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ABSTRACT
We primarily focus on the field of multi-scenario recommendation,
which poses a significant challenge in effectively leveraging data
from different scenarios to enhance predictions in scenarios with
limited data. Current mainstream efforts mainly center around in-
novative model network architectures, with the aim of enabling the
network to implicitly acquire knowledge from diverse scenarios.
However, the uncertainty of implicit learning in networks arises
from the absence of explicit modeling, leading to not only difficulty
in training but also incomplete user representation and subopti-
mal performance. Furthermore, through causal graph analysis, we
have discovered that the scenario itself directly influences click
behavior, yet existing approaches directly incorporate data from
other scenarios during the training of the current scenario, lead-
ing to prediction biases when they directly utilize click behaviors
from other scenarios to train models. To address these problems,
we propose theMulti-Scenario Causal-driven Adaptive Network
(M-scan). This model incorporates a Scenario-Aware Co-Attention
mechanism that explicitly extracts user interests from other scenar-
ios that align with the current scenario. Additionally, it employs
a Scenario Bias Eliminator module utilizing causal counterfactual
inference to mitigate biases introduced by data from other scenar-
ios. Extensive experiments on two public datasets demonstrate the
efficacy of our M-scan compared to the existing baseline models.

1 INTRODUCTION
With the rapid development of e-commerce platforms, social net-
works, and other online services, recommendation systems [26]
have emerged as crucial tools for personalized content recommenda-
tions, enhancing user experience, and increasing business revenue.
Traditional recommendation algorithms, such as collaborative fil-
tering [10, 27, 28, 33] and content-based filtering [1, 20, 35, 36], have
been extensively employed and implemented. These recommen-
dation algorithms rely on users’ historical behavior data to train
recommendation models that predict whether users will click on
or like specific products.

However, traditional recommendation systems have limitations
in dealing with complex scenarios and achieving precise predictions.
In these systems, recommendation models are designed based on a
single scenario, utilizing only the data available within that partic-
ular scenario for model training. While single-scenario models can
capture variations in user behavior within the given scenario and
make accurate predictions, they still encounter three main chal-
lenges: (1) Some scenarios suffer from data sparsity [29], especially
in the case of cold-start scenarios [13]. (2) The absence of user infor-
mation from other scenarios may lead to suboptimal performance
and incomplete user representations. (3) Single-scenario models
may result in resource waste, as large-scale commercial platforms
often contain numerous scenarios such as multiple rankings and
dozens of pages.

(a) Amazon (b) Netflix (c) Google Play

Figure 1: Illustration of single-scenario and multi-scenario
situations. Left: the whole page as a single-scenario in Ama-
zon Shopping. Medium: horizontal lists as multi-scenarios in
Netflix. Right: vertical and horizontal lists as multi-scenarios
in Google Play Store

To address the limitations of single-scenario models, the concept
of multi-scenario modeling has been introduced. As is shown in
Figure 1, Figure 1a shows a single-scenario situation, while Fig-
ure 1b and 1c depict two multi-scenario situations. Multi-scenario
recommendation systems [2] integrate information from multiple
scenarios through collaborative modeling, thereby enhancing the
accuracy and robustness of recommendation algorithms. These sys-
tems leverage data from various scenarios to capture diverse user
behaviors and train a unified model. This model simultaneously
serves multiple scenarios and effectively mitigates resource waste.

In the current landscape of multi-scenario recommendation sys-
tems, previous works mostly focus on the model framework, such
as MMOE [18] and STAR [32]. These approaches train models by in-
corporating data from various scenarios and designing specific net-
work architectures tailored for multi-scenario settings. For instance,
MMOE employs multiple expert networks to implicitly capture fea-
tures from different scenarios, while STAR adopts a star-shaped
topology network with separate sub-networks for each scenario.
However, these existing approaches in multi-scenario modeling
for recommendations have certain limitations. Firstly, they pre-
dominantly concentrate on designing the overall framework at the
model architecture level, involving multiple networks or experts,
while not explicitly modeling user interests at the individual user
level, resulting in not only difficulty to train but also incomplete
user representation and suboptimal performance. Secondly, they
overlook the data biases introduced by the scenarios themselves,
such as the impact of a scenario’s location and size on user attention,
which directly influences their likelihood to click on it.
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Figure 2: Causal analysis of multi-scenario recommendation.

Therefore, to gain a more intuitive and in-depth understanding
of multi-scenario recommendation, we employ a causal graph [21]
to depict the qualitative relationships among the variables involved.
As is shown in Figure 2, each node represents a causal variable, and
a directed edge 𝐴 → 𝐵 indicates that 𝐴 directly influences 𝐵.
• The causal graph consists of five nodes:𝑈 , 𝐼 ,𝑀 , 𝑆 , and𝑌 .𝑈 repre-

sents the user, 𝐼 represents the item,𝑀 represents the matching
degree between the user and the item, indicating the user’s inter-
est. 𝑆 represents the scenario, and𝑌 represents the click behavior.
Both 𝑈 and 𝐼 naturally have an influence on the user’s interest,
denoted as𝑀 . Hence, there are edges𝑈 → 𝑀 and 𝐼 → 𝑀 in the
graph. Furthermore, the user’s interest𝑀 directly affects whether
the user clicks on the item, resulting in the edge𝑀 → 𝑌 .

• Next, we consider the impact of the scenario. The edge 𝑆 → 𝑀

indicates that different scenarios lead to distinct user interests.
For example, the users’ interests in the "gaming" scenario would
differ from their interests in the "lifestyle" scenario.

• Finally, we have the edge 𝑆 → 𝑌 , suggesting that the scenario
can directly influence the click outcome without affecting the
user’s interest. This is because factors like the location and size
of the scenario can affect the user’s field of view, subsequently
influencing their click behavior. For instance, if Ranking A is
large and positioned centrally, while Ranking B is small and
located at the edge, RankingA ismore likely to be clicked because
Ranking B may go unnoticed.
Based on the causal graph, we can observe that the influence of

the scenario on the final click behavior can be categorized into two
parts: 𝑆 → 𝑌 and 𝑆 → 𝑀 → 𝑌 . When constructing multi-scenario
recommendation systems, it is crucial to take both these influences
into account. We not only need to gather insights into user interests
and enhance user representations by utilizing data from various
scenarios, but also need to address the biases introduced by different
scenarios. For instance, if an item 𝐼 appears in scenario B, and B
is less noticeable than other scenarios, then when incorporating
data where the item 𝐼 is not clicked in scenario B, the model could
mistakenly assume that the user genuinely dislikes 𝐼 , disregarding
the fact that the user simply didn’t notice scenario B.

