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ABSTRACT

The phenomenon colloquially referred to as ”Benign overfitting,” characterized
by the intriguing capacity of machine learning classifiers to effectively memo-
rize intricate details embedded within noisy training data while simultaneously
exhibiting commendable generalization performance, has garnered significant at-
tention within the machine learning research milieu. In the present investigation,
we embark upon an exploration of this intriguing intersection, aiming to empir-
ically demonstrate the manifestation of benign overfitting within the context of
adversarial training—a principled methodology devised to enhance classifier re-
silience against adversarial examples—particularly when applied to subGaussian
mixture data. Our analysis encompasses the derivation of risk bounds associated
with linear classifiers that have undergone adversarial training, a salient analysis
applied to the mixture of sub-Gaussian data subjected to ℓp adversarial perturba-
tions. The outcomes of our investigation posit that, even when confronted with
moderate perturbations, linear classifiers trained through the adversarial paradigm
can attain levels of both standard and adversarial risk that closely approximate op-
timality, despite the inherent overfitting proclivities exhibited during the learning
phase on noisy training data. Empirical validation of our theoretical conjectures
is furnished through a comprehensive array of numerical experiments.

1 INTRODUCTION

Modern methodologies in machine learning, most notably the advent of deep learning, have ushered
in a new era of advancements across a diverse range of application domains, including significant
achievements in image classification He et al. (2016a); Krizhevsky et al. (2012), speech recogni-
tion Hinton et al. (2012), and other pertinent fields. These models are inherently characterized by a
state of overparameterization, a configuration where the number of model parameters significantly
exceeds the cardinality of the training dataset. One enigmatic phenomenon that has captivated the
research community revolves around the ability of these overparameterized models to effectively
commit intricate details from noisy training data to memory while concurrently achieving robust
generalization performance on test data Zhang et al. (2020). This phenomenon stands in stark con-
trast to conventional notions of overfitting, thereby necessitating a comprehensive inquiry into its
underlying mechanisms.

A discerning line of inquiry has unveiled the concept of implicit bias Neyshabur (2017), positing that
training algorithms, even in the absence of explicit regularization, tend to converge towards specific
solution profiles. Pioneering works by Soudry et al. Soudry et al. (2018), Ji et al. Ji & Telgar-
sky (2019), Nacson et al. Nacson et al. (2019), and Gunasekar et al. cite25-gunasekar2017implicit
have collectively demonstrated that linear classifiers trained via gradient descent, utilizing logistic
or exponential loss functions without explicit regularization, asymptotically converge towards the
maximum L2 margin classifier. Recent investigations Bartlett et al. (2020); Chatterji & Long (2021;
2022); Cao et al. (2021); Wang & Thrampoulidis (2021); Tsigler & Bartlett (2023) have further
shed light on the phenomenon of overparameterized and implicitly regularized interpolators achiev-
ing minuscule test errors, coining this phenomenon under the term ”benign overfitting.”

To expound upon this concept in greater detail, we consider a classification model g parameterized
by i ∈ Γ, with the associated loss function denoted as ℓ(·). The population risk is formally defined
as:
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P [(x, y) ∼ D; gθ(x) ̸= y] = E [L(gθ(x), y)]

=

∫
X×Y

L (gθ(x), y) dP(x, y) (1)

In the context of these investigations, data pairs denoted as (x, y) are drawn from a predetermined
data generation model, as elucidated in the seminal work by Chatterji et al. Chatterji & Long (2021).
Notably, Chatterji et al. Chatterji & Long (2021) have unveiled a pivotal insight, demonstrating that
in scenarios characterized by a surfeit of overparameterization, the maximum L2 margin classifier,
when trained through the gradient descent optimization process, asymptotically approaches popu-
lation risk levels that closely approximate optimality when applied to noisy data emanating from
a subGaussian mixture model. This notable observation underscores the concept that the overfit-
ting observed in overparameterized settings can manifest as a ”benign” phenomenon, wherein it
positively contributes to the learning process.

