
Multigrid-augmented deep learning preconditioners
for the Helmholtz equation

Yael Azulai
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

yaelaz@post.bgu.ac.il

Eran Treister∗
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

erant@cs.bgu.ac.il

Abstract

We present a data-driven approach to iteratively solve the discrete heterogeneous
Helmholtz equation at high wavenumbers. We combine multigrid ingredients with
convolutional neural networks (CNNs) to form a preconditioner which is applied
within a Krylov solver. Two types of preconditioners are proposed 1) U-Net as
a coarse grid solver, and 2) U-Net as a deflation operator with shifted Laplacian
V-cycles. The resulting CNN preconditioner can generalize over residuals and a
relatively general set of wave slowness models. On top of that, we offer an encoder-
solver framework where an “encoder” network generalizes over the medium and
sends context vectors to another “solver” network, which generalizes over the
right-hand-sides. We show that this option is more efficient than the stand-alone
variant. Lastly, we suggest a mini-retraining procedure, to improve the solver after
the model is known. We demonstrate the efficiency and generalization abilities of
our approach on a variety of 2D problems.

1 Introduction

The efficient numerical solution of the Helmholtz equation with a high and spatially-dependent
wavenumber is a difficult task. The linear system that results from the discretization of the Helmholtz
equation involves a large, complex-valued, sparse, and indefinite matrix. Over the years, various
iterative methods were developed for solving the problem, e.g., [18, 7, 8, 25, 5, 27, 6, 16, 21], yet it
remains expensive to solve. One of the most common methods to solve it is the Shifted Laplacian
(SL) multigrid method [6, 28], which is based on a multigrid preconditioner for a damped version
of the equation. That is, a complex shift is added to the matrix to form a preconditioner that is
efficiently solved by multigrid components. The preconditioning is applied with a Krylov solver,
such as GMRES [23]. However, the SL preconditioner is not scalable due to the high shift that is
required to solve the shifted system, and further investigation is needed.

In recent years, Deep Learning (DL) methods have revolutionized many fields, like computer vision
and natural language processing [14]. Similarly, solving partial differential equations (PDEs) with
a deep neural network has been recently considered in two main forms. One common class of
DL-for-PDEs approaches, which are often referred to as physics-informed neural networks (PINNs),
includes both PDE solvers [19, 20, 15, 9, 1], and PDE discovery [2]. The general idea is to implement
a neural network that implicitly represents the PDE solution. That is, the solution is approximated by
the neural network as an analytical function at a given point in space. This function is obtained using
stochastic optimization for learning the network’s weights as an unsupervised learning task, given a
large training set of points. The loss function that is minimized forces the network to meet both the
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system of equations and the initial and/or boundary conditions (BC). Following the learning process,
the PDE coefficients and BC are assumed to be embedded into the neural network weights.

Another family of approaches involves solvers in which DL is used to approximate the solution of
the PDE in an end-to-end fashion given the problem properties (coefficients, initial conditions or
sources). That is, the network needs to generalize over some of the PDE properties, which is the
more common scenario in computer vision applications. Some works employ Convolutional Neural
Networks (CNNs) which are typically used for applications involving data on regular grids, like
images and videos, or, discretized PDEs on a structured grid. Khoo and Ying [11] introduced a CNN
named ’SwitchNet’, for approximating forward and inverse maps arising from the time-harmonic
wave equation, assuming plane-wave sources and 2-4 Gaussian scatterers in a constant medium.
However, no neural network has been presented in the literature that effectively solves the Helmholtz
equation at high wavenumber for rather general heterogeneous models and right-hand-sides.

