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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable abilities in scien-
tific reasoning, yet their reasoning capabilities in materials science remain underex-
plored. To fill this gap, we introduce MatSciBench, a comprehensive college-level
benchmark comprising 1,340 problems that span the essential subdisciplines of
materials science. MatSciBench features a structured and fine-grained taxonomy
that categorizes materials science questions into 6 primary fields and 31 sub-fields,
and includes a three-tier difficulty classification based on the reasoning length re-
quired to solve each question. MatSciBench provides detailed reference solutions
enabling precise error analysis and incorporates multimodal reasoning through
visual contexts in numerous questions. Evaluations of leading models reveal that
even the highest-performing model, Gemini-2.5-Pro, achieves under 80%
accuracy on college-level materials science questions, highlighting the complexity
of MatSciBench. Our systematic analysis of different reasoning strategies—basic
chain-of-thought, tool augmentation, and self-correction—demonstrates that no
single method consistently excels across all scenarios. We further analyze per-
formance by difficulty level, examine trade-offs between efficiency and accuracy,
highlight the challenges inherent in multimodal reasoning tasks, analyze failure
modes across LLMs and reasoning methods, and evaluate the influence of retrieval-
augmented generation. MatSciBench thus establishes a comprehensive and solid
benchmark for assessing and driving improvements in the scientific reasoning
capabilities of LLMs within the materials science domain.

Dataset: huggingface.co/datasets/MatSciBench/MatSciBench
Code: anonymous.4open.science/r/MatSciBench

1 INTRODUCTION

Recent years have witnessed remarkable advancements of LLM reasoning abilities. From Chain
of thought (Wei et al., 2022) to self-correction (Shinn et al., 2023) and tool-augmentation (Gou
et al., 2023), the boundaries of LLM reasoning have expanded dramatically. What began with
grade-school arithmetic calculations (Cobbe et al., 2021) has evolved to solving problems at the level
of International Mathematical Olympiad (IMO) silver medalists (DeepMind, 2024). The o-series
model of OpenAI’s can even solve a substantial portion of frontier mathematical problems that would
typically require hours of concentrated effort from expert mathematicians (OpenAI, 2025; Glazer
et al., 2024).

Beyond LLMs’ notable achievements in mathematics, general scientific reasoning has emerged as
a new area of interest, where solving problems requires a proper combination of reasoning and
domain-specific knowledge (Truhn et al., 2023; Ma et al., 2024a;b). Scientific reasoning benchmarks
reveal that LLMs suffer from identifying correct scientific assumptions and often demonstrate flawed
understanding of scientific formulas and principles (Wang et al., 2023). Those findings indicate that
scientific reasoning presents unique challenges to LLMs compared to pure mathematical questions.
Therefore, numerous benchmarks have been proposed towards assessing LLM’s scientific reasoning
capability, spanning from grade-school (Lu et al., 2022) to PhD-level (Feng et al., 2025) problems
across domains (Huang et al., 2024a; Acharya et al., 2023).
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Despite the abundance of scientific problem-solving benchmarks, LLMs’ reasoning abilities in mate-
rials science remain underexplored. Materials science occupies a unique position at the intersection
of physics and chemistry, bridging fundamental science and engineering applications. This interdisci-
plinary field inherently relies on knowledge integration across multiple domains and requires complex
reasoning capabilities. Existing reasoning benchmarks in materials science are limited by the lack of
comprehensive evaluation and correct solutions (Zaki et al., 2024), or by the dependence on synthetic
data generated by LLMs themselves, which introduces unavoidable noises (Alampara et al., 2024).
In addition, none of the existing benchmarks adequately assesses the multimodal reasoning ability of
LLM in material science.

To comprehensively evaluate LLMs’ reasoning abilities in materials science, we propose
MatSciBench, a benchmark comprising 1340 meticulously curated questions from 10 college-
level textbooks spanning essential subdisciplines of materials science. All questions are open-ended
to prevent model guessing while enabling objective assessment through rule-based judgment. For
structured evaluation, MatSciBench constructs a comprehensive and fine-grained taxonomy with
6 primary fields (Materials, Properties, Structures, Fundamental Mechanisms, Processes, Failure
Mechanisms) and 31 sub-fields that capture materials science’s interdisciplinary nature, enabling
assessment of reasoning abilities on specific domains. In addition, questions are classified into three
difficulty levels based on reasoning length required to solve the question, with 50.7% easy, 29.1%
medium, and 20.1% hard questions. The 270 hard questions require long solving process, deliberately
challenging models’ complex reasoning capabilities. Detailed solutions to 944 of the questions
are included to facilitate error categorization and process-level evaluations. The benchmark also
incorporates 315 questions with visual contexts to assess multimodal reasoning abilities.

The o-series models from OpenAI, such as o4-mini, along with Gemini-2.5-Pro,
DeepSeek-R1, GPT-5, Claude-4-Sonnet, and Qwen3-235b-a22b-thinking, repre-
sent a new class of LLMs that exhibit complex reasoning by generating extended intermediate
outputs before producing final answers. These models are informally referred to as thinking models
or reasoning models, distinguishing them from traditional LLMs like GPT-4.1, Claude-3.7,
DeepSeek-V3, Llama-4-Maverick, and Gemini-2.0-Flash, classified as non-thinking
models (Chen et al., 2025). We conduct extensive experiments on MatSciBench to evaluate and
compare the reasoning capabilities of these six thinking models against five non-thinking models in
materials science problem solving. In addition, we also evaluate the effectiveness of self-correction
and tool-augmentation (i.e., integration of Python code) on non-thinking models in addition to the
basic CoT. Our results indicate that while Gemini-2.5-Pro lead with approximately 77% ac-
curacy, the best-performing non-thinking model, Llama-4-Maverick, achieves a comparable 71%.
However, none of the techniques—basic CoT, self-correction, or tool-augmentation—consistently
outperforms the others across all models, demonstrating that effectiveness depends significantly on
the base model.

Our systematic analysis of LLM reasoning capabilities examine multiple dimensions: difficulty
levels, reasoning efficiency, multimodal reasoning, and failure patterns. The key findings from our
analysis include: (1) thinking models’ performance is insensitive to question difficulty, suggesting
that they better handle reasoning-intensive tasks; (2) performance improves with longer outputs,
establishing a clear efficiency-accuracy trade-off frontier; (3) image-included questions lead to poorer
performance in multimodal models compared to text-only questions on the same LLMs, highlighting
the inherent challenges of multimodal reasoning; (4) by categorizing incorrectly answered responses
into predefined error types„ we discovered that all tested models suffer from errors based on domain
knowledge inaccuracies and question comprehension failures. Although the three reasoning methods
are capable of reducing specific types of errors, they may concurrently amplify other types of errors;
(5) our case study suggests that RAG may have limited effectiveness in reducing knowledge-based
errors and could potentially contribute to increased hallucination rates.

Our contributions are listed as follows:

• We introduce MatSciBench, a comprehensive and challenging materials science reasoning bench-
mark comprising 1340 expert-curated questions from college-level textbooks across essential
subdisciplines, featuring a structured taxonomy of 6 primary fields and 31 sub-fields, three-tier
difficulty classification, detailed solutions for 944 questions, and 315 questions with visual contexts
for multimodal reasoning evaluation.
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• We benchmark SOTA LLMs, including six thinking models and five non-thinking models. Addi-
tionally, we enhance the non-thinking models with three popular reasoning methods. This provides
the most comprehensive evaluation and comparison of reasoning capabilities in materials science
across different models and methods.

• We present a comprehensive multi-dimensional analysis of LLM reasoning capability across
difficulty levels, reasoning efficiency, accuracy trade-offs, multimodal reasoning capabilities, and
failure patterns. We additionally conduct a case study exploring the influence of RAG on scientific
reasoning in materials science. This thorough evaluation establishes a foundation for future
improvements in scientific reasoning models.

2 RELATED WORK

2.1 BENCHMARKING LLM’S STEM PROBLEM SOLVING ABILITIES

As LLMs continue to develop reasoning abilities, solving scientific problems is considered a funda-
mental dimension and has been the focus of numerous benchmarks. GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), along with a series of benchmarks (Mirzadeh et al., 2024) evaluated
the mathematical abilities of language models. With the emergence of multimodal LLMs, MathVista
(Lu et al., 2023) further includes visual contexts to benchmark the multimodal reasoning abilities.
With the growth of reasoning capabilities, competitive level questions like OlympiadBench (He et al.,
2024) and PutnamBench (Tsoukalas et al., 2024), and advanced graduate-level math like Frontier
Math (Glazer et al., 2024) and HARDMATH (Fan et al., 2024) set new standards for reasoning
models.