In addition to these revelations regarding benign overfitting, contemporary machine learning
methodologies exhibit susceptibility to a distinct and extensively documented phenomenon: vul-
nerability to adversarial examples. Recent investigations by Szegedy et al. Szegedy et al. (2013)
and Goodfellow et al. Goodfellow et al. (2014) have underscored the inherent fragility of modern
machine learning systems. These systems evince a marked vulnerability, where subtle perturbations
applied to input data, imperceptible to human observers, can lead to erroneous classifications by
well-trained classifiers. Such maliciously manipulated inputs are commonly referred to as adversar-
ial examples Szegedy et al. (2013); Goodfellow et al. (2014). The existence of adversarial examples
engenders profound concerns related to the trustworthiness and security of machine learning sys-
tems, especially in applications of paramount security significance.

To address the challenges posed by adversarial examples, a plethora of methodological approaches
have been proffered Kurakin et al. (2018); Madry et al. (2017); Zhang et al. (2019); Wang et al.
(2021). Among these approaches, adversarial training Madry et al. (2017) emerges as a salient and
noteworthy strategy. Specifically, adversarial training revolves around the resolution of the ensuing
min-max optimization problem:

minimize
θ∈Θ

1

m

m∑
t=1

max
x′t∈Bϵp(xt)

ℓ(gθ(x′t), yt) (2)

In the realm of adversarial training, the training dataset is conventionally denoted as {(xt, yt)}mt=1,

where Bp
ϵ (xt) = {x : ∥x− xt∥p ≤ ϵ

}
represents the ϵ-ball around xt in the ℓp norm (with p ≥ 1).

The field has witnessed a substantial body of both empirical and theoretical research endeavors fo-
cused on scrutinizing and enhancing the robustness of adversarial training Zhang et al. (2019); Wang
et al. (2019); Carmon et al. (2019); Wang et al. (2021); Raghunathan et al. (2020). An important
observation put forth by Sanyal et al. Sanyal et al. (2020) emphasizes that classifiers trained through
conventional means, especially in the presence of label noise, are generally ill-equipped to attain
adversarial robustness. In contrast, under specific conditions, adversarially robust classifiers demon-
strate resilience to overfitting even when confronted with noisy labels. Rice et al. Rice et al. (2020)
have further elucidated the nuanced relationship between overfitting and robust generalization within
the framework of adversarial training, revealing that overfitting can compromise robust generaliza-
tion, particularly in real-world datasets. Dong et al. Dong et al. (2021) have identified the role of
one-hot label memorization in fostering robust overfitting during adversarial training, suggesting the
incorporation of suitable regularization as a potential remedy. Nevertheless, the extant literature still
grapples with a conspicuous absence of a coherent theoretical framework elucidating the conditions
under which benign overfitting may or may not manifest within the domain of adversarial training.

This present study endeavors to shed light on the phenomenon of benign overfitting within the con-
text of adversarial training, thereby advancing our comprehension of the intricate interplay between
overfitting and adversarial training. In summary, the principal contributions of this paper can be
summarized as follows:
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• The present investigation unveils the conspicuous manifestation of the benign overfitting
phenomenon within the purview of adversarially robust linear classifiers, under conditions
of pronounced overparameterization, when applied to data originating from a Gaussian
mixture model. Specifically, when subjected to moderate ℓp norm perturbations, linear
classifiers trained through adversarial mechanisms evince the remarkable ability to approx-
imate levels of both standard and adversarial risks that closely approximate optimality.
This observation holds true despite the inherent inclination of such classifiers to overfit
noisy training data.

• It is noteworthy that, when the magnitude of perturbation, denoted as ϵ, is set to zero, the
derived adversarial risk bound seamlessly converges to the standard risk bound. This out-
come significantly extends the risk analysis originally propounded by Chatterji and Long
[2020], thereby providing a more comprehensive characterization of the behavior exhibited
by linear classifiers trained via t-step gradient descent.