In this work we utilize CNNs as preconditioners for the discretized Helmholtz equation. We wish
to define a solver that generalizes over right-hand-sides and slowness models. We propose to use
a CNN together with a classical multigrid approach—the Shifted Laplacian—which is efficient at
removing only part of the error. We build on the similarity between a V-cycle and a U-Net [22]
which is a multiscale CNN used for image-to-image mappings such as semantic segmentation, image
denoising etc. Indeed, a geometric V-cycle can be naturally implemented using DL frameworks,
suggesting that a U-Net architecture, like a V-cycle, can be used as a preconditioner for solving
PDEs on a regular grid. To precondition the Helmholtz equation, we augment the U-Net with a
classical approach, to complement the network and stabilize the solution process. We examine two
preconditioners: one is a U-Net that acts as a non-linear coarse grid correction and is applied with a
Jacobi iteration for pre-and post-smoothing. In the second formulation we apply alternating U-Net
and SL multigrid V-cycle, which provides a more powerful smoothing and somewhat resembles
the deflation preconditioner of [24, 5]. Both preconditioners are applied within a Krylov subspace
method—flexible GMRES. We define our U-Net to generalize over a random right-hand-side and a
random piece-wise smooth slowness model. We also suggest two upgrades to the scheme above: (1)
an encoder-solver framework and (2) a mini-retrain approach. Both upgrades are described in details
later, and can improve the standard U-Net tremendously.

2 Preliminaries and background

The heterogeneous Helmholtz problem is give by

−∆u(~x, ω)− ω2κ(~x)2(1− γi)u(~x, ω) = g(~x, ω), ~x ∈ Ω (2.1)

The unknown u(~x, ω) represents the pressure wave function in the frequency domain, ω = 2πf
denotes the angular frequency, ∆ is the Laplacian operator and κ(~x) is the heterogeneous wave
slowness - the inverse of its velocity. The source term is the right-hand-side of the system, g. The
parameter γ indicates the fraction of attenuation (we focus on the hardest case γ = 0), and i =

√
−1.

As boundary conditions, we consider an absorbing layer [6], but PML [26] or [17] can be viable
options as well. We consider the second order finite difference discretization of (2.1) on a uniform
mesh of width h in both. This leads to a system of linear equations

Ahuh = gh. (2.2)

When discretizing the Helmholtz equation, we must obey the rule of thumb that at least 10 grid nodes
per wavelength are used. This typically requires a very fine mesh for high wavenumbers, significantly
increasing the number of unknowns and making the system (2.2) ill-conditioned, in addition to being
indefinite. Hence, the solution of the problem can be challenging and require creative iterative solvers.

2.1 Shifted Laplacian multigrid

Eq. (2.2) is commonly solved by a preconditioned Krylov subspace method. The SL operator

Mu = −∆u− ω2κ(~x)2(α− βi)u, α, β ∈ R (2.3)

is used to accelerate the convergence of a Krylov subspace method for solving (2.2). The precondi-
tioning matrix Mh is obtained from the discretization of (2.3), similarly to (2.1) yielding Ah. In this
paper we focus on the pair α = 1 and β = 0.5, which in [6] is shown to lead to a good compromise
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between approximating (2.2) and our ability to solve the (2.3) using multigrid tools. The SL multigrid
method is consistent and robust for non-uniform models, but is slow and for large wavenumbers. For
details on the geometric multigrid method used here to approximately invert (2.3) please see Sec. A
in our supplementary material.

3 Multigrid-augmented deep learning preconditioners

We utilize a U-Net architecture to accelerate the convergence of the Helmholtz solution. In order for
the computational complexity to be cost-effective we define the architecture to be relatively small
in DL standards (see Fig. 1), and yet demonstrate a significant acceleration to the solution. Our
DL-based preconditioner is applied within the flexible GMRES Krylov method [23]. The flexible
variant is important as our preconditioner is non-linear, hence also non-stationary.

Figure 1: Our U-Net architecture.

The U-Net architecture [22] is a CNN for image-
to-image tasks such as semantic segmentation.
In our case, given a slowness model and a right-
hand-side sampled on a grid (viewed as im-
ages), we wish to predict a solution for (2.2)
on that grid. On its way down the hierarchy,
the architecture interchangeably applies down-
sampling convolutions and ResNet convolution
blocks. Then, going up the hierarchy it applies
up-sampling convolutions. The down- and up-
sampling are applied using strided convolutions,
similarly to multigrid transfer operators.

