn. 20, we have the following result,

b(xt, t) =
α̇t

αt
xt +

γt
αt

[
γtα̇t − γ̇tαt

]
s(xt, t) (21)
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This concludes the first part of the proof.

Estimating the conditional velocity b(xt,y, t) in terms of b(xt, t). For transport condi-
tioned on y, the conditional velocity can be expressed as (following the result in Eqn. 21):

b(xt,y, t) =
α̇t

αt
xt +

γt
αt

[
γtα̇t − γ̇tαt

]
s(xt,y, t) (22)

=
α̇t

αt
xt +

γt
αt

[
γtα̇t − γ̇tαt

][
s(xt, t) + wt∇xt log p(y|xt)

]
(23)

=
α̇t

αt
xt +

γt
αt

[
γtα̇t − γ̇tαt

]
s(xt, t) + wt

γt
αt

[
γtα̇t − γ̇tαt

]
∇xt

log p(y|xt) (24)

= b(xt, t) + wt
γt
αt

[
γtα̇t − γ̇tαt

]
∇xt

log p(y|xt) (25)

Approximating the unconditional velocity b(xt, t) using a parametric estimator bθ(xt, t), we get the
required result.

b(xt,y, t) ≈ bθ(xt, t) + wt
γt
αt

[
γtα̇t − γ̇tαt

]
∇xt log p(y|xt) (26)

A.2 Proof of Proposition 1

We restate Proposition 1 for convenience,
Proposition. For the conditional diffusion dynamics defined in Eqn. 3, introducing the transformation
x̄t = Atxt induces the following projected diffusion dynamics.

dx̂t = AtBtA
−1
t x̂tdt+ dΦtϵθ (xt, t)−

wtr
−2
t

2
GtG

⊤
t

∂x̂1

∂xt

⊤
(H†y − P x̂1)dt (27)

At = exp

(∫ t

0

Bs − Fsds

)
, Φt = −

∫ t

0

1

2
AsGsG

⊤
s Cout(s)ds, (28)

where H† = H⊤(HH⊤)−1 and P = H⊤(HH⊤)−1H represent the pseudoinverse and the
orthogonal projector operators for the degradation operator H .

Proof. We have the following form of the conditional diffusion dynamics

dxt

dt
= Ftxt −

1

2
GtG

⊤
t ∇xt

log p(xt|y) (29)

= Ftxt −
1

2
GtG

⊤
t sθ(xt, t)−

1

2
wtGtG

⊤
t ∇xt

log p(y|xt) (30)

Given an affine transformation which projects the state xt to x̂t,

x̂t = Atxt (31)

Therefore, by the Chain Rule of calculus,

dx̂t

dt
=

dAt

dt
xt +At

dxt

dt
(32)

Substituting the ODE in Eqn. 30 in Eqn. 32

dx̂t

dt
=

dAt

dt
xt +At

[
Ftxt −

1

2
GtG

⊤
t ∇xtsθ(xt, t)−

1

2
wtGtG

⊤
t ∇xt log p(y|xt)

]
(33)

=
[dAt

dt
+AtFt

]
xt −

1

2
AtGtG

⊤
t sθ(xt, t)−

1

2
wtGtG

⊤
t ∇xt log p(y|xt)

]
(34)

Since, we have sθ(xt, t) = Cout(t)ϵθ(xt, t), the above equation can be simplified as,

dx̂t

dt
=

[dAt

dt
+AtFt

]
xt −

1

2
AtGtG

⊤
t Cout(t)ϵθ(xt, t)−

1

2
wtGtG

⊤
t ∇xt

log p(y|xt)
]

(35)
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Further parameterizing,
dAt

dt
+AtFt = AtBt (36)

dΦt

dt
= −1

2
AtGtG

⊤
t Cout(t) (37)

which yields the required diffusion ODE in the projected space:

dx̂t = AtBtA
−1
t x̂tdt+ dΦtϵθ (xt, t)−

1

2
wtGtG

⊤
t ∇xt

log p(y|xt)dt (38)

We have the following approximation for the conditional score ∇xt log p(y|xt) (for the noiseless
case σy = 0)

∇xt log p(y|xt) = r−2
t

∂x̂0

∂xt

⊤
H⊤(HH⊤)−1(y −Hx̂0) (39)

= r−2
t

∂x̂0

∂xt

⊤
(H⊤(HH⊤)−1y −H⊤(HH⊤)−1Hx̂0) (40)

= r−2
t

∂x̂0

∂xt

⊤
(H†y − P x̂0) (41)

where H† = H⊤(HH⊤)−1 and P = H⊤(HH⊤)−1H represent the pseudoinverse and the or-
thogonal projector operators for the degradation operator H . Substituting this form of the conditional
score in projected diffusion dynamics, we have,

dx̂t = AtBtA
−1
t x̂tdt+ dΦtϵθ (xt, t)−

wtr
−2
t

2
GtG

⊤
t

∂x̂0

∂xt

⊤
(H†y − P x̂0)dt (42)

This concludes the proof.

A.3 Proof of Proposition 2

We restate the theorem here for convenience.
Proposition. For a noiseless linear inverse problem with σy = 0 and the conditional score approxi-
mated using Eqn. 5, introducing the transformation x̄t = Atxt also induces the following projected
diffusion dynamics.

dx̄t = AtBtA
−1
t x̄t + dΦyy + dΦsϵθ(xt, t) + dΦj

[
∂xt

ϵθ(xt, t)(H
†y − P x̂1)

]
(43)

At = exp
[ ∫ t

0

Bs −
(
Fs +

wsr
−2
s

2µ2
s

GsG
⊤
s P

)
ds
]

dΦy = −wtr
−2
t

2µt
AtGtG

⊤
t H

† (44)

dΦs = −1

2
AtGtG

⊤
t

[
Id−

wtr
−2
t σ2

t

µ2
t

AtP
]
Cout(t) dΦj = −wtr

−2
t σ2

t

2µt
AtGtG

⊤
t Cout(t) (45)

where exp(.) denotes the matrix exponential, H†, and P are the pseudoinverse and projector
operators (as defined previously).