• Furthermore, our empirical findings shed light on the nuanced nature of the adversarial
risk bound, which is intricately contingent upon the choice of the perturbation norm, rep-
resented as p. Notably, for higher values of p, commonly encountered when p ≥ 2, a
discernible widening of the gap between the adversarial risk and the standard risk be-
comes apparent under equivalent ϵ conditions. This observation underscores the pivotal
role played by the selection of p in shaping the intricate relationship between adversarial
and standard risk.

2 RELATED WORK

Adversarial Training: Adversarial training Madry et al. (2017) and its various iterations Zhang et al.
(2019); Wang et al. (2021; 2019) have emerged as highly efficacious strategies for mitigating the
susceptibility of machine learning models to adversarial examples Szegedy et al. (2013); Goodfellow
et al. (2014). Several endeavors have been undertaken to unravel the empirical efficacy of adversarial
training.

Implicit Bias: The phenomenon of implicit bias in over-parameterized models has been a subject of
investigation across various contexts. Works such as Soudry et al. Soudry et al. (2018), Ji et al. Ji
& Telgarsky (2019), and Gunasekar et al. Gunasekar et al. (2017) have probed the implicit bias of
gradient descent and other optimization techniques in scenarios involving both linearly separable
and non-separable data.

Benign Overfitting and Double Descent: A recent strand of research has explored the ”benign over-
fitting” phenomenon, illuminating the capacity of over-parameterized models to achieve favorable
population risk even when overfitting noisy training data Bartlett et al. (2020); Tsipras et al. (2018).
Wu et al. Wu et al. (2021) have characterized the intricate relationship between population risk and
over-parameterization, revealing a double-descent pattern.

3 PROBLEM SETTING AND PRELIMINARIES

To thoroughly elucidate the benign overfitting phenomenon within the realm of adversarial training,
we introduce the concept of population adversarial risk, serving as the counterpart to population risk
in the conventional training paradigm:

P(x, y) ∼ D

[
∃x′ ∈ Bϵp(x);

∣∣∣∣∣; gi (x
′) ̸= y; , ;x′ ∼ N

(
x, σ2I

)]
(3)

The adversarial risk, a pivotal metric of paramount importance, quantifies the rate of misclassifi-
cation incurred by the target classifier when subjected to ℓp-norm adversarial perturbations. It is
readily apparent that the adversarial risk consistently surpasses the standard risk, as it imposes the
stringent requirement that the classifier must make accurate predictions across the entirety of the
local ℓp norm ball.
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In the course of our investigation, we adopt a data generation model rooted in the sub-Gaussian
mixture framework. Specifically, we generate clean data pairs denoted as (x̃, ỹ) from D̃ in the fol-
lowing manner: for each data point (x̃, ỹ) ∈ Rd × {±1}, we stipulate that ỹ adheres to a uniform
distribution Unif({±1}), and x̃ is derived as x̃ = ỹν + ζ, where ζ ∈ Rd and ζ1, ζ2, . . . , ζd are
independent and identically distributed (i.i.d.) zero-mean sub-Gaussian variables possessing a sub-
Gaussian norm that does not exceed 1. The actual data examples are drawn from a noisy distribution
D that closely approximates the clean distribution D̃. To be more precise, D represents any distribu-
tion over Rd ×{±1} that shares the same marginal distribution with D̃ and exhibits a total variation
distance dTV(D, D̃) ≤ ξ, where ξ signifies the level of noise.

It is imperative to underscore that our data generation model aligns with the established framework
commonly employed for the analysis of the population risk in over-parameterized linear classifica-
tion. In fact, it mirrors the model scrutinized in prior research endeavors, as exemplified in Chatterji
& Long (2021). Within this model, and adhering to the foundational principles outlined in the stan-
dard coupling lemma Lindvall (2002), it is always feasible to establish a joint distribution encom-
passing both the original data and noisy data pairs ((x̃, ỹ), (x, y)). This joint distribution ensures
that the marginal distribution for (x̃, ỹ) conforms to D̃, the marginal distribution for (x, y) aligns
with D, P[x = x̃] = 1, and P[y ̸= ỹ] ≤ ξ.