Beyond mathematics, natural science questions involve not only reasoning but also domain knowledge,
thus incentivizing increased interest, particularly in chemistry, physics, and biology (Welbl et al.,
2017; Lu et al., 2022; Rein et al., 2024). SciBench (Wang et al., 2023), MMMU (Yue et al., 2024a),
MMMU-Pro (Yue et al., 2024b) covers college-level scientific question solving requires both domain
knowledge and sophisticated reasoning. OlympicArena (Huang et al., 2024b) contributes Olympiad-
level, multimodal problems across seven scientific fields, and SuperGPQA (Du et al., 2025) further
expands coverage to 285 graduate-level disciplines. Besides problem solving, SciEval (Sun et al.,
2024), SciKnowEval (Feng et al., 2024) evaluate multi-level capabilities of LLM in scientific domain.
In addition to those general natural scientific reasoning benchmarks, a series of works Acharya et al.
(2023); Li et al. (2025a) focus on specific domains. PhysReason (Zhang et al., 2025), PHYSICS
(Feng et al., 2025), MM-PhyQA (Anand et al., 2024) specialize on the physical questions; ChemEval
(Huang et al., 2024a) benchmarks chemistry abilities; Sarwal et al. for Bioinformatics; Meshram et al.
(2024) for electronics.

2.2 AI FOR MATERIAL SCIENCE

Materials Databases. Well-curated data repositories form the foundation of modern materials infor-
matics. The Materials Project (Jain et al., 2013) pioneered this approach with its extensive catalog
of computed properties, establishing a framework now expanded by complementary initiatives like
NOMAD (Draxl and Scheffler, 2019) and AFLOW (Curtarolo et al., 2012). These platforms leverage
FAIR principles (Wilkinson et al., 2016) to ensure data quality and accessibility—essential prereq-
uisites for meaningful AI applications. The breadth and depth of these resources have dramatically
reduced the barriers to computational materials exploration.

LLMs in Materials Science. Large Language Models (LLMs) are rapidly emerging as versatile and
powerful tools within the materials science domain. Zhang et al. (2024) demonstrated how LLMs
can function as coordinating agents, breaking down complex materials challenges and orchestrating
specialized computational tools. Beyond this organizational role, LLMs excel at extracting insights
from scientific literature and suggesting novel experimental approaches (Jablonka et al., 2023).
Perhaps most intriguingly, Gruver et al. (2024) showed that fine-tuned language models can generate
valid crystal structures directly as text. To systematically advance these capabilities, benchmarks like
LLM4Mat-Bench (Rubungo et al., 2024) provide crucial evaluation frameworks that help refine these
models for materials-specific tasks.
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3 DATASET

3.1 DATA COLLECTION AND PROCESSING

For our materials science benchmark dataset, we curated a collection of problems from textbooks
across multiple sub-fields. We selected widely-adopted undergraduate and graduate textbooks that
include both comprehensive references (like “Fundamentals of Materials”) and specialized resources
focusing on specific domains (such as “Electronic Magnetic and Optical Materials”). The choice
of textbooks was guided and validated by materials science experts. We first identified the major
subfields of materials science and then selected textbooks in these areas that provide exercise solutions
and are accessible online. These sources collectively provide diverse problem types that cover the
breadth of materials science concepts. A full set of textbooks details are provided in Appendix B.

We used Mistral optical character recognition (OCR) (Mistral AI Team, 2025) to digitize both textual
and visual content of these textbooks. Then we implemented a parsing algorithm to identify the
example problems and solutions from the digital copies. Each question-answer pair was structured
into a standardized format. Following the initial extraction, each entry was manually reviewed and
corrected by domain experts to ensure accuracy and completeness. We applied strict filtering criteria,
retaining only questions with determinate answers in the form of numerical values or formulas.

3.2 DATASET STATISTICS

Our benchmark comprises 1340 question-answer pairs structured in a standardized format. Each
entry contains fields for question text, solution text, associated images, difficulty level, domain
classification, and problem type. Questions are categorized as either numerical or formula type
according to the answer, with 92.4% being numerical and 7.6% requiring formula derivation, 315
questions (23.5%) include images.

3.3 TAXONOMY CLASSIFICATION

We developed a comprehensive hierarchical taxonomy to systematically categorize questions across
fundamental materials science domains. Our taxonomy design was informed by established materials
science curricula and reference texts, including Shackelford (2015); Shackelford et al. (2016); Ashby
et al. (2019). The taxonomy framework reflects both the traditional organization of materials science
education and the critical concepts that underpin fundamental mechanisms at different length scales.
The taxonomy consists of six primary fields, each containing detailed subcategories:

Metals

Polymers

Elastomers

Semiconductors

Hybrids

Ceramics

Glasses

Structures

Materials
Sciences
Taxonomy

Materials

Processes

Properties

Failure 
Mechanisms

Fundamental
Mechanisms

Shaping
Joining Finishing

Diffusion & 
Kinetics

Phase 
Diagram

Atomic 
Bonding

Electrical

Optical

Magnetic

Mechanical

Thermal

CompositesCellular

Structural 
Gradient

Surface 
Texture

Micro/Nano-
structure

Elastic

Plastic

Fracture

Fatigue

Creep
Corrosion

Impact

Crystal 
Structure

Figure 1: Taxonomy of MatSciBench Materials
Science QAs.
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Figure 2: Difficulty Distribution by Taxonomy
Primary Fields.

1. Materials: Metals, Polymers, Elastomers, Semiconductors, Ceramics, Glasses, Hybrids
2. Properties: Mechanical, Thermal, Electrical, Magnetic, Optical
3. Structures: Composites, Cellular, Structural Gradient, Surface Texture, Micro/Nano-structure
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4. Fundamental Mechanisms: Atomic Bonding, Crystal Structure, Phase Diagram, Diffusion &
Kinetics

5. Processes: Joining, Shaping, Finishing
6. Failure Mechanisms: Elastic, Plastic, Fracture, Fatigue, Creep, Impact, Corrosion

Figure 1 shows our manually developed taxonomy that covers the domains of QAs collected in
MatSciBench. The taxonomy consists of six primary fields: Materials, Properties, Structures, Fun-
damental Mechanisms, Processes, and Failure Mechanisms, each containing detailed subcategories.
This multi-dimensional classification scheme enables us to capture the interdisciplinary nature of
materials science problems, where a single question might span multiple domains. Our taxonomy not
only provides a nuanced understanding of the dataset composition but also enables targeted evaluation
of model performance across specific subfields and their intersections, offering insights into how
AI models handle different aspects of materials science knowledge. Additional details of dataset,
including the data leakage detection, can be found in Appendix B.

3.4 DIFFICULTY CLASSIFICATION

We implemented a three-tier classification from easy, medium to hard, to assess question difficulty.
Difficulty is assessed with response lengths from Claude-3.7-Sonnet, which classifies questions
into Easy (50.7%), Medium (29.1%), and Hard (20.1%) categories based on the length of model
responses required to solve them. This distribution provides a balanced representation across
difficulty levels, while differentiating questions in terms of the knowledge and reasoning length
required to derive a correct solution. We validated this length-based approach across multiple models
and consistently observed that accuracy decreases while response length increases with difficulty,
confirming the reliability of this assessment method. To verify the robustness of our classification, we
use step-count analysis based on the judgment of Gemini-2.0-Flash for solution steps required
to solve each question, along with additional pattern-based and KNN-based validation methods.
Details of the validation approaches are discussed in Appendix B.

4 EXPERIMENTS

4.1 MODELS AND METHODS

For proprietary models, we evaluate GPT-4.1 (OpenAI, 2025), Claude-3.7-Sonnet (An-
thropic, 2025), Gemini-2.0-Flash (Google DeepMind, 2024), and the thinking models
o4-mini (OpenAI, 2024), Gemini-2.5-Pro (Google DeepMind, 2025), GPT-5 (Ope-
nAI, 2025), Claude-Sonnet-4 (Anthropic, 2025); for open-weight models, we evaluate
DeepSeek-V3 (Liu et al., 2024), llama-4-maverick (Meta AI, 2025), and the thinking mod-
els DeepSeek-R1 (Guo et al., 2025), Qwen3-235b-a22b-thinking (Yang et al., 2025).
Among these models, GPT-4.1, Claude-3.7-Sonnet, Gemini-2.0-Flash, o4-mini,
Gemini-2.5-Pro, GPT-5, and Claude-Sonnet-4 support visual inputs.