Proof. The proof consists of two parts. Firstly, we simplify the conditional score ∇xt
log p(y|xt).

Secondly, we plug the simplified form of the conditional score into the conditional diffusion dynamics
and develop conjugate integrators.

Exploiting the linearity in ∇xt
log p(y|xt): From the definition of the score ∇xt

log p(y|xt):

∇xt
log p(y|xt) =

∂x̂0

∂xt

⊤
H⊤Σ−1

t (y −Hx̂0) (46)

where x̂0 is the Tweedie’s estimate of E(x1|xt) given by:

x̂0 =
1

µt
(xt + σ2

t sθ(xt, t)) (47)
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where µt, σt are the mean coefficient and standard deviation of the perturbation kernel p(xt|x1) =
N (µtx1σ

2
t Id), respectively, and Σt = r2t (HH⊤) is the variance of the ΠGDM approximation of

p(y|xt) (for the noiseless case i.e. σy = 0). Therefore,

∇xt log p(y|xt) =
∂x̂0

∂xt

⊤
H⊤Σ−1

t (y −Hx̂0) (48)

=
1

µt
(Id + σ2

t ∇xt
sθ(xt, t)︸ ︷︷ ︸

=Sθ(xt,t)

)H⊤Σ−1
t (y −Hx̂0) (49)

=
1

µt

[
H⊤Σ−1

t (y −Hx̂0) + σ2
tSθ(xt, t)H

⊤Σ−1
t (y −Hx̂0)

]
(50)

=
1

µt

[
H⊤Σ−1

t (y − 1

µt
H(xt + σ2

t sθ(xt, t))) + σ2
tSθ(xt, t)H

⊤Σ−1
t (y −Hx̂0)

]
(51)

=
1

µt
H⊤Σ−1

t y − 1

µ2
t

H⊤Σ−1
t Hxt︸ ︷︷ ︸

Linear Terms

(52)

−σ2
t

µ2
t

H⊤Σ−1
t Hsθ(xt, t)) +

σ2
t

µt
Sθ(xt, t)H

⊤Σ−1
t (y −Hx̂0)︸ ︷︷ ︸

Non-Linear Terms

(53)

where Sθ denotes the second-order derivative of the score function sθ(xt, t). Therefore, the condi-
tional score ∇xt log p(y|xt), can be decomposed into a combination of linear and non-linear terms.
Next, we use this decomposition to design conjugate integrators for noiseless linear inverse problems.

Conjugate Integrator Design: From Eqn. 30, the conditional reverse diffusion dynamics can be
specified as:

dxt

dt
= Ftxt −

1

2
GtG

⊤
t sθ(xt, t)−

1

2
wtGtG

⊤
t ∇xt

log p(y|xt) (54)

Plugging in the form of the conditional score in Eqn. 53 in the above equation, we have,

dxt

dt
= Ftxt −

1

2
GtG

⊤
t sθ(xt, t)−

1

2
wtGtG

⊤
t ∇xt

log p(y|xt) (55)

= Ftxt −
1

2
GtG

⊤
t sθ(xt, t)−

1

2
wtGtG

⊤
t

[ 1

µt
H⊤Σ−1

t y − 1

µ2
t

H⊤Σ−1
t Hxt (56)

− σ2
t

µ2
t

H⊤Σ−1
t Hsθ(xt, t)) +

σ2
t

µt
Sθ(xt, t)H

⊤Σ−1
t (y −Hx̂0)

]
(57)

=
[
Ft +

wt

2µ2
t

GtG
⊤
t H

⊤Σ−1
t H

]
xt −

wt

2µt
GtG

⊤
t H

⊤Σ−1
t y (58)

− 1

2
GtG

⊤
t

[
Id −

wtσ
2
t

µ2
t

H⊤Σ−1
t H

]
sθ(xt, t)−

wtσ
2
t

2µt
GtG

⊤
t

[
Sθ(xt, t)H

⊤Σ−1
t (y −Hx̂0)

]
(59)

Given an affine transformation which projects the state xt to x̂t,

x̂t = Atxt (60)

the projected diffusion dynamics can be specified as:

dx̄t

dt
=

[dAt

dt
+At(Ft +

wt

2µ2
t

GtG
⊤
t H

⊤Σ−1
t H)

]
xt −

wt

2µt
AtGtG

⊤
t H

⊤Σ−1
t y (61)

− 1

2
AtGtG

⊤
t

[
Id −

wtσ
2
t

µ2
t

AtH
⊤Σ−1

t H
]
sθ(xt, t)−

wtσ
2
t

2µt
AtGtG

⊤
t

[
Sθ(xt, t)H

⊤Σ−1
t (y −Hx̂1)

]
(62)

Furthermore, the score network is parameterized as sθ(xt, t) = Cout(t)ϵθ(xt, t). Consequently,
Sθ(xt, t) = Cout(t)∂tϵθ(xt, t). Lastly, we reparameterize Σt = r2tΣ where Σ = HH⊤. Plugging
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these parameterizations in the projected diffusion dynamics, we have,
dx̄t

dt
=

[dAt

dt
+At(Ft +

wtr
−2
t

2µ2
t

GtG
⊤
t H

⊤Σ−1H)
]
xt −

wtr
−2
t

2µt
AtGtG

⊤
t H

⊤Σ−1y (63)

− 1

2
AtGtG

⊤
t

[
Id −

wtr
−2
t σ2

t

µ2
t

AtH
⊤Σ−1H

]
Cout(t)ϵθ(xt, t) (64)

− wtr
−2
t σ2

t

2µt
AtGtG

⊤
t Cout(t)

[
∂xt

ϵθ(xt, t)H
⊤Σ−1(y −Hx̂0)

]
(65)

We then parameterize,
dAt

dt
+At

(
Ft +

wtr
−2
t

2µ2
t

GtG
⊤
t H

⊤Σ−1
t H

)
= AtBt (66)

This implies,

At = exp
[ ∫ t

0

Bs −
(
Fs +

wsr
−2
s

2µ2
s

GsG
⊤
s P

)
ds
]

(67)

where exp(.) denotes the matrix exponential. Furthermore, we parameterize,

Φy = −
∫ t

0

wsr
−2
s

2µs
AsGsG

⊤
s H

†ds (68)

Φs = −
∫ t

0

1

2
AsGsG

⊤
s

[
Id −

wsr
−2
s σ2

s

µ2
s

AsP
]
Cout(s)ds (69)

Φj = −
∫ t

0

wsr
−2
s σ2

s

2µs
AsGsG

⊤
s Cout(s)ds (70)

With this parameterization, the projected diffusion dynamics can be compactly specified as follows:

dx̄t = AtBtA
−1
t x̄t + dΦyy + dΦsϵθ(xt, t) + dΦj

[
∂xt

ϵθ(xt, t)(H
†y − P x̂0)

]
(71)

This concludes the proof.