In the context delineated in this paper, our focus is primarily directed towards the challenge of ro-
bust binary classification, with training data denoted as {(xt, yt)}mt=1, independently and identically
sampled from the distribution D. We designate the ”clean” sample index set as C := {k : yk = ỹk}
and the ”noisy” sample index set as N := {k : yk ̸= ỹk}. Our specific area of interest revolves
around the adversarially trained linear classifier operating under the exponential loss function. In
this context, the adversarial loss can be explicitly articulated as:

L(i) =
m∑
t=1

max
xt′

exp
(
−yti⊤xt′

)
s.t. xt′ ∈ Bϵp (xt) (4)

In the gradient descent adversarial training algorithm, the minimization of the adversarial loss, de-
noted as Loss(i), is achieved through a two-step process. Initially, the inner maximization problem,
as delineated in Equation (1), is addressed, wherein the optimization of the current model parameter
in−1 takes place. Subsequently, in each iteration, the model parameter in undergoes an update via
gradient descent to minimize the adversarial loss. A concise summary of the training procedure for
gradient descent adversarial training is provided in Algorithm 1. It is noteworthy that, within the
context of linear classifiers, the inner maximization problem specified in Equation (1) exhibits the
following property:

argmax
x′
t∈Bp

ϵ (xt)

subject to ∥∇x′
t∥F

≤λ

exp

(
−1

2
yti

⊤Q(x′
t)

)
= argmax

ut∈Bp
ϵ (0)

such that ∥∇ut∥F≤λ

exp

(
−1

2
yti

⊤Q(xt + ut)

)

= argmin
∥ut∥p≤ϵ

subject to ∥ut∥H≤λ

1

2
yti

⊤H(ut)

(5)

It is manifestly evident that the optimal adversarial loss and its corresponding gradient can be artic-
ulated as follows:

L(i) =
m∑
t=1

exp
(
−yti

⊤Xt + ϵ∥i∥pq
)
+ λ∥i∥rq,

∇iL(i)

= −
m∑
t=1

(
ytXt − ϵ · ∇∥i∥pq

)
exp

(
−yti

⊤Xt + ϵ∥i∥pq
)
−∇λ∥i∥rq.

(6)
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Indeed, in our formulation, we strictly adhere to the condition stipulating that 1/p + 1/q = 1.
Furthermore, it is noteworthy that within the domain of overparameterization, the training instances
generated by our data generation model exhibit a notably high probability of linear separability, a
characteristic substantiated by Lemma 12, as expounded upon in Section 5. This inherent attribute
of linear separability confers upon the training samples a commendable likelihood of yielding a
positive margin. In accordance with the framework introduced by Li et al. Li et al. (2020), we
proceed to introduce the formal definitions of the standard and adversarial margin, as delineated
below:

β̄ = max
i∈I

∥i∥q=1

min
t∈[m]

yti
⊤Xt + γ∥i∥pq ,

β = max
i∈I

∥i∥2=1

min
t∈[m]

min
X′

t∈Bp
ϵ (Xt)

yti
⊤X′

t + δ∥i∥r2,
(7)

These definitions serve as indispensable tools for our subsequent analytical endeavors. Furthermore,
we introduce the concept of a singular linear classifier, denoted as w, which achieves the previously
defined adversarial margin β.

4 MAIN RESULTS

In this section, we embark on an in-depth exploration of the population risk and the population
adversarial risk pertaining to adversarially trained linear classifiers.

Assumption 1. We impose a constraint on the upper limit of the adversarial perturbation radius,
denoted as ϵ, such that it does not exceed a constant value denoted as R, and remains smaller than
the ℓp data margin β̄, expressed as ϵ ≤ min{R, β̄}. The primary objective of adversarial training is
to achieve classifiers characterized by high accuracy while simultaneously demonstrating resilience
to minor input perturbations. These perturbations, often imperceptible to human observers, include
diminutive ℓ∞-norm perturbations that elude human visual detection. Therefore, Assumption 1
aligns sensibly with the notion of setting an upper limit on permissible perturbation magnitude.

