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ABSTRACT

Interpretability for machine learning models is becoming more and more impor-
tant as machine learning models become more complex. The functional ANOVA
model, which decomposes a high-dimensional function into a sum of lower di-
mensional functions so called components, is one of the most popular tools for
interpretable Al, and recently, various neural network models have been devel-
oped for estimating each component in the functional ANOVA model. However,
such neural networks are highly unstable when estimating components since the
components themselves are not uniquely defined. That is, there are multiple func-
tional ANOVA decompositions for a given function. In this paper, we propose a
novel interpretable model which guarantees a unique functional ANOVA decom-
position and thus is able to estimate each component stably. We call our proposed
model ANOVA-NODE since it is a modification of Neural Oblivious Decision En-
sembles (NODE) for the functional ANOVA model. Theoretically, we prove that
ANOVA-NODE can approximate a smooth function well. Additionally, we ex-
perimentally show that ANOVA-NODE provides much more stable estimation of
each component and thus much more stable interpretation when training data and
initial values of the model parameters vary than existing neural network models
do.

1 INTRODUCTION

Interpretability has become more important as artificial intelligence (AI) models have become more
sophisticated and complicated in recent years. Various methods for interpretable Al can be catego-
rized into two groups. One is transparent box design, where interpretable machine learning models
such as linear models and decision trees are used to learn a prediction model. Typically, interpretable
models are inferior to black box models in terms of prediction powers. The other group consists of
post-hoc interpretation methods that try to interpret a given black box models (Lundberg, 2017
Ribeiro et al.,[2016). While post-hoc interpretation methods do not hamper the prediction power of
a given black box model at all, they often exhibit instability and lack faithfulness (Slack et al.,[2020).

In this paper, we focus on the transparent box design based on the functional ANOVA model (Ho-
effding, {1992). The functional ANOVA model approximates a given complex high-dimensional
function by the sum of low dimensional (e.g., one or two dimensional) functions referred to as
components. One of the most representative examples of the functional ANOVA model is the gen-
eralized additive model (GAM, |Hastie & Tibshirani (1987)), which consists of the summation of
one-dimensional functions, each corresponding to an input feature. Low dimensional functions are
easier to understand, and thus the functional ANOVA model is popularly used for interpretable Al
(Lengerich et al., [2020; Mértens & Yau, [2020).

Recently, various learning algorithms for the functional ANOVA model based on neural networks
have been proposed (Agarwal et al., [2021}; Radenovic et al., 2022; |Chang et al., [2021)). While they
provide accurate prediction models, existing neural networks struggle to estimate each component
in the functional ANOVA model due to unidentifiability (Lengerich et al.,[2020). That is, completely
different components could result in the same prediction model. Reliable estimation of components
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is crucial for interpretation, as the functional ANOVA model is interpreted through the interpretation
of each component.

A simple remedy for resolving the issue of unidentifiability is to impose a constraint on the compo-
nents to make them identifiable. There are several such constraints, some of which can be found, for
example, in /Gu & Wahba (1993)); |Chastaing et al.[(2012)); Hooker| (2007). One of the most popular
identifiability constraints is the so called ‘sum-to-zero’ condition, which ensures that each compo-
nent is orthogonal in a certain Hilbert space.

Learning the functional ANOVA model by using neural networks under such an identifiability con-
straint, however, is not easy since a standard gradient descent algorithm could not be applicable.
The aim of this paper is to develop a specially designed neural network that automatically satis-
fies the sum-to-zero condition and thus can be learned by a standard gradient descent algorithm.
The proposed neural network is a modification of Neural Oblivious Decision Ensembles (NODE,
Popov et al.|(2019)) for the functional ANOVA model. Chang et al.|(2021) propose a modification of
NODE for the GAM called NODE-GAM, but NODE-GAM is not effective in estimating each com-
ponent due to the identifiability issue. We modify NODE such that each component in the functional
ANOVA model is estimated uniquely. We call our algorithm ANOVA-NODE.

There exist various learning algorithms for the functional ANOVA model under the sum-to-zero
condition such as |(Gu & Wahba (1993); [Lin & Zhang| (2006); Kim et al.| (2009) that do not use
neural networks. An advantage of ANOVA-NODE compared to these non-neural algorithms is that a
gradient descent based optimization algorithm can be used in learning and hence end-to-end learning
is possible when it is combined with other neural networks. See Section [.5|for an example.

Opverall, our contributions are as follows.

* We propose a novel XAI model (ANOVA-NODE) which trains the functional ANOVA model
under the sum-to-zero condition using a gradient descent-based optimization algorithm.

* We prove the universal approximation property in the sense that ANOVA-NODE can approxi-
mate any smooth function up to an arbitrary precision.

* By analyzing multiple benchmark datasets, we illustrate that ANOVA-NODE provides more
stable estimation and interpretation of each component compared to the baseline models, in-
cluding NAM (Agarwal et al., 2021), NBM (Radenovic et al., 2022), NODE-GAM (Chang
et al.,|2021) and XGB (Chen & Guestrin, [2016) without losing prediction accuracy.

2 BACKGROUND

2.1 NOTATION

Let x = (z1,..,2p) € X = X X ... x X, be a vector of input features, where we assume
X C [—a,alP for some a > 0. We denote [p J = {1,...,p}, and denote its power set as P([p]). For
xe X and S C [pl, letxg = (z;,5 € S)'. We denote fg as a function of xg. For a real-valued
function f : & — R, we denote || f||oc = supycy |f(X)]-

2.2 FUNCTIONAL ANOVA MODEL

The functional ANOVA model (Hoeffding, [1992)) decomposes a high-dimensional function f into
the sum of low-dimensional functions

P
&) =Bo+ > filwy)+ Y Finlag,an) +--+
i=1 i<k

which is considered as one of the most important XAI tools. Here, f(x) = g(E(Y|X = z)) where
g is a link function and Y is target variable, f;, j € [p] are called the main effects, and f; , (j, k) €
[p]? are called the second interaction terms and so on. In practice, only interactions of lower orders
(e.g., the main and second order only) are included in the decomposition for a more transparent
interpretation.

Generalized Additive Model (GAM, Hastie & Tibshirani| (1987)) is a special form of the functional
ANOVA model where only the main effects are included in the model, that is

£ = Bo+ D fi(ay)
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Similarly, GAM is defined as the functional ANOVA model including all of the main effects and
second order interactions,

=B+ > fslxs),

SClpl,|S|<2

or more generally we can consider GAM defined as

e =B6o+ D fs(xs).

SClp),|S|<d

Several learning algorithms for the functional ANOVA model have been proposed. |Gu & Wahba
(1993) applied the smoothing spline to learn the functional ANOVA model, |[Lin & Zhang| (2006)
developed a component-wise sparse penalty, and Kim et al.|(2009) proposed a boosting algorithm for
the functional ANOVA model. In addition, the functional ANOVA model has been applied to various
problems such as sensitivity analysis (Chastaing et al.,|2012)), survival analysis (Huang et al., 2000),
diagnostics of high-dimensional functions (Hooker, 2007)) and machine learning models (Lengerich
et al.| [2020; Martens & Yau, 2020)).

Recently, learning the functional ANOVA model using neural networks has received much attention
since gradient descent based learning algorithms can be easily scaled up. Examples are Neural Ad-
ditive Model (NAM, |/Agarwal et al.| (2021)), Neural Basis Model (NBM, [Radenovic et al.| (2022))
and NODE-GAM (Chang et al., [2021). NAM uses deep neural network (DNN) to train each com-
ponent of GAM. NBM achieves a significant reduction in training time compared to NAM by using
basis DNNs to train all components. NODE-GAM extends Neural Obilvious Decision Ensembles
(NODE, Popov et al.[(2019)) for GAM.

2.3 NEURAL OBLIVIOUS DECISION ENSEMBLES (NODE)
Oblivious Decision Tree (ODT) (Kohavi & Li,|1993) is a decision tree which has the following two

properties:

1. All terminal nodes have the same depth.
2. All rules at each depth are identical.

Let d be the depth of ODT, for ¢ < d, Ft(x) be the feature function used for the rule at the depth

t, bt is the split value in the depth ¢t and B € R2" be the height parameters at the terminal nodes of
ODT. Then, the ODT model is given as

wo-o([{E 28] (28] <328

%

where [ is the indicator function and ® is the outer product.

To train ODT using gradient descent methods, [Popov et al|(2019) replaced the indicator function
I(F(x) > b) with the entmaz, ((F2=2,0)") (Peters et al| 2019) which s differentiable. More-

over, the feature function F'* is a weighed sum of input features. Note that entmaxl,((w, 0)")4

works similarly to a sparse sigmoid. They referred to this ODT as Neural ODT (NODT).
In addition, Popov et al.|(2019)) proposed a layer architecture which involves the output of the current
layer being concatenated with the current input and then fed into the next layer. The final output of

NODT with a layer architecture can be obtained by averaging the outputs of each layer. Finally, they
proposed Neural Oblivious Decision Ensembles (NODE) as an ensemble of NODTs.

3 PROPOSED MODEL

3.1 IDENTIFIABILITY ISSUE

An unsolved but important problem in neural functional ANOVA algorithms is the identifiability of
each component. The functional ANOVA model itself is not identifiable. That is, there are multiple
functional ANOVA decompositions of a given function. For example,

flxi,2z2) = fi(xr) + fa(xe) + fra(xy, x2)
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where f1(x1) = z1, fa(x2) = 2, f1,2(21, 22) = 122 can be expressed as

f(z1,22) = fi(z1) + f5 (22) + fio2(21,22)

where f7(x1) = —x1, fo(x2) = a2, fi5(21,2) = 21 (22 +2) (Lengerich et al.,[2020). Without the
identifiability, each component cannot be estimated uniquely and thus interpretation of the model
becomes unstable and inaccurate.

A simple remedy to ensure the identifiability of each component is to put constraints. One of the
most popular constraints for the identifiability of the components in the functional ANOVA model
is so called the sum-to-zero condition (Gu & Wahbal [1993; Kim et al.,2009). When we consider the
functional ANOVA model using interactions in S C P([p]), the sum-to-zero condition is

VS ES, VjES, Vz € Xs\j, / fs(xs\j3 = 2, 25)p(dz;) =0 )
Xj

for some probability measure /; on X. In practice, we can use the empirical distribution of the input
feature x; for p; or the uniform distribution. With the sum-to-zero in (I), the functional ANOVA
model becomes identifiable, as can be seen in proposition 3.1. Let o = | | ; 1.