Presently, mainstream approaches to multi-scenario modeling
encounter two primary issues: (1) They solely focus on the rela-
tionship 𝑆 → 𝑀 → 𝑌 and overlook the direct influence of 𝑆 → 𝑌 .

(2) When considering 𝑆 → 𝑀 → 𝑌 , they focus on implicit model
design, expecting the model to learn user interests in different sce-
narios, rather than explicitly modeling user interests. In practice,
implicit modeling often requires a large number of parameters
which poses difficulties in model training and parameter tuning.
Moreover, the absence of explicit user interest modeling may cause
incomplete user representations and suboptimal performances.

To address the aforementioned issues, we propose the Multi-
Scenario Causal-driven Adaptive Network (M-scan). M-scan in-
corporates two modules called Scenario Bias Eliminator and
Scenario-Aware Co-Attention to address the two problems above
respectively. (1) Scenario Bias Eliminator module models the direct
influence of the scenario on click behavior and utilizes counterfac-
tual causality to remove its effects. This ensures that our inference
within the current scenario is not biased by other scenarios. (2)
We want to use a widely successful attention mechanism [38] in
order to extract explicit user interests from other scenarios. But un-
like typical attention module [14, 15, 23, 47, 48] as target attention
with candidate item as query or self-attention, M-scan introduces a
specially designed co-attention [12, 17, 25] with current scenario’s
behavior also in the query. The Scenario-Aware Co-Attention mod-
ule explicitly captures the impact of the scenario on user interests.
It utilizes two user behavior sequences: the current scenario be-
havior sequence and the behavior sequences from all scenarios. By
explicitly extracting user interests from other scenarios that align
with the current scenario, it helps the model make better inferences.

The main contributions of our paper are summarized as follows:

• To the best of our knowledge, this is the first paper that analyzes
the impact of scenarios not only on user interests but also directly
on click behavior using causal graphs.

• We propose a novel model, M-scan, inspired by causal graphs.
We design two modules to address two issues of multi-scenario
modeling. The Scenario Bias Eliminator module eliminates the
direct biases of other scenarios on click behavior. The Scenario-
Aware Co-Attention mechanism explicitly models the impact of
scenarios on user interests, extracting user interests from other
scenarios that align with the patterns of the current scenario.

• We conduct offline experiments on two publicly available datasets
and achieve promising results, demonstrating the effectiveness
of our proposed model.

2 PRELIMINARIES
In this section, we will formulate the problem and then give a causal
analysis of the multi-scenario recommendation problem.

2.1 Preliminaries
We provide a clear definition and formulation for the multi-scenario
recommendation system, as well as define the current scenario user
sequence and mixed scenario user sequence that we will use.

In the task of multi-scenario recommendation system, we have
M users U = {𝑢1, 𝑢2, . . . , 𝑢𝑀 }, N items I = {𝑖1, 𝑖2, . . . , 𝑖𝑁 }, and P
scenario numbers S = {𝑠1, 𝑠2, . . . , 𝑠𝑃 }.

We define a user interaction as a triplet that includes the user,
item, and scenario, denoted by 𝑦 to represent the click or non-
click. Therefore, the interaction records can be represented as a set
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Y = {𝑦𝑢𝑖𝑠 |𝑢 ∈ U, 𝑖 ∈ I, 𝑠 ∈ S}.

𝑦𝑢𝑖𝑠 =

{
1, 𝑢 has clicked 𝑖 in 𝑠;
0, otherwise.

(1)

The multi-scenario recommendation model aims to provide an
accurate prediction for 𝑦𝑢𝑖𝑠 and obtain a recommendation list by
ranking the scores of the candidate set. The predicted score 𝑦𝑢𝑖𝑠 is
derived from a model with parameters Θ.

𝑦𝑢𝑖𝑠 = FΘ (𝑢, 𝑖, 𝑠 |H𝑢 ) (2)

where H𝑢 = {ℎ𝑏1 , ℎ𝑏2 , . . . , ℎ𝑏𝑁𝑢ℎ
} represents the sequential behav-

iors of user u across all scenarios and there are 𝑁𝑢ℎ behaviors in all.
It includes the common interests of the user in multiple scenarios.
We can further obtain the scenario IDs for each behavior ℎ𝑏 𝑗

, and
S𝑢 = {𝑠𝑏1 , 𝑠𝑏2 , . . . , 𝑠𝑏𝑁𝑢𝑠

} indicates there are 𝑁𝑢𝑠 history behaviors
in scenario 𝑠 .

There is a notable challenge in this situation: during the final
inference, it is incorrect to consider the user’s interests across all
scenarios; rather, we only need to focus on their interests in a
specific scenario. Therefore, to achieve more precise predictions,
we should adopt the following approach:

𝑦𝑢𝑖𝑠 = FΘ (𝑢, 𝑖, 𝑠 |M𝑢𝑠 ) (3)

Where M𝑢𝑠 represents the user u’s interest in scenario s. It is
included inH𝑢 , and our goal is to extract it.

2.2 Causal-driven Analysis
Causal graphs are directed acyclic graphs [21] in which a node
represents a variable and an edge represents the causal relationship
between two variables. They are highly useful from a modeling
perspective. In this section, we have built a causal-driven analy-
sis for multi-scenario recommendation and gained inspiration for
designing M-scan.

In the previous Figure 2, we presented the causal graph for the
multi-scenario recommendation system. The following list defines
the nodes and edges in the graph:
• Node𝑈 : A user identifier.
• Node 𝐼 : An item identifier.
• Node 𝑆 : A scenario identifier.
• Node 𝑀 : The degree of matching between the user and the

candidate item, indicating the user’s interest and preference for
the item.