A.4 Simplification in Eqn. 11

We restate the result for convenience. The matrix exponential in Eqn. 10

At = exp
[ ∫ t

0

(
λ+

1

2
βs

)
ds Id −

w

2

(∫ t

0

βsds
)
P
]

(72)

can be simplified as,

At = exp(κ1
t )
[
Id + (exp(κ2

t )− 1)P
]
, κ1

t =

∫ t

0

(
λ+

1

2
βs

)
ds, κ2

t = −w

2

∫ t

0

βsds (73)

where P is the orthogonal projector corresponding to the degradation operator H .

Proof. We have,
At = exp(κ1

tId + κ2
tP ) = exp(κ1

t Id) exp(κ
2
tP ) (74)

The above result follows since IdP = PId (commutative under multiplication). Moreover, we can
further simplify the matrix exponential in P as follows,

exp(κ2
tP ) =

∞∑
i=0

(κ2
t )

iP i

i!
(75)

= Id +

∞∑
i=1

(κ2
t )

iP i

i!
= Id +

[ ∞∑
i=1

(κ2
t )

i

i!

]
P (76)

The above result follows from the property of orthogonal projectors P 2 = P . Therefore,

exp(κ2
tP ) = Id +

[ ∞∑
i=1

(κ2
t )

i

i!

]
P = Id +

[ ∞∑
i=0

(κ2
t )

i

i!
− 1

]
P (77)

exp(κ2
tP ) = Id +

[
exp(κ2

t )− 1
]
P (78)

which concludes the proof.
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A.5 Proof of Proposition for Solving Noisy Inverse Problems

We restate the result here for convenience.
Proposition. For the noisy inverse problem,

y = Hx0 + σyz, z ∼ N (0, Id), (79)

given the transformation At for the noiseless case as defined in Eqn. 11, the corresponding noisy
transformation can be approximated as,

A
σy

t = At + κ3(t)H
†(H†)⊤ +O(σ4

y) (80)

κ3(t) =
wσ2

y

2

(∫ t

0

βs

r2s
ds
)[

exp
(
κ1(t) + κ2(t)

)
− 1

]
(81)

Consequently, the inverse of the transformation A
σy

t can be approximated as,

(A
σy

t )−1 ≈ A−1
t − κ3(t)A

−1
t H†(H†)⊤A−1

t +O(σ4
y) (82)

Proof. We have,

A
σy

t = exp
[ ∫ t

0

(
λ+

1

2
βs

)
ds− w

2

(∫ t

0

βsH
⊤(HH⊤ +

σ2
y

r2t
Id)

−1Hds
)]

(83)

From perturbation analysis, we introduce the following first-order approximation,

H⊤(HH⊤ +
σ2
y

r2t
Id)

−1H ≈ H⊤
[
(HH⊤)−1 −

σ2
y

r2t
(HH⊤)−2

]
H +O(σ4

y) (84)

≈ H⊤(HH⊤)−1H −
σ2
y

r2t
H⊤(HH⊤)−2H +O(σ4

y) (85)

≈ P −
σ2
y

r2t
H†(H†)⊤ (86)

Substituting this approximation in the expression for Aσy

t (and ignoring terms in O(σ4
y)),

A
σy

t ≈ exp
[ ∫ t

0

(
λ+

1

2
βs

)
dsId −

w

2

(∫ t

0

βs

[
P −

σ2
y

r2s
H†(H†)⊤

]
ds
)]

(87)

= exp
[ ∫ t

0

(
λ+

1

2
βs

)
ds︸ ︷︷ ︸

=κ1(t)

Id −
w

2

(∫ t

0

βsds
)

︸ ︷︷ ︸
=κ2(t)

P +
wσ2

y

2

(∫ t

0

βs

r2s
ds
)
H†(H†)⊤

]
(88)

= exp
[
κ1(t)Id + κ2(t)P +

wσ2
y

2

(∫ t

0

βs

r2s
ds
)
H†(H†)⊤

]
(89)

From the definition of the matrix exponential, it can be shown that the A
σy

t in Eqn. 89 can be
approximated as:

A
σy

t ≈ exp
[
κ1(t)Id + κ2(t)P

]
+

wσ2
y

2

(∫ t

0

βs

r2s
ds
)[

exp
(
κ1(t) + κ2(t)

)
− 1

]
︸ ︷︷ ︸

=κ3(t)

H†(H†)⊤ +O(σ4
y)

(90)

Ignoring the higher-order terms, we have,

A
σy

t ≈ At + κ3(t)H
†(H†)⊤ (91)

Consequently, we can also approximate the inverse of Aσy

t , as follows,

(A
σy

t )−1 = [At + κ3(t)H
†(H†)⊤]−1 (92)

≈ A−1
t − κ3(t)A

−1
t H†(H†)⊤A−1

t +O(σ4
y) (93)

which concludes the proof.
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B Conditional Conjugate Integrators: Flows

B.1 Background

This section discusses conditional conjugate integrators in the context of flows. For brevity, we skip
deriving our results for flows since the derivations can be similar to the analysis of diffusion models
with minor parameterization changes. Recall that the conditional dynamics for flows are specified as
follows [Pokle et al., 2023]:

b(xt,y, t) ≈ bθ(xt, t) + wt
γt
αt

[
γtα̇t − γ̇tαt

]
∇xt log p(y|xt) (94)

where bθ(xt, t) represents the pre-trained velocity field for a flow. Moreover, we restate the form of
the conditional score ∇xt log p(y|xt) for convenience.

