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ABSTRACT

Recently, large language models have exhibited impressive performance and sur-
prising emergent properties. However, their abilities remain constrained by the
preset context window of the Transformer architecture, and they continue to strug-
gle with length generalization. In this work, we propose a new perspective on
length generalization by focusing on the output distribution rather than the in-
put, as most prior studies have done (e.g., through positional encodings or data
structure). First, through case studies on simple synthetic tasks, we highlight the
importance of output alignment—the consistency of output distributions across
sequences of varying lengths. We then extend this observation to natural language
tasks and introduce a metric named Long-Short Misalignment to quantify output
alignment, finding a strong correlation between this metric and length general-
ization performance. Based on these insights, we propose a regularization loss
during training that improves output alignment. Extensive experiments confirm
the effectiveness of this approach. Overall, our work provides a novel perspective
for understanding and enhancing length generalization in large language models.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive abilities in various tasks such as nat-
ural language generation, reading comprehension, code synthesis, instruction-following, and com-
monsense reasoning (Radford_ef all, 20TY; Brown ef all, 020; Chowdhery et all, 2073; Tonvron
ef-all, P023). Their performance has consistently improved by scaling both model and dataset sizes
(Kaplan et all, 2020). However, the ability to generalize from smaller training context sizes to
larger ones, commonly known as length generalization, is a major challenge for Transformer-based
language models (Anil"ef-all, 2(077). This issue persists even in larger Transformers (Ciief all,
2024). With larger context sizes, a model can benefit from more in-context learning examples, an
increased number of reasoning steps, or longer text generation (Li_ef-all, 2074; Huang & Chang,
2073). However, training a Transformer with a larger context size is often excessively slow and
memory-intensive. Therefore, understanding the mechanism of length generalization and enhancing
the length generalization ability of these models is urgently needed.

There exist two main approaches to understanding and improving length generalization. The first
is to understand and design different positional encoding (PE) (Press_ef all, DO21; Su ef all, 2024,
Kazemnejad et all, P0773; Peng et all, 2074; Chen ef all, P074; [Yang, P073; Zhang et all, 2074H). PE
plays a crucial role in the length generalization of Transformers, as the model must systematically
encode tokens in all possible positions. By designing PE that reduces the gap between shorter
training sequences and longer test sequences, length generalization can be improved to some extent
(Kazemnejad et all, P073). The second approach is to understand the fundamental mechanisms of
Transformer models (Zhon ef all, P024|; LCee_ef all, 2023; Velickovic & Bhiundell, 2021; Nogueird
ef—all, PO71; Deletang et all, 2027). This includes studying which algorithms Transformers can
represent and how they can generalize better by designing more effective tasks. However, in this
work, we find that the previous works ignore a component, the output space of the model, which we
found to be quite crucial in the length generalization tasks.

We begin by investigating length generalization on synthetic tasks: predicting the mean value and
the length of binary sequences. Both empirical and theoretical results reveal that while Transformers
generalize well in the mean prediction task, they struggle in the length prediction task. The key dis-
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tinction lies in the output distribution’s support set: in the mean prediction task, it remains consistent
as input sequences grow, whereas in the length prediction task, the support set shifts with increasing
sequence lengths. We hypothesize that this misalignment in the output distribution leads to poor
length generalization in the length prediction task. To verify this hypothesis, we propose a repa-
rameterization technique named OutRep that explicitly aligns the output distribution across different
sequence lengths in the length prediction task. Our empirical and theoretical analyses confirm that
this approach significantly enhances length generalization which supports our hypothesis.

Building on this insight, we extend our findings to natural language tasks. Although the model out-
put in natural language tasks is a vector (unlike the scalar output in synthetic tasks), which makes
it difficult to directly apply the same analysis, similar output misalignment issues still arise. Specif-
ically, for two sequences with the same ending but slightly different lengths, the models output is
expected to remain consistent. However, we find that models with poor length generalization tend
to produce divergent outputs when conditioned on these sequences. To explore the quantitative re-
lationship between output alignment and length generalization, we introduce a metric—long-short
misalignment—using symmetrical cross-entropy loss to measure the divergence between the out-
puts of such sequences. Both empirical and theoretical results demonstrate that this metric strongly
correlates with a models long-context performance, making it a more reliable predictor of length
generalization than traditional training loss. Consequently, we incorporate this metric as a regular-
ization loss in training, and extensive experiments on both length generalization and long-context
modeling show that our proposed training loss significantly improves performance.

The main contributions of this work are as follows:

* We identify the crucial role of output alignment in achieving length generalization. Both
empirical and theoretical analyses show that misalignment in the output distribution across
varying input sequence lengths leads to poor generalization performance.

* Building on this insight, we introduce a long-short misalignment metric to quantify output
misalignment and demonstrate its strong correlation with long-context modeling perfor-
mance both empirically and theoretically.

» To further improve generalization, we integrate this metric as a regularization loss into
the training process. Extensive experiments validate the effectiveness of this approach in
boosting performance.

2 RELATED WORK

Length Generalization on Synthetic Tasks. Our paper is related to the line of work that seeks
to understand the capabilities and limitations of Transformer models when it comes to algorithmic
reasoning (Velickovic_& Blundell, Z02T). Specifically, we focus on simple tasks and study length
generalization on the standard Transformer architecture with causal structure. Related to this, LCed
ef_all (2Z023) study how well transformers trained from scratch can learn simple arithmetic tasks,
and find that no length generalization is observed. Nogueira et all (Z021) find that partial length
generalization on addition is observed only when models reach 3B parameters and when the addi-
tion questions are presented in reverse order. lelassief all (2023) study models trained on addition
and find strong generalization performance when using a few examples of longer sequences. Zhoii
ef all (20724)) proposes the RASP Generalization Conjecture that Transformers tend to learn a length-
generalizing solution if there exists a short RASP-L program that works for all input lengths. L
ef-all (Z023) discovers that the Transformer will learn shortcuts through the study of various syn-
thetic tasks. Besides these explorations on specific tasks, some works study the impact of differ-
ent positional encodings on the length generalization of math reasoning tasks. Alibi adds a linear
bias on the attention score to achieve better length generalization performance (Press_ef-all, DOZT).
Onfanon_ef-all (2Z027) studies different settings of positional encodings and identifies Transformer
configurations that generalize compositionally significantly better in a diverse set of compositional
tasks. Kazemnejad et all (Z023) systematically studies the role of no positional encoding (NoPE) in
Transformer with causal structure. Ruoss ef-all (Z023) proposes a randomized positional encoding
scheme that simulates the positions of longer sequences and randomly selects an ordered subset to
fit the sequence’s length.
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Figure 1: Comparison between the length generalization performance in the mean prediction task
and the length prediction task. The training sequence length is uniformly selected from [1, 10] (in-
dicated by the area) while the test sequence lengths (on the x-axis) can reach a maximum
of 50. In the length prediction task (b), the model struggles with length generalization, evidenced
by an increasing test loss as sequence length increases. Conversely, the model demonstrates signif-
icantly better length generalization in the mean prediction task (a), maintaining consistent test loss
regardless of the increasing sequence length using NoPE (indicated by the ). Figure (c)
shows the length generalization performance in the length prediction task using different reparame-
terization functions f(z). All three reparameterized targets improve generalization compared to the
origin (blue) target. Among them, f(x) = 1/y/x (red) performs exceptionally well, significantly
reducing test loss for longer input sequences.