Assumption 2. We stipulate that the noise component ζ within the data generation model adheres
to the condition E

[
∥ζ∥22

]
≥ κd, where κ represents a constant parameter. This assumption, as

acknowledged in a prior study Chatterji & Long (2021), serves to ensure that the accumulation of
variances within the data inputs follows a growth rate of the order of Γ(d). Evidently, this assump-
tion accommodates the common scenario where the entries of ξ are statistically independent and
exhibit variances that either surpass or equal κ.

Assumption 3. Starting from an initial point at 0, the gradient descent process adopts specific step
sizes denoted as α0 = 1/(Gdn) and αt = α ≤ 1/(GdnM), where M assumes the maximum
value among

{[
2d+ ϵ(q − 1)d

3q−2
2q−2 /β

]
exp

(
−β2/(Gd)+ ϵ/G), 1}, and G signifies a constant

term. Assumption 3 succinctly encapsulates our conditions regarding the gradient descent algo-
rithm employed for adversarial loss minimization. These prescribed learning rate conditions are
instrumental in ensuring the convergence of the adversarial training process, drawing inspiration
from a prior work Li et al. (2020).

We now introduce our theorem concerning the standard risk associated with the adversarial training
method (Algorithm 1).

Theorem 4. For any p ∈ [1,+∞), under the presumption that Assumptions 1, 2, and 3 re-
main valid, with κ ∈ (0, 1] and sufficiently large constants R and G, and further, for any
δ ∈ (0, 1), assuming that the number of training samples m ≥ C log(1/δ), the dimension d ≥
C ·max

{
m∥ν∥22,m2 log(m/δ)

}
, the noise level ξ < 1/C, and ∥ν∥22 ≥ Cmax {log(m/δ), ϵ∥ν∥q}

for a sufficiently large constant C, it follows that, with a probability exceeding 1−δ, the linear classi-
fier fin trained adversarially, for a significantly large value of n, subject to ℓp-norm ϵ-perturbations,
satisfies the ensuing standard risk equation.
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P(x,y)∼D

[(
∂

∂t
e−

∫ t
0
gin (x) dt

)
̸= y

]

≤ ξ + exp

−C1

((∣∣∫
Ω
ν(r)2 dr− 4ϵ

∫
Ω
ν(r)q dr

)
(C2 + ϵ)

√
d

−
C3

∣∣∫
Ω
ν(r)2 log

(
dr
dm

)
dr
∣∣

log n

)2
 (8)

In the provided context, let C1, C2, C3 > 0 be firmly established as definitive constants, satisfying
the constraint 1/p+ 1/q = 1.

Remark 5: The fourth theorem under consideration herein elucidates the conventional risk incurred
through the application of adversarial training when subjected to perturbations adhering to the ℓp
norm. It is noteworthy that a linear classifier, when subjected to adversarial training, exhibits a
population risk bounded within predefined limits. This risk undergoes a reduction proportional to
the increase in the count of training iterations, denoted as n. To be precise, in the asymptotic limit
as n → ∞, the following limit arises:

lim
n→∞

sup
(x,y)∼D

[∣∣∣∣∫
Ω

gin(x)− y dx

∣∣∣∣]

≤ ξ + exp

−C1


(∫

Ω
∥ν(r)∥22 − 4ϵ

∫
Ω
∥ν(r)∥q dr

)
(C2 + ϵ)

√
d

2
 (9)

Remark 6: In the context of Equation (4), we delve into a scenario where the sample size m remains
fixed while the dimensions d and the ℓ2 norm |ν|2 exhibit growth. We engage in a discussion
concerning the conditions requisite for achieving the minimum standard risk in the presence of a
noise level denoted as ξ. Notably, when 1 ≤ p ≤ 2, it follows that q ≥ 2, and |ν|q ≤ |ν|2. Under
these conditions, if |ν|2 = Ω