U-Net as a preconditioner accelerator Since the medium can be very heterogeneous, the solution,
even for a point source or a plane wave, can be highly complex at high wavenumber due to reflections
and interference. Therefore, we do not pursue a solution via a single application of a network, but
aim for a network to be applied several times in the form of a preconditioner. Specifically, we aim for
the U-Net to complement the shifted Laplacian multigrid method, which is efficient at handling error
modes with rather large absolute eigenvalues. We aim that the U-Net will focus on the these error
directly, and it will be accompanied by classical smoothing via SL. This guides our training procedure,
which is described in Sec. B in the supplementary material. Furthermore, the smooting is important
because the Krylov method is sensitive to high residuals. Below we list two preconditioning schemes:

1. U-Net as a coarse grid solver in a two-level cycle In our first version, denoted as MJU, we apply
one pre- and post- Jacobi relaxations with a U-Net in between. Since the U-Net starts and ends
with strided convolutions, this ends up being similar to a two-level cycle.

2. U-Net as a deflation operator A slightly more evolved option would be to apply U-Net, and
afterwords to smooth the output using a SL V-cycle. More explicitly:

Preconditioner MVU(r) = V-cycle(e0 = U-Net(r), r). (3.1)
This option somewhat resembles the concept of deflation operator studied in [25].

Encoder-Solver: an encoder network as a preconditioner setup The stand-alone solver described
so far needs to generalizes on both the residual and the slowness. Obviously, the less we have to
generalize on, the solution will be easier for the network. This is verified in our experiments—the
network performs better when the slowness model is known during training (see Sec. C.2). Hence,
we wish to exploit the following: when we solve an equation using several iterations, the slowness
model remains the same during those iterations—the U-Net is repeatedly applied with the same model
for different residuals. To exploit this, we propose to split the generalization over the residual and
slowness model into two “encoder” and “solver” networks. The encoder network receives only the
slowness model as input, and prepares feature vectors that include the slowness model information.
Those vectors are computed only once at the beginning of the solution process, and are fed into the
solver network at every iteration in the solution time. The solver network is applied at every iteration,
with the readily available feature vectors inside it. This idea resembles a preconditioner setup that is
applied once before the solution process, and is adequate for any right hand side.

Mini re-training Our last approach aims to further improve the solver U-Net by a mini retraining
procedure at solve time for the given slowness model. That is, given a slowness model κ2 we apply a
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few training iterations over a randomly generated data set of residuals to improve the U-Net weights.
This is similar to the process obtained in PINNs, and is motivated by our relatively better performance
for known models compared to the case where we generalize over the models. This option would fit
cases where we need to solve multiple linear systems with the same slowness model but for many
right-hand-sides, like when solving inverse problems, where the medium needs to be estimated.

4 Numerical Results

In this section we evaluate the performance of the preconditioner together with flexible GMRES for
solving the Helmholtz equation for random right-hand-sides. In particular, we use a restarted and
flexible Block-GMRES(10), with a subspace of size 10, solving 10 different right-hand-sides together.
We consider it to be the preconditioner test. Our code is written in the Julia language [3], utilizing
the Flux DL framework [10]. Unless stated otherwise, the test cases that we present are for (2.1)
defined on a 2D domain of [0, 1]2, discretized on a nodal regular grid of 128× 128 cells, and a wave
frequency defined by ω = 20π, which leads to about 12.5 grid points per wavelength. We use an
absorbing boundary layer of width 10. We compare three preconditioners: The SL V-cycle MV, MJU

and MVU for Eq. (3.1). We evaluate the methods as preconditioners by their average convergence
factor denoted by ρ, calculated over the number of iterations required to reduce the residual norm
by a factor of 106. For the SL V-cycles we use a shift of β = 0.5, 3 levels, 1 pre- and post- damped
Jacobi smoothing with damping of 0.8, and a coarsest grid solution of GMRES(10) as in [4].

We now present the ability of the proposed methods to generalize for different slowness models
and right-hand-sides. In these experiments, the training phase was performed on a set of 20, 000
pairs of (r, e) produced as described in Sec. B.1, and κ2 were randomly generated from a collection
of the 50, 000 images in the CIFAR10 data-set. We train the network on a grid of 128 × 128 for
κ2 ∈ [0.25, 1], but also examine the performance on larger grids and frequencies. In particular, we
solve (2.2) for random right-hand-sides on grids of size 256×256 and 512×512 with ω = 40π, 80π,
respectively , using a network trained on residuals and slowness models of size of 128× 128 only. In
supplementary Sec. C.3 we also show generalization for κ2 ∈ [0.5, 1].