Long-context Modeling on Natural Language Tasks. A series of works (Sun_ef-all, 2023; Chi
ef-all, P0727; P073; |Zhang et all, P074RK; Chen'ef all, P0074; Peng et all, P074; [Yang, P0773; Chenef all,
P0234) aim to extend the context size of Transformer-based models during fine-tuning, primarily by
modifying positional encodings. For example, [Zhang et all (Z024H) introduces a novel extension to
RoPE (Sn_ef-all, 2074) which combines adjusting RoPEs base frequency and scaling the attention
logits to help LLM:s efficiently adapt to a larger context window. Chen ef-all (2024)) generalizes the
positional encoding scaling approaches to model the continuous dynamics by ordinary differential
equations over the length scaling factor. (Chen"efall, P0734) proposes to extend the context length
by slightly modifying RoPE via Position Interpolation (PI) and fine-tuning on a small amount of
data. Our approach, in contrast, focuses on the model’s output space, which identifies the crucial
role of output alignment in length generalization. Wang et all (20074)) proposes a novel approach
designed to narrow the generalization gap by refining the interpolation of RoPE features for OOD
positions and provides length extrapolation analysis on the feature gap.

3 A CASE STUDY ON SYNTHETIC TASKS: HOW OUTPUT ALIGNMENT
AFFECTS LENGTH GENERALIZATION?

Length generalization refers to the ability to generalize from smaller training context sizes to larger
ones. Previous research has explored various factors critical to successful length generalization,
such as the task type (Zhon et all, P074; lelassief all, DO73; Nogueira et all, P021]) and the positional
encoding (Onfanon ef all, 2077; Kazemnejad et all, Z023; Ruossefall, 2023). However, in this work,
we propose a new perspective, identifying output distribution alignment across different positions as
another important factor.

Mean Prediction v.s. Length Prediction. We start from a case study on synthetic tasks: in the
mean prediction task, the prediction target is the mean value of the sequence, while in the length
prediction task, the target is the length of the sequence. We focus on binary input sequences, where
each position in the sequence is filled with 0 or 1 with the same probability, and the decoder-only
Transformer (Vaswani ef all, 20T7), a model widely used in both synthetic tasks (Zhon ef-all, P0174;
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lelassi_ef all, 2023) and LLMs (Touvron_ef all, P0O23; Peng et all, 2024), which utilizes a causal
mask in the self-attention module to enable auto-regressive generation. More model details can be
found in Appendix Al We train the model on sequences with a maximum length of l;;,;, = 10
and test it on sequences with a maximum length of /st = 50. Figure @ and Figure [H display
the test results for both tasks. We observe that regardless of the positional embedding used, the
test loss of the length prediction task dramatically increases when the test sequence length exceeds
10, the maximum training length. Furthermore, the test loss continues to rise as the test sequence
length grows, indicating that the model demonstrates very low length generalization ability in the
length prediction task. In contrast, the model exhibits strong generalization ability in the mean
prediction task, as the test loss on longer sequences remains nearly consistent with the loss on
shorter sequences. We provide a theoretical analysis of this observation in the Appendix B

From the results above, it is evident that while the mean and length of a sequence all convey global
information, the model’s length generalization ability varies across these tasks. A key distinction
lies in the differences in output distribution for each task. In the mean prediction task, where the
model generalizes well, the output remains within the fixed range of [0, 1], regardless of sequence
length. However, in the length prediction task, where generalization is poor, the support set of
the output distribution shifts to a single-point set {l} as the sequence length increases to [. This
distinction between the two types of tasks motivates us to consider the importance of the alignment
in the output distribution for better length generalization ability.

Explicit output alignment helps length generalization. We propose OutRep, a reparameterization
technique to explicitly improve output distribution alignment in synthetic tasks, thereby enhancing
the model’s length generalization ability. In the length prediction task, the output distribution for
sequences of certain lengths is known. Leveraging this prior knowledge, during training, we apply
a reversible function f : R — R to map the support sets of output distributions for sequences of
varying lengths into more aligned sets. Instead of using the original target y(x), we train the model
on the transformed target f(y(x)). At test time, we apply the reverse function f~ to the output to
recover the original prediction. This approach aligns the output distributions across different lengths,
which is expected to improve length generalization. We consider the following reparameterization
functions: f(z) = /=, f(z) = log(z) and f(z) = 1/+/x. We show the experiment results in
Figure [d. It can be observed that all three reparameterization functions successfully relieve the
poor length generalization ability in the length prediction task. Specifically, the reparameterization
function f(x) = 1/+/z has a nearly perfect generalization ability when the length is no more than
35. The rising trend when the test sequence length becomes longer is still slow. These results
verify our conjecture on the output alignment that better output alignment leads to improved
length generalization ability. We add more theoretical results and discussions in Appendix B and
Appendix 0. In the next section, we will extend these findings to the more practical natural language
tasks.

4 OUTPUT ALIGNMENT IN NATURAL LANGUAGE TASKS

In the previous section, we observed a positive correlation between length generalization ability and
output distribution alignment in synthetic tasks. Motivated by this finding, in this section, we aim to
extend this investigation to natural language tasks. First, we introduce a metric to quantify output dis-
tribution alignment in sequence modeling and demonstrate its strong correlation with performance
on long-context benchmarks. Building on this insight, we propose incorporating this metric as a
regularization loss during training to improve output alignment, which can lead to the performance
gains detailed in Section B.

4.1 LONG-SHORT MISALIGNMENT: QUANTIFYING OUTPUT ALIGNMENT OF LANGUAGE
MODELS

In synthetic tasks, we measure the discrepancy between the support sets of output distributions to
capture the differences in output across varying sequence lengths. However, in natural language
tasks, the model output is a vector gg(x) € RIVI, where the dimension is the size of the vocabulary
|V|. This makes it challenging to directly apply the same analysis from synthetic tasks to natural
language tasks. Despite this, similar output misalignment issues can still be observed in natural
language tasks. Specifically, for a sequence x and its suffixes x(_;, . and x[_j,.], where [; and [2
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are two lengths and x|_;,;) means the last /; tokens of x (i = 1,2), the model’s output is expected
to remain consistent when /; and l» are similar, because the two suffixes share large overlap in
tokens, resulting in similar contextual information. However, we find that models with poor length
generalization tend to produce distant output distributions when conditioned on these sequences.

4.1.1 METRIC

To quantitatively explore the relationship between output distribution alignment and length general-
ization ability, we want to first design a metric to evaluate output alignment. We propose to utilize
symmetrical cross-entropy (SCE) loss (Wang et all, 2019) to measure the divergence between out-
put distributions conditioned on two distinct sequences. Consider two input sequences, x and x’
with corresponding model predictions y = gg(x) and y’ = go(x’). The SCE loss between these
predictions is defined as:

Lscr(y,y') = — ((y',1log(y)) + (v,1log(y"))) , M
where (-, -) denotes the inner product and the log function is applied element wise. A lower SCE
loss between the two predictions indicates better alignment. To assess overall output distribution
alignment, we compute the expectation over sequence lengths /; and [, for a given input x:

ﬁmisalign (90) = IEx,ll R »CSCE (90 (X[—ll B ) , 9o (X[—l2 ] )) (2)
We refer to this metric as the long-short misalignment, where a lower value signifies better output
alignment across different sequence lengths. An illustration of this metric is shown in Figure IA. In
practice, we sample /1 and l5 from the interval [lyin /2, ltrain], Where liyqin represents the maximum
context length used during training.