Proposition 3.1. (Hooker, 2007) Consider two component sets { f&, S € S} and { f2, S € S} which

satisfy . Then, Y ges [5(-) = Y ges fE(+) almost everywhere (with respect to 1) if and only if
T3(:) = f2(-) almost everywhere (with respect to 1) for every S € S.

The sum-to-zero condition is not a unique identifiability condition. However, Herren & Hahn|(2022])
demonstrated that there is an interesting relation between the sum-to-zero condition and SHAP
(Lundberg| [2017) which is a well known interpretable AI method. That is, SHAP value of a given
input can be calculated easily from the prediction values of each component under regularity con-
ditions. For a given model f and input vector x, SHAP value of the jth input variable is defined
as

bif = 3 BeZISIZDN, (g0 g5 — ),

SClp\{5} P
where v¢(S) = E[f(X)|Xg = xg], where X ~ p.

Proposition 3.2. (Herren & Hahn| |2022) For a given f which is the GA*M satisfying the sum-to-
zero condition. Then, we have

oi(f.x)= > fs(xs)/IS]. @)

SClp),|S|<d,j€S

The result in equation (2) provides an interesting implication - the functional ANOVA model sat-
isfying the sum-to-zero condition also decomposes SHAP value. That is, the contribution of the
interaction between z; and xg to SHAP value ¢;(f,x) is f(xg/)/|S’|, where S” = S U {j}. Note
that this interesting relation is not generally valid for identifiability conditions other than the sum-
to-zero condition.

Therefore, for general GA?M, we can calculate SHAP value using equation , which we refer
to as ANOVA-SHAP. One advantage of ANOVA-SHAP is that it is significantly faster to compute
compared to Deep-SHAP and Kernel-SHAP proposed by |Lundberg| (2017)), as well as Tree-SHAP
proposed by [Lundberg et al.| (2018). The ANOVA-SHAP experiment results are in Appendix [J}

3.2 ANOVA-NODE

Incorporating the sum-to-zero condition into existing neural functional ANOVA models would be
difficult because standard gradient descent algorithms cannot be applied due to identifiability con-
straints. The aim of this subsection is to propose a special neural network function for the functional
ANOVA model that automatically satisfies the sum-to-zero condition and thus each component can
be estimated uniquely by using a standard gradient descent based optimization algorithm.

The main idea of the proposed neural network is to model each component as the sum of special but
simple neural networks that satisfy the sum-to-zero condition. That is, we set

Kg
fs(xs) =Y h%(xs|bs.),
k=1

where {h5( - |¢sx)}1>, are neural networks with learnable parameters ¢ ;. satisfying the sum-to-
zero condition.
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Figure 1: ANOVA-N'ODE architecture

ANOVA-NODT. For h%( - |¢s.x), we propose ANOVA-NODT, which is a modification of ODT,

as follows. First, we set the depth of h° to be equal to |S|. For t € {1,...,|S|}, we use the feature
function as

F'(xs) = (xs)t,

where (xg); is the tth feature of xg. To approximate the indicator function I in ODT as a differen-
tiable function, we use entmazx,, as Peters et al.[(2019) does. For b € R and v € R, we define

ci(zlb,y) :==1— entmaa:,,( (Tb O) ) ,  c2(x]b,y) :=1—ci(z|b, ),
1

where v is a hyper-parameter. Finally, we define the ANOVA-NODT model 2° as
BS BS 1((xs)1 Iblm)} {01((X5)2|b2»72)] [Cl((XS)|sw|b\S|»ws|)}>
() = 5% (|onfCx ® 00| ,

s)1lb1,m) c2((xs)2(b2,72) c2((x5)s1101s1, 7131
where B € R2"”! »b1,...,bs;and 1, ..., g| are learnable parameters.

A novel part of ANOVA-NODT is to parameterize B° to make h° always satisfy the sum-to-zero
condition. Here, we address the case where |S| = 1, and the case where |S| = 2 is described in
Appendix [B.2] For the case of S = {j}, we consider

B (z;) = B jer(zilbi i, 71,5) + Bajea(wilbi i, 71,5)-

For a given ; € R, welet 31 ; = 6 and 32 ; = Wm

E[h7(X;)] = 0, meaning that it satisfies the sum-to-zero condition. Hence, we can parameterize

hi(zj) by ¢; = (6;,b1,,7;). Note that there is no constraint on ¢; and thus standard gradient
descent algorithms can be used to learn ¢;.

Finally, for general S C [p], ANOVA-NODT can be parameterized by

6;. Then, it is easy to see that

¢s ={0s, (b1,s,71,5),- - -, (bs],5:Vs],8) }

as
|S]
h(xslgs) = Y Bes(ds) Hcsl xs)ilbi,s, ¥i.s),
se{1,2}!5I
where s = (s1,...,5|g)) and fs 5(¢s) are the functions of ¢5 with 51 s(ds) = 0s.

ANOVA-N?ODE. ANOVA-N?ODE is an ensemble of ANOVA-NODT for the order of interac-
tions up to d. That is, we set

fANOVA—NdODE(X) = Z Z h XSWS k

Clp),|S|<d k=1
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where K g is the number of ANOVA-NODTs corresponding to the component S. In practice, d = 1,
which corresponds to the GAM, and d = 2 are commonly used. The architecture of ANOVA-
N!ODE is shown in Figure Note that ANOVA-N?ODE always satisfies the sum-to-zero condition
since each ANOVA-NODT does so. Therefore, standard gradient descent algorithms can be applied
without modification. Unless there is any confusion, we write ANOVA-NODE instead of ANOVA-
N?ODE for general d.

An interesting theoretical property of ANOVA-NODE is the universal approximation property as
the standard neural network has (Hornik et al., 1989). That is, ANOVA-NODE can approximate any
arbitrary GA“M function to a desired level of accuracy, as stated in the following theorem.

Theorem 3.3. Let go(x) := Zsc[p],\SKd 9o.5(Xs) be a given GA?M function satisfying the sum-
to-zero condition. Consider the entmax, for v = 1, and let | be a measure for any distribution

which has a bounded density. If each go s is L-Lipschitz continuous{ﬂ for some L > 0, then for any
€ > 0, there exists f,yovaniope With sufficiently large Kgs such thaf

HQO(') - fANOVA—NdODE(‘)Hoo <e€

Training For a given train data and loss function, ANOVA-NODE is trained using any gradient
descent algorithm to minimize the empirical risk.

Data preprocessing. To satisfy the sum-to-zero condition in ANOVA-NODT, one element in B°
is a free parameter, while the remaining elements are parameterized by the product of constants (e.g.,
—Ele1(X;1b1,5,7,5)]/Elca(X;]b1,5,71,5)]) and the free parameter. In this case, since the constants
can become close to or equal to zero depending on the trained {(b; 5,71,5),% = 1, ..., |S|}, we scale
the data by using a transformation based on the quantiles of a uniform distribution to ensure stable
learning.

4 EXPERIMENTS

This section presents the results of numerical experiments. More results along with details about
data, algorithms and selection of hyper-parameters are provided in Appendices|C|to

4.1 STABILITY IN COMPONENT ESTIMATION

Similarly to NAM (Agarwal et al.,|2021) and NBM (Radenovic et al., [2022), ANOVA-NODE pro-
vides interpretation through the estimated components. Thus, if the components are not estimated
stably, the interpretations based on the estimated components would not be reliable. In this subsec-
tion, we investigate the stability of the component estimation of ANOVA-NODE compared with the
other baseline models including NAM and NBM. For this purpose, we generate randomly sampled
training data and estimate the components of the functional ANOVA model. We repeat this proce-
dure 10 times to obtain 10 estimates of each component, and measure how similar these 10 estimates
are. For the similarity measure, we use

1= 30 (fh(x) — fs(xi))?
n ; S (L ()2

for given pre-selected n many input vectors x;, ¢ = 1,...,n, where fé, 7 =1,...,10 are the 10
estimates of fg and fg is their average. A smaller value of SC(fs) means a more stable estimation
(and thus more stable interpretation).

In Figure 2] we present the scatter plots of the stability scores for each estimated component between
(NA'M, NB'M) vs ANOVA-N'ODE and (NA2M, NB?M) vs ANOVA-N20ODE on CALHOUSING
dataset. It is obvious that our models are more stable than the baselines in component estimation.
Consistent results are also observed with other datasets, which are presented in Appendix[F3] Also,
the plots of the functional relation of the main effects are provided in Appendix from which we
can feel how much NAM and NBM are unstable in estimating the components.

In addition, we compare the overall stability score SC(f) = >4 SC(fs). For each of nine bench-
mark datasets, we calculate the ratios of the overall stability scores of ANOVA-NODE, NAM, and

'A given function v defined on Z is L-Lipschitz continuous if |v(z1) — v(22)| < L||z1 — 22|| for all
z1, 22 € Z, where || - || is a certain norm defined on Z.
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Figure 2: Scatter plots of the stability scores on CALHOUSING dataset. Figures (a) and (d) are the scatter
plots for the stability scores of the main effects, where the x-axis is the stability score of ANOVA-N'ODE and
the y-axis is the stability scores of NA'M in (a) and NB'M in (d). Figures (b) and (e) are the scatter plots
for the stability scores of the main effects, where the x-axis is the stability score of ANOVA-N?ODE, and the
y-axis is the stability score of NA2M in (b) and NB2M in (e). Figures (c) and (f) compare the stability scores of
the second order interactions of ANOVA-N20DE to those of NA?M and NB*M. Each dot in the scatter plots
corresponds to each component.

NBM normalized by the overall stability score of ANOVA-NODE, whose results are given in Table
The unnormalized results of stability score are in Appendix The results again confirm that
ANOVA-NODE is superior in terms of the stability of component estimation.

The stability of ANOVA-NODE with respect to the choice of initial values are illustrated in Ap-

pendix [D.2]

Table 1: Stability scores on real datasets. For each dataset, stability scores of GAM (GA?M) models are
normalized by the that of ANOVA-N'ODE (ANOVA-N20DE). Lower stability score means more stable inter-
pretation. The bold faces highlight the best results.