Figure 2 summarizes the results for all our three methods: stand-alone preconditioner, encoder-solver
framework, and the mini-retrain approach. Overall, it is clear our CNN can generalize over the
right-hand-sides (residuals), and over the slowness models. The stand-alone solver significantly
out-perform the SL solver, with MVU typically outperforming MJU. Our encoder-solver framework,
where two CNNs are used, indeed upgrades the stand-alone U-Net in all cases, and particularly when
we test at a larger problem size than the network is trained on. In addition, our mini-retraining phase
consistently yields another upgrade to the performance. While our preconditioner is not necessarily
superior than traditional ones in terms of FLOPs, it can be applied more efficiently on hardware.
Furthermore, CNN models can be significantly compressed without harming performance.
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Figure 2: The convergence history of the solutions of 2.2 for random RHSs. First row: stand-alone
U-Net for problem of size (a) 128 × 128 , (b) 256 × 256 and (c) 512 × 512. Second row: the
encoder-solver U-Nets the same experiments. Solid and dotted lines mark the preconditioners without
and with the mini-retraining phase at solve time, respectively.
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Supplementary Material

A Background

A.1 Geometric multigrid

In this section we describe the geometric multigrid approach that we use for solving (2.2). Generally,
multigrid methods are used to iteratively solve linear systems like (2.2) defined on a fine grid Ωh

using a hierarchy of grids. In a nutshell, in a two level setting, we project the fine level problem onto
a coarser grid, solve the problem on that coarser grid, and then use the coarse solution to correct the
solution on the original fine grid. This is repeated recursively to form a V-cycle, which is applied
iteratively to solve the problem. Geometric multigrid can be implemented using CNN constructs
quite naturally, resulting in a structure that resembles the well-known U-Nets.

More explicitly, multigrid methods are based on two complementary processes: relaxation and coarse
grid correction. The relaxation is obtained by a standard method like Jacobi or Gauss-Seidel, which
is only effective at reducing part of the error2. The remaining error, called “algebraically smooth”, is
typically spanned by the eigenvectors of Ah corresponding to small eigenvalues (in magnitude), i.e.,
vectors eh s.t. ∥∥Aheh∥∥� ∥∥Ah∥∥∥∥eh∥∥ . (A.1)

To reduce such errors, multigrid methods use a coarse grid correction, where the error eh for some
iterate uh is estimated by solving a coarser system and interpolating its solution:

AHeH = rH = IHh (gh −Ahuh), eh = IhHeH .

Here, the matrix AH is an approximation of Ah on a coarser mesh ΩH , obtained for width H = 2h.
To interpolate the solution from coarse to fine grids we choose the bi-linear interpolation operator
IhH which is suitable for the problem because the Laplacian operator in (2.3) is homogenous. The
restriction operator IHh , dubbed “full-weighting”, projects the fine-level residual to the coarse grid.
Since the coarse problem is still too large to solve, the process of relaxation and coarse grid correction
is applied recursively resulting in the V-cycle algorithm given in Alg. 1.

Algorithm 1: Multilevel V-cycle: vh ←V-cycle(vh, fh)

Relax v1 times on Ahvh = fh with vh as an initial guess ;
if deepest level then

vh ← Solve the system Ahvh = fh directly;
else

f2h ← I2hh (fh −Ahvh);
v2h ←V-cycle(v2h ← 0, f2h);
vh ← vh + Ih2hv

2h;
end
Relax v2 times on Ahvh = fh with vh as an initial guess;

In Alg. 1 one has to choose the number of levels in the V-cycle. Unlike other scenarios, the smooth
error modes of the Helmholtz operator are oscillatory at high wavenumber, and cannot be represented
well on very coarse grids. Hence, the performance of the solver deteriorates as we use more levels.
For example, the results in [4] show that the best performance is achieved using three levels only, and
the authors suggest to use GMRES as a coarsest grid solver.