∇xt
log p(y|xt) =

∂x̂1

∂xt

⊤
H⊤(r2tHH⊤ + σ2

yId)
−1(y −Hx̂1) (95)

where x̂1 represents the Tweedie’s estimate of the first moment of E(xt|x1),

x̂1 = E[x1|xt] =
1

αt

[
xt + γ2

t s(xt, t)
]

(96)

where s(xt, t) represents the score function associated with the marginal distribution p(xt). It can be
shown that x̂1 can also be expressed in terms of the pre-trained velocity field bθ(xt, t) as follows,

x̂1 =
1

γtα̇t − γ̇tαt

[
− γ̇txt + γtbθ(xt, t)

]
(97)

B.2 Conditional Conjugate Integrators for Flows

Analogous to diffusion models, we can design conditional conjugate samplers for flows that treat
the conditional score ∇xt log p(y|xt) as a black box. Similar to Proposition 1, by introducing the
transformation x̄t = Atxt, we have the projected flow dynamics,

dx̂t = AtBtA
−1
t x̂tdt+ dΦtbθ (xt, t) + wtr

−2
t

∂x̂1

∂xt

⊤
(H†y − P x̂1)dt (98)

At = exp

(∫ t

0

Bsds

)
, Φt =

∫ t

0

Asds, (99)

where H† = H⊤(HH⊤)−1 and P = H⊤(HH⊤)−1H represent the pseudoinverse and the
orthogonal projector operators for the degradation operator H . For Bt = 0, the formulation in Eqn.
98 becomes equivalent to the ΠGDM formulation proposed for OT-flows in Pokle et al. [2023]. For
simplicity, since in this work, we only explore the parameterization in Eqn. 98 for Bt = 0, we refer
to this parameterization as ΠGFM.

B.2.1 Conjugate-ΠGFM (C-ΠGFM)

Analogous to the discussion of C-ΠGDM samplers in Section 2.2. More specifically, given a
noiseless linear inverse problem with σy = 0, and the conditional score ∇xt

log p(y|xt), introducing
the transformation x̄t = Atxt, where

At = exp
[ ∫ t

0

Bs +
wsr

−2
s γtγ̇

2
t

2αt

(
γtα̇t − γ̇tαt

)P ds
]

(100)

induces the following projected flow dynamics.

dx̄t = AtBtA
−1
t x̄tdt+ dΦyy + dΦbbθ(xt, t) + dΦj

[
∂xt

bθ(xt, t)(H
†y − P x̂1)

]
(101)

where,

Φy = −
∫ t

0

wsr
−2
t γsγ̇s
αs

AsH
†ds (102)
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Algorithm 2 Conjugate ΠGFM sampling

1: Input: Corrupted observation y, Corruption operator H , Pretrained Flow bθ(., .), Choice of Bt, NFE
budget N , Timestep discretization {ti}Ni=0, Flow kernel xt = αtx1 + γtz, Start time τ .

2: Output: Clean sample x̂1

3: Pre-Compute {Ati}Ni=0 (Eqn. 100) ▷ Pre-compute coefficients
4: Pre-Compute {Φi

y,Φ
i
b,Φ

i
j}Ni=0 (see Eqns. 102-104)

5: z ∼ N (0, Id) ▷ Draw initial samples from the generative prior
6: x = ατH

†y + γτz ▷ Initialize using the pseudoinverse (See Chung et al. [2022b])
7: x̄ = Aτx ▷ Initial Projection Step

8: for n = 0 to N − 1 do
9: h = (tn+1 − tn) ▷ Time step differential

10: x = A−1
tn

x̄

11: x̂1 = 1
γtα̇t−γ̇tαt

[
− γ̇txt + γtbθ(xt, t)

]
▷ Tweedie’s Estimate

12: vl = hAtnBtnA
−1
tn

x̄+ (Φn+1
y −Φn

y )y ▷ Linear drift

13: vnl = (Φn+1
b −Φn

b )bθ(x, tn) + (Φn+1
j −Φn

j )
[
∂xbθ(x, tn)(H

†y − P x̂1)
]

▷ Non-Linear drift
14: x̄ = x̄+ vl + vnl ▷ Euler Update
15: end for

return x = A−1
tN

x̄ ▷ Project back to original space when done

Φb =

∫ t

0

As

[
Id +

wsr
−2
s γ2

s γ̇s
αs(γsα̇s − γ̇sαs)

P
]
ds (103)

Φj =

∫ t

0

wsr
−2
s γ2

s

αs
Asds (104)

where exp(.) denotes the matrix exponential, H†, and P are the pseudoinverse and projector
operators (as defined previously). Lastly, the matrix Bt is a design choice of our method. We specify
a recipe for C-ΠGFM sampling in Algorithm 2.

C Extension to Noisy and Non-linear Inverse Problems

Here, we discuss an extension of Conditional Conjugate Integrators to noisy and non-linear inverse
problems. While our discussion is primarily in the context of diffusion models, similar theoretical
arguments also apply to Flows.

Noisy Linear Inverse Problems: For noisy linear inverse problems of the form,

y = Hx0 + σyz, (105)

for VPSDE diffusion, the noisy transformation A
σy

t can be approximated from the transformation At

for the noiseless case (i.e., σy = 0) as illustrated in the following result (Proof in Appendix A.5):

A
σy

t = At + κ3(t)H
†(H†)⊤ +O(σ4

y) ≈ At + κ3(t)H
†(H†)⊤, (106)

κ3(t) =
wσ2

y

2

(∫ t

0

βs

r2s
ds
)[

exp
(
κ1(t) + κ2(t)

)
− 1

]
. (107)

Consequently, the inverse projection (A
σy

t )−1 can be approximated from A
σy

t from perturbation
analysis.