[ GAM [ GA®M

ANOVA 1 1 ANOVA 2 5
Dataset N'ODE NA'M NB'M N2ODE NA“M  NB*M
CALHOUSING (Pedregosa et al.|[2011a) 1.000 3.750 3.250 1.000 2.209 2.143
WINE(Cortez et al.[[2009) 1.000 5.273 3.909 1.000 1.776 1.327
ONLINE (Fernandes et al.; 2015) 1.000 2.452 1.742 1.000 1.385 1.385
ABALONE (Warwick et al.}|1995) 1.000 1.625 3.250 1.000 1.679 1.357
FICO (fic[[2018) 1.000 1.314 1.314 1.000 1.854 1.563
CHURN(chu}[2017) 1.000 1.588 2.765 1.000 1.894 1.702
CREDIT (cre,[2015) 1.000 3.286 1.190 1.000 2.472 1.472
LETTER (Slate}|1991) 1.000 1.294 0.824 1.000 2.885 1.962
DRYBEAN(dry} 2020) 1.000 2.643 2.500 1.000 1.660 1.528

4.2 PERFORMANCE IN COMPONENT SELECTION

An important implication of stable estimation of the components is the ability of selecting signal
components. That is, ANOVA-NODE can effectively identify signal components in the true function
by measuring the variations of the estimated components. For example, we can consider the /; norm
of each estimated component (i.e, || fs(xg)|[1) as the important score, and select the components
whose important scores are large. This simple component selection procedure would not perform
well if component estimation is unstable.

To investigate how well ANOVA-NODE selects the true signal components, we conduct an experi-
ment similar to the one in|Tsang et al.| (2017). We generate synthetic datasets from Y = f(x) + ¢,
where f is the true prediction model and € is a noise generated from a Gaussian distribution with
mean 0 and variance o2. Then, we apply ANOVA-N20ODE, NA?M and NB2M to calculate the im-
portance scores of the main effects and second order interactions and examine how well they predict
whether a given component is signal. For the performance measure of component selection, we use
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Table 2: Performance of component selection. We report the averages (standard deviations) of AUROCs
of the estimated importance scores of each component on f W), f @, f ®) synthetic datasets. The bold faces
highlight the best results.

True model [ @ [ @ [ FiE)
- ANOVA 2 > ANOVA 2 > ANOVA 2 2
Models N2ope | NAZM | NBZM | (o 0 | NAZM | NB2M | (ooi | NAPM | NB2M
AUROC 4 1.000 0.330 0.522 0.943 0.311 0.481 0.956 0.381 0.477
(0.00) 0.08) | (0.16) 0.01) 008) | (0.09) (0.02) ©.13) | 007

Table 3: Prediction performance. We report the averages (standard deviations) of the prediction performance
measure. In addition, we report the averages of ranks of prediction performance of each model on nine datasets.
The optimal (or suboptimal) results are highlighted in bold (or underlined).

[ [ GAM [ GA*M [ Black box
ANOVA NODE

Dataset ‘ Measure ‘ 2218]\3/2 gg?ﬁ NA'M NB'M N2ODE  GAZM NAZM NB?M XGB NODE
0614 0581 0650 0594 | 0512 0515 0525 05020 | 0452 0.482

CALHOUSING | RMSE | ©01) (001) (001) (0.08) | (©O01) (0O (002 (003 | (©01) (00D
WinE RMSE | 0725 0723 0733 0724 | 0704 0730 0720 0702 | 0.635 0.646
002 (002 (002 (0.02) | 002 (002 (002 (003 | (©03) (0.03)

ONLINE RMSE | LI 1121 1350 1187 | LI 1137 1313 1179 | 1122 1.112
025 (027) (057) (025 | (025 (026) (046) (021) | (0.26) (027)

ABALONE RMSE | 2135 2141 2171 2167 | 2.087 2100 2088 2088 | 2.164 2.086
: 009 (009 (0.08) (0.09 | (008 (0.10) (0.08) (0.08) | (0.09 (0.09)

0.799 0.795 0.88 0797 | 0800 0793 0.709 0.799 | 079 0.795

FICO AUROCT | 01007) (0.009) (0.006) (0.006)| (0.007) (0.007) (0.007) (0.008)| (0.008) (0.008)
CHuRY AUROCH | 0839 0824 0846 0.845 | 0842 0830 0844 0844 | 0846 0844
©012) (0.012) (0011) (0.012)| (0012 (0011 (©.011) (001D)| (0.012) (0.013)

CReDIT AUROCH | 0983 0983 0976 0072 | (0.054 0985 0050 0985 | 0083 0.084
0.005) (0.005) (0.012) (0.011)| (0.006) (0.006) (0.007) (0.004)| (0.004) (0.009)

S AUROCH | 0900 0910 0004 0910 | 0984 0983 098 099 | 0.007 0998
0.003) (0.002) (0.001) (0.001)| (0.001) (0.001) (0.001) (0.001)| (0.001) (0.001)

Dryseay | AUROCH | 0995 099 0096 0.994 | 0998 09 0.995 0995 | 0.007 0.9
©.001) (0.001) (0.001) (0.001)| (0.001) (0.001) (0.001) (0.001)| (0.001) (0.001)

[ Rank avg | [ 6.33 5.56 8.00 7.44 [ 3.33 5.67 5.44 3.67 [ 3.44 2.89

AUROC obtained from the pairs of || fs||; and rg for all S C [p] with |S| < 2, where fg are the
estimates of fs in f and rg = I(|| f ék) [l1 > 0) are the indicators whether fg are signal or not.

For the true prediction model, we consider the three functions f (%) | = 1,2,3 whose details are
given in Appendix We set the data size to 15,000 and set o2 to make the signal-to-noise ratio
become 5. Tablecomgares the AUROC:s of ANOVA-N2ODE, NA2M and NB2M, which clearly in-
dicates that ANOVA-N“ODE outperforms the baseline models in component selection. More details
of component selection with ANOVA-N2ODE are given in Appendix

4.3 PREDICTION PERFORMANCE

We compare prediction performance of ANOVA-NODE with baseline models. We randomly split
the train, validation and test data into the ratio 70/10/20, where the validation data is used to select
the optimal epoch and the test data is used to measure the prediction performance of the estimated
models. We repeat this random split 10 times to obtain 10 performance measures for prediction. For
the performance measure, we use the Root Mean Square Error (RMSE) for regression datasets and
the Area Under the ROC curve (AUROC) for classification datasets.

TableE]presents the results of prediction performance of ANOVA-NODE, NODE-GAM, NAM, and
NBM as well as two black box models. It is obvious that ANOVA-NODE favorably competes with
its competitors in view of prediction performance. In addition, at the final line, the average ranks of
each model over the nine datasets are given, which shows that ANOVA-NO?DE exhibits comparable
prediction performance compared to the baseline models. Details about the experiments are given in

Appendix [C.2]
4.4 APPLICATION TO HIGH-DIMENSIONAL DATA

To see whether ANOVA-NODE is applicable to high-dimensional data, we analyze three additional
datasets with input dimensions ranging from 136 to 699. See Table [§| of Appendix for details of
these three datasets. For ANOVA-NTODE, we include all main effects into the model. For ANOVA-
N20DE, however, the number of second order interactions is too large so that considering all the
main effects and second order interactions would be difficult unless very large computing resources
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Table 4: Prediction performance on high-dimensional datasets. We report the averages (standard devia-
tions) of the prediction performance for 10 randomly sampled training data from the high-dimensional datasets.
The bold faces highlight the best results.

[ [ GAM I GAZM
atas - ANOVA 1 1 ANOVA 9 2
Dataset Measure NLODE NA"M NB™M NID + N2ODE NID + NA*M NID + NB“M
MICROSOFT RMSE | 0.756 (0.001) 0.774 (0.001) 0.770 (0.001) 0.754 (0.001) 0.761 (0.001) 0.755 (0.001)
YAHOO RMSE | 0.787 (0.002) 0.797 (0.002) 0.783 (0.002) 0.779 (0.001) 0.793 (0.002) 0.779 (0.002)
MADELON AUROC 1 0.587 (0.02) 0.587 (0.02) 0.582 (0.03) 0.605 (0.01) 0.568 (0.03) 0.594 (0.02)

Table 5: Stability scores on the high-dimensional datasets. For each dataset, stability scores of of GAM
(GA2M) models normalized by the that of ANOVA-N'ODE (ANOVA-N2ODE) are presented. Lower stability
scores imply more stable interpretation. The bold faces highlight the best results.

[ GAM [ GAZM
- ANOVA 1 1 ANOVA 2 2
Datmsat Nlope NA'M  NB'M | NID+ o " NID+NA®M  NID+NB’M
MICROSOFT (Qin & Liu][2013) | 1.000 2967 3933 1.000 2075 2225
YaHoo (Yahoo! [2010) 1.000 1760 2.520 1.000 1834 1514
MaDELON (Guyon|[2004) 1.000 1957 2014 1.000 1.184 1132

are available. A simple alternative is to screen out unnecessary second order interactions a priori
and include only selected second order interactions (and all the main effects) into the model. In
the experiment, we use Neural Interaction Detection (NID, |Tsang et al.| (2017)) for the interaction
screening. The number of selected interactions is given in Appendix [C.2}

From Table[|and Table[5] we observe that ANOVA-NODE shows favorable prediction performance
compared with NAM and NBM and estimates the components more stably on high-dimensional
datasets. In addition, note that the RMSE of NB2M with all second order interactions on MICROSOFT
dataset is reported as 0.750 by Radenovic et al.| (2022). That is, screening interactions using NID
does not hamper prediction performance much.

4.5 ANOVA-NODE WITH MONOTONE CONSTRAINTS

Monotone constraint. In practice, a prior knowledge that some main effects are monotone func-
tions are available and it is needed to reflect this prior knowledge in the training phase. A notable
example is the credit scoring model where certain input features should have monotone main effects
(Chen & Li,2014; [Chen & Ye, 2022). An additional advantage of ANOVA-NODE is to accommo-
date the monotone constraints in the model easily. Suppose that f; is monotonically increasing.

Then, ANOVA-NODE can estimate f; monotonically increasingly by letting the §; in ANOVA-
NODT h;(x;|¢;) be less than or equal to 0. See Appendix [B.1|for details.

Application to Image data. Monotone constraint helps avoiding unreasonable interpretation. To
illustrate this advantage, we conduct an experiment with an image dataset. We use CELEBA (Liu
et al.l 2015) dataset which has 40 binary attributes for each image. To apply ANOVA-NODE to
CELEBA dataset, we consider Concept Bottleneck Model (CBM, Koh et al.| (2020)) similar to the
one used in |Radenovic et al|(2022). In CBM, rather than directly inputting the embedding vector
derived from an image data through a CNN into a classifier, the CNN initially predicts each concept
accompanied with each image. Then, these predicted values of each concept are subsequently used
as the input of a DNN classifier. For our experiment, we use a pretrained ResNet18, where the last
layer consists of a linear transformation with a softmax activation function, and we replace the final
DNN classifier with ANOVA-NODE.

Among the attributes, we set ‘gender’ as the target label and the remaining attributes are set as
concepts for images. Since ‘male’ is labeled as 1 and ‘female’ as 0, a higher value of each component
results in a higher chance of being classified as ‘male’.