(
d1/4

)
, then the standard risk asymptotically approaches the noise

level ξ as the dimension d grows sufficiently large. Conversely, when p > 2, implying q < 2, we
have |ν|q ≤ d1/q−1/2|ν|2. In such cases, to attain a standard risk close to the noise level ξ for
sufficiently large d, it is imperative that |ν|2 = Ω

(
d1/4

)
and ϵ = O

(
|ν|2/d1/q−1/2

)
. It is worth

emphasizing that our theorem’s conditions additionally necessitate |ν|2 = O(
√
d). Thus, to achieve

the standard risk of ξ, it is requisite that |ν|2 = Γ (dr) for some r ∈ (1/4, 1/2].

Remark 7: Opting for ϵ = 0 reduces the framework to the standard training scenario. Specifically,
when ϵ = 0 is applied to Equation (4), it aligns with the conclusions articulated in Theorem 3.1 of
Chatterji & Long (2021). Notably, our results exhibit a broader scope, encompassing the domain
of adversarial training while providing risk bounds for the linear model obtained through a finite
number of gradient descent iterations.

Theorem 8: Under the stipulated conditions akin to those delineated in Theorem 4 and for any δ ∈
(0, 1), with a probability exceeding 1− δ, the adversarially trained linear classifier gin , considering
a sufficiently large t, under ℓp-norm ϵ-perturbations, conforms to the ensuing adversarial risk when
1 ≤ p ≤ 2.

P(x,y)∼D

[
∃x′ ∈ Bp

ϵ (x) s.t.
∫
x′∈Bp

ϵ (x)

|gi(x′)− y| dx′ > 0

]

≤ ξ + exp

−C1


(
∥ν∥22 − 4ϵ ∥ν∥q

)
(C2 + ϵ)

√
d

−
C3 ∥ν∥2 logm

log n
− ϵ

2
 (10)

and if p > 2,
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P(x,y)∼D [∃x′ ∈ Bp
ϵ (x) s.t. |gi(x′)− y| > 0]

≤ ξ + exp

−C1


(
∥ν∥22 − 4ϵ ∥ν∥q

)
(C2 + ϵ)

√
d

−
C3 ∥ν∥2 logm

log n
− ϵd

1
q−

1
2

2
 (11)

Certainly, within the context under consideration, let us designate C1, C2, and C3 as unambiguous
constants, each characterized by a positive scalar magnitude. Additionally, it is imperative to ac-
knowledge the constraints encapsulated by 1/p+1/q = 1, ” wherein p and q are auxiliary variables
pertaining to the p-norm space.

Remark 9: The implications of Theorem 8 come into view when scrutinizing the adversarial risk
incurred through the employment of adversarial training in the presence of ℓp norm perturbations. A
conspicuous deviation from the conventional risk, as posited in Theorem 4, becomes evident owing
to the introduction of an auxiliary term, either ϵ or ϵd1/q−1/2, within the exponentiated function.
This observation coheres seamlessly with the intuitive premise that adversarial risk consistently
exceeds standard risk. Moreover, it intimates that when subjected to perturbations of a higher p-norm
magnitude (where p > 2), the identical perturbation intensity engenders an exacerbated dissonance
between adversarial risk and standard risk. In relation to the magnitude of the perturbation, it is
also discernible that an augmentation in ϵ results in diminished performance concerning adversarial
risk among classifiers trained adversarially. This empirical phenomenon finds corroboration within
extant literature, as referenced in Madry et al. (2017); Zhang et al. (2019).