4.1.2 RESULTS

To evaluate the model’s length generalization ability, we use the perplexity on long validation sets
(16k length) and the LongBench-E score (Baiefall, 2023K). For perplexity evaluation, we select a
subset from the RedPajama-Book corpus (Computet, 2073), following the protocol in (Chen ef-all,
2074). LongBench-E is a multitask benchmark that comprehensively evaluates large language mod-
els’ ability to understand long contexts, with task lengths averaging between Sk and 32k tokens.

Empirical Results. Table 0 shows the long-short misalignment metric Lisalign for the mod-
els along with their corresponding long-context evaluation results. Additionally, we include the
training loss Ly i, for each model on the RedPajama-Book corpus, which reflects the perplex-
ity on sequences with the maximum training length l;,,;,. Interestingly, while the training loss
(i.e., log of perplexity on sequences of length li;,;,) shows a moderate correlation with long-
context performance metrics—indicating that lower training loss can contribute to improved length
generalization—the long-short misalignment metric Ly jsalign demonstrates a much stronger corre-
lation with long-context performance, as evidenced by its higher absolute correlation coefficient.
These findings suggest that L,isalign is @ promising indicator of length generalization ability. How-
ever, it is important to note that we do not claim any causal relationship based solely on these
observations. We will elaborate more on this relationship in Section B.

Additionally, we also provide theoretical support for this observation, extending previous work on
autoregressive modeling (Zhang et all, P0744) with a theorem:

Theorem 1 (Generalization guarantees for the natural language task). Under some model as-
sumptions, the generalization error Egen (g0; liest) with testing length liest is upper bounded by the
sum of training loss Lyiyain(ge) and misalignment metric Liisatign (90), L.e.,

ggcn (ge; ltcst) S Cﬁltesw : »Cmisalign (99) + Cg(lteﬂ) . ['train (90) + C(()lte“)a (3)

where C’i(lte“) are constants related to lies. Specifically, the ratio C’fltESt)/C’élm“) becomes larger
as lyesy increase. This indicates that as the testing length increases, the alignment loss becomes
increasingly significant.

This theorem highlights the importance of minimizing both Lisalign and Lirain to achieve lower
generalization error. Moreover, as the testing length [y increases, reducing Liisalign plays a more
critical role in improving generalization performance. The above empirical and theoretical results
motivate us to explicitly optimize the long-short misalignment metric to enhance the model’s ability
to handle long-context sequences, which will be stated in the following sections.
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Table 1: The proposed long-short misalignment metric Lyisalign 0f models, with their log of per-
plexity (PPL) on 16k-long contexts and LongBench-E score. We also provide Li;.;, as an additional
metric in comparison. We find that £isalign correlates better with the long-context benchmark per-
formance.

Model Lirain  Lmisalign 10g(PPL)  LongBench-E Score
GPT-J-6B (Wang, P071) 2.1 3.4 9.5 7.8
GPT-NeoX-20B (Blackefall, P077) 2.3 3.2 9.4 9.7
Llama2-7B (Tonvronefall, P073) 1.9 34 9.4 8.9
RandomPos (Ruoss efall, D0773) 2.2 3.3 8.2 9.2
Yarn-Llama-2-7B-8k (Peng et all, 2074) 2.0 2.6 3.8 21.2
Qwen-7B-8k (Baiefall, 20734) 1.7 2.8 3.2 24.2
CLEX-LLaMA-4K (Chen_ef all, 2(074) 1.7 2.4 1.8 32.7

Metric Correlation Coefficient with Metric
‘Ctrain 0.67 -0.59
Lisalign 0.88 -0.95
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Figure 2: (a) Given two input sequences, where one is a truncated version of the other, the long-short
misalignment metric is computed by taking the expectation on Symmetrical Cross-Entropy (SCE)
loss (Wang et all, Z00T9) between the model’s predictions for these two sequences. (b) Illustration
of efficiently calculating the total training loss. This implementation requires only two forward
propagations for the two sequences, resulting in minimal additional time and resource costs

4.2 LONG-SHORT MISALIGNMENT METRIC AS REGULARIZATION LOSS

Since both empirical and theoretical results indicate a strong correlation between the proposed long-
short misalignment metric and long-context benchmark performance, we incorporate this metric as
a regularization loss into the training loss, resulting in the new training loss defined as:

‘C;;krain (90) = Etrain (90) +a- Lmisalign (99)7 (4)

where Li;ain 1S the original cross-entropy training loss and « is the regularization coefficient. Cal-
culating these two losses separately during training can be time-consuming, as the computation of
Lnisalign requires forward propagation through two distinct sequences. To address this, we propose
an efficient implementation for £ ; . We first sample an integer lextra from [1, liyain/2] and then
sample a sequence of length i ain + loxtra. The first Iy .5, tokens form the first input sequence,
while the last l1,,i, tokens form the second input sequence. Both sequences can be used to compute
Lirain- The overlap between the two sequences starts at token lextra + 1 and continues to token
ltrain, resulting in an overlap of li;4in — loxtra tokens. We can calculate the long-short misalignment
loss in the overlapping positions. This implementation requires only two forward propagations for
the two sequences, resulting in minimal additional time and resource costs compared to calculating
the original train loss Liyain. A detailed Pytorch-like algorithm is provided in Appendix D and an
overall illustration can be found in Figure ZH. We will conduct experiments using the proposed
regularization loss in the next section to show its effectiveness.
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Table 2: Performance of the fine-tuned models using only cross-entropy loss (baseline) and an addi-
tional long-short misalignment loss on long-context modeling benchmark, LongBench-E score (Bai
efall, PO023K) and perplexity on the 8k-length validation set. The fine-tuning sequence length is 4k,
exactly the same as the training sequence length. We adopt two datasets: RedPajama-Book (ComA
putet, 2073) and PG19 (Rae_efall, 20T9). The models finetuned with our proposed loss outperform
the baseline across different model adaption strategies.

Benchmark LongBench-E (1) Perplexity ()
Training steps 50 100 200 50 100 200
RedPajama-Book

Lirain (Baseline) 2277 238 247 721 656 6.12

Lirain + 0.1Lyisalign (Ours)  23.1 252 26.6 6.89 6.24 5.88
Lirain + 0.5Lmisalign (Ours) 219 237 247 744 701 654

PGI9

Lirain (Baseline) 202 214 225 892 1789 745
Lirain + 0.1Lmisalign (Ours)  20.7 221 253 895 792 7.35
Lirain + 0.5Luyisalign (Ours)  20.1 22,2 236 942 859 821

5 EXPERIMENTS ON NATURAL LANGUAGE TASKS

In this section, we conduct extensive experiments to verify the effectiveness of our proposed length
alignment loss. We first examine the proposed output distribution alignment loss on length general-
ization tasks, where the model is trained on short sequences and tested on longer ones. Additionally,
we explore its application in another common scenario: long-context learning, where both training
and testing involve long sequences.