(A
σy

t )−1 ≈ A−1
t − κ3(t)A

−1
t H†(H†)⊤A−1

t +O(σ4
y) (108)

Therefore, the transformation matrix A
σy

t and its inverse (see Appendix A.5) can also be computed
tractably for the noisy case. Since, for most practical purposes, σy is pretty small, higher order terms
in σ4

y can be safely ignored, making our approximation accurate. We include qualitative examples for
4x super-resolution with σy = 0.05 for the ImageNet dataset in Figure 8
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Non-Linear Inverse Problems: For non-linear inverse problems of the form,

y = h(x0) + σyz, z ∼ N (0, Id), (109)

similar to Song et al. [2022], we heuristically re-define linear operations like H†xt, Hxt and Pxt

by their non-linear equivalents h†(xt), h(xt) and h†(h(xt)) respectively. Consequently, analogous
to Eqn. 11 the projection operator for a noiseless non-linear inverse problem, in this case, can be
defined as,

At = exp(κ1(t))
[
Id+(exp(κ2(t))−1)P

]
, κ1(t) =

∫ t

0

(
λ+

1

2
βs

)
ds, κ2(t) = −w

2

∫ t

0

βsds,

(110)
where P = h†(h(.)) is non-linear ‘projector" operator. For instance, in non-linear inverse problems
like compression artifact removal, h(xt) and h†(xt) can realized by encoders and decoders. We
illustrate some qualitative examples in Figure 12. It is worth noting that this is a purely heuristic
approximation, and developing a more principled framework for non-linear inverse problems within
our framework remains an interesting direction for further work.

D Implementation Details

In this section, we include additional practical implementation details for both C-ΠGDM and C-
ΠGFM formulations.

D.1 C-ΠGDM: Practical Aspects

D.1.1 VP-SDE

We work with the VP-SDE diffusion [Song et al., 2020] with the forward process specified as:

dxt = −1

2
βtxt dt+

√
βt dwt, t ∈ [0, T ], (111)

This implies, Ft = − 1
2βt and Gt =

√
βt. For the VP-SDE the perturbation kernel is given by,

p(xt|x0) = N (µtx0, σ
2
t Id) (112)

µt = exp
(
− 1

2

∫ s

0

βsds
)

σ2
t =

[
1− exp

(
−

∫ s

0

βsds
)]

(113)

The corresponding deterministic reverse process is parameterized as:

dxt = −βt

2
[xt + sθ(xt, t)] dt. (114)

Moreover, we adopt the standard ϵ-prediction parameterization which implies Cout(t) = −1/σt.
Lastly, the Tweedies estimate x̂0 can be specified as:

x̂0 =
1

µt

[
xt + σ2

t sθ(xt, t)
]

(115)

D.1.2 C-ΠGDM - Simplified Expressions

We choose the parameterization Bt = λId and set the adaptive guidance weight as wt = wµ2
t r

2
t ,

where r2t =
σ2
t

σ2
t+µ2

t
. The projected diffusion dynamics are then specified as:

dx̄t = λx̄tdt+ dΦyy + dΦsϵθ(xt, t) + dΦj

[
∂xt

ϵθ(xt, t)(H
†y − P x̂0)

]
(116)

where

At = exp
[ ∫ t

0

(
λ+

1

2
βs

)
dsId −

w

2

(∫ t

0

βsds
)
P
]

(117)

which further simplifies to,

At = exp(κ1(t))
[
Id+(exp(κ2(t))−1)P

]
, κ1(t) =

∫ t

0

(
λ+

1

2
βs

)
ds, κ2(t) = −w

2

∫ t

0

βsds

(118)
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Moreover, we have,

Φy = −
∫ t

0

wsr
−2
s

2µs
AsGsG

⊤
s H

†ds (119)

= −
∫ t

0

wβtµs

2
AsH

†ds (120)

= −
∫ t

0

wβtµs

2

[
exp(κ1(s))

[
Id + (exp(κ2(s))− 1)P

]]
H†ds (121)

= −
∫ t

0

wβtµs

2
exp(κ1(s))

[
H† + (exp(κ2(s))− 1)PH†

]
ds (122)

= −
∫ t

0

wβtµs

2
exp(κ1(s))

[
H† + (exp(κ2(s))− 1)H†

]
ds (123)

= −
[ ∫ t

0

wβtµs

2
exp(κ1(s) + κ2(s))ds

]
H† (124)

Φs = −
∫ t

0

1

2
AsGsG

⊤
s

[
Id −

wsr
−2
s σ2

s

µ2
s

P
]
Cout(s)ds (125)

=

∫ t

0

βs

2σs
As

[
Id − wσ2

sP
]
ds (126)

=

∫ t

0

βs

2σs
Asds−

[ ∫ t

0

wβsσs

2
exp(κ1(s) + κ2(s))ds

]
P (127)

=

∫ t

0

βs

2σs
exp(κ1(s))

[
Id + (exp(κ2(s))− 1)P

]
ds−

[ ∫ t

0

wβsσs

2
exp(κ1(s) + κ2(s))ds

]
P

(128)

=

∫ t

0

βs

2σs
exp(κ1(s))ds+

[ ∫ t

0

βs

2σs
exp(κ1(s))(exp(κ2(s))− 1)− wβsσs

2
exp(κ1(s) + κ2(s))ds

]
P

(129)

Φj = −
∫ t

0

wsr
−2
s σ2

s

2µs
AsGsG

⊤
s Cout(s)ds =

∫ t

0

wβsµsσs

2
Asds (130)

=

∫ t

0

wβsµsσs

2
exp(κ1(s))

[
Id + (exp(κ2(s))− 1)P

]
ds (131)

=

∫ t

0

wβsµsσs

2
exp(κ1(s))ds+

[ ∫ t

0

wβsµsσs

2
exp(κ1(s))(exp(κ2(s))− 1)ds

]
P (132)

D.2 C-ΠGFM: Practical Aspects

D.2.1 OT-Flows

We work with OT-Flows [Albergo et al., 2023, Lipman et al., 2023, Liu et al., 20223] due to its wide
adoption. More specifically, the corresponding interpolant can be specified as,

xt = (1− t)z+ tx1, z ∼ N (0, Id) x1 ∼ pdata (133)

For this case αt = t and γt = 1− t. Therefore, the Tweedie’s estimate of E(xt|x1) can be specified
as (from Eqn. 97):

x̂1 = xt + (1− t)bθ(xt, t) (134)