• Node 𝑌 : The user’s final click behavior on the item.
• Edge𝑈 → 𝑀 : The user’s features influence the degree of match-

ing between the user and the item.
• Edge 𝐼 → 𝑀 : The item’s features influence the degree of match-

ing between the user and the item.
• Edge 𝑆 → 𝑀 : The scenario in which the user and item are

situated influences the degree of matching between them.
• Edge𝑀 → 𝑌 : The degree of matching between the user and the

item influences the likelihood of the user clicking on it.
• Edge 𝑆 → 𝑌 : The scenario features directly influence the likeli-

hood of the user clicking.
In order to explore and model the impact of multiple scenarios,

the most important edges that require significant attention are
𝑆 → 𝑀 → 𝑌 and 𝑆 → 𝑌 . These edges represent the influence of

scenarios on click behavior through user interests and the direct
impact of scenarios on click behavior, respectively. For instance, a
user may exhibit different interests in the "Lifestyle" and "Gaming"
scenarios, indicating the influence of 𝑆 → 𝑀 → 𝑌 . Moreover, if the
"Gaming" category is in a small and remote slot, while the "Lifestyle"
category is in a larger and more prominent slot, the "Lifestyle"
category is more likely to be viewed and clicked, demonstrating
the influence of 𝑆 → 𝑌 .

The presence of these two edges suggests that the click behavior
Y in the multi-scenario recommendation system is influenced by
both user interests and the scenarios themselves. However, during
the inference process, we typically utilize intra-scenario inference,
such as recommending 10 candidate items for a specific scenario.
During inference, we should only consider user interests and ex-
clude the influence of scenarios because the impact of 𝑆 → 𝑌

remains the same for a particular scenario. Since the real data labels
reflect the combined influence of all variables, directly supervising
the model output with multi-scenario user interaction labels during
training would introduce the bias of 𝑆 → 𝑌 , leading to biased or
suboptimal predictions. Consequently, the model might mistakenly
assume that the user’s lack of clicks on items from other scenarios
indicates disinterest, while in reality, it is simply due to the user’s
ignoring those items.

Hence, during training, it is crucial to model the influences of
both 𝑆 → 𝑀 → 𝑌 and 𝑆 → 𝑌 in a specialized manner. During
inference, the 𝑆 → 𝑌 bias should be eliminated, with only the
influence of 𝑆 → 𝑀 → 𝑌 retained (as depicted in Figure 2). In the
following sections, we will provide a comprehensive explanation
of the M-scan model, which we have designed to capture the two
aspects of scenario influence.

3 METHODOLOGY
In this section, we will give detailed descriptions of M-scan with
its overview and the two primary designs, i.e., Scenario-Aware
Co-Attention and Scenario Bias Eliminator.

3.1 M-scan Overview
When designing our model, we focus on two crucial aspects: elimi-
nating biases from other scenarios and extracting user behaviors
specifically for the current scenario from different scenarios. To
address the bias issue, we employ a counterfactual causality ap-
proach and develop the Scenario Bias Eliminator module. To extract
user behaviors for the current scenario explicitly, we introduce the
Scenario-Aware Co-Attention mechanism. In this section, we will
provide a comprehensive explanation of our M-scan framework on
network architecture as well as its training and inference processes.

Figure 3 illustrates the overall framework of the M-scan model
we designed. As is shown in the figure, M-scan takes five input
components: user profile 𝑢, candidate item 𝑖 , user behaviors in the
current scenario 𝑆𝑢 , historical behaviors across all scenarios 𝐻𝑢 ,
and scenario features 𝑠 . We start by feeding all inputs into the
embedding layer to transform the sparse raw features 𝑢, 𝑖 , 𝑠 , S𝑢 ,
H𝑢 into low-dimensional dense embedding vectors 𝒖, 𝒊, 𝒔, 𝑺𝑢 , 𝑯𝑢 .

In M-scan, our objective is to first model the user interest specif-
ically for the current scenario and then leverage it to extract more

3
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Figure 3: Overall illustration of M-scan.

similar interests from other scenarios. Therefore, the user behav-
iors for the current scenario, 𝑺𝑢 , play a crucial role in the user
representation, as the historical behaviors in the current scenario
inherently contain the user interest representation in that scenario.
So we feed 𝑺𝑢 into a scenario encoder, which can be implemented
using Attention [48], GRU [7], transformer [37], or other encoders
to model the representation of the current scenario behavior. We
choose GRU here since scenario behaviors are in a sequential order.
For the scenario encoder, the input consists of item embedding vec-
tors [𝒔𝑏1 , 𝒔𝑏2 , . . . , 𝒔𝑏𝑁𝑢𝑠

]. The hidden states [ℎ1, ℎ2, . . . , ℎ𝑁𝑢𝑠
] can

be calculated using the following formula:

𝒛𝑘 = 𝜎 (𝑾𝑧𝒔𝑏𝑘 + 𝑼𝑧ℎ𝑘−1 + 𝒃𝑧)

𝒓𝑘 = 𝜎 (𝑾𝑟 𝒔𝑏𝑘 + 𝑼 𝑟ℎ𝑘−1 + 𝒃𝑟 )

ℎ𝑘 = (1 − 𝒛𝑘 ) ⊙ ℎ𝑘−1 + 𝒛𝑘 ⊙ tanh(𝑾ℎ𝒔𝑏𝑘 + 𝑼ℎ (𝒓𝑘 ⊙ ℎ𝑘−1) + 𝒃ℎ) ,
(4)

where ⊙ is the element-wise product operator,𝑾 , 𝑼 , 𝒃 are weight
parameter matrices. .

With this, the historical behavior for the current scenario has
been effectively modeled. Our next objective is to extract user in-
terests that are similar to the current scenario from the behaviors
observed in other scenarios. For this purpose, we utilize the histor-
ical behaviors across all scenarios 𝑯𝑢 . To capture the interest of
historical behaviors more accurately, we employ the widely adopted
attention mechanism in sequential recommendation. Ideally, we
would like to leverage only those historical behaviors that align
with the interests of the current scenario. However, since we lack
explicit knowledge about which behaviors from other scenarios are
aligned with the current scenario’s interests, we adopt an indirect
measure to identify relevant historical behaviors.

Specifically, we quantify the alignment of interests by measur-
ing the similarity between the behaviors of the current scenario
and those of other scenarios. This is where our specially designed
Scenario-Aware Co-Attention mechanism comes into play, and its
detailed explanation will be provided in Section 3.2. Once we have
computed the interest alignment 𝛽 𝑗 for each historical behavior 𝒉𝑏 𝑗

,
we employ a weighted aggregation approach using the attention
mechanism to obtain the final representation of the user’s history.