5.1 EXPERIMENTS WITH TRAINING ON SHORT SEQUENCES

In this section, we consider the classical length generalization setting, where the model is trained
on short sequences (4k-long) and tested on longer sequences (at least Sk-long). Due to the high
computational cost of pre-training large language models from scratch, most current methods fine-
tune open-sourced pre-trained models (Chen_ef-all, 2074; [Yang, P2023; Peng et all, 2024). In our
experiments, we use Llama2-7b (Tonvron_ef-all, 2073) as the base model and apply the CLEX (Chen
ef_all, D074)) adjustment method. We use two datasets: the RedPajama-Book corpus (Computei,
2073) and PG19 (Rae_efall, P0TY). The experiments are conducted with a context length of 4,096, a
batch size of 64, and a maximum of 200 training steps. For the regularization coefficient o, we test
values of 0.1 and 0.5.

We evaluate performance using the LongBench-E score (Bai_ef-all, Z023H) and perplexity on vali-
dation sets made up of sequences of length 8,192 from the corpus of the respective training dataset.
LongBench-E is a multitask benchmark that comprehensively evaluates large language models’ abil-
ity to understand long contexts, with task lengths averaging between 5k and 32k tokens, which has
been adopted by many previous works (Chen ef"all, D0074; lin"ef all, P0074) as an effective evaluation
metric for long-context modeling. The results, shown in Table D, indicate that the model fine-tuned
with our proposed loss consistently outperforms the baseline model on the LongBench-E benchmark.
The fine-tuned model shows lower perplexity on RedPajama-Book and similar perplexity on PG19.
These results support the effectiveness of our proposed loss and the intuition that lower misalign-
ment metric Lisalign l€ads to better length generalization ability. For the regularization coefficient
«, we find that larger values do not always improve performance, as they may interfere with the
models next-word prediction.

5.2 EXPERIMENTS WITH TRAINING ON LONGER SEQUENCES

In this section, we consider the scenario that the model is finetuned on a longer sequence than the
training length. We use different model adjustment strategies during the fine-tuning stage, to demon-
strate that the proposed length alignment loss can be applied to various long-context fine-tuning
methods. Our experiments use Llama2-7b as the base model. For model adjustments, we consider
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Table 3: Performance of the finetuned models using only cross-entropy loss (baseline) and an addi-
tional long-short misalignment loss on long-context modeling benchmark, LongBench-E score (Bai
ef_all, Z023H) and perplexity on the 8k-length validation set. The fine-tuning sequence length is
8k. We adopt two kinds of model adjustments: LongQLora (Yang, P073) and EABF (Zhang et all,
2024H7). The models finetuned with our proposed loss outperform the baseline across different model
adaption strategies.

Benchmark LongBench-E (1) Perplexity ()
Training steps 50 100 200 50 100 200
LongQLora

Lirain (Baseline) 219 2211 234 682 641 582

Lirain + 0.1Lyisalign (Ours)  21.8 233 258 6.72 639 5.77
Lirain + 0.5Lmisalign (Ours) 214 239 251 7.07 6.62 592

EABF

Lirain (Baseline) 221 229 236 689 652 6.01
Lirain + 0.1Lmisalign (Ours)  23.2 240 248 692 643 591
Lirain + 0.5Lmisalign (Ours) 22,5 232 239 7.14 678 6.34

two approaches: LongQLora ([Yang, P073) and EABF (Zhang et all, 2074K). LongQLora leverages
multiple techniques, including Position Interpolation (Chen“ef all, 20734), QLoRA (Deffmers ef all,
2074), and Shift Short Attention from LonglL.oRA (Chen ef all, P023R). Meanwhile, EABF intro-
duces a dynamic rescaling mechanism to the attention layers and applies a higher base frequency
for RoPE. The experiments are conducted on the RedPajama-Book corpus (Computet, Z0773), with
a context length of 8,192, a batch size of 64, and a maximum of 200 training steps. For the regular-
ization coefficient o, we test values of 0.1 and 0.5.

We evaluate performance using the LongBench-E score and perplexity on validation sets composed
of sequences of length 8,192 from the RedPajama-Book corpus. The results are shown in Table
B. Notably, our methods outperform the baseline across both model adjustment strategies. Specif-
ically, models trained with our proposed regularization loss achieve up to a 2.4% improvement in
the LongBench-E score. Similar to the previous experiments, we observe that excessively large
regularization coefficient values may not consistently benefit long-context modeling, which is re-
flected in the slightly lower LongBench-E scores and higher perplexity, indicating that overly strong
regularization may disrupt the model’s training process.

5.3 ABLATION STUDIES

Since we incorporate several hyperparameters such as the regularization coefficient a and the sam-
pling range |l; — l2| in the misalignment metric, we conduct extensive experiments to explore how
these hyperparameters affect the model performance.

Regularization coefficient o. In addition to the settings already provided in the previous experi-
ments (o = 0 as the baseline, o = 0.1, and o = 0.5), we evaluated o = 0.3 and o = 1.0 under
the same experimental conditions as Table D, using CLEX as the model adjustment. We still adopt
RedPajama-Book as the training dataset. The results are shown in Table B, which reveal the follow-
ing trend: (1) Performance peaks for a values in the range [0.1,0.3] in both evaluation metrics. (2)
Larger values of « (e.g., &« = 0.5 or a = 1.0) lead to a significant decline in performance, confirm-
ing the risks of over-regularization. These findings highlight the importance of selecting a moderate
value for ae. We suggest using a coefficient o between 0.1 and 0.3 as default to mitigate the risk of
over-regularization.

Sampling range. In equation O, we sample [ and I from [ltyain/2, lirain] by default to avoid input
sequence with significantly different lengths. This is equivalent to sampling lextra from [1, lipain /2].
Here we conduct an ablation study examining how different sampling strategies of ey affect
performance. We consider four sampling configurations: (1) The current strategy, sampling from
[1, lirain/2]; (2) Sampling from a narrower range [1, lain/4]; (3) Sampling from a narrower range
[ltrain/4, lirain/2]; (4) Sampling from a broader range [1, lt;ain] and remove the limit that /; and
I3 should be in [lrain/2, lrain]. We conduct experiments using the same setting as Table B, using
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Table 4: Ablation study on the regularization coefficient c. The setting is the same as Table D. We
adopt RedPajama-Book (Computer, 2073) as the training dataset. We find it important to select a
moderate value for a.

Benchmark LongBench-E (1) Perplexity ()
Training steps 50 100 200 50 100 200
RedPajama-Book

Lirain (Baseline) 227 238 247 721 6.56 6.12

Lirain + 0.1Lmisalign 23.1 252 266 689 624  5.88
Lirain + 0.3Lmisalien 234 258 27.1 695 635 598
Lirain + 0.5Lmisatign  21.9 237 247 744 701 6.54
Lirain + 1.0Lmisalign 182 194 199 1621 1412 1292

Table 5: Ablation study on the regularization coefficient c. The setting is the same as Table B.
We adopt RedPajama-Book (Computei, 20773) as the training datasets and LongQLora ([Yang, 20773)
as the model adjustment method. We find it important to carefully balance the sampling range to
optimize the model’s generalization to longer contexts.