D.2.2 C-ΠGFM: Simplified Expressions

We choose the parameterization Bt = λId and set the adaptive guidance weight as wt = wα2
t r

2
t ,

where r2t =
γ2
t

α2
t+γ2

t
. The projected diffusion dynamics are then specified as follows:

dx̄t = λx̄tdt+ dΦyy + dΦbbθ(xt, t) + dΦj

[
∂xt

bθ(xt, t)(H
†y − P x̂1)

]
(135)
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where,

At = exp
[ ∫ t

0

λId +
wt(1− t)

2
P ds

]
(136)

which further simplifies to,

At = exp(κ1(t))
[
Id + (exp(κ2(t))− 1)P

]
, κ1(t) =

∫ t

0

λds, κ2(t) =
w

2

∫ t

0

s(1− s)ds

(137)
Moreover, we have,

Φy = −
∫ t

0

wsr
−2
t γsγ̇s
αs

AsH
†ds (138)

= −
∫ t

0

wαsγsγ̇sAsH
†ds =

∫ t

0

ws(1− s)AsH
†ds (139)

=

∫ t

0

ws(1− s) exp(κ1(s))
[
Id + (exp(κ2(s))− 1)P

]
H†ds (140)

=
[ ∫ t

0

ws(1− s) exp(κ1(s) + κ2(s))ds
]
H† (141)

Φb =

∫ t

0

As

[
Id +

wsr
−2
s γ2

s γ̇s
αs(γsα̇s − γ̇sαs)

P
]
ds (142)

=

∫ t

0

As

[
Id +

wαsγ
2
s γ̇s

(γsα̇s − γ̇sαs)
P
]
ds (143)

=

∫ t

0

As

[
Id − ws(1− s)2P

]
ds (144)

=

∫ t

0

Asds−
∫ t

0

ws(1− s)2AsP
]
ds (145)

=

∫ t

0

Asds−
[ ∫ t

0

ws(1− s)2 exp(κ1(s) + κ2(s))ds
]
P (146)

=

∫ t

0

exp(κ1(s))ds+
[ ∫ t

0

exp(κ1(s))(exp(κ2(s))− 1)− ws(1− s)2 exp(κ1(s) + κ2(s))ds
]
P

(147)

Φj =

∫ t

0

wsr
−2
s γ2

s

αs
Asds =

∫ t

0

wαsγ
2
sAsds (148)

=

∫ t

0

ws(1− s)2 exp(κ1(s))
[
Id + (exp(κ2(s))− 1)P

]
ds (149)

=

∫ t

0

ws(1− s)2 exp(κ1(s))ds+
[ ∫ t

0

ws(1− s)2 exp(κ1(s))(exp(κ2(s))− 1)ds
]
P (150)

D.3 Coefficient Computation

From the above analysis, most integrals are one-dimensional and can be computed in closed form
or numerically with high precision. To clarify, with a predetermined timestep schedule {ti}, the
coefficients Φ can be calculated offline just once and then reused across various samples. Therefore,
this computation must only be done once offline for each sampling run. For numerical approximation
of these integrals, we use the odeint method from the torchdiffeq package [Chen, 2018] with
parameters atol=1e-5, rtol=1e-5 and the RK45 solver [Dormand and Prince, 1980]. We set the
initial value Φinit = 0 for all coefficients Φ as an initial condition for both C-ΠGDM and C-ΠGFM
samplers.
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D.4 Choice of Numerical Solver

We use the Euler method to simulate projected diffusion/flow dynamics for simplicity. However,
using higher-order numerical solvers within our framework is also possible. We leave this exploration
to future work.

D.5 Timestep Selection during Sampling

: We use uniform spacing for timestep discretization during sampling. We hypothesize our sampler
can also benefit from more advanced timestep discretization techniques Karras et al. [2022] commonly
used for sampling in unconditional diffusion models in the low NFE regime.

D.6 Last-Step Denoising

It is common to add an Euler-based denoising step from a cutoff ϵ to zero to optimize for sample
quality [Song et al., 2020, Dockhorn et al., 2022, Jolicoeur-Martineau et al., 2021] at the expense of
another sampling step. In this work, we do not use last-step denoising for our samplers.

D.7 Evaluation Metrics

We use the network function evaluations (NFE) to assess sampling efficiency and perceptual metrics
KID [Bińkowski et al., 2018], LPIPS [Zhang et al., 2018] and FID [Heusel et al., 2017] to assess sam-
ple quality. In practice, we use the torch-fidelity[Obukhov et al., 2020] package for computing
all FID and KID scores reported in this work. For LPIPS, we use the torchmetrics package with
Alexnet embedding.

D.8 Baseline Hyperparameters

Diffusion Baselines: For DPS [Chung et al., 2022a], we set NFE=1000 and set the step size for
each task to the value recommended in Appendix D in Chung et al. [2022a]. For DDRM [Kawar
et al., 2022], we set the number of sampling steps to NFE=20 with parameters ηb = 1.0 and η = 0.85
as recommended in Kawar et al. [2022]. For both DPS and DDRM we start diffusion sampling
from t = T . For our implementation of Π-GDM, we set the start time parameter τ to 0.6 for
super-resolution and deblurring. We set the guidance weight wt = wr2t where w is tuned using
grid search between 1.0 and 10.0 for best sample quality for super-resolution and deblurring. For
implementation of all diffusion-based baselines, we use the official code for RED-Diff [Mardani
et al., 2023] at https://github.com/NVlabs/RED-diff.

Flow Baselines: In developing our flow-based baseline, we adhere to the approach outlined in
ΠGFM (Pokle et al., 2024), which advocates for a consistent guidance schedule characterized
by wt = w and rt =

γ2
t

γ2
t +α2

t
. For each task, we perform a comprehensive grid search over the

parameters ατ = {0.1, 0.2, . . . , 0.7} and w = {1, 2, . . . , 5} (35 combinations in total) across
different datasets to identify the optimal configuration that minimizes the LPIPS score. For the
implementation of Flows, we use the official implementation of Rectified Flows [Liu et al., 20223] at
https://github.com/gnobitab/RectifiedFlow.