𝑹ℎ =

𝑁𝑢ℎ∑︁
𝑗=1

𝛽 𝑗 𝒉𝑏 𝑗
. (5)

Next, the prediction 𝑦𝑚 of user interest can be obtained by feed-
ing all the features into a feed-forward neural network.

𝑦𝑚 = FFN( [𝒖 ⊕ 𝒊 ⊕ 𝒔 ⊕ ℎ𝑁𝑢𝑠
⊕ 𝑹ℎ]), (6)

Note that in 𝑦𝑚 , the subscript𝑚 represents matching, which refers
to the degree of matching between the user and the item, i.e., user
interest. As discussed in Section 3.2, 𝑦𝑚 represents the impact of
user interest on the click behavior (𝑀 → 𝑌 ).

Additionally, there is another aspect of the scenario itself in-
fluencing the click behavior (𝑆 → 𝑌 ). The prediction 𝑦𝑠 for this
can be obtained simply by feeding the scenario feature 𝑠 into a
feed-forward neural network.

𝑦𝑠 = Scenario FFN(𝒔), (7)

3.1.1 Training and inference process. In Section 2.2, we conduct
causal graph analysis and determine that the true sample labels
𝑦 are influenced by both 𝑀 → 𝑌 and 𝑆 → 𝑌 . Hence, directly
using a model trained with 𝑦 for inference would be inappropriate,
requiring specific bias removal techniques. Consequently, we model
these two influences separately, resulting in 𝑦𝑚 and 𝑦𝑠 . In this
section, we provide a summary of themodel’s training and inference
processes. Detailed theoretical derivations and formulas will be
presented in Section 3.3.

In the training process, since 𝑦𝑚 represents the influence of
𝑀 → 𝑌 and 𝑦𝑠 represents the influence of 𝑆 → 𝑌 , we combine
them in the Fusion layer using the following formula:

𝑦𝑢𝑖𝑠 = 𝑦𝑚 ∗ 𝜎 (𝑦𝑠 ) (8)

where 𝜎 denotes the sigmoid function. Subsequently, we supervise
the prediction 𝑦𝑢𝑖𝑠 using the true labels with the cross-entropy loss
function:

L𝑢𝑖𝑠 =
∑︁

𝑢,𝑖,𝑠∈D
[−𝑦𝑢𝑖𝑠 · log(𝜎 (𝑦𝑢𝑖𝑠 )) − (1−𝑦𝑢𝑖𝑠 ) · log(1−𝜎 (𝑦𝑢𝑖𝑠 ))] .

(9)
Similarly, we supervise the prediction 𝑦𝑠 , which solely focuses

on the prediction of the scenario’s impact on the click behavior:

L𝑠 =
∑︁

𝑢,𝑖,𝑠∈D
[−𝑦𝑠 · log(𝜎 (𝑦𝑠 )) − (1 − 𝑦𝑠 ) · log(1 − 𝜎 (𝑦𝑠 ))] . (10)

The final overall loss function is the weighted sum of the above
two loss functions:

L𝑓 𝑖𝑛𝑎𝑙 = L𝑢𝑖𝑠 + 𝛼L𝑠 (11)
4
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Here, 𝛼 represents the balancing coefficient.
During the inference phase, we adopt the approach of scenario-

specific prediction, where each scenario is predicted individually.
Since the scenarios are the same, there is no variation in the in-
fluence of 𝑆 → 𝑌 . Therefore, we need to remove the previously
modeled impact of 𝑆 → 𝑌 to obtain an unbiased prediction that
truly represents the user interest. The formula for this is as follows:

𝑦𝑑𝑏 = 𝑦𝑚 ∗ 𝜎 (𝑦𝑠 ) − 𝑐 ∗ 𝜎 (𝑦𝑠 ) (12)

Here, 𝑐 is a hyper-parameter that represents the counterfactual
reference state of 𝑦𝑚 .

The theoretical analysis of this formula will be discussed in
subsequent sections. Intuitively, this inference formula can be un-
derstood as an adjustment based on 𝑦𝑢𝑖𝑠 . For example, consider
two scenarios 𝑠1 and 𝑠2, where 𝑠1 is more prominent and likely to
be clicked compared to 𝑠2. In this case, if 𝑦𝑠1 >> 𝑦𝑠2 , subtracting
the second term 𝑐 ∗𝑦𝑠 will make 𝑦𝑚2 , which was originally smaller
than 𝑦𝑚1 , larger than 𝑦𝑚1 . This signifies that although the user is
influenced by the scenario, they still clicked, which represents their
genuine love for this item.

To provide a clear explanation of the training and inference
processes, we have prepared pseudocode shown in Algorithm 1.

Algorithm 1M-scan
Require: user, item, scenario features
Ensure: 𝑦𝑑𝑏 (unbiased y)

𝑦𝑚 = F1 (𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
𝑦𝑠 = F2 (𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)

Training:
𝑦𝑢𝑖𝑠 = 𝑦𝑚 ∗ 𝜎 (𝑦𝑠 )
L𝑢𝑖𝑠 =

∑
𝑢,𝑖,𝑠∈D [−𝑦𝑢𝑖𝑠 · log(𝜎 (𝑦𝑢𝑖𝑠 )) − (1 − 𝑦𝑢𝑖𝑠 ) · log(1 −

𝜎 (𝑦𝑢𝑖𝑠 ))]
L𝑠 =

∑
𝑢,𝑖,𝑠∈D [−𝑦𝑠 · log(𝜎 (𝑦𝑠 )) − (1−𝑦𝑠 ) · log(1−𝜎 (𝑦𝑠 ))]

L𝑓 𝑖𝑛𝑎𝑙 = L𝑢𝑖𝑠 + 𝛼L𝑠

Inference:
𝑦𝑑𝑏 = 𝑦𝑚 ∗ 𝜎 (𝑦𝑠 ) − 𝑐 ∗ 𝜎 (𝑦𝑠 )

return 𝑦𝑑𝑏

3.2 Scenario-Aware Co-Attention
In this section, we will introduce a module called the Scenario-
Aware Co-Attention module, which is designed to extract user
interests from other scenarios that are similar to the current sce-
nario. The attention mechanism widely used in sequence behavior
modeling is the target attention [23, 47, 48]. The key point of the
target attention mechanism is to compute the relevance between
items and each user behavior. The general formula is as follows:

𝛽 𝑗 = softmax𝑗 (Attn(𝒉𝑏 𝑗
, 𝒊)),∀𝒉𝑏 𝑗

∈ 𝑯𝑢 (13)

where softmax𝑗 represents the 𝑗𝑡ℎ score in the softmax function,
and 𝒉𝑏 𝑗

represents the 𝑗𝑡ℎ behavior in the historical sequence 𝑯𝑢 .
In traditional target attention mechanisms, it is assumed that

all behaviors belong to the user’s interest in the current scenario.
However, in multi-scenario situations, such attention mechanisms
are insufficient. We need to explicitly distinguish which behaviors
can help represent interests in the current scenario and utilize
them. The indicator of the current scenario’s interests is the user’s

Scenar io Identifier

Counter factual Value

Click or Not

Potential Impact
M* YU*

I* S* S

Counterfactual Causal Graph

S

Y

Figure 4: Counterfactual causal graph of multi-scenario rec-
ommendation.

historical behaviors of the current scenario. Therefore, we need to
incorporate the historical behaviors of the current scenario into
the attention mechanism to compute the relevance scores between
behaviors from other scenarios and the current scenario’s interest.

As is shown in the "Scenario-Aware Co-Attention" section of
Figure 3, we calculate the Co-Attention matrix C:

C𝑗𝑘 = Attn(𝒉𝑏 𝑗
, 𝒊, 𝒔𝑏𝑘 ), ∀𝒉𝑏 𝑗

∈ 𝑯𝑢 ,∀𝒔𝑏𝑘 ∈ 𝑺𝑢 , (14)

where 𝑠𝑏𝑘 represents the 𝑘𝑡ℎ behavior in the historical sequence of
the current scenario. "Attn" refers to a feed-forward neural network:

Attn(𝒉𝑏 𝑗
, 𝒊, 𝒔𝑏𝑘 ) = FFN( [𝒉𝑏 𝑗

⊕ 𝒊 ⊕ 𝒔𝑏𝑘 ]), (15)

where ⊕ represents the concatenation operator.
𝐶 𝑗𝑘 denotes the relevance between the historical behavior 𝒉𝑏 𝑗

,
the current scenario behavior 𝒔𝑏𝑘 , and candidate item 𝒊. Next, we
utilize a max-pooling layer to capture the most important correla-
tions of 𝒉𝑏 𝑗

among {𝐶 𝑗𝑘 }𝑁𝑢𝑠

𝑘=1 . This signifies that as long as 𝒉𝑏 𝑗
is

highly correlated with any item in the current scenario, it aligns
with the interest distribution of the current scenario.

𝑐 𝑗 = MP({C𝑗𝑘 }𝑁𝑢𝑠

𝑘=1 ) . (16)

Thus, 𝑐 𝑗 represents the relevance of behavior 𝒉𝑏 𝑗
with the entire

current scenario sequence 𝑺𝑢 . Next, the attention score for 𝒉𝑏 𝑗
is

computed using the softmax function.

𝛽 𝑗 =
exp(𝑐 𝑗 )∑𝑁𝑢ℎ

𝑗 ′=1 exp(𝑐 𝑗 ′ )
, (17)

And this will be used in Eq. (5). By doing so, we can extract
historical behaviors from other scenarios that align with the interest
of the current scenario and then utilize them.

3.3 Scenario Bias Eliminator
In Section 3.1, we have listed all the formulas and computations for
this module, but we have not provided theoretical derivations and
detailed explanations yet. In this section, we will provide a detailed
theoretical derivation and explain its rationale.

3.3.1 Causal Counterfactual. In the causal graph depicted in Fig-
ure 2, the variables in the graph influence each other, for example,
both𝑀 and 𝑆 have an impact on 𝑌 . Therefore, the variable 𝑌 can
be computed based on its ancestor nodes. Mathematically, this can
be expressed as follows:

𝑌𝑠,𝑚 = 𝑌 (𝑀 =𝑚, 𝑆 = 𝑠) (18)

where 𝑌 (·) represents the value function of 𝑌 . It can be observed
that the causal graph provides explicit causal relationships, which
aids us in constructing the architecture based on the directed edges.
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Within the causal graph, a variable may have multiple influ-
ences on the next variable. These influences can be direct, such as
𝑆 → 𝑌 , or indirect, such as 𝑆 → 𝑀 → 𝑌 . We need to quantify these
influences using mathematical formulas, and this is where counter-
factual methods come into play. Counterfactual means considering
S as s*, representing its removal from reality, for example, by setting
S to be empty or an unknown constant value. Since s* is fixed or
nonexistent, we can treat it as a reference status, having the same
influence on other variables. Consequently, we can compute the
total effect of all influences on 𝑌 using counterfactual methods:

𝑇𝐸 = 𝑌𝑆,𝑀 − 𝑌𝑠∗,𝑚∗ (19)

Here, M is also replaced by𝑚∗ because𝑚∗ also has an influence on
Y.𝑚∗ represents the counterfactual value of M.

3.3.2 Scenario Bias Eliminator. Furthermore, based on the causal
graph structure, we can decompose the overall influence into two
components: the impact of the scenario on the click behavior 𝑆 → 𝑌 ,
and the impact of user interest on the click behavior𝑀 → 𝑌 . The
influence of 𝑆 → 𝑌 can be expressed as follows:

𝐸𝑆→𝑌 = 𝑌𝑆,𝑚∗ − 𝑌𝑠∗,𝑚∗ (20)

where𝑌𝑆,𝑚∗ represents the scenario 𝑆 obtained and onlyM is couter-
factually removed.

We counterfactually remove M because we are only interested
in calculating the influence of 𝑆 → 𝑌 while disregarding𝑀 → 𝑌 .
The process of calculating the direct impact of 𝑆 on 𝑌 is a causal
counterfactual process since we cannot directly compute it using
real data and can only rely on causal reasoning. Once TE and 𝐸𝑆→𝑌

are calculated, 𝐸𝑀→𝑌 can be obtained by subtracting the former
from the latter.