Benchmark LongBench-E (1) Perplexity ()
Training steps 50 100 200 50 100 200

RedPajama-Book
(1) Sampling lextya from [1, liyain /2] (Current) 21.8 233 258 6.72 639 5.77

1,
(2) Sampling loxtra from [1, liyain /4] 21.5 232 257 677 629 581
(3) Sampling lextra from [lirain/4, ltrain /2] 214 227 245 6.82 6.47 5.94
(4) Sampling loxtya from [1, liyain] 182 189 19.1 15.65 13.59 12.52

LongQLora for model adjustments and a regularization coefficient of 0.1. The results are shown
in Table B: (1) Setting 2 achieved performance comparable to the current strategy, while Setting
3 showed slightly inferior performance compared to the current strategy. This suggests that align-
ing outputs between sequences with moderate length discrepancies effectively supports long-
context modeling. (2) Setting 4 yielded significantly worse performance than the current strat-
egy, indicating that encouraging alignment between sequences with large length differences
adversely affects the model’s long-context capabilities. These results underscore the importance
of carefully balancing the sampling range to optimize the model’s generalization to longer contexts.

5.4 EXPERIMENTS ON BABILONG

We conduct extensive experiments on BABILong (Kurafovef all, P174)), a challenging reasoning-in-
a-haystack task specifically designed for evaluating long-context capabilities. BABILong comprises
question-answering tasks where the supporting facts for each question are situated at specific posi-
tions within the context. Using the model setup described in Section Bl, which incorporates CLEX
as the adjustment method and RedPajama-Book as the training dataset, all models are fine-tuned for
200 steps. Evaluation is performed on input sequences of lengths 4K, 8K, and 16K, with the overall
results summarized in Table B. The results indicate that our proposed method consistently outper-
forms the baseline across all evaluated lengths. Specifically, our method achieves a performance
gain of 2.0% at length 8K and 2.2% at length 16K. These results demonstrate the effectiveness of
our regularization loss in enhancing length generalization.

Additionally, we analyze the impact of the supporting fact’s position within the input context using
the QA1 task from BABILong, where each question is associated with a single supporting fact.
Results from this analysis are presented in Table [, offering two key insights: (1) Performance
with early-context facts: When the supporting fact is located at the beginning of the input context
(fact depth = 0), our method achieves performance comparable to the baseline. This suggests that,
despite the form of the regularization potentially encouraging the model to neglect earlier contexts,
it does not lead to this behavior in practice. (2) Performance with middle-context facts: When the
supporting fact is positioned in the middle of the context (fact depth = 50 or 75), our method shows
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Table 6: The overall evaluation results on BA- Table 7: The evaluation results on BABILong
BlLong (Kurafov_ef all, 2074) with sequence with different locations of the facts in the QA1

lengths of 4K, 8K, 16K. task. Input length is 16K.
Evaluation Length Fact Depth (%)
Training Loss 4K 8K 16K Training Loss 0 25 50 75
Lirain (Baseline) 482 424 379 Lirain (Baseline) 75 64 30 69
Lirain + 0~]-»Cmisalign 49.1 444 40.1 Lirain + O']-L:misalign 73 64 38 74

Table 8: Comparison between synthetic tasks and natural language tasks.

Synthetic Tasks Language Tasks

Output Space R L1 unit ball in RV
Specific Task Length/Sum prediction Next token prediction
Output Distribution Misalignment Exist Exist
Priori on Output Distribution Explicit and predifined Implicit and task-dependent
Alignment Technique Explicit reparameterization Regularization loss across lengths
Does the technique decrease .. T L

output distribution misalignment? Yes (explicitly) Yes (implicitly through optimization)
Does the technique improve Yes Yes

length generalization?

considerable improvement over the baseline. This indicates that our approach effectively mitigates
the "loss-in-the-middle" phenomenon (LCin“ef—all, P024), a common challenge in large language
models. Together, these results strongly support the effectiveness of our proposed regularization loss
in enhancing length generalization ability, particularly for tasks requiring attention across diverse
positions.

6 DISCUSSION

Since our work is initially motivated by phenomena observed in synthetic tasks, we provide addi-
tional clarification on the relationship between synthetic tasks and natural language tasks by sum-
marizing their key differences and similarities in Table B. While these two types of tasks differ
significantly in their specific forms and output space, they share a common challenge: output dis-
tribution misalignment across different input lengths. Our analysis highlights that employing
an alignment technique—whether explicit reparameterization in synthetic tasks or regularization in
natural language tasks—can effectively mitigate this misalignment. This mitigation directly enhances
the model’s length generalization ability, demonstrating the broader applicability of our approach.

7 CONCLUSION

In this work, we focused on length generalization tasks and introduced a new perspective by examin-
ing the output space. We first identified the critical role of output alignment in length generalization,
demonstrating both empirically and theoretically that output distribution misalignment across dif-
ferent input sequence lengths leads to poor length generalization. Building on this insight, we
proposed a reparameterization technique, OutRep, to align the output space, and confirmed its effec-
tiveness through empirical and theoretical validation. We extended this approach to natural language
tasks, introducing a metric called Long-Short Misalignment to quantify output alignment, which
showed a strong correlation with length generalization performance. Based on these findings, we
proposed a regularization loss during training to improve output alignment. Extensive experiments
further validated the effectiveness of this approach. Overall, our work offers a novel perspective for
understanding and enhancing length generalization in large language models.

10
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8 ETHICS STATEMENT

We believe there are no direct ethical problems in this work since it primarily focuses on the theo-
retical analysis and improvement of large language models (LLMs). However, LLMs can generate
inaccurate or harmful content, and this research does not offer a direct solution to these issues. Users
are encouraged to ensure that the LLMs obey the ethical standards when implementing the proposed
methods.

9 REPRODUCIBILITY STATEMENT

We have provided sufficient materials to ensure reproducibility. The details of experiments including
training settings, models and datasets are provided in Section B, Appendix & and Appendix O. The
formal statement and complete proofs of theorems are provided in Appendix Bl.
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A MODEL DETAILS FOR SYNTHETIC TASKS

We focus on the decoder-only Transformer (Vaswani ef-all, Z0T7), a model widely used in both
synthetic tasks (Zhauefall, P074; lelassiefall, P023) and LLMs (Touvron_ef all, 2073; Peng et all,
024) which utilizes a causal mask in the self-attention module to enable auto-regressive generation.
We consider several positional encodings: learnable positional encoding (Radfard efall, 20T9), Alibi
(Pressefall, P021)), rotary positional encoding (Suefall, 2024)) and no positional encoding (NoPE).
Since recent works found that by removing the positional encoding, Transformers can trained to be
well generalized on length (Deletang et all, 2077; Kazemnejad et all, Z023), we adopt this setting
(i.e. NoPE) by default. To provide a clear signal for the model to accomplish the tasks, we add
both the begin-of-sentence (BOS) token and the end-of-sentence (EOS) token in the sequence. We
apply a feed-forward neural network on the hidden state of the last token to generate an output of
a real number. We train all of our models on the train distribution from scratch to convergence if
possible. For all tasks, the length of training examples is sampled uniformly from length 1 up to the
max training length li;,i,. We select hyper-parameters such as the learning rate for each task based
on what is required to fit the training set. At test time, the length of the examples will traverse from
1 to the max testing length [yt .