A.2 Geometric multigrid using CNN modules

In our work, both the CNN and the multigrid preconditioner are used interchangeably in the same
framework, using a GPU back-end. We implement the multigrid method using CNN components, in
order to enable a good integration of the V-cycle with the CNN in a unified framework within the

2In the case of the Helmholtz system, such relaxation methods do not converge due to the indefiniteness of
Ah, yet they are effective at smoothing the error using 1-2 iterations only.
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preconditioner component. The idea is based on the close connection between U-Nets and multigrid
V-cycles.

The Helmholtz operator needed for the residual calculation and the Jacobi relaxation is executed
using a convolution operator according to the discretized Laplacian operator

∆h = − 1

h2

[
0 −1 0
−1 4 −1
0 −1 0

]

using a fixed-weights 3× 3 kernel plus an element-wise multiplication with the mass term in (2.3) or
(2.1), i.e., whether with an artificial shift or not. The high order discretization operators in [28] can
also be obtained similarly.

The geometric multigrid transfer operators, the restriction (coarsening of the mesh) and prolongation
(interpolation), are realized by convolution operators with the fixed kernels

KIHh
=

1

16

[
1 2 1
2 4 2
1 2 1

]
, KIhH

=
1

4

[
1 2 1
2 4 2
1 2 1

]
, (A.2)

that correspond to the full-weighting and bi-linear operators, respectively. Both kernels are applied
with a stride of 2. For the restriction, this results in a coarse mesh ΩH . For the prolongation, we use a
transposed strided convolution with KIhH

, so that the mesh is refined. The solution for the coarsest
mesh problem is done using GMRES with diagonal Jacobi preconditioner [4]. In addition, all these
convolutions are applied with zero padding of size 1, which is consistent with the Dirichlet boundary
condition (the ABC is obtained through the mass term). Neumann BC can be obtained by using
reflection or replication padding in CNN frameworks, which result in first and second order Neumann
BC, respectively.

B Method: training, data generation and augmentation

B.1 Training and data augmentation

In order for the U-Net to be efficient at solve time as a preconditioner, it must practice or learn on
GMRES residual vectors that are as close to the solve time GMRES residuals as possible. Let

enet = U-Net(r, κ2; θ) (B.1)

be the forward application of the network for a given right-hand-size r and slowness model κ(x)2.
As before, θ denote the collection of network weights (convolutions, biases, etc.) that we wish to
learn. Since we wish to complement smoothing processes, in our supervised learning setup, we aim
to minimize the error with respect to multiple residuals and models. That is, given training data
triplets {(etruei , ri, κ

2
i )}mi=1, where Ahetruei = ri, we minimize

min
θ

1

m

m∑
i=1

‖U-Net(ri, κ2i ; θ)− etruei ‖22, (B.2)

which is the mean `2 error norm, also known as the mean squared error (MSE). The training phase is
performed by a stochastic gradient descent optimizer, where in each epoch we sweep through all the
training examples in batches and varying order. Specifically, we use the ADAM optimizer [12] with a
variable step size.

For supervised learning, we have to provide the network with the corresponding error solution for
each residual vector and slowness model. To have such triplets, in some cases one needs to invest a
lot of time and resources in preparing the training-set, i.e., solve the PDE many times. However, since
we have a linear system here, we can simply generate a random etruei , and easily compute the residual.
But, we wish to create a data-set that is as close as possible to the situation in the real solution using
GMRES, and if we simply take the GMRES residual vectors, we will not have a corresponding error
without solving the system. To obtain that we need to generate data with rather smooth vectors in
varying “smoothness levels”, since GMRES and V-cycles are smoothing operations. Hence, we
propose the following procedure for which, in our experience, the training error predicts the final
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solution’s convergence factor quite accurately. First, we generate a random normally distributed xi
and compute bi = Ahxi. Then, we apply a random number of GMRES iterations with SL V-cycle as
preconditioner, starting from a zero vector, to get x̃i:

x̃i = GMRES(Ah,M = V-cycle,bi,x
(0) = 0, iter ∈ {1, ..., 10}). (B.3)