𝐸𝑀→𝑌 = 𝑇𝐸 − 𝐸𝑆→𝑌

= (𝑌𝑆,𝑀 − 𝑌𝑠∗,𝑚∗ ) − (𝑌𝑆,𝑚∗ − 𝑌𝑠∗,𝑚∗ )
= 𝑌𝑆,𝑀 − 𝑌𝑆,𝑚∗

= 𝑌 (𝑆 = 𝑠, 𝑀 =𝑚) − 𝑌 (𝑆 = 𝑠, 𝑀 =𝑚∗) (21)

At this point, we have obtained the calculated value for 𝐸𝑀→𝑌 ,
which represents the influence of𝑀 → 𝑌 . Both terms,𝑌 (𝑆 = 𝑠, 𝑀 =

𝑚∗) and 𝑌 (𝑆 = 𝑠, 𝑀 =𝑚), can be fitted using neural networks. As
mentioned in Section 3.1, we compute two prediction scores, 𝑦𝑚
for 𝑀 → 𝑌 and 𝑦𝑠 for 𝑆 → 𝑌 . However, the ultimate target label
should be 𝑌 (𝑆 = 𝑠, 𝑀 =𝑚), representing the actual click behavior.
Therefore, during training, to reconstruct the true click behavior,
we combine these two branches together, which is shown in Eq. (8)

During inference, since the evaluation criterion is based on indi-
vidual scenarios, the impact of scenarios on click behavior remains
consistent. Therefore, we perform inference solely based on user
interest, which is represented by the previously calculated 𝐸𝑀→𝑌

in Eq. (12), as it has already removed the influence of 𝑆 → 𝑌 .

4 EXPERIMENTS
In this section, we show the experimental settings and results. Three
research questions lead the following discussions, and our imple-
mentation code of M-scan is publicly available1.
• RQ1: Does M-scan outperform existing multi-scenario recom-

mendation models?
1https://anonymous.4open.science/r/M-scan-9B48

• RQ2: Are both innovative modules of M-scan effective?
• RQ3: What is the impact of the balance coefficient 𝛼 and the

hyperparameter 𝑐 on the results?

4.1 Experimental Settings
We conduct experiments using two publicly availablemulti-scenario
datasets. The descriptions and statistics of the two datasets are de-
tailed in appendix A.1.

4.1.1 Baselines and Hyper-parameters. To demonstrate the effec-
tiveness of our proposed model, we compare it with different state-
of-the-art models: Single, Mixing, Finetune, Shared Bottom, MMOE,
PLE, AESM2, and M2M. The details of these models and the hyper-
parameters are introduced in appendix A.2.

4.1.2 Evaluation Metric. We both evaluate the performance of the
models in a single scenario and in all the scenarios. The evaluation
metric used are the commonly usedAUC(Area Under the Curve) [6,
9] and RelaImpr [31, 43] to the Single model. Since model Single
cannot be tested in all the scenarios, RelaImpr is calculated by
Mix in row "#All" in Table 1.

4.2 Overall Performance
The performance of the proposed M-scan and other baselines are
presented in Table 1. #All means the whole dataset with all the
scenarios. #1,#2,#3 represent three scenarios respectively. In Cloud
Theme, we randomly choose 3 scenarios in 355 scenarios to demon-
strate in the table. Model Single and Finetune don’t have results
in row #All because they can only be tested in one scenario. We
have the following observations:
• M-scan outperforms the state-of-the-art baselines in two datasets

significantly with p-value < 0.05 against the best baseline. This
demonstrates that our M-scan model effectively captures the
distribution within each scenario and accurately predicts user
interests. Additionally, there are significant improvements in
AUC in each scenario, which shows the robustness of our M-
scan within different scenarios. The reason why the significance
level does not drop below 0.05 in certain scenarios is probably
attributed to the limited data within these scenarios.

• In the whole Aliccp dataset, the PLE model achieves the best
performance among the baselines. On the other hand, the MMOE
model, which also uses a multi-expert framework, performs
significantly worse than PLE. This suggests that the approach of
dividing the expert networks into shared and scenario-specific
parts in PLE is effective, highlighting the specific characteristics
of multi-scenario data distributions.

• While AESM2’s overall performance is even worse than MMOE,
it performs on par with PLE in certain scenarios. This is be-
cause AESM2 automatically selects experts as shared or scenario-
specific experts. Despite this clever approach, it requires accurate
representations of all scenarios. If a scenario representation is
inaccurate, selecting unreliable experts can lead to poor results.
Therefore, AESM2 only performs well in certain scenarios.

• In the Cloud Theme, M2M achieves the best overall performance
over the baselines. However, it doesn’t perform so well in Aliccp.
This could be due to its unique meta-learning mechanism. Com-
pared to datasets with only three scenarios, the dataset with 355

6
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Table 1: Performance comparison against baselines. The best result for all the models is given in bold, while the second-best is
underlined. ∗ represents the significance level p-value < 0.05 against the best baseline.

Dataset Scenario Single Mix Shared bottom Finetune MMOE PLE AESM2 M2M M-scan
AUC RelImp AUC RelImp AUC RelImp AUC RelImp AUC RelImpr AUC RelImp AUC RelImp AUC RelImp AUC RelImp

Aliccp

#1 0.6557 - 0.6634 1.17% 0.6667 1.68% 0.6699 1.71% 0.6606 0.75% 0.6672 1.75% 0.6644 1.33% 0.6523 -0.52% 0.6782* 3.43%
#2 0.6514 - 0.6575 0.94% 0.6589 1.15% 0.6647 2.04% 0.6550 0.55% 0.6633 1.83% 0.6385 -1.98% 0.6430 -1.29% 0.6685* 2.63%
#3 0.6061 - 0.6361 4.95% 0.6313 4.16% 0.6321 4.29% 0.6304 4.01% 0.6405 5.68% 0.6216 2.56% 0.6226 2.72% 0.6513* 7.46%
#All - - 0.6574 - 0.6573 -0.02% - - 0.6543 -0.47% 0.6621 0.71% 0.6420 -2.34% 0.6441 -2.02% 0.6714* 2.13%

C̀loudTheme

#1 0.7769 - 0.8037 3.45% 0.8070 3.87% 0.8099 4.25% 0.8099 4.25% 0.8117 4.48% 0.8063 3.78% 0.8063 3.78% 0.8120 4.52%
#2 0.7611 - 0.8011 5.12% 0.8006 5.19% 0.8032 5.53% 0.8013 5.28% 0.8031 5.52% 0.8010 5.24% 0.8010 5.24% 0.8070* 6.03%
#3 0.7287 - 0.7738 6.19% 0.7721 5.96% 0.7754 6.41% 0.7728 6.05% 0.7756 6.43% 0.7746 6.30% 0.7744 6.27% 0.7757 6.45%
#All - - 0.7536 - 0.7543 0.09% - - 0.7553 0.23% 0.7563 0.36% 0.7551 0.20% 0.7570 0.45% 0.7608* 0.96%

scenarios is better suited for adjusting network weights based
on different scenarios. Because it’s almost impossible to use 355
experts in the network when using MMOE-based models. So
when it comes to a large number of scenarios, it is more feasible
to model them in one network together rather than individu-
ally(using experts). This is also one of the advantages of M-scan.