For non-thinking models, we adapt three prompting methods: basic CoT, self-correction, and tool-
augmentation. The self-correction methods follows Huang et al. (2023); Kim et al. (2023); Shinn
et al. (2023), invoking 3 rounds of conversation with the model: (1) the initial response, (2) detecting
issues in the initial attempt, and (3) revising the initial attempt based on the detected problem. The
tool-augmentation method prompts the model to generate Python code, executes it using a code
interpreter (Gou et al., 2023; Yang et al., 2024a), and derives the final answer based on the execution
results. The detailed prompts are provided in the Appendix C.

4.2 EVALUATION

The correctness of the output answers is evaluated using a hybrid approach that combines rule-based
evaluation and LLM-based evaluation. We adapt the rule-based evaluation system from Qwen-2.5
Math (Yang et al., 2024a). Following the previous works (Methani et al., 2020; Gupta et al., 2024),
we apply a relaxed numerical tolerance of 5% to account for approximation errors in calculations and
image recognition. To address the limitations of rule-based systems in handling complex formulas
and equations, we supplement this approach with Gemini-2.0-Flash for formula-type questions.
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Table 1: Experimental Results in Terms of Accuracy Score (%) on MatSciBench(questions w/o
images). Bold indicates the best performance, and Underline indicates the second best.

Model Failure Fund. Materials Proc. Prop. Struct. Overall

Non-Thinking Models
Claude-3.7-Sonnet 65.66 65.97 65.89 63.64 64.84 68.74 67.32

+Correction 66.79 63.87 67.11 64.65 65.42 69.51 68.00
+Tool 72.08 66.18 70.75 64.65 70.89 72.35 71.51

DeepSeek-V3 62.64 61.97 65.67 63.64 63.26 66.89 66.15
+Correction 67.17 60.50 62.91 63.64 63.26 65.46 64.39
+Tool 61.51 59.03 62.69 62.63 57.93 64.15 62.44

Gemini-2.0-Flash 60.75 55.04 59.71 52.53 58.36 60.00 59.90
+Correction 59.62 59.24 61.92 51.52 59.22 63.28 62.34
+Tool 67.55 65.97 68.65 69.70 68.30 70.49 69.46

GPT-4.1 65.66 68.91 70.42 61.62 67.58 71.80 70.73
+Correction 66.04 65.13 68.10 57.58 65.56 69.29 68.00
+Tool 63.02 62.18 61.92 55.56 60.81 62.62 61.66

Llama-4-Maverick 69.06 68.91 71.30 72.73 69.16 73.11 71.61
+Correction 69.43 66.18 69.87 70.71 68.16 71.15 69.95
+Tool 68.30 63.24 68.21 67.68 65.27 68.85 68.20

Thinking Models
Claude-4-Sonnet 58.49 52.52 54.86 56.57 52.31 54.64 54.44
DeepSeek-R1 71.70 71.43 73.84 74.75 72.62 75.30 73.95
Gemini-2.5-Pro 78.49 76.89 77.15 75.76 74.50 78.69 77.37
Qwen3-235B 73.58 69.96 71.96 68.69 70.17 73.33 72.10
GPT-5 67.17 64.71 65.34 67.68 62.97 65.57 64.88
o4-mini 72.08 73.32 73.73 69.70 72.91 74.97 74.34

Table 2: Experimental Results in Terms of Accuracy Score (%) on MatSciBench (questions w/
images). Bold indicates the best performance, and Underline indicates the second best.

Model Failure Fund. Materials Proc. Prop. Struct. Overall

Claude-3.7-Sonnet 29.76 37.13 37.31 40.62 34.45 34.51 34.60
Claude-Sonnet-4 30.95 40.12 39.18 46.88 35.89 38.73 37.46
Gemini-2.0-Flash 25.00 32.34 26.49 28.12 27.27 26.41 26.03
Gemini-2.5-Pro 39.29 40.12 42.16 31.25 41.63 38.73 39.05
GPT-5 42.86 53.89 49.63 59.38 46.89 50.00 48.89
o4-mini 33.33 40.72 37.69 43.75 36.36 37.32 37.14
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The LLM’s judgment serves as the final determinant of correctness for these complex mathematical
expressions. The performance in terms of accuracy score of all models on text-only questions is
presented in Table 1, and the performance of multimodal models on images-included questions is
presented in Table 2. We also evaluate a range of small and medium scale models and repeat the runs
to confirm that the results are largely deterministic, as reported in Appendix D.

4.3 RESULTS

Observation 1. Among non-thinking models, Llama-4-Maverick achieves the best over-
all accuracy (71.61%) under the basic chain-of-thought (CoT) setting. GPT-4.1 ranks second
(70.73%) in the basic CoT category, although its performance decreases when tools are introduced.
Claude-3.7-Sonnet shows relatively lower accuracy with basic CoT (67.32%), but improves
to 71.51% with tool integration, becoming the second-best performer in the tool-augmented setting.
Gemini-2.0-Flash has bad accuracy under the basic CoT condition (59.90%) but substantially
improves with tool use, reaching 69.46%. For thinking models, Gemini-2.5-Pro attains the best
results overall with 77.37%, surpassing all other models. DeepSeek-R1 is the strongest among
open-weight thinking models with 73.95%, closely followed by Qwen3-235B (72.10%). These
results indicate that the performance gap between open-weight and proprietary models is narrowing.

Observation 2. No single prompting method demonstrates consistently superior performance across
all models. The performance improvements achieved through tool-augmentation varies significantly
between models: Claude-3.7 and Gemini-2.0-Flash show substantial increases in over-
all performance, GPT-4.1, DeepSeek-V3, and Llama-4-Maverick exhibits performance
degradation. The self-correction technique generally decreases performance across most models,
converting more correct answers to incorrect ones than vice versa. Only Gemini-2.0-Flash
shows substantial performance improvements under this approach.

Observation 3. In the multimodal evaluation, GPT-5 delivers the strongest performance,
achieving the highest overall accuracy (48.89%) and leading across all individual categories.
Gemini-2.5-Pro ranks second overall with 39.05%. Claude models exhibit moderate perfor-
mance, with Claude-Sonnet-4 (37.46%) slightly surpassing Claude-3.7-Sonnet (34.60%).
The o4-mini model achieves a comparable score (37.14%) to Claude-Sonnet-4, but remains
behind GPT-5 and Gemini-2.5-Pro. These results highlight the superiority of GPT-5 in han-
dling multimodal reasoning tasks.

5 ANALYSIS

5.1 PERFORMANCE ACROSS DIFFICULTY LEVELS

The accuracy scores of different models across difficulty levels are shown in Figure 3. Most models
exhibit expected performance degradation patterns with increasing difficulty, suggesting that complex
reasoning process prevent them from reaching correct answers. o4-mini shows an interesting
pattern: its accuracy on hard questions is not lower than on medium questions. This pattern may
suggest that, for this small-scale reasoning-focused model, the main difficulty might not lie in the
length of reasoning, but rather in domain knowledge.
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Figure 3: The Performance of LLMs across Difficulty Levels.
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5.2 EFFICIENCY V.S. ACCURACY
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Figure 5: The Performance Comparison of
MLLM between Questions w and w/o Images.

Thinking models often generate highly verbose outputs. This verbosity frequently involves branching,
backtracking, error validation, and correction (Yeo et al., 2025), which, although beneficial for
arriving at correct results, may compromise efficiency. This underscores a fundamental trade-off
between reasoning accuracy and efficiency.

Figure 4 illustrates the relationship between performance and output length by showing token usage
across different models and methods, with the boundary line representing the reasoning efficiency
frontier. When using basic CoT prompting, thinking models consume significantly more tokens
while achieving superior performance compared to non-thinking models. Self-correction prompting
substantially increases output length without consistently improving performance—sometimes even
degrading results. In contrast, tool augmentation provides a more economical approach, requiring
minimal additional tokens while boosting performance across many models.

5.3 PERFORMANCE DROP DUE TO VISUAL CONTEXT

Image-included questions are significantly more challenging than text-only questions for multimodal
LLMs, with a significantly lower accuracy scores, as presented in Figure 5. We identified two major
sources of error in questions involving visual context: (i) many images in materials science are
inherently three-dimensional—such as lattice cells or atomic arrangements—which challenge the
spatial reasoning abilities of multimodal LLMs; (ii) many figures are diagrams or plots that require
models to extract numerical values precisely, a task that remains difficult for current multimodal
LLMs.

5.4 FAILURE PATTERN

Comp.