Following that, we compute a residual ri = bi−Ahx̃i and let ri be the network input. The true error
that we wish the network to recover is given by

etruei = xi − x̃i. (B.4)

Beyond the procedure above, we insert r̂i = h2ri as input to the network. This causes the network’s
input and output to be of the same order of magnitude3, and because the system is linear, this change
has no effect on the accuracy. Furthermore, to avoid over-fitting and achieve better generalization, we
augmented the training examples using a linear combination of the errors and residuals to expand the
set. This summarizes the training data generation, given slowness models. The training set and the
validation set are manufactured in the same way, and we saw no difference in the loss between these
two.

Overall, our network has 4 input channels of the size of the grid. These are the real and imaginary
parts of the residuals ri, the real (squared) slowness model κi(x)2, and the real attenuation model
γ(x). Although we do not generalize of γ(x), we found it slightly beneficial to include it as input, as
it allows the network to have a different behaviour at the grid’s boundaries.

Training details The training process for all the U-Nets reported in this paper is performed by the
ADAM optimizer [12], and includes 80-120 epochs. The initial learning rate is 10−4 and the initial
mini-batch size is 20. Along the epochs we reduce the learning rate and increase the mini-batch
size. The schedule of these changes as well as the amount of epochs we apply vary a bit between
the different experiments and are adjusted by cross validation on the test set. In the majority of the
cases, after t0 = 48 epochs we divide the initial learning rate by 10 and double the mini-batch size.
The next changes of the learning rate and mini-batch size occur after every ti = t0

2i epochs. That is,
the changes occur at epocs 48, 72, 84, 90 etc, until the learning rate essentially reaches zero. These
settings can be used as default parameters for all the experiments that we show.

Remark 1 As an alternative to the error loss in (B.2), one may use the residual norm ‖Aheneti −ri‖2,
so that the training can be unsupervised [1]. This is a viable option, but it can be a bit tricky, since
high errors can in fact have low residuals—these are “algebraically smooth errors”. Since we can
eliminate those errors with V-cycles or Jacobi iterations, we wish to let the network focus on those
smooth modes and not on the whole spectrum. We note that empirically, our experience in augmenting
the error norms in (B.2) with residual norms generally yields inferior performance than focusing on
the errors only during training.

B.2 Slowness models

Solving the Helmholtz equation for a uniform slowness model is not difficult, as it can be performed
using a Fourier transform. When trying to solve this equation over a non-uniform media, the difficulty
increases significantly, especially if there are sharp jumps or large ratios between the smallest and
highest slowness. Here, we want the network to succeed in different types of models, smooth and
non-smooth, that faithfully represent reality. In certain applications (e.g., geophysical or medical
imaging) one may have slowness models of a certain typical distribution coming from the application
domain. E.g., in geophysical imaging, one typically has a layered model with higher velocity values
deeper in the earth. In machine learning tasks, if we wish for an algorithm to generalize on an input, it
is best if we let the algorithm learn on inputs from the same distribution as in the real life application.
That is a large part of the advantage of data-driven approaches. Usually, however, to obtain a good
generalization we need a large data set of inputs—a collection of slowness models in our case.

Here, we use a rather general slowness model collection to demonstrate our method. The models that
we use for the U-Net training, are created from a large set of natural images CIFAR-10 [13]. This data
set is usually used as image classification benchmark and contain 50K images of resolution 32× 32

3The magnitude of the input and output are important because of how certain default parameters are chosen
in DL frameworks—e.g., initialization of weights and biases and scales of activation functions. For this reason,
the input is usually normalized, and batch normalization is applied throughout the network.
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Figure 3: Four examples for the κ(x)2 models generated from the CIFAR10 image collection. Each
model is a random image from the set, enlarged to a grid of 128 by 128 pixels, smoothed using a
Gaussian kernel and normalized to the range of [0.25,1].