• Most importantly, we observe that Finetune outperforms other
baselines in certain scenarios. It’s probably because Finetune
uses behaviors in the current scenario to train a model in the 2𝑛𝑑
stage, reminding the model of its original intention. It inspires
us that in the field of multi-scenario recommendation, further
improving model architecture has become increasingly complex
and hard to train but has only marginal or even negative im-
provements due to excessive parameters or high requirements
for representation. Therefore, rather than implicitly learn unique
representations of multiple scenarios through model architec-
ture, we believe it more effective to explicitly model the unique
interest representations of multiple scenarios at feature or data
level, reminding the model of its original intention, a.k.a current
scenario, which is also one of the main contributions of M-scan.

4.3 Ablation Study(RQ2)
In this section, we conduct ablation experiments to analyze the
effectiveness of two components in M-scan. The main modules
of M-scan are the Scenario-Aware Co-Attention (SACA) and the
Scenario Bias Eliminator (SBE). Next, we examine the performance
of two sub-models:
• w/ SACA, w/ SBE: This is the complete version of M-scan, as

depicted in Figure 3
• w/ SACA, w/o SBE: This is a sub-model of M-scan without the

Scenario Bias Eliminator module. It neither involves causal rea-
soning nor includes𝑦𝑠 . Instead, it directly trains𝑦𝑚 calculated by
the network using the real data labels and uses 𝑦𝑚 for inference.

• w/o SACA, w/ SBE: This is a sub-model of M-scan without the
Scenario-Aware Co-Attention module. It removes the component
that extracts the current scenario user interests from historical
behaviors of other scenarios.

• w/o SACA, w/o SBE: This is a sub-model of M-scan without
both the Scenario Bias Eliminator and the Scenario-Aware Co-
Attention modules. Similar to other mainstream state-of-the-art
models, it only utilizes the historical behaviors from the current
scenario as features.
The results are shown in Table 2. we can observe that the per-

formance of M-scan significantly decreases when the 𝑆𝐵𝐸 module
is removed. This finding confirms the existence of scenario bias
in the field of multi-scenario recommendation. The Scenario Bias

Table 2: The AUC ofM-scan and sub-models in ablation study

M-scan Aliccp Cloud ThemeSACA SBE

✓ ✓ 0.6714 0.7608
✓ × 0.6671 0.7581
× ✓ 0.6618 0.7591
× × 0.6573 0.7477

0 20 40 60 80 100
c (when  = 0.001)

0.6595

0.6615

0.6635

0.6655

0.6675

0.6695

0.6715

AU
C

Aliccp

0 1 2 3 4 5 6 7 8 9 10
c (when  = 0.1)

0.7596

0.7598

0.7600

0.7602

0.7604

0.7606

0.7608

0.7610

AU
C

Cloud

Figure 5: Performance of M-scan using different 𝑐 values of
Eq. (12) on two datasets.

Eliminator we design effectively mitigates the scenario bias and
leads to improved performance.

Additionally, we can observe that the performance ofM-scan also
significantly decreases when the SACA module is removed. This
finding confirms the importance of incorporating the interests from
other scenarios as features into the neural network. The Scenario-
Aware Co-Attention module effectively extracts user interests from
other scenarios that align with the current scenario.

Finally, when both the SBE and SACA modules are removed,
the performance further deteriorates. This indicates that our SACA
module and SBE module are both crucial.

4.4 Hyperparameter Study(RQ3)
In this section, we conducted hyperparameter experiments on the
balance coefficient 𝛼 and the counterfactual hyperparameter 𝑐 . The
results are shown in Figure 5 and Figure 6.

In Figure 5, we can observe that the evaluation metric AUC
initially increases and then decreases with the increase of the coun-
terfactual hyperparameter 𝑐 , reaching a maximum value. The exper-
iment demonstrates that moderation is the key when determining
the amount of counterfactual bias removal represented by 𝑐 . If 𝑐 is
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Figure 6: Performance of M-scan using different 𝛼 values of
Eq. (11) on two datasets.

too large, the bias is excessively removed, and if 𝑐 is too small, the
bias is not adequately removed, leading to suboptimal performance.

In Figure 6, we can also see that the evaluation metric AUC ini-
tially increases and then decreases with the increase of the balance
coefficient 𝛼 , reaching a maximum value. The experiment verifies
the existence of a balance between the primary cross-entropy func-
tion 𝐿𝑢𝑖𝑠 and the secondary cross-entropy function 𝐿𝑠 . When 𝛼

approaches 0, 𝐿𝑠 does not exist, resulting in biased outcomes. Con-
versely, when 𝛼 approaches infinity, 𝐿𝑢𝑖𝑠 ceases to exist, impeding
the proper training of the recommendation model.

From the Figure 5 and 6, we can observe some patterns in hy-
perparameters adjusting. Since Aliccp has only 3 scenarios while
Cloud Theme has 355, it has two impacts: (1) scenario bias in Aliccp
is smaller than in Cloud Theme. So 𝛼 , which represents the amount
of scenario loss, will be smaller in Aliccp than in Cloud Theme.
(2) There are more data in one scenario in Aliccp, so the interests
are more concentrated in Aliccp. In this way, user interests have
more influence on click behavior. As 𝑐 represents the counterfactual
reference state of𝑀 → 𝑌 in Eq. (12), it is reasonable to be larger in
Aliccp than in Cloud Theme.

5 RELATEDWORKS
5.1 Single-scenario Recommendation
Most of the existing deep CTR models primarily concentrate on
modeling a single scenario and follow the embedding and MLP
paradigm. Wide&Deep [6] and DeepFM [9] combine the low-order
(explicit interaction) and deep (implicit interaction) components to
enhance performance. EDCN [4] further improves information shar-
ing between different interaction networks in deep models through
a parallel structure. DIEN [47] integrates the attention mechanism
with GRU [7] to model the dynamic evolution of user interests over
time. SIM [22] extracts user interests using two cascaded search
units, enabling better modeling of lifelong behavior.