Know.
Strat.

Calc.
Hall.

Claude-3-7-Sonnet

Comp.

Know.
Strat.

Calc.
Hall.

DeepSeek-V3

Comp.

Know.
Strat.

Calc.
Hall.

Gemini-2.0-Flash

Comp.

Know.
Strat.

Calc.
Hall.

GPT-4.1

Comp.

Know.
Strat.

Calc.
Hall.

Llama-4-Maverick

Methods
base correction tool

Figure 6: Error categorization for non-thinking models. Types of errors are problem comprehension
deficiencies (Comp.), domain knowledge gaps (Know.), flawed solution strategies (Strat.), calculation
inaccuracies (Calc.), and hallucinated content (Hall.).

To investigate the challenges LLMs face in solving materials science problems, we manually ex-
amine incorrect responses and identified five major error categories: problem comprehension de-
ficiencies, domain knowledge gaps, flawed solution strategies, calculation inaccuracies, and hal-
lucinated content. To conduct systematic analysis of these error patterns automatically, we em-
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ployed Gemini-2.0-Flash to categorize mistakes across these five categories, evaluating all
non-thinking models and prompting methods on text-only questions with reference solutions. When
multiple errors exist, we classify them into the first appearing one in the solution. Detailed prompts
and definitions for each category are provided in Appendix E.

The error rates across categories are presented in Figure 6. These findings reveal consistent patterns
across all models, with deficiencies in domain knowledge and question comprehension representing
the most critical limitations—exceeding even calculation errors. While errors caused by hallucinations
are still present, they occur less frequently than other error types. As expected, tool-augmentation
methods reduced numerical errors across all models, with the most significant improvements observed
in Gemini-2.0-Flash. Self-correction methods, on the other hand, did not provide consistent
improvements across any of the tested models in any error category.

5.5 RETRIEVAL AUGMENTED GENERATION: A CASE STUDY

Figure 7: The Error Categories Counts of Basic
CoT and RAG.

Retrieval Augmented Generation (RAG) has
long been regarded as an effective approach
to enhance model performance in scientific do-
mains where specialized knowledge is necessary
for completing tasks (Lála et al., 2023; Li et al.,
2025b). To verify this approach on material
science reasoning tasks, we conducted a case
study using DeepSeek-V3 on MatSciBench.
We implemented RAG through web searching:
given a question, the LLM formulates a search
query, retrieves up to five most relevant results
from the Tavily API, summarizes the most use-
ful information, and appends this to the original
question. The failure pattern when using RAG is
presented in Figure 7. Surprisingly, RAG does
not reduce knowledge-related errors but instead improves problem comprehension. We hypothesize
that web searching doesn’t consistently retrieve correct and useful information, thus fail to reliably
enhance knowledge accuracy and occasionally even inducing hallucination. However, the additional
contextual information may help the model better comprehend questions and identify relevant infor-
mation for solving them. Specific examples for both cases, and an additional RAG case study for
Gemini-2.0-Flash, can be found in Appendix E.

6 CONCLUSION AND LIMITATION

In this work, we present MatSciBench, a benchmark comprising 1340 college-level materials
science questions spanning all essential subdisciplines. We evaluate state-of-the-art thinking and
non-thinking models on MatSciBench, employing three different reasoning methods for non-thinking
models. Our results reveal significant performance discrepancies among LLMs on materials science
reasoning tasks and highlight the varying effectiveness of different reasoning approaches. We
further analyze model performance across multiple dimensions: difficulty levels, reasoning efficiency,
multimodal reasoning capabilities, failure patterns, and retrieval-augmented generation (RAG).
This comprehensive analysis enhances our understanding of model performance and establishes a
foundation for further improvements in materials science reasoning capabilities.

While comprehensive, MatSciBench has several limitations. First, the benchmark would benefit from
a larger dataset size; however, the intensive human labor required to create high-quality, real-data
benchmarks makes scaling difficult. In addition, due to financial constraints, we were unable to
benchmark some most advanced models(e.g., o3, Claude-Opus-4.1).
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USAGE OF LARGE LANGUAGE MODELS

In this work, besides running LLMs in experiments, we use LLMs for the following purposes:

1. Aid or Polish Writing (Gemini, ChatGPT, Claude)

2. Literature Retrieval and Discovery (e.g., finding related work) (Gemini Deep Research,
ChatGPT Deep Research)

3. Assisting Code Writing and Debugging (Claude Code, Cursor(GPT, Claude))

We fully understand the responsibility of using LLMs in academic research. We carefully monitor
any potential problems, such as plagiarism or scientific misconduct (e.g., fabrication of facts) when
using LLMs. We make sure these problems do not occur in the paper.
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A ADDITIONAL RELATED WORK

A.1 AI FOR MATERIAL SCIENCE

AI-Powered Material Design and Simulation. The materials science toolkit continues to expand
with specialized AI approaches that complement language models. Generative frameworks developed
by Zeni et al. (2025), Xie et al. (2022), and Yang et al. (2024b) create entirely new materials
with tailored properties, while machine learning potentials from Chen and Ong (2022), Deng et al.
(2023), and Merchant et al. (2023) deliver quantum-accurate simulations at a fraction of traditional
computational costs. These advances enable rapid screening of materials candidates that would be
impractical using conventional methods.

The integration of AI continues to push scientific boundaries, notably with the rise of self-driving
laboratories (MacLeod et al., 2020; Reker et al., 2023) that automate and accelerate the experimental
discovery cycle. Concurrently, the need to understand and trust these sophisticated models has
spurred the development of explainable AI techniques tailored for materials science (Rickman et al.,
2019; Liao et al., 2022). The synergy between comprehensive data resources, the multifaceted
capabilities of LLMs, advanced generative and predictive algorithms, and emerging autonomous
and interpretable systems heralds a new, accelerated era of materials innovation with profound
implications for technology and society.

B ADDITIONAL DETAILS ABOUT DATASET

B.1 QUESTION SOURCE

We list the source of our questions in Table 3.
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Table 3: Source Textbooks Used for Question-answer Collection

Textbook Author(s) # QAs
Introduction to Materials Science for Engi-
neers

James F. Shackelford 349

The Science and Engineering of Materials Donald R. Askeland, Pradeep P. Fulay, and
Wendelin J. Wright

287

Materials Science and Engineering: An In-
troduction

William D. Callister, Jr. 61

Fundamentals of Materials Science and En-
gineering: An Integrated Approach

William D. Callister, Jr. and David G. Reth-
wisch

393

Mechanical Behavior of Materials William F. Hosford 83
Electronic, Magnetic, and Optical Materials Pradeep P. Fulay and Jung-Kun Lee 72
Materials and Process Selection for Engi-
neering Design

Mahmoud M. Farag 27

Fundamentals of Ceramics Michel W. Barsoum 29
Physical Metallurgy William F. Hosford 27
Polymer Science and Technology Joel R. Fried 12

Total 1340

B.2 DATA EDITING UI

The user interface of our data editing app is presented in Figure 8. This UI present the QA and allow
users to edit each field of the QA.

B.3 EXAMPLE OF QUESTION

Here we present an example from our dataset with all its attributes.

Introduction to Materials Science for Engineers Example 9.12

Question
A fireclay refractory ceramic can be made by heating the raw material kaolinite,
Al2 (Si2O5) (OH)4, thus driving off the waters of hydration. Determine the phases present,
their compositions, and their amounts for the resulting microstructure (below the eutectic
temperature). Give your answer as a tuple (Amount of SiO2 in mol%, Amount of Mullite in
mol%).
Solution
A modest rearrangement of the kaolinite formula helps to clarify the production of this
ceramic product:

Al2 (Si2O5) (OH)4 = Al2O3 · 2SiO2 · 2H2O

The firing operation yields

Al2O3 · 2SiO2 · 2H2O
heat−−−→ Al2O3 · 2SiO2 + 2H2O ↑

The remaining solid, then, has an overall composition of

mol%Al2O3 =
molAl2O3

molAl2O3 +molSiO2
× 100%

=
1

1 + 2
× 100% = 33.3%

Using Figure 9.23, we see that the overall composition falls in the SiO2+ mullite two-
phase region below the eutectic temperature. The SiO2 composition is 0 mol%Al2O3 (i.e.,
100%SiO2). The composition of mullite is 60 mol%Al2O3.
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Figure 8: UI of Data Editing App

Using Equations mα

mα+mβ
=

xβ−x
xβ−xα

and ( mβ

mα+mβ
= x−xα

xβ−xα
) yields

mol%SiO2 =
xmullite − x

xmullite − xSiO2

× 100% =
60− 33.3

60− 0
× 100%

= 44.5 mol%

and
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mol% mullite =
x− xSiO2

xmullite − xSiO2

× 100% =
33.3− 0

60− 0
× 100%

= 55.5 mol%

Image

Answer (44.5, 55.5)
Unit (mol%, mol%)
Categories
Materials: Ceramics
Properties: Thermal
Structures: Micro/Nano-structure
Type NUM
Number of Answers Multiple
Difficulty Level medium

B.4 TAXONOMY TREE

The proposed taxonomy for materials science QAs includes 6 major fields. For each question, we as-
sign a six-digit “category vector” where each position corresponds to one of these primary fields. The
digit in each position indicates the relevant subcategory within that field, with 0 representing “None”
(indicating the field is not relevant to the question). For example, a question with category vector
“310001” would be about Metals, Mechanical properties, with no relevant Structures, Fundamental
Mechanisms, or Processes components, and related to Elastic deformation. Only 10 questions are not
matched with any subfiled and are manually assigned to “Mechanical Properties” (“010000”).