E Additional Results

E.1 Additional Baseline Comparisons

We include additional comparisons between our proposed samplers and competing baselines on the
AFHQ-Cat (see Table 2), LSUN Bedroom (see Table 3), and the FFHQ (see Table 4) datasets.

A note on Inpainting evaluations for ImageNet. We find that for diffusion model evaluations, the
continuous sampler for ΠGDM suffers from noisy artifacts for the inpainting task. Consequently,
Conjugate ΠGDM suffers from similar artifacts. Therefore, we do not report results on this task for
the ImageNet dataset.
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Task NFE LPIPS↓ KID×10−3↓ FID↓
C-ΠGFM ΠGFM C-ΠGFM ΠGFM C-ΠGFM ΠGFM

Inpainting
5 0.151 0.177 6.5 15.6 21.76 30.82

10 0.122 0.136 8.5 9.4 22.50 24.87
20 0.115 0.117 6.4 10.4 20.39 24.42

Super-Resolution
5 0.129 0.133 4.1 5.7 18.43 19.55

10 0.132 0.121 4.0 4.6 18.32 17.65
20 0.134 0.119 4.5 4.0 18.75 16.97

Deblurring
5 0.176 0.177 6.6 6.9 23.28 23.66

10 0.182 0.164 9.4 7.1 28.12 23.62
20 0.191 0.170 12.4 7.2 31.76 23.65

Table 2: Quantitative evaluation on 4x superresolution, inpainting, and Gaussian deblurring on the
AFHQ-Cat dataset.

Task NFE LPIPS↓ KID×10−3 ↓ FID↓
C-ΠGFM ΠGFM C-ΠGFM ΠGFM C-ΠGFM ΠGFM

Inpainting
5 0.208 - 7.0 - 45.66 -

10 0.176 - 4.4 - 40.69 -
20 0.167 - 4.2 - 40.35 -

Super-Resolution
5 0.174 0.219 3.1 7.7 37.54 46.03

10 0.150 0.193 1.1 4.6 32.41 37.34
20 0.148 0.175 0.9 2.5 32.26 32.15

Deblurring
5 0.209 0.220 5.0 9.0 44.78 49.27

10 0.204 0.193 10.7 4.7 53.53 44.21
20 0.224 0.175 18.0 3.5 62.87 39.95

Table 3: Quantitative evaluation on 4x superresolution, inpainting, and Gaussian deblurring on the
LSUN-Bedroom dataset. We note that ΠGFM fails to generate reasonable texture in the masked
region even with the maximum NFE=20, so we choose not to report the results here. (See qualitative
examples in Figure 9)

E.2 Comparison of Perceptual vs Recovery Metrics

Here, we highlight the robustness of C-ΠGDM in both perceptual and recovery metrics in the context
of inverse problems. For completeness, we provide a comparison between DPS, ΠGDM, and C-
ΠGDM in terms of PSNR, SSIM, FID, and LPIPS in Tables 5 and 6 on the ImageNet-256 and
FFHQ-256 datasets on the 4x super-resolution task. It is worth noting that the PSNR and SSIM
scores for all methods correspond with the best FID/LPIPS scores presented in the main text for these
methods. Our method achieves competitive PSNR and SSIM scores for better perceptual quality than
competing baselines like DPS/Π-GDM, even for very small sampling budgets. For instance, on the
FFHQ dataset, our method achieves a PSNR of 28.97 compared to 28.49 for DPS while achieving
better perceptual sample quality (LPIPS: 0.095 for ours vs 0.107 for DPS) and requiring around 200
times less sampling budget (NFE=5 for our method vs 1000 for DPS). Therefore, we argue that our
perceptual quality to recovery trade-off is better than competing baselines.

E.3 Traversing the Recovery vs Perceptual trade-off

In addition to the guidance weight w, our method also allows tuning an additional hyperparameter λ,
which controls the dynamics of the projection operator (See Sections 2.3 and 3.2 for more intuition).
Therefore, tuning w and λ can help traverse the trade-off curve between perceptual quality and
distortion for a fixed NFE budget. We illustrate this aspect in Table 7 (fixed λ with varying w) and
Table 8 (fixed w with varying λ) for the SR(x4) task on the ImageNet-256 dataset using the PSNR,
LPIPS, and FID metrics. Therefore, our method offers greater flexibility to tune the sampling process
towards either good perceptual quality or good recovery for a given application while maintaining the
same number of sampling steps. In contrast, other methods like DPS or Π-GDM do not offer such
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Task NFE LPIPS↓ KID×10−3 ↓ FID↓

C-ΠGDM ΠGDM DPS DDRM C-ΠGDM ΠGDM DPS DDRM C-ΠGDM ΠGDM DPS DDRM

Super-Resolution
5 0.095 0.133

0.106 0.106
10.9 17.4

7.8 22.8
32.01 41.39

30.86 36.9510 0.086 0.106 8.8 10.2 29.07 32.79
20 0.083 0.087 5.8 4.6 26.37 26.17

Deblurring
5 0.127 0.147

0.348 0.132
7.3 14.6

109.4 11.5
31.18 39.63

142.26 33.9410 0.111 0.123 6.3 7.7 29.08 31.49
20 0.112 0.103 4.4 3.1 27.68 26.30

Table 4: Quantitative evaluation on 4x superresolution and Gaussian Deblurring tasks for the FFHQ
dataset. DPS was evaluated with NFE=1000 but failed to perform well on the deblurring task. DDRM
was evaluated with NFE=20.

PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
DPS (NFE=1000) 23.81 0.708 38.18 0.252
ΠGDM (NFE=20) 21.92 0.646 37.36 0.222
C-ΠGDM (NFE=5) 22.32 0.641 37.31 0.220

C-ΠGDM (NFE=10) 23.00 0.651 34.22 0.206
C-ΠGDM (NFE=20) 23.16 0.654 34.28 0.207

Table 5: Comparison between C-ΠGDM and other baselines in terms of the Recovery (a.k.a distortion)
vs Perception tradeoff for ImageNet-256 dataset for the SR(x4) task.

flexibility. Moreover, tuning the guidance weight in methods like DPS could be very expensive due
to its high sampling budget requirement (around 1000 NFE).