B THEOREMS AND PROOFS

B.1 THEORETICAL ANALYSIS FOR SYNTHETIC TASKS

Following (Zhang et al], P0744), our analysis is based on the linear attention model. The general
form of linear attention is given by:
Attn(x) = QK TV = xWQ(xWX)TxwV, 6))

where W&, WX WV are projections, and n is the length of input x. In all tasks, we will use a linear
attention model with a causal mask. Specifically, we normalize the output according to its position,
which allows linear attention to perform similarly to dot-product attention. For example, the k-th
output will be normalized as follows:

k
1 T 1 T
TQRKTV =2 QuKVi (6)

i=1

For the synthetic tasks, we add bias terms to @), K, V' to mitigate the impact of 0 in the input. The
model based on linear attention is defined as follows:

k
1
90 (xta) = 7 > QiK' Vi, (7
=1

and it is trained based on the following target function:

ltrain

1 2
['(907 ltrain) = Exe{071}ltrain T Z ng (X[’L]) - y(x[z])| 29 3
rain

where x;; indicates the first i-tokens of input x. The optimal model trained on sequence with
maximum length of ly,,;, is denoted as gé“‘““. We have the following result:

Theorem 2. In the length prediction task and the sum prediction, the length generalization loss has
a quadratic relationship with the predicted length, i.e.,

2
) =0 ((ltest - ltrain)2) ) (9)

919""““ (Xtest) — Y(Xeest)

lrain . —
glength (get ) ltest) = ]Exteste{071}1'tcst

5sum(glgtmm§ liest) = O ((lhest — lirain)?) - (10)
However, in the mean prediction task, the length generalization loss has a fixed upper bound:
5mean (gétrain; ltest) - 0(1) (1 1)

14
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Proof. Since the input consists of 0 and 1, the Qx, K, Vi will each have only two possible values.
Thus, we may assume that when the input token is 1, the Qy,, Ky, V}, are ¢, k', v’ respectively, and
when the input token is 0, the Q, Ky, Vi are ¢/, k", v" respectively. Furthermore, we note that in
equation O, K; and V; always share the same subscript. Therefore, we can treat them as a single
token and replace them with x, where we define x* = kv’ and ¥’ = k”v”. We can decompose
equation B into ly;.,;, separate part:

ltrain

1
L(g6; lirain) = —— Y _ Lgoi 1), £(g051) = By || g0 (x7) — y(X[:z])H;- (12)

L
train =1

Next, we consider each task individually.
(a) First, we study the length prediction task. In this case, y(x[,;)) = [. Expanding £(gs;[) we have:

2

U(go;l) = nga a) — y(xp)|);
2 , 1 2
QlZC; (G ) = 1) i (- - 1))

It’s easy to find that ¢(gg,!) achieves its minimum 0 if and only if ¢, ¢, x’, k" satisfy the
following conditions:
(13)

q/{/ _q//H/ _ q/Kl/ _ q//H// :l

{q/_q//#oml_h:/l#o

These are also properties that the solution of 9¢(gp;{) = 0 holds. Note that the first property
holds for any ¢(gp;!) and is independent of I. Since L£(gg; ltrain) is composed of (gg; 1), and
each solution of ¢(gp;l) = 0 satisfying ¢’ = ¢” # 0,k" = k" # 0, the global solution for
OL(gp; lirain) = 0 should also have this property. Therefore, we may assume that ¢'x’ = ¢’ =
¢k" = ¢"x"” =T, and our goal is to find the I" that satisfying 9L (gp; ltrain)/OT = 0, which
means that this I' minimizes £(gg; liain ). In this case, it is easy to find that £(ge; 1) = (I' — )2,

which means that 9¢(gg; 1) /0T = 2(T" — 1). Therefore, we have:

ltrain
3£(99a ltrain) _ 2
or ltrain 1

T =, (14)

=1

solving OL(ge; lirain)/OT = 0 and we have T' = (lyrain + 1)/2, so the gl‘”‘“ satisfying ¢'x’ =

.1 /1 /.01

q"k' = ¢K" = q"k" = (ltrain + 1)/2. Therefore, we have:

ltrain +1

2
: ) = O (st — bwan)?) . (15)

Elength (g(lg”ain ; ltest) = g(gé“am ) ltest) = <ltest -

(b) We now study the sum prediction task. In this case, y(x[;) = Zé:l x;. Expanding ¢(gg; 1) we
have:

2

U(ge;l) = nge a) — y(xp)|);
2 ) 1 2
21202 (i = awy =) o (Jad e =)

It’s easy to find that £(gg,) achieves its minimum 0 if and only if ¢, ¢, ', k" satisfy the
following conditions:

/ — /! O ! O ,'// —
{Z’H’ i qzén’ fl# : (16)
This is similar to the previous conditions equation 3. Thus, we can perform a similar analysis

as above, and we similarly assume that ¢'x’ = ¢’ = T with ¥” = 0. In this case, we have:

I+1
2 )2 = 2
2(go; 1) 2ll2 E i2C (T =3 (T -0~ (17
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Thus we have:
0l(ge;l) 141

or — (=1, (18)
which leads to:
ltrain
8£(ge;ltrain) _ 1 8((99,[) _ 1
or ltrain -1 or ltrain

ltrain + 3)

l rain
= (liwain + Hi,, )T — = ( 5 , (19)

where H,, is the n-th harmonic number, i.e., H,, = >, 1/i. Solving dL(gs; lirain) /0T = 0
.1

and we have T’ = lrain (lerain + 3)/2(lirain + Hi,,.,, ), SO the gf;‘“‘“ satisfying ¢’ = ¢’ =
levain (lrain + 3)/2(ltrain + Hi,,.,, ). Therefore, we have:

_ ltest + 1 ( ltrain (ltrain + 3) —1 ?
) test

gsum (gétmin; ltest) = E(gletmin; ltest) =

2 est 2(ltrain + Hltrain
o L[ Lorain +3 -1 i 0
~ 2\ 2+ const rest
= O ((ltest - ltrain)Q) .