Figure [3| presents two functional relations of the main effects of the concepts ‘No Beard’ and ‘Wear-
ing Lipstick’, estimated on a randomly sampled training dataset with and without the monotone
constraint. Note that the functional relations are quite different even though their prediction per-
formances, which is given in Table [I5] of Appendix [E.I.2] are similar. It is a common sense that
an image having the concept of ‘No Beard” and ‘Wearing Lipstick’ has a higher chance of being
a female and thus the functional relations are expected to be decrease. Figure (3| illustrates that a
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Without monotone constraint With monotone constraint

Output contribution
Output contribution

No Beard Wearing Lipstick No Beard Wearing Lipstick
Figure 3: Plots of the functional relations of ‘No Beard’ and ‘Wearing Lipstick’ on CELEBA dataset
estimated by ANOVA-N'ODE with and without the monotone constraint.

completely opposite result to our common sense could be obtained in practice. Implications of the
opposite functional relations to interpretation of each image are discusses in Appendix [E.T.2]

4.6 ADDITIONAL EXPERIMENTS

In Appendix [E we confirm that the component estimation of ANOVA-N?ODE becomes highly
unstable when the sum-to-zero condition is not imposed, and in Appendix [L] we discuss a method
for enforcing the sum-to-zero condition after training NAM or NBM.

5 CONCLUSION

In this paper, we propose a novel XAI model called ANOVA-NODE for estimating the functional
ANOVA model stably based on Neural Oblivious Decision Tree (NODT). We theoretically demon-
strate that ANOVA-NODE can approximate a smooth function well. We also empirically show that
prediction performance of ANOVA-NODE is comparable to its competitors.

One way to make ANOVA-NODE computationally more efficient is to combine ANOVA-NODE
and NBM (Radenovic et al., 2022), which has significantly fewer weight parameters. We explored
this approach, and the algorithm and results of the experiment are given in Appendix [G.2] Even
though this algorithm is computationally more efficient than ANOVA-NODE itself, analyzing high-
dimensional data is still computationally demanding due to too many components. In general,
scaling-up interpretable Al algorithms is a promising future research topic.

Reproducibility Statement. The complete proofs of the theoretical results are presented thor-
oughly and rigorously in Appendix [A] Details regarding the experimental implementation, datasets,
libraries, and hyper-parameters are outlined in Appendix [C] Furthermore, the proposed ANOVA-
NODE in this paper is an ensemble of ANOVA-NODT, and Appendix [B]provides a detailed expla-
nation of ANOVA-NODT. Therefore, by referring to Appendix [Bj ANOVA-NODT can be imple-
mented for each component S, and the ensemble ANOVA-NODE can also be easily implemented.
Finally, We will provide the source code and make it open access by uploading it on the web after
acceptance.
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Supplementary material

Appendix

A PROOFS FOR THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION [3.T]
For a given function f, consider two component functions sets { f&, S € S} and {f2,S € S} such

that
=Y fi(xs) =) filxs)

ses Ses
for every x € X, where each component function satisfies the sum-to-zero condition (1).

Forany S,V € S such that S # V, we have S\V # 0 or V\S # 0. Assume S\V # ) without loss
of generality. For i1,i2 € {1,2} and s € S\V, we get

/ 3 XV)dHJ 1Hj
:/ {/X ffél (Xs\{j} = Xs\{j}:Xs = XS) dps f‘i; (X )dITj st
[P\ {s} s

=0

by the sum-to-zero condition, and hence

/X (FA(Xs) — FR(X)(FH(Xv) — 2 (Xy))dIT_y s = 0.

Then, we obtain

Z/ (fs(Xs) — f5(Xs))? AT

SeSs
= 3 | (Xs) — F3X) Ay,

SeSs

FOS [ 2ArRs) — AR KV = KTy

S,VES,S#AV
2

-/, lZ (FA(Xe) — £2(X9) | dIT_yp,

X |ses

= [ %) — )Py
~ 0.

To sum up, we have f&(-) = f2(-) almost everywhere for S € S, which completes the proof.
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A.2 PROOF OF THEOREM [3.3]

Challenging part of Theorem The most important and challenging part of Theorem [3.3]is
decomposing the ensemble function fg¢, which approximates the true function well, into ANOVA-
NODTs.

Case of d = 1. It is enough to show that for every j € [p], there exists a set of ANOVA-NODTs
{RS( - |pjr)} s, such that

Kgs
905() = > _ B (|sn)
k=1

€
< —.
p

oo

We denote o(z) := 1/(1 + exp(—=x)) as the sigmoid function. We consider v = 1 for simplicity,
which results in entmaz, ((z,0)) = o(z). Also, we assume that 4, for j € [p] admits a density
with respect to Lebesgue measure which is bounded above and below. In cases where the density
does not exist, such as the empirical distribution, we can construct a K -equal-sized partition of X;
and then handle regions with zero measure and non-zero measure separately, similar to the proof
described below.

Let 0 < p;r, < pr < oo be the lower and upper bound of the density of 1, respectively. Let
{901, = {[Xk-1, X&) }—; be a interval partition of X; such that y;(€2),) = 7. We have |x; —
Xk—1] < ﬁ for k € [K]. For v = 1/K?3, we define /1 (-) as

zm@:1—a(x_m),

wor—o(F2)o(228) ey
eKu)a<x§K”).

Note that for every z € &}, Zszl li(z) = 1Tand 0 < £4(-) < 1 holds for every k € [K]. Also,
{6, }E_| have the following properties.

Lemma A.1. Forany k € [K]|, we have

3pu

o, [0x(X5)1X; & Q)] < 55

and

EXj [fk(XJ)H(XJ S Qk)] > 37K

The proof of LemmalA.T]is provided in Section[A.3] Now, we consider the ensemble function

K
fe@) =) opti(x),
k=1

where J, is defined as

_ Ex [e(X5)g0(X;)]
B (X))

J

Ok

14
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For any = € &;, we have

K
go(z) — fe(@)| = |g0(x) — chkfk(x)
. k=1
= > _(g0(x) = 61 ) ()

Ex; [0x(X;)]

Ex, [6,(X;)]z — X;]]
Ex, [0r(X;)]

‘w). 3)

Let r € [K] is the index of partition such that € [x,_1, x,). For k € {r — 1,r,r + 1}, we have
Ex, [0e(Xj)le — X5[] _Bay [0o(X)) ] — X5|I0X5 € Q)] Eay [0 (X))o — X5]I(X; ¢ )]

Ex, [ln(X;)] 7 Ex[G(X)LX; € Q)] B, [€1(X;5)1(X; € Q)]
Ex, [0:(X) G2) X5 € )] 2a- By, [0:(X)I(X; ¢ Q)]
B, [0k (X5)I(X; € )] Ex, [0k (X5)I(X; € )]
2 12aCax
SO K + K
-
K

for some constant C’ > 0, where the third inequality holds by Lemma For k < r — 2, we have
x > xr—1 and xx < xr—2 and hence

104(@)| gl—a(””‘x’“)

Y
Sl _ O_(Xr—l - Xr—2>
Y
< 1
1+exp(K)

Also, for k > r + 2, we have < x,. and xx—1 > X,+1 and hence

()] ga(w—y)

SU (Xr — Xr+1 )
Y

1
<1+exp(K)'

To sum up, we get

lg0(z) — fe(x)| <(@B)
o K—-1
<L (K + 1 —l—exp(K)) '
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Now, for fe(z) = Y1 | 61lx(x), our goal is to show that there exists a set of ANOVA-NODTS
{hS (- |¢jx) 1o, such that

Ks

> hS(algs ;) = fe()

j=1
for every x € X;. To derive the result, we use the following lemma.
Lemma A.2. ForeveryT € {2,..., K}, we define

lip(z) =1 —a<x_X1),

v
ft’T(x):a<m_th>—U<x_Xt>, te{2,...,T -1}
Y v
rr(z) = U(W)
Y
Then, for any given T € {3, ..., K} and for any p1, . .., pr satisfying
T
Ex, Zptft,ﬂxj)] =0, “)
t=1
there exist K1, ..., KkT—1, 1 and T such that
T T—1
Zptgt,T(x) = Z cilyr—1(x) + [0 ea(z|xr-1,7) + 7 co(@|xr-1,7)], ®)
t=1 t=1

Ex,

T—1
> Ht&,T—l(Xj)] =0, Ex [n-a(Xjxr-1,7) + 7 c2(Xjxr-1,7)]=0. (6
t=1

The proof of Lemmal[A.2)is provided in Section[A.3] Since

> (Wk(Xj)]
k=1

_ § Ex, [66(X;)90(X;)]

EXJ' [ff (XJ>] = EXj

Ex, [0 (X;)]
= Ex[0(X;)] ! !
K
= Ex,[ts(X;)90(X;)]
k=1
K
=Ex {ka(Xa)go(Xj)}
k=1
= Ex,[90(X;)]
we can decompose fg¢ () using Lemmaby numerical induction. Note that p1¢1 2(-) + p2£1 2(*)
with E;\{j [plggyg(Xj) + P2€1,2(Xj)] = 0 is an ANOVA-NODT and for &£ € {2, - ,K},

- ea(xr—1,7) + 7 - ca(tlxr—1,7) with Ex; [ - er(Xjlxr-1,7) + 7 - c2(Xj|xr-1,7)] is also
an ANOVA-NODT. Hence, we can find a set of ANOVA-NODTSs {5 - |¢jk)}f 5, such that

(O K1
K 1+4exp(K))’

o0
By choosing sufficiently large K, we obtain the assertion.

Ks
go.j — Zhs(x\cﬁj,k) = fe(x)
k=1
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A.3 PROOFS FOR AUXILIARY LEMMAS

LemmalA Il Forz < xp_1 — % we have

104 ()| ga(m‘“-l

~

1
<ol — e

1

:1+exp(K)'

Also, for z > xi, + 7z, we have

)

1
<1-— O’(K2
_ 1
1+exp(K)’

Hence, we obtain

Ea, [0 (X,)I(X; ¢ )] <P (Xj c (x“ - ;x) U (Xk,Xk N ;)) ;

3pu
K2

Also, for z € [Xx—1 + 7z, Xk — 7oz ). We have

o2 o

>0(K) - o(=K)
>3

for sufficiently large K. Hence, we obtain

Ex, [0e(X)I(X; € Q)] >P (Xj € |:Xk1 e e

>1
3K’

LemmalA2] We define
n:i= —Exj [6T7T(Xj)](pT — pT—l),
T-1
T = Z EXj [ét,T(Xj)](pT — pT—l),
t=1

Kt = pe — 1,
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Then, we obtain (5) by

T-1
Z kelyr—1(x) + [ co(z|xr—1,7) + 7 c2(x[xT-1,7)]
t=1

!