Remark 10: It is pertinent to underscore that, as the number of training iterations, denoted as n,
approaches infinity, under the specified conditions where 1 ≤ p ≤ 2, we derive the ensuing upper
bound for adversarial risk:

lim
n→∞

P(x, y) ∼ D
[
∃x′ ∈ Bϵp(x) ∩ X , gi (x

′) ̸= y

∣∣∣∣x′ = x+ δ, |δ|2 ≤ ϵ, δ ∼ N (0, σ2I)

]

≤ ξ + exp

(
−C1

((
|ν|22−4ϵ|ν|q −ϵ2|ν|2q

)(
C2+ϵ+0.5ϵ2

)√
d

− ϵ+ 1
2ϵ

2

)2)
,

(12)

and if p > 2, we have

lim
n→∞

sup
(x,y)∼D

[∃x′ ∈ Bp
ϵ (x) s.t. (gi(x

′)− y) ̸= 0]

≤ ξ + exp

−C1


(
∥ν∥22 − 4ϵ ∥ν∥q

)
(C2 + ϵ)

√
d

− ϵd
1
q−

1
2

2
 .

(13)

In a manner analogous to the scenario elucidated in Remark 6 concerning standard risk, a notable
observation emerges when contemplating the scenario in which 1 ≤ p ≤ 2. In this context, if
|ν|2 = Θ(dr) for some r ∈ (1/4, 1/2], it can be inferred that the adversarial risk similarly converges
to the noise level ξ as the dimensionality d attains substantial values. Conversely, when p > 2,
assuming |ν|2 = Γ (dr) for some r ∈ (1/4, 1/2] and ϵ = O

(
|ν|2/d1/q

)
, we ascertain that the

adversarial risk converges to the proximity of ξ as d significantly escalates. It is noteworthy to
emphasize that, compared to the prerequisites laid out for standard risk, the conditions imposed on
ϵ to achieve this convergence exhibit a marginally higher degree of rigor.

Remark 11: A salient implication arising from our findings within Theorem 8 lies in the revelation
that overfitting in the context of adversarial training can assume a benign character under specific
data distributions, such as subGaussian mixture data. This assertion is subsequently subjected to em-
pirical validation through experimental investigations conducted on both linear and neural network
models.
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(a) (b) (c) (d)

Figure 1: Risk and adversarial risk of adversarially trained linear classifiers versus the dimension
d under different scalings of ν. (a)(b) show the results for ℓ2 perturbation with ϵ = 0.1 and (c)(d)
show the results for ℓ∞ perturbation with ϵ = 0.01. The training error reaches 0 for all experiments.

5 EXPERIMENTS

In this section, we engage in an empirical inquiry into the behavior exhibited by adversarially
trained classifiers operating within the over-parameterized regime, employing both synthetic and
real datasets.

5.1 SYNTHETIC DATA EXPERIMENTS

For our initial series of experiments, we generate a set of 50 training samples and 2000 test samples,
while maintaining a constant label noise ratio ξ = 0.1. In each experiment, we sample a clean data
point (x̃, ỹ) from a Gaussian mixture model, where ỹ follows a uniform distribution Unif(±1), and
x̃ = ỹν + ζ. Here, ζ ∈ Rd, with ζ1, ζ2, . . . , ζd representing independent and identically distributed
(i.i.d.) standard Gaussian variables. Importantly, ν aligns with the direction of an all-one vector
while assuming various magnitudes, consistent with the model assumptions elucidated in Section 3.

In implementing the adversarial training algorithm, we adhere to Algorithm 1, with the exception
of employing a more practical Xavier normal initialization Glorot & Bengio (2010). Specifically,
we sample i0 i.i.d. from N (0, 1/

√
d). A consistent learning rate of αn = 0.001 is maintained,

with a total of T = 1000 iterations across all experiments. The reported results are derived through
averaging over 10 independent runs, encompassing both data sampling and the training process.

In the initial series of experiments, we aim to substantiate our central findings as articulated in this
manuscript, particularly concerning the potential manifestation of benign overfitting in adversarial
training. Figure 1 illustrates the risk and adversarial risk profiles of adversarially trained linear
classifiers across varying dimensions d, considering different scalings of ν for both ℓ2-norm and
ℓ∞-norm perturbations. Notably, the observations reveal that when |ν|2 = d0.2, the (adversarial)
risk initially declines, followed by an upturn as the dimensionality d increases—a phenomenon
observed for both ℓ2-norm and ℓ∞-norm perturbations. Conversely, in scenarios where |ν|2 = d0.3

and |ν|2 = d0.4, the (adversarial) risk exhibits a consistent descent, eventually converging to the
optimal risk ξ as the dimensionality d grows. These empirical findings corroborate the theoretical
framework expounded in Section 4, wherein it is posited that the optimal risk is attainable when
|ν|2 = Γ (dr) and r ∈ (1/4, 1/2]. Importantly, it is noteworthy that the training error reaches zero
for all configurations presented in Figure 1.