Figure 9 shows the distribution across taxonomy subcategories. This multi-dimensional classification
scheme enables us to capture the interdisciplinary nature of materials science problems, where a
single question might span multiple domains. Only 10 questions are not matched with any subfiled
and are manually assigned to “Mechanical Properties” (“010000”).

B.5 COMPARISON OF DIFFICULTY ASSESSMENT METHODS

B.5.1 RESPONSE-LENGTH BASED DIFFICULTY CLASSIFICATION

We evaluate question difficulty based on response lengths from a strong baseline model,
Claude-3.7-Sonnet. The questions are classified into three tiers: Easy (50.2%), Medium
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Figure 9: Taxonomy and QA distribution across each fields and sub-fields.

(29.3%) and Hard (20.5%). We applied this classification to other models to demonstrate its ro-
bustness. As shown in Table 4, for nearly every model, accuracy decreases while response length
(characters) increases with difficulty, confirming the reliability of this assessment method.

Table 4: Model Performance and Response Length across Difficulty Levels Based on Response-
Length Classification

Model Accuracy Response Length
Easy Medium Hard Easy Medium Hard

claude-3-7-sonnet-20250219 0.640 0.541 0.480 1180 1496 1947
deepseek-V3 0.712 0.558 0.487 1413 1690 2310
deepseek-reasoner 0.749 0.658 0.592 15901 18417 20689
gemini-2.0-flash 0.552 0.484 0.363 1713 2316 2816
gemini-2.5-pro-preview-05-06 0.632 0.551 0.527 3209 3593 4331
gpt-4.1-2025-04-14 0.591 0.506 0.414 1382 1786 2300
llama-4-maverick 0.693 0.553 0.495 2157 2626 3096
o4-mini-2025-04-16 0.586 0.471 0.498 400 467 505
qwen3-235b-a22b 0.745 0.657 0.563 1640 1917 2188

The consistent pattern across multiple models validates this classification methodology, showing
that longer required responses correspond to more complex reasoning requirements. We adopt this
response-length based classification as our primary difficulty assessment method, with step-count
analysis serving as validation.

B.5.2 STEP-COUNT BASED DIFFICULTY CLASSIFICATION

To ensure robustness in our difficulty classification, we employed three complementary approaches
to determine solution step counts:

1. Pattern-based method: This approach identifies explicit step indicators in solution text,
such as numbered steps, paragraph breaks, and calculation indicators.

2. KNN-based method: Trained on 100 sampled examples, this approach uses few-shot
learning to identify implicit solution steps even when they aren’t explicitly numbered.
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Figure 10: Distribution of solution steps count across the dataset.

3. Gemini-based method: This method leverages the Gemini-2.0-flash model to analyze
solution structure and identify both explicit and implicit reasoning steps. It produces a mean
of 2.4 steps with a median of 1.0 steps, resulting in our final difficulty distribution.

As illustrated in Figure 10, the distributions of solution steps across the three strategies follow a
right-skewed pattern, with most questions requiring fewer than 4 steps to solve. While pattern-based
method potentially overestimates the steps needed.

These three approaches show moderate agreement in their classifications, with pairwise agreement
rates of 57.1% between Pattern-based and Gemini-based methods, 47.9% between Pattern-based and
KNN-based methods, and 44.2% between KNN-based and Gemini-based methods. We analyzed
the correlation of step counts between the methods, which reveals that Pattern vs. Gemini has high
correlation (0.61), confirming that our Gemini-based assessment captures many of the explicit steps
identified by pattern matching while also recognizing implicit reasoning steps.

We further verified the correlation of solution step number from the three counting strategy in
Figure 11 and the agreement of difficulty level derived from three step counting methods in Figure 12.

Figure 11: Correlation analysis of three step
counting methods.

Figure 12: Agreement of difficulty level de-
rived from three step counting methods.

B.6 EXAMPLE OF QUESTIONS FROM EACH DIFFICULTY LEVEL

Here we present questions from each difficulty level.

Example: Easy

Question

22
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If ice homogeneously nucleates at −40◦C, calculate the critical radius given values of
−3.1 × 108 J/m3 and 25 × 10−3 J/m2, respectively, for the latent heat of fusion and the
surface free energy.
Solution
This problem states that ice homogeneously nucleates at −40◦C, and we are to calculate the
critical radius given the latent heat of fusion

(
−3.1× 108 J/m3

)
and the surface free energy(

25× 10−3 J/m2
)
. Solution to this problem requires the utilization of equation

r∗ =

(
−2γTm

∆Hf

)(
1

Tm − T

)
as

r =

(
−2γTm

∆Hf

)(
1

Tm − T

)
=

[
−
(2)
(
25× 10−3 J/m2

)
(273 K)

−3.1× 108 J/m3

](
1

40 K

)
= 1.10× 10−9 m = 1.10 nm

Example: Medium

Question
You are asked to characterize a new semiconductor. If its conductivity at 20◦C is 250Ω−1 ·
m−1 and at 100◦C is 1, 100Ω−1 · m−1, what is its band gap, Eg?

Solution
From Equation (lnσ = lnσ0 − Eg

2k · 1
T ),

lnσT1 = lnσ0 −
Eg

2k
· 1

T1

and

lnσT2 = lnσ0 −
Eg

2k
· 1

T2

Subtracting the second from the first yields:

lnσT1
− lnσT2

= ln

(
σT1

σT2

)
= −Eg

2k

(
1

T1
− 1

T2

)
Then,

−Eg

2k
=

ln (σT1
/σT2

)

1/T1 − 1/T2

or

Eg =
2k · ln (σT2

/σT1
)

1/T1 − 1/T2

Taking T1 = 20◦C(= 293 K) and T2 = 100◦C(= 373 K) gives:

Eg =
(2× 86.2× 10−6eV/K) · ln(1, 100/250)

1
373 − 1

293

= 0.349eV
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Example: Hard

Question
An advanced engineered ceramic has a Weibull modulus m = 9. The flexural strength is
250MPa at a probability of failure F = 0.4. What is the level of flexural strength if the
probability of failure has to be 0.1?
Solution
We assume all samples tested had the same volume, so the size of the sample will not be a
factor in this case. We can use the symbol V for sample volume instead of V0. We are dealing
with a brittle material, so we begin with the equation:

F (V ) = 1− P (V ) = 1− exp

[
−
(

σ

σ0

)m]
or

1− F (V ) = exp

[
−
(

σ

σ0

)m]
Take the logarithm of both sides:

ln[1− F (V )] = −
(

σ

σ0

)m

Take logarithms again:

ln {− ln[1− F (V )]} = m (lnσ − lnσ0)

We eliminate the minus sign on the left-hand side by rewriting as:

ln

{
ln

[
1

1− F (V )

]}
= m (lnσ − lnσ0)

For F = 0.4, σ = 250MPa, and m = 9, we have:

ln

[
ln

(
1

1− 0.4

)]
= 9 (ln 250− lnσ0)

Therefore,

ln[ln(1/0.6)] = ln[ln(1.66667)] = ln(0.510826) = −0.67173

= 9 (5.52146− lnσ0)

Solving gives:

lnσ0 = 5.52146 + 0.07464 = 5.5961 ⇒ σ0 = 269.4MPa

Now, to find the value of σ for F = 0.1, we use the same equation:

ln

[
ln

(
1

1− 0.1

)]
= 9(lnσ − ln 269.4)

ln[ln(1/0.9)] = 9(lnσ − 5.5962)

ln(0.105361) = −2.25037 = 9(lnσ − 5.5962)

⇒ lnσ = 5.3462

So,

σ = 209.8MPa

As expected, when the probability of failure is reduced to 0.1, the stress level that can be
supported also decreases.
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B.7 DATA LEAKAGE DETECTION

We use the method proposed in Xu et al. (2024) to detect potential data leakage in our benchmark.
Since this method can only be applied to locally served models and the code base is not optimized
for very large models, we applied it to smaller models, namely Qwen-2.5-7B, Qwen-2.5-32B,
Gemma-3-4B, Gemma-3-12B, and Gemma-3-27B. The results are summarized in Table 5.