—2

(pe = m)le,r(x) + (pr—1 —1n) - 0<%§T2> +(r—mn)- 0<x_7XT1> +1

~
[

S
N

T — X1 T — XT—
(PT1—77)'U<;<Tl) +(;0T_PT1)'U(?;TI) +7

o

S

(pe = mler(x) + (pr — 1) - U(fc_f:T_l) +1

H
l
—

(pe — My, 7(x) +1

Il
M=

~
Il

1

ptgt,T (33) s

Il
[M]=

~
Il

1

where the second equality holds by
T
Ton= ZEXJ‘ [Ct(Xj)KPT —pr-1) = PT — PT—1-
t=1

Also, since we have
Ex;[n-ci(zlxr—1,7) + 7 - ca(x|xT-1,7)]
=n- (1= Ex,[lrr(X;)]) + 7 Ex, [lrr(X;)]
=n+Ex, [lr7(X;)](T —n)
= —Ex,[lrr(X;)|(pr — pr—1) + Ex; [lr r(X;)](pr — pr—1)
—0,

we obtain (6) by @) and ().
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Case of d = 2. The proof for the case of d = 2 is too complex to express by mathematical

notation, so we explain the process of decomposin,
which is the most important part of Theorem

the ensemble function fg into ANOVA-NODTs,
using a top example. Consider the ensemble

function fg(x1,x2) which is defined as below, with 9 height parameters: We explain the process of

decomposing f¢ into 4 ANOVA-NODTS in 2 steps.

e =i (1o (25 0)) (1o (2522))
Y11 Y12
)
Y11 Y21 Y12
() (1o (252))
Y21
(o (P () ()
Y11 Y12 Y22
e (o () = (55 (
* Y11 Y21
+5320<$1—b21><0<$2—b12> U<$2—b22)>
Y21 Y12
+513(1*0<117611)> ( 2*622>
Y11 Y22
+ﬂ23(a<1’1*b11>_a<11*521>>0<12*b22>
Y11 Y21 Y22
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Figure 4: Decomposition fc into f; and f>. Each cell represents the
{b12, baa, b12,b21 } and 3;; is the height parameter corresponding to each cell.

Step 1) Decomposition of fc.
satisfy the sum-to-zero condition, and f; and f5 are defined as

o) = = (1o (P20)) (122 (22
e () (0o (555))

support created by

As shown in Figure 4] f¢ can be decomposed into f; and f, which

+ (Brz — 042)(1 - U(%)) ('7(@7_1:12) a 0<x2’y_22b22>)

(911—1711)( <932—b12) (wz—b22>)
+ n20 o -0
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and
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where a; = —(83;— B2;)E {0<Xl_bm>} s ¢i = (B3i— B2:)E [1—0<X17;b21>} and n; = P2, —

Y21
fori =1,2,3. Itis easy to check that f; and f5 satisfy the sum-to-zero condition.
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Figure 5: Decomposition f; into fo; and foo. Each cell represents the support created by
{b12,b22,b21 } and Bij is the height parameter corresponding to each cell.

Step 2) Decomposition of f,. Similar to step 1, fo can be decomposed into foo and fi2, as de-
scribed in Figure Note that fo5 and f15 are ANOVA-NODTSs which are defined as

el _b " _b
Far (o1, 72) = 711 (1 _ U(u)) (1 _ U(u))
Y21 Y22
—b —b
+T216<£I/’1 21)(176<w2 22))
Y21 Y22
— b — b
+7'12(1—<7<m1 21)>0<I2 22)
Y21 Y22
- _b T _b
+7'220<11 21>U(L2 22)
Y21 Y22

where 711 = —E [a (Xi;f”ﬂ (a3 —2) and T2, To1, Tog are uniquely determined by sum-to-zero

- _b o _b
Fan(or, w2) = ,m<1 _ U(u)) (1 ,a<u>)
Y21 Y12
(B2} o ()
210 ———— —o| ———
Y21 Y12
+h12<1 _0<m1 —b21>>0<m2 —b12>
Y21 Y12
‘h U<I1 —b21>0<$2 —b12>
22
Y21 Y12

where h1; = a3 — 711 and hi9, hoy, hoo are uniquely determined by sum-to-zero condition. Also,

another function f; can be decomposed into two ANOVA-NODTs in the same way as fo is decom-
posed.

condition, and

Case of d > 3. Similar to the toy example at d = 2, the ensemble function f¢ can also be
decomposed into ANOVA-NODTSs when d > 3.
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B DETAILS FOR ANOVA-NODT
In this section, we describes the specific form of ANOVA-NODT A for S C [p].

B.1 ANOVA-NODT FOR THE MAIN EFFECT.

Without loss of generality, we assumes that S = {i}. We can express ANOVA-NODT as:
R (x5) = Bricy (wilbri, ) + Baica(@ilbii, 11.), (7)

where (814, 82,;)" are the height parameters of the terminal nodes,

— b1y !
c1<x|b17i,vl,¢>1emmazu(<x L o)) .
M, 1

ca(x|bri, y1,6) = 1 — cr(x]bri v1,4)

and by ; and ~y; ; are learnable parameters. To satisfy the sum-to-zero condition, we require

E[R*(X;)] = BriEler (Xilb1,i, 71,4)] + B2,:E[ca(X5]b1i,71,0)]

=0
Without loss of generality, for a given 6; € R, let 81 ; = 6,. Then, we have 8o, = —1I fbj 7, 1)9
(51 i1,48) _ Elea (Xa|b1,iv1,i)]

where I; = T E[ca(Xi|bri1)]

Therefore, the equation (7)) is expressed as
i b iY1,i)
h'(x;) = Oic1(xilbr,i, y1,6) + 65 I P oo (24]b1 4y Y10,
where 0;, b, ; and ~y; ; are learnable free parameters.

Monotone constraint. c¢;(z;|by;,v1,;) is a decreasing function with respect to z;, and accord-
ingly, co(x;]b14,71,;) is an increasing function with respect to x;. Therefore, if 0, is greater than 0,

then h'(z;) becomes a decreasing function with respect to x; since f PR ) is always less than 0.

B.2 ANOVA-NODT FOR SECOND ORDER INTERACTION.

Without loss of generality, we consider the component S = {i, k}. For simplicity, we denote
cn(2i]bz, (i k)> V=, (i,k)) @S Ch,z(x;). Then, for the component S, ANOVA-NODT can be expressed
as:

WP (@i, o) = By e (@) era (e

) )

(zi)e2,2(wk)

+ By, c21(zi)er2(zr)
)

€i)C1,2
+ B2,2),(i,k) C2,1 (Ti)c2,2 (1),

+ B1,2)",(5,k)C1,1
T

s

where (B(1,1)7,i,k)> B(1,2),(i.k)» B2,1),(i,k)> B(2,2)",(i,k)) are the height parameter vector of the ter-

minal nodes and
— b i /
cre(z) =1— entnum:,,((xt’(”“)7 0) >
Ve, (i,k) 1

coi(x) =1—c14(x)
for t = 1, 2. To satisfy sum-to-zero condition, h*¥ has to meet the followings: for 2, € X},
E[R"9) (X, 21)] = By, iw c1,2(@n)Eler1(X)
+ B1,2)y, (i) C2,2(wx) Eler,1(X;)
+ B2y, i,k C1,2(2k) Elez,1 (X;)
+ B2,2),(i.k)C2,2(7x) Elea 1 (X;)
=0

]
]
]
]

[
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and for z; € A,

The following conditions are a rephrase of the above conditions:
Bay e Ele1,1(Xa)] + B,y .x Elez
B1.2) i,k Eler,1 (X)) + Bez,2y, i,k Elez,1 (
By, ik Eler2(Xk)] + B2y, i,k) (Xk)
Bi2,1yi,k) Eler,2(Xe)] + B2,2),(6,50) Elez,2(Xk)

Xi)
Xi)

C2.1

| =
]
] =
]

For 0; 1. € R, let 3(1,1y/,(i,k) = 0i,x- Then, ANOVA-NODT hUF) (2;, ;) can be expressed as

h(i’k)(xi, xy) = 0; kc11(xi)cr2(zr)
+ 0i k1 i,k C1,1 (i) 2 2(w)
+0i kL2 (i k)21 (zi)er2 (zr)

+0i 113, (i gy c2,1 (i) c2,2(Tk)

where
, Elc1,2(X4)]
1,(i,k) E[cg,g(Xk)]
Lo 7E[C1,1(Xi)]
2,(i,k) }E[CQ)l(Xi)]

I3 (i ky = 11,6, 0) L2, i k) -

and 0; 1 as well as by (; r), V1,(i,k) and bz (5 k), V2,(s,k) are learnable free parameters.
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C DETAILS OF THE EXPERIMENTS

All models except XGB were trained via Adam optimizer. Likewise in [Popov et al.| (2019), we set
v = 1.5 for entmax, in all the experiments. All experiments are run with RTX 3090, RTX 4090,
and 24GB memory.

C.1 DETAILS FOR SYNTHETIC DATASETS

Table 6: Test suite of synthetic functions.

fo Y =10X7 + 10X2 4+ 20(X3 — 0.3)(X3 — 0.6) + 20X + 5X5 + 10sin(n X1 X2) + €
Ji&) Y = 7X1X2/9X5 — sin~1(X4) + log(X3 + X5) — j(% % — XoX7+e
F® | Y =exp | X1 — Xo| + | XaX3| — X254 4 log(X2 + X2 + X2 4+ X2) + Xo + ﬁ +e

Table 7: Distribution of input features in synthetic functions.

Fo X1, X2, X3, X4, X5 ~%4 U(0,1)

F@ | X1, X, X3, X6, X7, X9 ~¥4 U(0,1) and X4, X5, X5, X10 ~**¢ U(0.6,1).

@ X1, X2, X3, X4, X5, X6, X7, X3, X9, X10 ~*? U(—1,1)

The synthetic function f() is a slightly modified version of Friedman’s synthetic function used in
Chipman et al.| (2010). f® and £ are taken from the synthetic functions used in the interaction
detection experiments in Tsang et al.| (2017). We generate 15K data samples from the distribution in
the Table[7]and functions in the Table[6] Also, we divide them into train, validation and test datasets
with ratio 0.7, 0.1 and 0.2, respectively. For all of the synthetic functions, the number of trees for
component S, Kg, is set to 30.

C.2 DETAILS OF THE EXPERIMENTS WITH REAL DATASETS.