5.2 Multi-scenario Recommendation
As mentioned previously, the mainstream approach for address-
ing the multi-scenario problem is to create a unified framework
that simultaneously models all scenarios. Consequently, our sur-
vey primarily focuses on works related to this paradigm. Specif-
ically, Shared-bottom [3] constructs a shared bottom network to
encode data from all scenarios, and different sub-networks to serve

different scenarios. MMoE [18] adopts a multi-gate mixture-of-
experts technique to implicitly capture commonalities and distinc-
tions among multiple scenarios. STAR [32] designs a star topology
framework with a central network to capture overarching scenario
commonalities and a set of scenario-specific networks to distin-
guish scenario-specific differences. The combination strategy of
the element-wise product of layer weights serves as the informa-
tion transfer mechanism from the overall scenarios to individual
scenarios. PLE [34] divides experts in MMOE into scenario-shared
experts and scenario-specific experts. AESM2 [49] adaptively selects
suitable experts to obtain knowledge for the current scenario by
calculating the distance between experts and scenarios. M2M [44]
focuses on advertiser modeling in multiple scenarios and introduces
a dynamic weights meta unit to model inter-scenario correlations.
However, the aforementioned methods employ implicit approaches
for scenario information transfer, making it challenging to explic-
itly represent the impacts of multiple scenarios. Furthermore, these
models directly use click labels from other scenarios for training,
ignoring the impact of scenario bias.

5.3 Causal Inference
Causal inference [21] is used in recommendation for debiasing [5],
data missing, fairness, etc [16]. For example, IPS [30] adopted an
inverse propensity weighting objective to learn unbiased matrix
factorization models to address exposure bias. PD [46]introduced
backdoor adjustment to remove the confounding popularity bias
during model training and incorporated an inference strategy to
leverage popularity bias. CR [39] and MACR [42] employ coun-
terfactual inference to remove the effect of clickbait issues and
popularity bias respectively. DCR-MOE [11] uses backdoor adjust-
ment and designs an MOE structure network to address confound-
ing features. CBDF [45] tackles the problem of data noise caused
by delayed feedback with importance sampling to re-weight the
original reward and obtain the modified reward in the counterfac-
tual world. Though causal inference is widely employed to address
various problems, scenario bias has not yet been addressed. We
highlight the significance of this bias and propose the utilization of
counterfactual inference as a means to mitigate its effects.

6 CONCLUSION
In this paper, we present M-scan, a model for multi-scenario rec-
ommendation systems. M-scan incorporates a Scenario-Aware Co-
Attention mechanism to explicitly extract user interests from other
scenarios that can match the current scenario at the feature level..
Additionally, M-scan includes a Scenario Bias Eliminator that em-
ploys causal counterfactual reasoning to mitigate biases introduced
when we are using data from other scenarios to train models. M-
scan demonstrates promising performance in offline experiments
conducted on two public datasets, validating its effectiveness. The
ablation experiments and hyperparameter analysis further confirm
the utility of both modules. In future work, we plan to explore more
advanced and comprehensive approaches to address scenario bias
removal, continue designing more effective methods to leverage
interests from other scenarios, delve into deeper causal reasoning
techniques, and conduct online experiments. Finally, we may scale
up multi-scenario models to large recommendation models.
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A EXPERIMENTAL SETTINGS
A.1 Datasets
We conducted experiments using two publicly available multi-
scenario datasets, which are listed in Table 3:

Table 3: The data statistics.

Dataset Users # Items # Scenarios # Interactions #

Aliccp 444,862 4,348,616 3 85,316,975
Cloud Theme 720,210 1,361,672 355 1,423,835

• Aliccp [19]: This dataset is provided by AliMama. It is collected
from the recommendation system logs of the mobile Taobao
application, including click data and associated conversion data.
The dataset has 3 themes, which can be considered as a multi-
scenario recommendation dataset.

• Cloud Theme [8]: This dataset contains user click logs from the
cloud theme scenario in the Taobao app. It is used to optimize
recommendations for users in multiple different scenarios. It
consists of 355 scenarios and 1.4 million records.
Train & test splitting. We first filter out the users who own

behaviors across multiple scenarios and then sort all the logged
samples in chronological order. Finally, we split the most recent 40%

samples as the test set while the other samples are put into the train-
ing set because we always use the old data to train and infer on the
new data. It is a widely used splitting strategy in recommendation
tasks. [23, 24]

A.2 Baseline Model
The baseline models compared in the experiments are listed as
follows:
• Single. The model is trained only with samples from the target

scenario. Specifically, three-layer fully connected networks are
applied for the experiments.

• Mix. We refer to the Mix as the model trained with a mixture of
samples from all scenarios. The model structure is the same as
the Single.

• Finetune. Finetune is a commonly-used and effective domain
adaption (DA) training manner in industrial recommendation
system [40, 41]. It first trains a unified model with the mixture
of samples from all scenarios (namely the Mix), then adjusts the
unified model with the data of the target scenario.

• Shared bottom [3]: Shared bottom is a widely used multi-
scenario multi-task model that shares the parameters of the
bottom network. Specifically, we use the embedding layer as the
shared part and design 3 fully connected layers for each scenario
on top of the shared part.

• MMOE [18]: MMOE is a multi-scenario multi-task model that is
based on the shared bottom and uses multiple expert networks
to learn knowledge for multiple scenarios and tasks, which are
then integrated for prediction.

• PLE [34]: PLE is currently a state-of-the-artmulti-scenariomodel.
Compared to MMOE, it divides the experts into scenario-shared
and scenario-specific ones and uses a progressive path mecha-
nism to extract deep knowledge from experts.

• AESM2 [49]: AESM2 is a state-of-the-art multi-scenario model
that adaptively selects suitable experts to obtain knowledge for
the current scenario by calculating the distance between experts
and scenarios.

• M2M [44]: M2M is a state-of-the-art multi-scenario model that
uses meta-learning techniques to design meta-attention and
meta-network mechanisms for the multi-scenario framework,
helping each scenario obtain its unique network.
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