E.4 Qualitative Results

Diffusion Models:

1. We include additional qualitative comparisons between Π-GDM and our proposed C-ΠGDM
sampler for the ImageNet dataset in Fig. 4.

2. We include a qualitative comparison between sample quality at different sampling budgets
for the C-ΠGDM sampler in Fig.5.

3. We qualitatively study the impact of varying w on sample quality in Fig. 6 and the impact of
varying λ on sample quality in Fig. 7.

4. We qualitatively present the performance of the C-ΠGDM sampler for noisy inverse prob-
lems in Fig. 8. In just 5 steps, our method can also generate good-quality samples for noisy
inverse problems.

Flow Models:

1. We include additional qualitative comparisons between Π-GFM and our proposed C-ΠGFM
sampler with different sampling budget for the all three datasets in Fig. 9.

2. We qualitatively study the impact of varying w on sample quality in Fig. 10 and the impact
of varying λ on sample quality in Fig. 11.
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PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
DPS (NFE=1000) 28.49 0.834 30.86 0.107
ΠGDM (NFE=20) 28.26 0.818 26.17 0.087

C-ΠGDM (NFE=5) 28.97 0.832 32.01 0.095
C-ΠGDM (NFE=10) 29.03 0.821 29.07 0.086
C-ΠGDM (NFE=20) 28.79 0.809 26.37 0.083

Table 6: Comparison between C-ΠGDM and other baselines in terms of the Recovery (a.k.a distortion)
vs Perception tradeoff for FFHQ-256 dataset for the SR(x4) task.

w PSNR ↑ LPIPS ↓ FID ↓
2 22.91 0.339 48.48
4 23.37 0.306 45.03
6 23.49 0.274 42.68
8 23.44 0.266 40.96

10 23.28 0.254 40.27
12 22.89 0.246 40.13
14 22.74 0.239 40.16

Table 7: Illustration of the impact of w for a fixed λ = 0.0 on the sample recovery (PSNR) vs sample
perceptual quality (LPIPS, FID) at NFE=5 for our method. The task is SR(x4) on the ImageNet-256
dataset.

λ PSNR ↑ LPIPS ↓ FID ↓
-1.0 20.96 0.291 42.56
-0.8 21.33 0.265 40.97
-0.6 21.69 0.240 39.38
-0.4 22.04 0.223 37.83
-0.2 22.32 0.220 37.31
0.2 22.73 0.257 45.27
0.4 22.90 0.275 48.98
0.6 23.03 0.283 47.47
0.8 23.11 0.285 46.2
1.0 23.15 0.285 46.41

Table 8: Illustration of the impact of λ for a fixed w = 15.0 on the sample recovery (PSNR) vs sample
perceptual quality (LPIPS, FID) at NFE=5 for our method. The task is SR(x4) on the ImageNet-256
dataset.
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Original Pseudoinverse

Figure 4: Qualitative comparison between ΠGDM and C-ΠGDM at NFE=5 for the ImageNet dataset
on the 4x Superresolution task. C-ΠGDM can generate high-frequency details even for a low compute
budget as compared to the baseline Π-GDM (Best Viewed when zoomed in)
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Original Pseudoinverse NFE=5 NFE=10 NFE=20

Figure 5: Qualitative comparison for different sampling budgets for the ImageNet dataset on the 4x
Superresolution task. C-ΠGDM can generate high-quality samples in just 5 steps (Best Viewed when
zoomed in)
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Original Pseudoinverse w=5 w=10 w=15

Figure 6: Impact of varying C-ΠGDM guidance weight w on sample quality for the ImageNet dataset
on the 4x Superresolution task. High guidance weight is crucial to generate good quality samples
from C-ΠGDM (NFE=5 steps) (Best Viewed when zoomed in)

Original Pseudoinverse

Figure 7: Impact of varying C-ΠGDM λ on sample quality for the ImageNet dataset on the 4x
Superresolution task. High λ can lead to blurry samples while a very low λ can lead to over-
sharpened artifacts (NFE=5 steps) (Best Viewed when zoomed in)
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Original Pseudoinverse

Figure 8: C-ΠGDM can also generate good quality samples for noisy inverse problems (4x superres
with NFE=5, σy = 0.05). For this case naively computing the pseudoinverse fails to get rid of the
noise.
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Figure 9: Qualitative comparison between ΠGFM and C-ΠGFM at NFE={5, 10} for the 3 datasets
on 3 tasks. C-ΠGFM can generate high-frequency details even for a low compute budget as compared
to the baseline Π-GFM (Best Viewed when zoomed in). We did not report ΠGFM inpainting results
in Table 3 as it failed to generate “reasonable” textures even after extensive hyper-parameter search
on w and τ .

Reference Distorted

Figure 10: Impact of varying C-ΠGFM guidance weight w on sample quality for the ImageNet
dataset on the 4x Superresolution task. High guidance weight is crucial to generate good quality
samples from C-ΠGFM (NFE=5 steps) (Best Viewed when zoomed in)
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Reference Distorted

Figure 11: Impact of varying C-ΠGFM λ on sample quality for the ImageNet dataset on the 4x
Superresolution task. High λ can lead to blurry samples while a very high λ can lead to over-
sharpened artifacts (NFE=5 steps) (Best Viewed when zoomed in)

Reference Neual Compression NFE=5 NFE=10 NFE=20

Reference JPEG q=5 NFE=5 NFE=10 NFE=20

Figure 12: C-ΠGFM for solving compression inverse problem. Top: decoding compressed latents
from pretrained mean-scale hyperprior neural codec [Minnen et al., 2018]; Bottom: JPEG image
restoration.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Abstract, Section 1, Section 2 and Section 3
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Section 2 and Appendix A

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See the beginning of Section 3

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is not available at the time of submission, but will be published later.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the beginning of Section 3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We don’t have any error bar data in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our approach utilizes established models for a range of downstream tasks,
ensuring that hardware variations do not affect the outcomes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conform with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 5
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our approach utilizes published models for a range of downstream tasks, so
we do not need to add any safeguard.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the related works and packegs we used
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our approach utilizes published models for a range of downstream tasks.
Details are available in Section 3
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: We don’t have experiment with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t have experiment with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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