Table 5: Data leakage detection results on smaller models.

Model N-gram Accuracy PPL Accuracy
Qwen-2.5-Instruct-7B 1.28 1.07
Qwen-2.5-Instruct-32B 1.22 1.06
Gemma-3-4B-it 1.04 1.08
Gemma-3-12B-it 1.06 1.10
Gemma-3-27B-it 1.09 1.07

These results indicate that our benchmark is free from data leakage, even for the most up-to-date
models we tested.

C ADDITIONAL EXPERIMENTS DETAILS

C.1 DETAILS OF DIFFERENT PROMPTS

Prompts we used for each method are as follows. The Basic System Prompt is used in basic CoT,
self-correction, and the RAG.

Basic System Prompt

You are a renowned materials science engineering professor with extensive knowledge in
the field. Your students have presented you with a challenging question related to materials
science. Please reason step by step, and put the final answer inside a single box using
\boxed{...}. Include only the final answer inside the box, without the unit.

The tool-augmentation is prompted to use Python code to improve the computation.

Tool System Prompt

You are a renowned materials science engineering professor with extensive knowledge in
the field. Your students have presented you with a challenging question related to materials
science. If necessary, you could write a single clean Python code block that computes
necessary numeric values. Enclose the code in triple backticks with “‘python. Please
reason step by step, if no code is needed, put the final answer inside a single box using
\boxed{...}; otherwise, wait for the user to execute the code and give you the execution
result, and then put the final answer inside a single box using \boxed{...}. Include only
the final answer inside the box, without the unit.

After the code execution, the model get the results and make the final answer.

Tool Summary Prompt

Here are the results of the code execution:\n\n{code_executed}\n\nBased on these results,
what is the final answer to the original question?

When using the self-correction, the model is first prompted to review and find the problem from its
initial response.
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Review Prompt

Review your previous answer and find problems with your answer.

Then, the model is prompted to improve the initial response with the problem it found.

Revise Prompt

Based on the problems you found, improve your answer. Please reiterate your answer, with
your final answer in the form \boxed{answer}.

We use the following prompt to let Gemini-2.0-Flash determine whether the answer is correct.

Judge System Prompt

As an expert judge, evaluate if the following model’s answer matches the reference answer.\n
Focus on the numerical values and key concepts. Small numerical differences are tolerable
due to approximation errors.\n Do not solve the problem, just judge if the model answer
matches the reference answer.\n Put the final decision (’correct’ (if matching) or ’incorrect’
(if not matching)) inside a single box using \boxed{...}.

D ADDITIONAL EXPERIMENTAL RESULTS

We evaluate Qwen2.5 (7B, 32B, 72B), Gemma 3 (4B, 12B, 17B), and Llama-4-Scout, and present
their results in Table 6.

The results are largely deterministic because the temperature was set to 0 during benchmarking. For
the small and medium-sized models, we repeated each experiment three times and report the mean
along with the 95% confidence interval. The outcomes remain nearly identical across repeated runs,
as shown in Table 7.

E ADDITIONAL ANALYSIS DETAILS

E.1 DETAILED PERFORMANCE ACROSS DIFFICULTY LEVEL

The performance of each model across difficulty levels is presented in Table ??.

E.2 DETAILS OF ERROR CATEGORIZATIONS

We use Gemini-2.0-Flash to categorize the error using the following prompt:

Error Categorization Prompt

You are an assistant whose task is to diagnose the single main reason a wrong solution fails.
Each task input will contain three parts, clearly marked: (i) the question, (ii) a reference
solution, and (iii) a wrong solution produced by a model. Your steps are:

1. Read the question first so you know what must be answered. Pay attention to given data,
required units, and any boundary conditions or hidden assumptions.
2. Read the reference solution carefully. Treat it as correct and complete unless it contains an
explicit note that it is partial.
3. Read the wrong solution line by line. Locate the first point where it diverges from the
reasoning in the reference solution. That first wrong turn usually signals the true cause of
failure.

Choose one category below that best explains the root cause. If more than one category is
possible, pick the one that triggers the earliest error or has the largest impact on the final

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Experimental Results in Terms of Accuracy Score (%) on MatSciBench (questions w/o
images).

Model Failure Fund. Materials Proc. Prop. Struct. Overall

Gemma Models
gemma-3-4b-it 4.15 6.30 6.73 4.04 5.76 6.99 7.12

+Correction 6.04 3.99 5.63 1.01 5.48 5.79 6.05
+Tool 6.42 4.62 6.18 4.04 6.34 6.78 6.73

gemma-3-12b-it 12.45 7.98 13.13 5.05 12.68 13.55 13.76
+Correction 14.72 10.29 14.57 12.12 14.70 14.86 14.93
+Tool 15.47 13.66 16.11 8.08 15.71 16.28 16.59

gemma-3-27b-it 32.83 24.16 30.79 17.17 29.97 31.26 30.93
+Correction 28.30 25.21 28.92 23.23 27.09 29.18 28.78
+Tool 27.55 21.64 26.49 20.20 26.08 26.23 26.24

Qwen Models
qwen2.5-7b-instruct 15.85 15.34 17.99 10.10 18.01 18.47 18.73

+Correction 16.60 15.76 18.76 13.13 19.02 19.34 19.22
+Tool 13.21 12.61 12.80 9.09 12.10 13.22 13.17

qwen2.5-32b-instruct 36.98 28.78 33.33 20.20 32.28 33.22 33.27
+Correction 32.08 28.15 31.68 19.19 30.40 32.35 32.10
+Tool 12.83 13.24 12.91 10.10 11.96 13.33 13.85

qwen2.5-72b-instruct 33.96 28.15 32.89 29.29 31.84 33.44 33.17
+Correction 32.45 28.36 32.34 27.27 30.55 33.01 32.49
+Tool 23.02 19.33 22.41 18.18 22.62 21.75 22.34

Llama Models
llama-4-scout 46.04 39.92 46.36 43.43 43.80 45.68 45.46

+Correction 47.55 39.92 44.48 39.39 42.36 44.04 44.20
+Tool 49.81 41.39 47.02 43.43 44.81 45.79 45.95
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Model Fa
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gemma-3-4b 4.15 ± 0.00 6.30 ± 0.00 6.66 ± 0.06 4.04 ± 0.00 5.76 ± 0.00 6.92 ± 0.06 6.22 ± 0.03
gemma-3-12b 12.45 ± 0.00 8.05 ± 0.12 13.13 ± 0.00 5.05 ± 0.00 12.63 ± 0.08 13.55 ± 0.00 12.13 ± 0.00
gemma-3-27b 32.08 ± 1.64 25.70 ± 1.58 31.38 ± 0.56 20.20 ± 2.67 30.31 ± 0.58 31.48 ± 0.22 30.10 ± 0.64
qwen2.5-7b 15.60 ± 0.22 15.20 ± 0.24 17.99 ± 0.11 10.44 ± 0.58 17.96 ± 0.08 18.47 ± 0.11 17.31 ± 0.12
qwen2.5-32b 36.86 ± 0.22 28.64 ± 0.12 33.19 ± 0.17 20.20 ± 0.00 32.18 ± 0.17 33.22 ± 0.11 32.25 ± 0.13
qwen2.5-72b 33.96 ± 0.00 28.15 ± 0.00 32.86 ± 0.06 29.29 ± 0.00 31.84 ± 0.00 33.41 ± 0.06 32.11 ± 0.03
llama-4-scout 47.42 ± 1.21 40.20 ± 0.32 46.06 ± 0.81 44.44 ± 1.01 43.80 ± 0.29 45.61 ± 0.44 44.70 ± 0.45

Table 7: Results for small and medium-sized models. Each value is reported as the mean with
standard deviation over three runs.

answer. If the wrong solution actually reaches the same numerical result and its reasoning is
valid, assign category 7.