Table 8: Descriptions of real datasets.

Dataset Size  Number of features Problem Number of Class
CALHOUSING 21k 8 Regression -
WINE 4k 11 Regression -
ONLINE 40k 58 Regression -
ABALONE 4k 10 Regression -
FICO 10k 23 Classification 2
CHURN 7k 39 Classification 2
CREDIT 284k 30 Classification 2
LETTER 20k 16 Classification 2
DRYBEAN 13k 16 Classification 7
MICROSOFT 960k 136 Regression -
YAHOO 700k 699 Regression -
MADELON 2.6k 500 Classification
CELEBA 200K Classification
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Table 9: K5 in ANOVA-N'ODE and ANOVA-N’ODE
Dataset | ANOVA-N'ODE | ANOVA-N’ODE

CALHOUSING 10 10
WINE 100 10
ONLINE 10 10
ABALONE 50 10
FICO 30 30
CHURN 10 10
CREDIT 10 5
LETTER 50 10
DRYBEAN 50 100
MICROSOFT 10 10
YAHOO 10 10
MADELON 10 40

Implementation of baseline model. We conduct experiments for all baseline models (NAM,
NBM, NODE-GAM, NODE) using the official source code. For XGB, we utilize the xgboost pack-
age (Chen & Guestrin, 2016)) for our experiments.

Data descriptions. Table [§| summarizes the descriptions of 9 real datasets we analyze in the nu-
merical studies.

Data preprocessing. Minimax scaling is applied to NAM and NBM, while standard scaling was
used for NODE-GAM, NODE, and XGB. For ANOVA-NODE, transformation using quantiles of a
uniform distribution is performed to satisfy sum-to-zero condition stably during training.

Learning rate. For all models except XGB, we set the learning rate of Adam optimizer as 5e-3
and batch size is 4096. We find the optimal learning rate of XGB via grid search.

Model hyperparameters. Table E]presents the number of NODTs K g used in ANOVA-N'ODE
and ANOVA-N20DE for real datasets. In NAM, the dimensions of the hidden layers of each com-
ponent consists of [64,32,16] for MICROSOFT, YAHOO and MADELON, and [64,64,32] for other
datasets. In NA?M, the hidden layers consist of [64,32,16] for the ONLINE, CREDIT and DRYBEAN
datasets, [64,16,8] for MICROSOFT, YAHOO and MADELON, and [64,64,32] for the other datasets.

For XGB, we use grid search to find the best hyper-parameters which we specify the range of below.

¢ The number of tree : {50,100,200,300,400,500,600,700,800,900,1000}

* max depth: {3,5,7}

¢ learning rate : {0.0001, 0.005, 0.01, 0.05, 0.1}
For NODE, NODE-GA'M and NODE-GA?M, we also use grid search to find optimal hyper-
parameters, similar to XGB, and the range is as follows.

* The number of layer : {2, 4, 8}

* tree depth : {6, 8}

* The number of trees in each layer : {256, 512}

Selected components by NID for high-dimensional datasets. Table [I0] presents the number of
components used in training ANOVA-N2ODE and baseline models. All main effects are used, and
the second order interactions are selected using NID (Tsang et al.l 2017). For MICROSOFT, 300
second order interactions are used; 500 for YAHOO, 500; and 300 for MADELON.

Table 10: The number of components used in training ANOVA-N?ODE, NA”M, and NB2M.
Dataset [ MICROSOFT [ YAHOO [ MADELON
# of selected components [ 136(Main) + 300(2nd) [ 699(Main) + 500(2nd) [ 500(Main) + 300(2nd)
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C.3 EXPERIMENT DETAILS FOR IMAGE DATASET.

For CELEBA image dataset, we use the joint bottleneck model in |[Koh et al.| (2020). The main idea
of the joint bottleneck model (Koh et al.,|2020) is not to directly input the embedding vector derived
from image data through a CNN into a classifier for classification. Instead, CNN predicts given
concepts (attributes) for the image, and the predicted values for these concepts are then used as an
input of classifier. In|Koh et al.[(2020), they used DNN as a classifier which is a black box model.
In this paper, we replace DNN with ANOVA-NODE, NAM, NBM and NODE-GAM. For CNN, we
linear heads on the bottom of the pretrained ResNet18.

All models are trained via the Adam optimizer with a le-3 learning rate and the batch size for
training is 256. In ANOVA-N'ODE and ANOVA-N20ODE, K s is set to 10 and 3, respectively. In
NAIM and NA2M, we use a neural network consisting of 3 hidden layer with sizes (64, 16,8) and
(64.,4,2), respectively. In NBM and NB2M, we use 100 basis neural networks consisting of 3 hidden
layer with sizes (256,128,128) and (128,64,64) for the basis model, respectively. Also, for NODE-
GA'M and NODE-GA?M, the number of trees is set to 125 and 50, respectively, and the depth and
the number of layers are set to be 6 and 4, respectively.
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D ABLATION STUDIES.

D.1 THE CHOICE OF THE NUMBER OF TREES IN ANOVA-NODE.

Table[TT|presents the averages and standard deviations of prediction performance of ANOVA-NODE
based on 10 randomly sampled data of ABALONE datasets for various values of the number of trees
K. We observe that K g around 50 yields the best results for ANOVA-N'ODE and K g around 10
for ANOVA-N20DE. We report that similar results are obtained for other datasets.

Table 11: Results of prediction performance for various numbers of trees.

The number of trees for each component | 1 [ 5 [ 10 [ 50 [ 100
ANOVA-N'ODE 2.176 (0.09) | 2.163 (0.08) | 2.160 (0.09) 2.135(0.09) | 2.159 (0.08)
ANOVA-N20ODE 2.103 (0.08) | 2.102(0.08) | 2.087 (0.08) 2.105 (0.08) | 2.122(0.08)

D.2 IMPACT OF THE INITIAL VALUES OF MODEL PARAMETERS TO STABILITY

We investigate how the choice of initial values of the model parameters affects the stability of the es-
timated components by ANOVA-NODE, NAM and NBM by analyzing a synthetic dataset generated

from f(1).

We conducted 5 trials on the same train/test/validation dataset, and the results are presented in Figure
E] and [8| We observe that NA2M and NB2M frequently estimate the true function inaccurately.
In contrast, ANOVA-N?ODE consistently estimates the components accurately regardless of the
choice of the initial values.
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Figure 6: Plots of the functional relations of the main effects in ANOVA-N?ODE on synthetic datasets
generated from f(1).
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E ILLUSTRATION OF INTERPRETABILITY OF ANOVA-NODE.

E.1 ILLUSTRATION OF INTERPRETABILITY

We consider the two concepts of interpretation: Local and Global which are roughly defined as:

Local Interpretation: Information about how each feature of a given datum affects the prediction.
SHAP is a notable example of local interpretation. For the functional ANOVA model, the predictive
values of each component at a given datum would be considered as local interpretation.

Global Interpretation: Information about how each feature is related to the final prediction
model. The importance scores of each feature (e.g. global SHAP (Molnar, [2020)) and the func-
tional relations between each feature and the prediction model (e.g. the dependency plot of SHAP
(Molnar, 2020) are examples of global interpretation. For the functional ANOVA model, the im-
portance score, which can be defined as the [; norm of the corresponding component as is done in
Section4.2] and the functional relation identified by the functional form of each component are two
tools for global interpretation.

E.1.1 ILLUSTRATION OF INTERPRETABILITY ON CALHOUSING DATASET.

Table 12: Feature descriptions of CALHOUSING dataset.

Feature name | Index | Description [ Feature type

MedInc 1 Median income in block Numerical
HouseAge 2 Median house age in block Numerical
AveRooms 3 Average number of rooms Numerical
AveBedrms 4 Average number of bedrooms Numerical
Population 5 Population in block Numerical
AveOccup 6 Average house occupancy Numerical

Latitude 7 Latitude of house block Numerical
Longitude 8 Longitude of house block Numerical

Local Interpretation on CALHOUSING dataset. We conduct an experiment on CALHOUSING
(Pedregosa et al., 2011a) dataset to illustrate local interpretation of ANOVA-N!ODE. Note that
ANOVA-N'ODE is given as

8
fANOVA-NloDE(X) = Z ]EJ(%)
j=1

Thus, it is reasonable to treat fj (x;) as the contribution of x; to f(x). In fact, we have seen in
Section@]that this contribution is equal to SHAP (Lundberg} 2017). As an illustration, for a given
datum

x = (—0.2378, —0.4450, 0.0036, —0.1531, 0.3814, —0.067, 0.5541, —0.1111) ",
the contributions of each feature to f(x) are
(1, f5) = (—4.9900, 0.3278, —0.0456, 0.4432, —0.1730, 2.7521, —11.6190, 6.5184).

That is, the 7th variable contributes most to the prediction value of f (x), which can be interpreted
as ‘the housing price is low because the latitude is not good’.

Global Interpretation on CALHOUSING dataset. Figure [0] and Table [I3] present the functional
relations of each input feature to the prediction model learned by ANOVA-NO'DE and their impor-
tance scores. From these results, we can see that the location is the most important features and the
housing price on the south-west area is the most expensive.

Table [T4] describes the 10 most important components with descending order of the importance
scores of ANOVA-NO?DE normalized by the maximum importance score. The results are bit differ-
ent from those of ANOVA-NO!DE. In particular, the interaction between ‘latitude’ and ‘longitude’
emerges as a new important feature while the main effects of ‘latitude’ and ‘longitude’ become less
important.
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Figure 9: Plots of the functional relations of the main effects in ANOVA-N'ODE on CALHOUSING
dataset.
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Figure 10: Contour plots of the functional relations of the interactions in ANOVA-N?ODE on CALHOUS-
ING dataset.
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Table 13: Importance scores of ANOVA-N'ODE on CALHOUSING dataset.
8 | 1 | 6 | 3 | 2 [ 4 [ 5
0.906 | 0.564 | 0.284 | 0.107 | 0.093 | 0.057 | 0.049

Feature index [ 7
Importance score | 1.000

Table 14: Importance scores of ANOVA-N>ODE on CALHOUSING dataset.

Featureindex | 6 | (7.8 | (L) | G | 7 [ (¥ [ G [ @D [ (1,5 [ 8
Importance score | 1.000 | 0.347 | 0.324 | 0.268 | 0.258 | 0.247 | 0.212 | 0.194 | 0.193 | 0.178

E.1.2 INTERPRETABILITY AND PREDICTION PERFORMANCE ON CELEBA DATASET.

Prediction performance with and without the monotone constraint. Table[I3]presents the pre-
diction performances of two estimates of ANOVA-NODE with and without monotone constraint.
Prediction performances are similar regardless of the monotone constraint but interpretation of the
estimated model can be quite different which is discussed in the followings.