(a) (b) (c) (d)

Figure 4: Illustration of smooth levels of κ(x)2, and their effect on the full solution of the Helmholtz
equation for a point source. In the upper row we show the model κ2 for each test. The leftmost, (a),
is an image from the CIFAR10 data-set, enlarged to a 256× 256 grid, and the two inner figures, (b)
and (c), are the same model after a Gaussian smoothing with kernel sizes of 5 and 10, respectively.
The rightmost, (d), is the constant homogeneous model. On the bottom row we show the full solution
for the corresponding model in the first row.

pixels. We use this data set and manipulate the images to become slowness models in order to have a
significant amount of training models to learn from. In particular, we use a training set of 20, 000
random sample images. To transform the natural images into slowness models, we first enlarge
them to the grid size using a bi-linear interpolation, then smooth them with a single application of
a Gaussian smoothing kernel, and normalize the values to the range of [0.25, 1]. Fig. 3 shows four
different models produced from the CIFAR-10 image collection. Fig. 4 presents how the smoothness
level of the model, κ2, affects the difficulty of the solution. It is evident that as the medium is less
smooth, the solution is more complex and is harder to model by a neural network. Similarly, the
range of slowness values in the model also affects the the complexity of the solution. Fig. 5 illustrates
how the solution is again more complex as the contrast in the slowness model is larger.

C Additional Numerical Results

In addition, we present the relative error norm plot throughout the training period, which shows the
value of the loss function (B.2) vs. the epoch number. Ideally, the asymptotic value of the relative

(a) (b) (c) (d)

Figure 5: Illustration of the effect of the value ranges of κ2 on the full solution of the Helmholtz
equation for the point source problem. The leftmost, (a) is a full solution for kappa normalization
between 0 and 1, (b) κ2 ∈ [0.25, 1], (c) κ2 ∈ [0.5, 1] and (d) κ2 ∈ [0.75, 1].
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Figure 6: Experiments for a homogeneous slowness model. (a) the training plot. (b) the residual drop
history of the GMRES method. ρV ,ρJU,ρVU are the convergence factors of the preconditioners MV,
MJU and MVU, respectively. (c) shows the real part of the result of a single U-Net operation on a
point source, compared to the result of a single V-cycle for the same input in (d).

training error should indicate the real convergence factor at solve time using GMRES. It is indeed
more-or-less so thanks to the varying smoothing levels that we apply for our training residuals in Eq.
(B.3). Using this plot, we can also estimate over-fitting and adjust the hyper-parameters (learning
rate and mini-batch size, for examples).

C.1 Performance of a homogeneous model

In the homogeneous test case, we solve the system (2.2) for a uniform model, known at training. That
is, the training is performed on random residual and error vectors only as described earlier. Fig. 6
describes the results of the proposed method for this case. The average relative error, i.e. the minimum
estimate value of the loss function (B.2), of the training and test sets at the end of the training process
is 0.18. The GMRES method with U-Net-based preconditioner as described in Eq. (3.1) converges
within 10 iterations with convergence factor ρVU = 0.231 compared to 0.88 using only V-cycles.
Our cheaper MJU preconditioner, which uses only our U-Net and Jacobi steps converges within 12
iterations with convergence factor ρJU = 0.313. These are very favorable convergence factors given
how poorly V-cycles behave for a homogeneous model. On the other hand, homogeneous problems
can be efficiently solved using fast Fourier transform.

C.2 Performance on a single heterogeneous model

In this section we examine our method for a single heterogeneous slowness model, known during the
training phase. In this scenario, the network can learn weights specific to that model. As shown in
Fig. 7, for a model normalization of κ2 ∈ [0.5, 1] we obtained convergence factors of ρVU = 0.27
and ρJU = 0.383, which are close to the performance on the uniform model. For the more difficult
case of κ2 ∈ [0.25, 1], we obtain ρVU = 0.41, ρJU = 0.456. Furthermore, in plot (c) of Fig. 6 and
in the bottom plots (c) and (e) of Fig. 7, we show the results of a single iteration of Eq. (3.1) on a
centralized point source, a problem that is not included in the training set. It is evident that U-Net has
indeed learned to produce a global solution, and the integration with the V-cycle is intended to “clean”
or smooth the solution and ensure convergence.