Categories
1. Problem Comprehension and Assumptions. The solver misreads what is asked, drops a
given fact, injects an unsupported assumption, or confuses symbols.
2. Domain Knowledge Accuracy. The solver recalls or applies a materials science law,
concept, or formula in an incorrect way. Unit definitions and physical constants also belong
here when misused.
3. Solution Strategy and Planning. The solver sets up an approach that cannot reach the goal,
skips required sub-problems, or mixes independent lines of reasoning without a clear plan.
4. Calculation Accuracy. The algebra, arithmetic, sign handling, or unit conversion is wrong
even though the plan and formulae are correct.
5. Hallucinated Content. The solver invents inputs, processes, or physical relations that are
not stated in the question and are not accepted scientific facts.
6. Code Implementation. The solver writes Python code that does not match its verbal
reasoning or has syntax, logic, or data handling errors that change the outcome.
7. Other. Any issue not covered above, or the wrong solution is actually correct.

Answer format
Return exactly one TEX box with the chosen index: \boxed{1}, \boxed{2},
\boxed{3}, \boxed{4}, \boxed{5}, \boxed{6}, or \boxed{7}. Output noth-
ing else.

Here are examples of each category:

Example: Problem Comprehension and Assumptions

Question:
Compute the rate of some reaction that obeys Avrami kinetics, assuming that the constants n
and k have values of 2.0 and 5× 10−4, respectively, for time expressed in seconds. The unit
of the answer is s−1.

Reference Solution:
This problem asks that we compute the rate of some reaction given the values of n and k in
equation

(y = 1− exp (−ktn))

. Since the reaction rate is defined by equation ( rate = 1
t0.5

), it is first necessary to determine
t0.5, or the time necessary for the reaction to reach y = 0.5. We must manipulate equation
(y = 1− exp (−ktn)) such that t is the dependent variable. It is first necessary to rearrange
equation (y = 1− exp (−ktn)) as follows:

exp (−ktn) = 1− y

And then take natural logarithms of both sides:
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Table 8: Experimental Results by Difficulty Level on MatSciBench (questions w/o images). Bold
indicates the best performance, and Underline indicates the second best.

Model Easy Medium Hard Overall

Llama-4-Maverick-17b 79.72 68.09 57.28 71.61
+Correction 78.94 64.80 55.87 69.95
+Tool 75.79 62.83 57.75 68.20

Claude-3.7-Sonnet 75.98 63.49 52.11 67.32
+Correction 77.76 61.84 53.52 68.00
+Tool 78.54 68.09 59.62 71.51

GPT-4.1 76.97 68.75 58.69 70.73
+Correction 75.00 64.47 56.34 68.00
+Tool 70.28 56.91 47.89 61.66

DeepSeek-V3 75.59 60.86 51.17 66.15
+Correction 73.62 57.57 52.11 64.39
+Tool 70.08 59.87 47.89 62.44

Llama-4-Scout 53.94 44.41 26.76 45.46
+Correction 51.18 44.74 26.76 44.20
+Tool 54.92 40.13 32.86 45.95

Gemini-2.0-Flash 68.11 59.21 41.31 59.90
+Correction 69.88 60.53 46.95 62.34
+Tool 78.74 66.12 52.11 69.46

Qwen2.5-72b 41.54 30.26 17.37 33.17
+Correction 41.14 30.59 14.55 32.49
+Tool 27.95 21.38 10.33 22.34

Qwen2.5-32b 42.13 29.61 17.37 33.27
+Correction 41.34 27.30 16.90 32.10
+Tool 16.14 13.82 8.45 13.85

Gemma-3-27b 37.60 30.92 15.02 30.93
+Correction 33.46 29.28 16.90 28.78
+Tool 31.10 25.33 15.96 26.24

Qwen2.5-7b 26.38 14.47 6.57 18.73
+Correction 27.36 13.16 8.45 19.22
+Tool 18.31 11.84 2.82 13.17

Gemma-3-12b 19.88 9.87 4.69 13.76
+Correction 20.67 12.83 4.23 14.93
+Tool 22.83 12.50 7.51 16.59

Gemma-3-4b 9.65 5.92 2.82 7.12
+Correction 7.48 5.92 2.82 6.05
+Tool 8.46 5.92 3.76 6.73

Gemini-2.5-Pro 82.28 74.67 69.48 77.37
o4-mini 79.13 68.42 71.36 74.34
DeepSeek-Reasoner 77.95 72.37 66.67 73.95
Qwen3-235B 76.38 71.05 63.38 72.10
GPT-5 71.06 63.49 52.11 64.88
Claude-Sonnet-4 60.43 53.62 41.31 54.44
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−ktn = ln(1− y)

Which my be rearranged so as to read

tn = − ln(1− y)

k
Now, solving for t from this expression leads to

t =

[
− ln(1− y)

k

] 1
n

For t0.5 this equation takes the form

t0.5 =

[
− ln(1− 0.5)

k

] 1
n

And, incorporation of values for n and k given in the problem statement ( 2.0 and 5× 10−4,
respectively), then

t0.5 =

[
− ln(1− 0.5)

5× 10−4

] 1
2

= 37.23 s

Now, the rate is computed using equation ( rate = 1
t0.5

) as

rate =
1

t0.5
=

1

37.23 s
= 2.69× 10−2 s−1

DeepSeek-V3 Answer: To compute the reaction rate dy
dt for Avrami kinetics with n = 2.0

and k = 5× 10−4 s−n, we use the formula:

dy

dt
= nktn−1 exp(−ktn)

Substituting the given values:

dy

dt
= 2.0× 5× 10−4 × t2−1 exp(−5× 10−4 × t2)

Simplifying:

dy

dt
= 10−3t exp(−5× 10−4t2)

The reaction rate at any time t is therefore:

10−3t exp(−5× 10−4t2)

**Note:** The answer is expressed in terms of t. If a specific time t is provided, substitute it
into the expression to get the numerical rate. The unit s−1 is implied.

Explanation:
The task assumes the reaction rate as rate = 1

t0.5
, that is, the reciprocal of the time required

to reach a fractional conversion of y = 0.5. The model instead differentiated the Avrami
equation to obtain the instantaneous rate dy

dt as a function of time, left the result in symbolic
form, and never evaluated it at the half-transformation point or computed a numerical value.

Domain Knowledge Accuracy

Question
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Given rSi = 0.117 nm, calculate the linear density of atoms along the [111] direction in

silicon. Express the answer in
atoms

nm
.

Reference Solution
To calculate the linear density of atoms along the [111] direction in silicon, we must consider
the arrangement of atoms along this direction, which is a body diagonal in the diamond
cubic structure. The atoms along the [111] direction are not uniformly spaced, and thus, the
calculation requires careful consideration of their positions. Referring to the structure, we
find that there are effectively 2 atoms centered along a given body diagonal. The length of
the body diagonal in a unit cell, denoted as l, can be related to the atomic radius of silicon,
rSi, by the equation:

2rSi =
1

4
l

Solving for l gives:
l = 8rSi

. The atomic radius of silicon is 0.117 nm, thus:

l = 8(0.117 nm) = 0.936 nm

Therefore, the linear density is calculated as:

linear density =
2 atoms
0.936 nm

= 2.14
atoms
nm

DeepSeek-V3 Answer
To calculate the linear density of atoms along the [111] direction in silicon, follow these
steps:
1. **Determine the lattice parameter a:**

a =
4r√
3
=

4× 0.117 nm√
3

≈ 0.270 nm

2. **Calculate the distance between atoms along the [111] direction:** The [111] direction
in a diamond cubic structure has atoms spaced at intervals of

√
3
4 a. Therefore:

Distance =

√
3

4
a =

√
3

4
× 0.270 nm ≈ 0.117 nm

3. **Compute the linear density:** The linear density is the inverse of the distance between
atoms:

Linear Density =
1

Distance
=

1

0.117 nm
≈ 8.55

atoms
nm

However, upon closer inspection, the [111] direction in the diamond cubic structure actually
contains **2 atoms** over a length of

√
3
2 a. Therefore, the correct linear density is:

Linear Density =
2

√
3
2 a

=
4√
3a

Substituting a = 0.270 nm:

Linear Density =
4√

3× 0.270
≈ 8.55

atoms
nm

Thus, the final answer is:

8.55

Explanation
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The model’s result is wrong because they chose the wrong crystallographic relation between
atomic radius and lattice parameter for a diamond-cubic lattice: they wrote

a =
4r√
3

instead of the correct
a =

8r√
3
.

That choice is a mis-remembered structural fact about how silicon atoms touch along ⟨110⟩
directions.