Global interpretation on CELEBA dataset. Table[T6|gives the the importance scores (normalized
by of the maximum important score) of 3 components obtained by ANOVA-N'ODE on a randomly
sampled data from CELEBA dataset.

Local interpretation on CELEBA dataset. In Table[T7] we observe that Image 2-1 of Figure [I]
is correctly classified when the monotone constraint is applied, whereas it is misclassified without
the monotone constraint. Despite Image 2-1 of Figure [T having ‘No Beard’, ‘Heavy Makeup’, and
‘Wearing Lipstick’, the scores for these features makes the probability of male increase. However,
ANOVA-N'ODE with the monotone constraint does not provide these unreasonable interpretations
and classifies the image correctly.

In Image 2-2 of Figure we observe that ANOVA-N'ODE with the monotone condition assigns
a negative score to ‘No Beard’ that increases the probability of being classified as female. How-
ever, ANOVA-N'ODE without the monotone condition assigns a positive score to ‘No Beard’ that
increases the probability of being classified as male, even though ‘No Beard’ is present.

Note that we can understand why ANOVA-N'ODE with the monotone constraint classifies Image
2-2 of Figure [IT] incorrectly because there is no bear in the image. In contrast, it is not easy to
understand why ANOVA-N'ODE without the monotone constraint classifies Image 2-1 of Figure
[[T]incorrectly. That is, imposing the monotone constraint is helpful to learn more reasonably inter-
pretable models.
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Table 15: Results of prediction performance of ANOVA-NODE with and without the monotone con-
straint.

[ Measure [ ANOVA-N'ODE | ANOVA-NODE

Without Monotone constraint | Accuracy T [ 0.985(0.001) [  0.986 (0.001)
With Monotone constraint [ Accuracy T [ 0.984 (0.001) [ 0.985(0.001)

Comparison with baseline models in terms of prediction performance. In Table [T8] we ob-
serve that the prediction performances of ANOVA-N'ODE and ANOVA-N20DE are comparable or
superior to their competitors.

Attributes to which monotone constraints are applied. For attributes ‘Bald’, ‘Big Nose’, ‘Goa-
tee’ and ‘Mustache’, we apply the increasing monotone constraint, while for attributes ‘Arched Eye-
brows’, ‘Attractive’, ‘Heavy Makeup’, ‘No Beard’, ‘Wearing Earrings’, “Wearing Lipstick’, ‘Wear-
ing Necklace’, “‘Wearing Necktie’, we used the decreasing monotone constraint.

Table 16: Importance scores for the 3 important components.
Components | Monotone | NoBeard [ Wearing Lipstick | Heavy Makeup |

Score | X | 0794 | 0.465 [ 0210 |
Score | 0 | 0757 | 0.738 [ o021 |

Table 17: Results of local interpretation with and without the monotone constraint.
Image index | Monotone | Heavy Makeup [ No beard [ Wearing Lipstick [ classified label | True label

2-1 X 0.030 0.035 0.093 male female
2-1 [0) -0.080 -0.161 -0.106 female female
2-2 X 0.036 0.104 0.095 male male
2-2 o -0.081 -0.183 -0.106 female male

Image 2-1 Image 2-2
Figure 11: Misclassified two images.

Table 18: Accuracies (standard deviations) on CELEBA dataset.

ANOVA-NTODE | NODE-GA'M | NA™ [ NB'M | ANOVA-N?ODE | NODE-GA™M | NA*M [ NB“M

0.985 (0.001) | 0.981 (0.006) [ 0.982(0.002) [ 0.980 (0.002) [ 0.986 (0.001) [ 0.981 (0.006) [ 0.986 (0.001) | 0.980 (0.002)
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F ADDITIONAL EXPERIMENTS FOR THE STABILITY OF ANOVA-NODE.

F.1 STABILITY OF THE ESTIMATED COMPONENTS ON VARIATIONS OF TRAINING DATA

We investigate the stability of components estimated by ANOVA-N'ODE and ANOVA-N20DE
when training data vary. We use CALHOUSING (Pedregosa et al., 2011a) and WINE (Cortez et al.,
2009) datasets and compare ANOVA-NODE with NAM and NBM.

Experiment for CALHOUSING dataset. Figures D;g], 13 andﬂz]present the plots of the functional
relations of the main effects estimated by ANOVA-N"ODE, NA'M, and NB!M for 5 randomly sam-
pled training datasets. Figures and present the plots of the functional relations of the main
effects estimated by ANOVA-N20ODE, NA?M, and NB?M for 5 randomly sampled trainin% datasets.
We observe that the 5 main components estimated by ANOVA-N'ODE and ANOVA-N®ODE are
relatively much more stable compared to NAM and NBM. Note that as seen in Figure we ob-
serve that in NA2M, some components are estimated as a constant function, which would be partly
because the main effects are absorbed into the second order interactions.

Experiment for WINE dataset. Figures and[20] present the plots of the functional relations
of the main effects estimated by ANOVA-N'ODE, NA'M, and NB'M for 5 randomly sampled
training datasets. Figures 21} EZ] and [23] present the plots of the functional relations of the main
effects estimated by ANOVA-N?ODE, NA2M, and NB2M for 5 randomly sampled training datasets.
The results are similar to those of CALHOUSING dataset.
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Figure 12: Plots of the functional relations of the main effects in ANOVA-N'ODE on CALHOUSING
dataset.
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Figure 15: Plots of the functional relations of the main effects in

dataset.
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13: Plots of the functional relations of the main effects in NA'M on CALHOUSING dataset.
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14: Plots of the functional relations of the main effects in NB'M on CALHOUSING dataset.
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Figure 16: Plots of the functional relations of the main effects in NA?M on CALHOUSING dataset.
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Figure 17: Plots of the functional relations of the main effects in NB>M on CALHOUSING dataset.
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Figure 18: Plots of the functional relations of the main effects in ANOVA-N'ODE on WINE dataset.
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Figure 19: Plots of the functional relations of the main effects in NA'M on WINE dataset.
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Figure 20: Plots of the functional relations of the main effects in N
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Figure 21: Plots of the functional relations of the main effects in ANOVA-N?ODE on WINE dataset.
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Figure 22: Plots of the functional relations of the main effects in NA?M on WINE dataset.
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Figure 23: Plots of the functional relations of the main effects in NB*M on WINE dataset.

F.2 STABILITY OF ANOVA-SHAP ON CALHOUSING DATASET

We conduct an experiment to evaluate the stability of ANOVA-SHAP on CALHOUSING dataset.
We calculate the global importance of features for 10 trials using the /; norm of the ANOVA-
SHAP values defined in (2). Finally, we compute the stability score of ANOVA-SHAP as the av-
erage of Hamming distance between the global importance ranks across all pairs in the trials. Table
[I9] presents the results of stability scores of ANOVA-SHAP which are normalized by the that of
ANOVA-N'ODE (ANOVA-N2?0DE). We confirm that our model provides significantly more stable

ANOVA-SHAP interpretations compared to other baseline models.

Table 19: Results of average of Hamming distance. A smaller distance indicates that the interpretation of

ANOVA-SHAP is more stable.

Model | ANOVA-N'ODE [ NA'M [ NB'M
Average of Hamming distance | 1.000 [ 6188 [ 2.408
Model | ANOVA-N?ODE | NA’M | NB°M
Average of Hamming distance | 1.000 [ 5157 ] 2663

F.3 SCATTER PLOTS OF STABILITY SCORE

In this section, we present the scatter plots of the stability score on WINE dataset. It is obvious that
ANOVA N'ODE as well as ANOVA N20ODE are more stable in estimation of the components than

NAM and NBM.
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Figure 24: Scatter plots of the stability scores on WINE dataset. Figures (a) and (d) are the scatter plots for
the stability scores of the main effects, where the x-axis is the stability score of ANOVA-N'ODE and the y-axis
is the stability scores of NA'M in (a) and NBM in (d). Figures (b) and (e) are the scatter plots for the stability
scores of the main effects, where the x-axis is the stability score of ANOVA-N2ODE, and the y-axis is the
stability score of NA2M in (b) and NB2M in (e). Figures (c) and (f) compare the stability scores of the second
order interactions of ANOVA-N?ODE to those of NA*M and NBZM. Each dot in the scatter plots corresponds
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G ADDITIONAL EXPERIMENTS ON HIGH-DIMENSIONAL DATASETS

G.1 RESULTS OF UNNORMALIZED STABILITY SCORE.

Table [20|presents the original stability scores SC(f)/|.S| of the normalized stability scores presented
in Table[]]

Table 20: Results of stability scores in each model on the real datasets.

Dataset [ ANOVA-N'ODE | NA'™ [ NB'M [ ANOVA-N°ODE | NA’M [ NB®’M
CALHOUSING 0.012 0.045 0.039 0.035 0.071 0.075
WINE 0.011 0.058 0.043 0.049 0.087 0.065
ONLINE 0.031 0.076 0.054 0.052 0.072 0.072
ABALONE 0.008 0.013 0.026 0.028 0.047 0.038
FICO 0.035 0.046 0.046 0.048 0.089 0.075
CHURN 0.017 0.027 0.047 0.047 0.089 0.080
CREDIT 0.021 0.069 0.025 0.036 0.089 0.053
LETTER 0.017 0.022 0.014 0.026 0.075 0.081
DRYBEAN 0.028 0.074 0.070 0.053 0.088 0.081

G.2 EXTENSION TO NEURAL BASIS MODEL

Similarly to NBM (Radenovic et al. 2022)), we can consider extension of ANOVA-NODE using
ANOVA-NODTs as basis functions. We call this extension model as NBM-NODE. Consider basis
ANOVA-NODTSs i.e., {hi(z|¢r) : R = R,k = 1,..., B}, then the NBM-N'ODE fypyntops(X)
is defined as

p
fNBM—NloDE(X) = Z fIzIBM—NIODE(xj)wj (8)
j=1
where féBM_NIODE(a:j) = Zszl hi(xj|dx)ay for j = 1, ..., p and and hy(z|¢y) satisfy the sum-to-

zero condition with respect to the uniform distribution for ;. NBM-N'ODE can be easily extended
to NBM-N20DE in a similar way as|Radenovic et al.| (2022).