(c) Finally we study the mean prediction task. In this case, y(x[;) = 22:1 x;/l. Expanding
£(gp; 1) we have:

2
U(ge31) = Ex ||go(x)) — y(xp1)]]5
1< 1 i\ 2 1 i\ 2
_ i—1 .1 N I i /i N
= g i (U + =) =) e (G i =)

It’s easy to find that ¢(gg,l) achieves its minimum O if and only if ¢/, ¢”, k', k¥ satisfy the
following conditions:

r_ / o
{q _q 7&07’% 7&07“ _07 (21)

q//'i/ — q//K// — 1

This is similar to the previous conditions equation [A. In fact, the above properties are irrelevant
to [, so for all £(gg,!) these properties hold. Therefore, in this case, the optimal solution of
L(go; lirain) Will satisfy equation I, which leads to £(gg; ltrain) = 0. Under this situation, the
length generalization error is:

Esum (gé“ai“; ltest) = f(gé“a"’ ; ltest) = 0. (22)

Consider the case where it is not optimal, i.e., when ¢’ = ¢’k = 1+ ¢, where € # 0 is small,
we can similarly obtain:

(ltest + 1)82 2

gsum (gétmin; ltest) = E(glgtmm; ltest) = T S (S (23)
€es
In conclusion, we have: l
gsum (getrain; ltest) = 0(1)7 (24)
which completes the proof.
O

B.2 THEORETICAL ANALYSIS FOR NATURAL LANGUAGE TASKS

We now focus on natural language tasks. We make some changes to the model following (Zhang
ef-all, 20244). In natural language tasks, the model requires an additional projection W to make the
output a probability distribution. That is, the model is modified as follows:

k
1
90 (%) = 7 > QrE V;W, (25)
=1
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In this case, each token x;, output gg(x) and the objective function y(x) are normalized. Without
loss of generality, we may assume that the changes in the objective function after truncating the
inputs are negligible, i.e.

Pr(y(xp,)) # y(Xp,)) =0 (Y, l2). (26)

For simplicity, we use the Lo-norm instead of SCE to measure misalignment, i.e.:

»Cmisalign(gﬂ) - IEx,l1,l2 ||g(9(x[—ll:]) - QO(X[—ZQ:])Hga (27)

and we use the Lo-norm instead of the CE loss as the training loss function since these two functions
differ only by a constant when the output and target are regularized. Under these conditions, we have
the following result:

Theorem 1 (Generalization guarantees for the natural language task). Suppose that gé“"‘“ is
the model trained on sequences with maximum training length liyqin. When the testing length is
liest > lirain, the generalization loss Egey (gle""““; ltest) has the following upper bound:

ggen (g‘lgtmin; ltest) S Cflte“) : £rnisadign (gétmm) + Célte“) : £trauin (959"‘““) + C[()lteSt)a (28)

where Ci(l”es“) are constants related to liest. Specifically, the ratio Cfl““)/Cél”eS“) becomes larger
as lyest increase. This indicates that as the testing length increases, the alignment loss becomes
increasingly significant.

Proof. We have:

2 2
Hgé“a‘“ (X[ tene]) — y(X[—ltest:])H , S Hgé"r‘““ (X[ tye) — G (X[—z:])H ,
2

+ Hgé“‘“‘“ (X[—1y) — y(X[fzmst:})‘

)

2
where | € [liyain/2, lirain) 1 an arbitrary integer. Expanding the first term:
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1 1
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2
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For the first term, we have:

T 2
TX[—ltest:—l—l]x[_ltesﬂ_l < CO ||X0||3

—1] 2
xoW (W) l WVWH e TR R
test test 2
< CO(ltest - l)2’
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2.
where Cy = ||I/VQ(VVK)TVI/'VI/I/'H2 is a constant. We assume that k = [ot — [. For the second
term, we have:

l l 2
Q K\T test T
xoW (W ) (lltebt XX [~ ) wYw ,
k2 |1 QK 2
=p ||t )Xy xgWYW
test 2
2 XT.X_- )(T NAX[—(]—1")- 2
< = XOWQ(WK)T ( [—z.]l (=i [—(z—zl).] l[/ ({ l)-]) wVw
test - 9
k2 1 2
T WXOWQ(WK>TX[T—<Z—M:]X[ (1)WY W
test 2
k? ) ) 2
= l27 gletram (X[—l:}) _ glgtram (X[—(l—l’):])H
test 2
B g 2
+ E 9g (X[—(l—l'):])H2
k2 _ - 2
SpEo 9o (X)) —-gé”m(foafpyn(
test 2
k2 2 k2
o g (X—a-1ryy) — Y(X[— - zq])H 2
test test

where I’ > 0 is an arbitrary integer satisfying [ — I’ > li;ain /2. Note that & < liest — ltrain/2 := L.
Combining these results we have:

2
Hgé“"‘““ (X[ ) = y(x[—ltesc:J)Hz
2 Lo . 2
< o |96 (X(-1g) — ge(X[—(l—z’H)HQ
test
L? : 2
+ o |[967" (X -11) — y(X[—(l—l'):J)H
ltebt 2
2
|| o) = v
L2
+ (1 + Co) 2
test

We assume that the sampling process of [ and I’ is the same as the training sampling process. There-
fore, taking the expectation over x, [, I’ on both sides of the above equation gives:

2
ggen (gétmin; ltest) = IEx glotmin (X[flmgt:]) - y(x[fltcgt:] H

< Cilm“) . Emisalign( ltmm) + C(ltmt) Etram( ltmm) + C ltCSt

(29)

where C{"e=t) = 12712 cfle) = 212 41, ¢l = (14 ¢ )lf/ltest It’s obvious that

as lgest increases, the ratio L/l becomes larger, so the ratio Cfl““ / Czl“'“) also becomes larger.
Therefore, as the testing length increases, the alignment loss becomes increasingly significant. [

test»

C ANALYSIS ON THE SUM PREDICTION TASK

We also examine the sum prediction task, where the label corresponds to the sum of the sequence.
Similar to the length prediction task, the output space shifts as the sequence length increases. As a
result, models struggle with length generalization in this task, as shown in Figure Bd. However, by
applying the reparameterization technique proposed in Section B, we observe a significant improve-
ment in length generalization, as shown in Figure BB. These results demonstrate the importance of
output alignment in length generalization.
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Figure 3: Length generalization performance in the sum prediction and length prediction task with
different maximum training sequence lengths. Although increasing the training length helps reduce
the generalization error, the overall trend of increasing test loss remains unchanged.
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Figure 4: Length generalization in the sum prediction task. Explicit alignment of output space boosts
length generalization performance.

*
train

D PYTORCH-LIKE CODE FOR IMPLEMENTATION OF L

# An efficient implementation for the total training loss.
import torch
import random

def SCE (outputl_prob, output2_prob):
loss = torch.mean((torch.sum(- outputl_prob x torch.exp (output2_prob)
- outputl_prob x torch.exp (outputl_prob), -1)))

extra_len = random.randint (1, max_len//2)
data = get_data(seqg_len=max_len+extra_len)

outputl = model (datal[:, :max_len])
output2 = model (datal:, —-max_len:])
probl = torch.nn.functional.log_softmax (outputl.logits)
prob2 = torch.nn.functional.log_softmax (output2.logits)

# Select the overlapped part to calculate the misalign loss
probl = probl[:, max_len//2+extra_len:]
prob2 = prob2[:, max_len//2:max_len-extra_len]
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Table 9: Performance of the fine-tuned models using only cross-entropy loss (baseline) and an ad-
ditional long-short misalignment loss on long-context modeling benchmark, LongBench-E score
(Rai“ef-all, P0723hK) and perplexity on the 8k-length validation set. The fine-tuning sequence length
is 4k, exactly the same as the training sequence length. We adopt two datasets: RedPajama-Book
(Computer, 2023) and PG19 (Rae_ef-all, 201Y9). The models finetuned with our proposed loss out-
perform the baseline across different model adaption strategies. The comparison is based on fixed
total computation time. (a/b) in the training steps mean a steps for the baseline and b steps for our
method.