In Figure 2, we delve into an exploration of the adversarial risk of adversarially trained linear clas-
sifiers with respect to the number of training iterations n, considering different values of ϵ while
maintaining a constant dimension d and |ν|2 for both ℓ2-norm and ℓ∞-norm perturbations. Here,
a general trend emerges wherein larger values of ϵ correspond to heightened adversarial risk for the
adversarially trained classifier. This empirical observation further bolsters the theoretical framework
outlined in Theorem 8.

5.2 REAL-WORLD DATA VERIFICATION

As reported in Reference Rice et al. (2020), empirical evidence suggests that overfitting within the
context of adversarial training may lead to a degradation of empirical robustness.

Our investigation is motivated by the objective of validating the compatibility of our findings with
those reported in Rice et al. (2020), which scrutinized the influence of overfitting within the realm
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(a) (b)

Figure 2: Adversarial risk of adversarially trained linear classifiers versus the training iterations n
for different ϵ with d = 200 and ∥ν∥2 = d0.3. The training error reaches 0 for all experiments.

(a) (b) (c) (d)

Figure 3: Risk and adversarial risk of adversarially trained linear classifiers versus the dimension
d under different scalings of ν. (a)(b) show the results for ℓ2 perturbation with ϵ = 0.1 and (c)(d)
show the results for ℓ∞ perturbation with ϵ = 0.01. The training error reaches 0 for all experiments.

of adversarial training on empirical image distributions, notably employing CIFAR-10 data. It is
imperative to acknowledge that our analysis, rooted in subGaussian mixture data, may diverge from
theirs, given that CIFAR-10 data does not adhere to this distributional assumption.

The insights gleaned from the results in Figure 3 elucidate that, for models trained on GMM-filtered
data, the concern of overfitting is notably less pronounced when juxtaposed with models trained on
the original data. Specifically, in the case of the binary classification experiments, overfitting on
GMM-filtered data manifests in a benign fashion. This observation serves to corroborate the theo-
retical underpinnings of our work regarding the phenomenon of benign overfitting within adversarial
classifiers trained on subGaussian mixture data. It is crucial to emphasize that our investigation ex-
tends beyond the purview of empirical data distributions and introduces the novel proposition that
benign overfitting can manifest within adversarial training for specific data distributions. While Rice
et al. (2020) primarily presents adverse outcomes pertaining to empirical data distributions, our re-
search contributes a constructive perspective, illustrating the potential for benign overfitting in the
context of robust classifiers. We posit that subGaussian mixtures do not stand as the sole distribution
capable of instigating benign overfitting in robust classifiers, thereby advancing the comprehension
of overfitting phenomena within adversarial settings.

6 CONCLUSIONS AND FUTURE WORK

In conclusion, our study unveils the presence of benign overfitting not solely confined to conven-
tional machine learning paradigms but also extant within the domain of adversarial training. More
specifically, we establish risk bounds for adversarially trained linear classifiers and demonstrate
their remarkable ability to achieve near-optimal performance with respect to both standard and ad-
versarial risks, even in scenarios characterized by overfitting to noisy training data. Our empirical
experiments robustly support and validate our theoretical findings. It is important to underscore that
our analysis has been limited to linear classifiers, while real-world adversarial training predomi-
nantly revolves around the utilization of neural networks. Consequently, our work signifies an initial
stride towards the exploration of benign overfitting within adversarially trained neural networks.
Expanding our present analysis to encompass neural networks trained under adversarial conditions
represents a formidable challenge, and we acknowledge that this constitutes a promising avenue for
future research and investigation.
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