Figures 23] and [26] show the plots of the functional relations of the main effects estimated by NBM-
N'ODE on the WINE dataset and the CALHOUSING dataset Table [21| shows the prediction perfor-
mance of NBM-N'ODE, and Tablepresents the results of stability scores normalized by the that
of ANOVA-N'ODE. We observe that NBM-N'ODE also exhibits similar prediction performance
and stability to ANOVA-N'ODE.
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Figure 25: Plots of the functional relations of the main effect estimated by NBM-N'ODE on 5 randomly
sampled training data from CALHOUSING dataset.
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Figure 26: Plots of the functional relations of the main effects estimated by NBM-N!ODE on 5 randomly
sampled training data from WINE dataset.

Table 21: Results of prediction performance.
[ CALHOUSING | WINE

NBM-NTODE 0.604 (0.001) 0.720 (0.02)
ANOVA-N'ODE 0.614 (0.001) 0.725 (0.02)

Table 22: Results of stability score.
[ ANOVA-NTODE [ NBM-N'ODE | NA'™M [ NB'M
CALHOUSING | 1.000 [ 0.750 [ 3750 [ 3.250
WINE | 1.000 | 1571 [ 5273 | 3364
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H ADDITIONAL EXPERIMENTS FOR COMPONENT SELECTION

Table 23| presents the averages and standard deviations of the prediction performance of the models
used in the component selection experiment. The three models perform similarly.

Table 23: The results of prediction performance. We report the averages and standard deviations of RMSEs
of ANOVA-N20DE, NA?M and NB?M on 10 synthetic datasets generated from f W, @ and O,

[ [ GA’M

Synthetic function Measure ﬁggg‘g NA2M NB?*M
) RMSE | ?5_‘533) ?(}‘,‘534) (3(;0131)
Je RMSE | (()(')(_)gg 1 ?6(,)3(?5) ?(39()751)
F@® RMSE | ?6_1(?()13) ?('),1513 6) ?(.).103(33)
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I ADDITIONAL EXPERIMENTS FOR PREDICTION PERFORMANCE OF
DECISION TREE

Table [24] presents the averages and standard deviations of the prediction performance of decision

tree (Breiman) 2017)) for 10 trials. We implemented a decision tree by using the scikit-learn python

package (Pedregosa et al.l 201 1b)).

Table 24: Results of prediction performance in decision tree.

CALHOUSING |  WINE [ ONLINE | ABALONE | FICO [ CHURN [ CREDIT | LETTER | DRYBEAN
RMSE] | RMSE! [ RMSE] [ RMSE| | AUROCT | AUROCT [ AUROCt | AUROCT | AUROC T
0.730 0.871 1.668 2.992 0.632 0.661 0.891 0.920 0.947
(0.02) (0.03) (0.28) (0.15) (0.02) (0.02) (0.01) (0.004) (0.003)
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J ADDITIONAL EXPERIMENTS FOR APPLICABILITY OF ANOVA-SHAP

As explained in Section [3.1] ANOVA-SHAP value of the estimated ANOVA-NODE model can be
easily calculated from the estimated components. To evaluate the similarity between ANOVA-SHAP
and SHAP without feature independence, we compare ANOVA-SHAP and SHAP values of the
estimated ANOVA-N20DE model on CALHOUSING dataset, where SHAP is computed using Deep-
SHAP of [Lundberg| (2017). Note that the computation time of ANOVA-SHAP was approximately
1,600 times shorter than that of Deep-SHAP.

Figure[27)presents the boxplots of the absolute differences between ANOVA-SHAP and Deep-SHAP
values at each data point for the 8 features, based on 1,000 data points which are randomly sampled
from the test data, where ANOVA-SHAP values of NAM and NBM are calculated by the equation
with the estimated components by NA2M and NB2M, respectively. The absolute differences
between ANOVA-SHAP and Deep-SHAP of ANOVA-NODE are distributed around zero which
indicates that ANOVA-SHAP is a computationally efficient alternative to Deep-SHAP for ANOVA-
NODE. In contrast, the boxplots for NA2M and NB?M, which either are far from zero or have large
variations in many cases, imply that the formula (Z) of ANOVA-SHAP is only applicable when the
components satisfy the sum-to-zero condition. The results for stability of ANOVA-SHAP are given

in Appendix [F2}
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Figure 27: Boxplots of the absolute differences between Deep-SHAP and ANOVA-SHAP values.
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K ANOVA-NODE WITHOUT SUM-TO-ZERO CONDITION

We investigate the performance of ANOVA-NODE without the sum-to-zero condition, which we
denote GAM-NODE, by analyzing CALHOUSING and WINE datasets. In GAM-NODE, all of the
heights at the terminal nodes of ANOVA-NODE are learnable parameters.

Table 25: Comparison of ANOVA-NODE and GAM-NODE. We report the averages of RMSE and stability
score (normalized by the that of ANOVA-N'ODE or NOVA-N2?ODE) for 10 trials.
| ANOVA-NTODE | GAM-N'ODE | ANOVA-NODE | GAM-NODE

CALHOUSING [ 0.614(1.000) | 0.580(1.500) | 0.512(1.000) | 0.502 (1.690)
WINE [ 0725(1.000) [ 0.713(2.550) [ 0.704 (1.000) [ 0.690 (1.300)

Table [25] presents (RMSE, stability score) of ANOVA-NODE and GAM-NODE based on 10 ran-
domly selected datasets. Without the sum-to-zero condition, we observe increasing in the stability
score. In particular, when the second order interactions are in the model, the main effects are esti-
mated very unstably.

In Table 23] we observe that the prediction performance of GAN-NODE is (slightly) better than
that of ANOVA-NODE. One reason could be that ANOVA-NODE is more vulnerable to the local
minima problem. Further studies would be worth pursuing.

Figure [28] and 29 present the plots of the functional relations of the main effects on CALHOUSING
and WINE dataset in GAM-N20DE. We observe that GAM-N20DE estimates the components more
unstable compared to ANOVA-N20DE.

Comparison between NODE-GAM and ANOVA-NODE. InNODE-GAM (Chang et al.||2021)),
the feature function F'° of NODT at detph c is a sparse weighted sum of input features by using
entmaz, and temperture parameter 7'. In other words, for a given depth D and ¢ = 1, ..., D, F¢is
defined as below.

Or
Fe =x-ent o =
(x) = x - entmax ( T >

p
= ajw
j=1

where 0p = (0p1, ...,QFP)T is a learnable parameter and w; = entmax, (07{’) - They expect

J
the weights {w1, ..., w,} to be trained as 0 or 1, but these weights may not all be 0 and 1. In other
words, in NODE-GA'M, NODTs may estimate the higher-order components rather than main ef-
fects. Therefore, it is difficult to consider NODE-GAM as the functional ANOVA model which
decomposes a high-dimensional function into the sum of low-dimensional functions. Furthermore,
in NODE-GAM, we can not obtain the estimated component function.

However, the feature function F'° of ANOVA-NODT for component S at depth c uses only the input
features corresponding to S. For ¢ = 1, ..., | S|, we use feature funtion defined as

FAx) = (xs)e

ANOVA-NODE estimates component fg by an ensemble of ANOVA-NODTS corresponding to S.
Therefore, ANOVA-NODE is a functional ANOVA model. Therefore, although both NODE-GAM
and ANOVA-NODE utilize NODT, they are fundamentally different models.
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Figure 28: Plots of the functional relations of the main effects on 5 randomly sampled training data from
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Figure 29: Plots of the functional relations of the main effects on 5 randomly sampled training data from
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L ON THE POST-PROCESSING FOR THE SUM-TO-ZERO CONDITION

We have seen that NA?M and NB2M are competitive in prediction performance even though they
are poor in estimating the components. There is a way to transform any estimate of a component to
one that satisfies the sum-to-zero condition (Lengerich et al., [2020).

We consider a estimated GA*M f(x) = By + ZZ:l 25 Clp] fs,.(xs,) where S}, is a component
for |S;| = k. We write fg instead of fs(xg) for notational simplicity since x is fixed. First of all,
for component S, we can transform fg, into

d
fsa=Fsut> . > (—1)d_k/X foadTjev iy

k=1VCSq,|V|=k

where fs , satisfies the sum-to-zero condition. Next, for k = 1, ..., d, we redefine fs ., 1nto

fsd—k = fsd—k - (_l)d_k dedeESij
Xsk

where Sg_ . = Sq\Sk. If this process is performed sequentially for all components in order, all fgk
terms in f(x) = By + 22:1 >s.clp) fsu (Xs,) satisty the sum-to-zero condition.

Let us consider performing post-processing for GA?M on a given dataset. The computational order
for post-processing of a single point x is O(dn?~!). Therefore, if post-processing is carried out
for all data points, the computational order becomes O(dn?). In other words, not only global in-
terpretation (e.g., /1 norm, functional relation plots, etc.) but also local interpretation is practically
infeasible. Furthermore, performing post-processing requires storing a dataset, which causes mem-
ory efficiency issues.

Additionally, in GA?M, when post-processing is performed, and then calculating the ANOVA-
SHAP ¢;(x) for a given point x requires a computational order of O(p?~'dn?), which is even
more demanding.

Table[26]compares the stability scores of the main effects of ‘Latitude’ and ‘Longitude’ for ANOVA-
N20DE, NA?M and NB2M, and Figure |30 draws the 5 functional relations of the main effects
of ‘Latitude’ and ‘Longitude’ estimated by ANOVA-N20DE, NA2M and NB?M on 5 randomly
sampled training data. It is observed that NA2M and NB2M are still unstable even after the post-
processing, which indicates that instability in NAM and NBM is not only from unidentifiability but
also instability of DNN.

The situation becomes different when we apply the post-processing to GAM-NODE. Table
presents the stability scores of ANOVA-N20DE and post-processed GAM-N20ODE normalized by
the stability score of ANOVA-N2ODE, and Figure [31| presents the plots of the functional relations
of the main effects estimated by GAM-N2ODE on 5 randomly sampled training data. Interestingly,
unlike NAM and NBM, it is observed that GAM-N2ODE becomes more stable after post-processing.

The post-processing would not be a practically usable method since computation cost is too large
for calculating the integration. The order of computation for the post-processing GAM-N?ODE is
O(n?), where n is the number of data points to which the post-processing is applied.

Table 26: Stability scores for ‘Latitude’ and ‘Longitude’.
Model | ANOVA-N’ODE | NA*M [ NB*M
Latitude 0.006 0.067 0.104
Longitude 0.015 0.094 0.103
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Figure 30: Plots of the functional relations of ‘Latitude’ and ‘Longitude’.

Table 27: Stability scores of the post-processed GAM-N>ODE on CALHOUSING dataset.

Model

[ ANOVA-NZ0ODE [ post-processed GAM-N?ODE
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Figure 31: Plots of the functional relations of the main effects in post-processed GAM-N20DE on CAL-

HOUSING dataset.
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