C.3 Performance on generalized slowness models

As we showed in the previous section, our U-Net can learn to solve (2.2) quite efficiently for a given
heterogeneous slowness model. However, the training of the U-Net is quite expensive to apply at
solve time. In a more applicable approach for the realistic world, we wish the neural network to
work and generalize on models it had not seen in the training phase. Therefore, we also present the
ability of the proposed method to generalize for different models. Table 1 presents the results for
the encoder-solver setting. Regardless of the specific preconditioner, we see that if the networks are
trained on a single model, they exhibit the best performance. However, they fail to generalize on
slightly different cases—even for the easier normalization of the same model (row (a) vs row (b) in
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Figure 7: Experiments for a known heterogeneous slowness model. We compare models for which
κ2 ∈ [0.5, 1], and κ2 ∈ [0.25, 1]. (a) shows the convergence in the training phase and (b) shows the
results of the three preconditioner tests. The bottom figures describe the real part of the results of a
single U-Net operation, (c) for κ2 ∈ [0.25, 1] compared to the real part of the full solution in (d), and
(e) for the case of κ2 ∈ [0.5, 1] compared to the full solution (f).

Single model General model Re-trained
MV MVU MJU MVU MJU MVU MJU

(a) κ2 ∈ [0.25, 1];n = 128
ρ 0.904 0.41 0.456 0.628 0.704 0.561 0.665
T 137 16 19 30 40 24 34

Generalization for cases not seen in training

(b) κ2 ∈ [0.5, 1];n = 128
ρ 0.867 0.827 fail 0.516 0.573 0.432 0.498
T 97 73 21 25 17 20

(c) κ2 ∈ [0.25, 1];n = 256
ρ 0.974 0.958 fail 0.798 0.86 0.743 0.811
T 391 240 62 92 46 67

(d) κ2 ∈ [0.5, 1];n = 256
ρ 0.946 0.887 fail 0.681 0.727 0.583 0.665
T 208 116 36 44 26 34

Table 1: Performance comparison of the U-Net-based preconditioners. ρ is the convergence factor and
T is the number of iterations required to reduce the residual norm by a factor of 106. (a) summarizes
the numerical results of the method on new examples equal in difficulty to the training set. Rows
(b),(c) and (d) describe the performance of the same U-Nets on problems of a different size or with
a different level of contrast in the slowness model. The “single model” column demonstrate the
performance when the U-Net is trained using a single heterogeneous model. In the “general model”
column the network is trained on multiple slowness models. The “re-trained” column describes the
performance after mini-retraining.

the single model column). If we train the networks to generalize over slowness models, it can also
generalize on the problem size and slowness contrast. All cases are improved using mini-retraining.

C.3.1 The influence of the Krylov subspace and block sizes

In this set of experiments we examine the influence of the subspace sizes that the GMRES method
uses. We examine the influence of both the subspace size and the number of RHSs solved together
(block size). The experiment corresponds to the 256× 256 experiment shown in Fig 2 (e). Fig. 8
summerizes the results. It is obvious that whether by multiple RHSs or by subspace size, increasing
the effective Krylov subspace can improve the performance of the solver significantly. That is in
contrast to the SL V-cycle that is not improved by the same magnitude. This shows that there is more
potential to the U-Net based preconditioners that shown earlier, since in addition, we typically did not
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Figure 8: The influence of the Krylov subspace and block sizes. On the left we see the influence
of the block size (convergence for a number of right-hand-sides solved together by block flexible
GMRES(10)). On the right we see the influence of the subspace size on the convergence factor.

reach the training error drop in the preconditioner test, indicating that GMRES stabilizes the solution
on the one hand, but also slows the preconditioners due to high residuals.

14


	Introduction
	Preliminaries and background
	Shifted Laplacian multigrid

	Multigrid-augmented deep learning preconditioners
	Numerical Results
	Background
	Geometric multigrid
	Geometric multigrid using CNN modules

	Method: training, data generation and augmentation
	Training and data augmentation
	Slowness models

	Additional Numerical Results
	Performance of a homogeneous model
	Performance on a single heterogeneous model
	Performance on generalized slowness models
	The influence of the Krylov subspace and block sizes