Benchmark LongBench-E (1) Perplexity (])
Training steps 50/47 100/95 200/190 50/47 100/95 200/190
RedPajama-Book

Lorain (Baseline) 27 238 247 721 656  6.12

Lirain + 0.1Lmisalign (Ours) — 23.1 25.1 26.4 6.92 6.27 591
Lirain + 0.5Lmisalign (Ours) — 21.7 234 24.5 7.62 7.16 6.61

PGI19
Lirain (Baseline) 202 214 25 892 7.89 7.45
Lirain + 0.1Lmisatign (Ours) 207 22.0 251  9.02 801 7.39
Lirain + 0.5Lomisatign (Ours) — 19.6  22.0 233 982 862 8.29

loss_ce = (outputl.loss + output2.loss) / 2
loss_misalign = SCE (probl, prob2)

loss_total = loss_ce + alpha % loss_misalign

E COMPARISON UNDER SAME COMPUTATION TIME

To account for the additional computation time required to calculate £ jsalign We Will compare our
methods with the baseline as in Table I and Table 3 based on total computation time. we compare
our method with the baseline under equivalent total computation costs. Our method introduces an
additional computational overhead of approximately 3% to 5% per step. To ensure fairness, we
adjust the number of training steps proportionally. For example, when the baseline is trained for
50, 100, and 200 steps, our method is trained for 47, 95, and 190 steps, respectively, achieving
comparable total computation times. We observe that the performance trends remain consistent: our
method continues to outperform the baseline under equivalent computation time. This underscores
the efficiency of our approach despite the minor additional cost.

F ADDITIONAL EXPERIMENT ON MEAN PREDICTION TASK WITH A
DIFFERENT DATASET SETTING

In the synthetic experiments in Section B, 0 and 1 have an equal probability. The mean value of
50 such samples will nearly obey the normal distribution A (0.5,0.005). This means predicting 0.5
under a length of 50 would yield an approximate test loss of 0.005. However, we would like to
clarify that the test loss of NoPE remains around le-5 (indicated by the orange line in Figure 1(a)),
which is two orders of magnitude smaller than 0.005. This indicates that the model predicts the mean
values of the sequences with high precision, rather than simply guessing a fixed number. Therefore,
the conclusion that the model can have good length generalization ability in the mean prediction task
is reasonable.

Besides, in order to avoid a trivial solution of predicting 0.5, we conduct an additional experiment on
the mean prediction task. To build the sample of length [, we first sample the number of 1 uniformly
from [0,!] and then randomly build the sequence. In this way, the mean value of the sequence
uniformly spans from 0 to 1, avoiding trivial prediction. The experimental results are shown in
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Table 10: Performance of the finetuned models using only cross-entropy loss (baseline) and an
additional long-short misalignment loss on long-context modeling benchmark, LongBench-E score
(Raiefall, P073K) and perplexity on the 8k-length validation set. The fine-tuning sequence length is
8k. We adopt two kinds of model adjustments: LongQLora (Yang, P073) and EABF (Zhang et all,
2024H7). The models finetuned with our proposed loss outperform the baseline across different model
adaption strategies. The comparison is based on fixed total computation time. (a/b) in the training
steps mean « steps for the baseline and b steps for our method.

Benchmark LongBench-E (1) Perplexity ()
Training steps 50/47 100/95 200/190 50/47 100/95 200/190
LongQLora

Lirain (Baseline) 219 22.1 23.4 6.82 6.41 5.82

Lirain + 0.1Lmisatign (Ours) 216 23.1 257 679 642 5.74
Lirain + 0.5Lomisatign (Ours) 211 23.6 249 719  6.65 5.96

EABF

Lirain (Baseline) 221 22.9 23.6 6.89 6.52 6.01
Lirain + 0.1Lyisalign (Ours) — 23.0 23.6 24.5 7.01 6.48 5.86
Lirain + 0.5Lmisalign (Ours)  22.2 23.1 23.8 7.32 6.88 6.42

Test loss
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Figure 5: Length generalization in the mean prediction task with a different dataset setting. To build
the sample of length [, we first sample the number of 1 uniformly from [0, /] and then randomly build
the sequence. In this way, the mean value of the sequence uniformly spans from O to 1, avoiding
trivial prediction. The model can still achieve good length generalization, which is consistent with
our previous results.

Figure B, where the model can still achieve good length generalization, consistent with our previous
results.

G COMPARISON WITHOUT USING MODEL ADJUSTMENT METHODS

In order to compare our proposed method directly with other methods, we conduct experiments
under the following settings: (1) Raw fine-tuning: The baseline without any additional techniques;
(2) Only LongQLora: Incorporating the LongQLora ([Yang, 2023) method as described in Table 3;
(3) Only EABF: Incorporating the EABF method as described in Table 3 (Chen"efall, P023a); (4)
Only our proposed output alignment technique: Applying our method without other enhancements.
The results are shown in Table . From the results, we observe: (1) Our method alone outperforms
raw fine-tuning, demonstrating its effectiveness in improving length generalization; (2) Positional
encoding-based approaches, such as LongQLora and EABF, achieve higher performance compared
to using our method alone. When combined with positional encoding-based approaches, our method
consistently yields additional improvements, as shown in Table I and Table B in the paper. It is
important to note that our proposed output alignment technique operates from the perspective of loss
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Table 11: Comparison between our proposed method directly with other methods without using
model adjustment methods.

Benchmark LongBench-E (1) Perplexity (])
Training steps 50 100 200 50 100 200
(1) Raw finetuning 149 16.1 184 21.73 18.52 16.13
(2) Only with LongQLora 219 221 234 6.82 6.41 5.82
(3) Only with EABF 214 227 245 6.89 6.52 6.01

(4) Only with output alignment technique (o« = 0.1) 154 182 209 19.25 1547 11.24

design, focusing on the model’s output alignment during training. In contrast, positional encoding-
based approaches primarily address the input representation. These two strategies are orthogonal
and can be seamlessly integrated. The experimental results demonstrate that incorporating our
method with positional encoding techniques enhances long-context modeling capabilities beyond
what is achieved by either approach alone.

22



	Introduction
	Related Work
	A Case Study on Synthetic Tasks: How Output Alignment Affects Length Generalization?
	Output Alignment in Natural Language Tasks
	Long-Short Misalignment: Quantifying Output Alignment of Language Models
	Metric
	Results

	Long-Short Misalignment Metric as Regularization Loss

	Experiments on Natural Language Tasks
	Experiments with Training on Short Sequences
	Experiments with Training on Longer Sequences
	Ablation Studies
	Experiments on BABILong

	Discussion
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Model Details for Synthetic Tasks
	Theorems and Proofs
	Theoretical Analysis for Synthetic Tasks
	Theoretical Analysis for Natural Language Tasks

	Analysis on the Sum Prediction Task
	Pytorch-like Code for Implementation of L*train
	Comparison Under Same Computation Time
	Additional Experiment on Mean Prediction Task with a Different Dataset Setting
	Comparison without using model adjustment methods