Example: Calcualtion Accuracy

Question:
Equation w = Gγ2

2 =
(
1
2

)
Gb2

(2πr)2 gives the energy/volume as a function of r. Calculate the
distance from the core of a screw dislocation at which the energy/volume equals the heat of
vaporization, Hv, and express this distance in terms of r/b. Evaluate this critical value of
r/b for copper. Given ρ = 8.93mg/cm3, G = 77GPa,b = 0.255 nm, Hv = 4.73MJ/kg.
Give your answer as a tuple: (critical r/b, critical r of copper).The units of each required
answer are (, nm), respectively.

Correct Solution:
Solving the equation

w =
Gγ2

2
=

(
1

2

)
Gb2

(2πr)2

for r
b , we obtain:(r

b

)2
=

G

8π2Uv
=

77× 109 Pa

8π2 × 8.93× 103 kg/m3 × 4.73× 106 J/kg
= 0.23,

so
r

b
= 0.15.

For copper,
r = 0.15× 0.255 = 0.04 nm.

DeepSeek-V3 Answer:
1. Equate energy per volume to heat of vaporization:

1

2

Gb2

(2πr)2
= Hv ⇒ Gb2

8π2r2
= Hv

2. Solve for r:

r2 =
Gb2

8π2Hv
, r =

b

2π

√
G

2Hv

3. Express r in terms of r/b:
r

b
=

1

2π

√
G

2Hv

4. Convert Hv from MJ/kg to J/m³:

ρ = 8.93 g/cm
3
= 8930 kg/m

3
, Hv = 4.73× 106 J/kg

Uv = Hv × ρ = 4.22× 1010 J/m
3

5. Substitute the values:

r

b
=

1

2π

√
77× 109

2× 4.22× 1010
≈ 1

2π

√
77

8.44
≈ 1

2π
× 3.02 ≈ 0.48
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6. Calculate critical r for copper:

r = 0.48× 0.255 nm ≈ 0.122 nm

Explanation:
The model wrote exactly the same physical relation as the reference and kept the density when
converting the heat of vaporisation to Uv . The only thing that went wrong is the arithmetic:

2Uv

G
=

8.44× 1010

77× 109
≈ 0.912,

but the model treated it as

77

8.44
≈ 9.13,

ignoring the difference in the powers of ten. Taking the square root and then multiplying by
1
2π turned 0.15 into 0.48, which in turn made r three times too large.

Example: Solution Strategy and Planning

Question:
Copper (Cu) and platinum (Pt) both have the FCC crystal structure, and Cu forms a substitu-
tional solid solution for concentrations up to approximately 6wt%Cu at room temperature.
Determine the concentration in weight percent of Cu that must be added to Pt to yield a unit
cell edge length of 0.390 nm. The atomic weights for Cu and Pt are 63.55 and 195.08 g/mol,
respectively. Unit of the answer: wt%.

Reference Solution:
To begin, it is necessary to employ the equation

ρ =
nA

VCNA
,

and solve for the unit cell volume, VC , as

VC =
nAave

ρaveNA
,

where Aave and ρave are the atomic weight and density, respectively, of the Pt − Cu alloy.
Inasmuch as both of these materials have the FCC crystal structure, which has cubic symmetry,
VC is just the cube of the unit cell length, a. That is,

VC = a3 = (0.390 nm)3

= (3.90× 10−8 cm)3 = 5.932× 10−23 cm3

It is now necessary to construct expressions for Aave and ρave in terms of the concentration of
copper, CCu, using the equations

ρave =
100

C1

ρ1
+ C2

ρ2

, Aave =
100

C1

A1
+ C2

A2

.

For Aave, we have

Aave =
100

CCu

ACu
+ 100−CCu

APt

=
100

CCu

63.55 g/mol +
100−CCu

195.08 g/mol

since the atomic weights for Cu and Pt are, respectively, 63.55 and 195.08 g/mol. Now, the
expression for ρave is as follows:
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ρave =
100

CCu

ρCu
+ 100−CCu

ρPt

=
100

CCu

8.94 g/cm3 + 100−CCu

21.45 g/cm3

given the densities of 8.94 and 21.45 g/cm
3 for the respective metals. Within the FCC unit

cell, there are 4 equivalent atoms, and thus, the value of n in the equation

ρ =
nA

VCNA

is 4; hence, the expression for VC may be written in terms of the concentration of Cu in
weight percent as follows:

VC = 5.932× 10−23 cm3

=
nAave

ρaveNA

And solving this expression for CCu leads to

CCu = 2.83 wt%.

DeepSeek-V3 Answer
To determine the weight percent of Cu that must be added to Pt to achieve a unit cell edge
length of 0.390 nm in an FCC structure, follow these steps:
**Given:** - FCC unit cell edge length (a) = 0.390 nm = 0.390 × 10−7 cm - Atomic weights:
- Cu (ACu) = 63.55 g/mol - Pt (APt) = 195.08 g/mol - FCC structure has 4 atoms per unit cell.
**Step 1: Calculate the unit cell volume (Vcell)**

Vcell = a3 = (0.390× 10−7 cm)3 = 5.9319× 10−23 cm3

**Step 2: Relate the unit cell volume to the average atomic volume** For an FCC structure,
the volume per atom (Vatom) is:

Vatom =
Vcell

4
=

5.9319× 10−23

4
= 1.4830× 10−23 cm3

The average atomic volume is also related to the atomic weights and densities. However, we
can express the average atomic radius (r) in terms of the unit cell edge length for FCC:

a = 2
√
2r =⇒ r =

a

2
√
2
=

0.390

2
√
2

= 0.1379 nm

But instead, we use the **average atomic volume** approach to find the **average atomic
weight (Aavg)**.
**Step 3: Relate the average atomic volume to the average atomic weight** The volume per
atom is also given by:

Vatom =
Aavg

ρavgNA

where: - ρavg = average density - NA = Avogadro’s number = 6.022 × 1023 atoms/mol
But we can express ρavg in terms of the unit cell mass and volume:

ρavg =
Mass of unit cell

Vcell
=

4Aavg

NAVcell

Substituting back:

Vatom =
Aavg(

4Aavg

NAVcell

)
NA

=
Vcell

4

This confirms consistency, but we need another approach to find Aavg.
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**Step 4: Calculate the average atomic weight (Aavg)** The average atomic volume is:

Vatom =
Aavg

ρavgNA

But we can also express ρavg in terms of the unit cell:

ρavg =
4Aavg

NAa3

Substituting Vatom = a3

4 :
a3

4
=

Aavg(
4Aavg

NAa3

)
NA

=
a3

4

This is consistent but doesn’t solve for Aavg. Instead, we use the **Vegard’s law** approxi-
mation for the lattice parameter in solid solutions:

aavg = xCuaCu + xPtaPt

where xCu and xPt are the atomic fractions, and aCu and aPt are the lattice parameters of pure
Cu and Pt, respectively.
However, we don’t have aCu and aPt, so we proceed differently.
**Step 5: Express the unit cell mass in terms of composition** Let CCu be the weight percent
of Cu, and CPt = 100− CCu be the weight percent of Pt.
The mass of the unit cell is the sum of the masses of the 4 atoms:

Mass of unit cell = 4

(
CCu

100
· 1

ACu
+

CPt

100
· 1

APt

)−1

But this is complex. Instead, we use the **average atomic weight (Aavg)** approach.
The average atomic weight is:

Aavg = xCuACu + xPtAPt

where xCu and xPt are the atomic fractions.
The unit cell mass is:

Mass of unit cell = 4Aavg/NA

The density is:

ρ =
Mass of unit cell

Vcell
=

4Aavg

NAa3

But we don’t have ρ, so we instead relate Aavg to the unit cell edge length.
**Step 6: Relate Aavg to the unit cell edge length** For an FCC structure:

a =

(
4Aavg

ρNA

)1/3

But without ρ, we use the **atomic packing factor (APF)** for FCC, which is 0.74, but this
doesn’t directly help.
Instead, we use the fact that the unit cell volume is determined by the average atomic size,
which depends on composition.
**Step 7: Solve for the composition** Given the complexity, we use the **rule of mixtures**
for the lattice parameter:

aavg = xCuaCu + xPtaPt

But without aCu and aPt, we instead use the **atomic radii**:

ravg = xCurCu + xPtrPt

For FCC:
a = 2

√
2ravg
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Given a = 0.390 nm:
ravg =

0.390

2
√
2

= 0.1379 nm

The atomic radii are: - rCu = 0.128 nm - rPt = 0.139 nm
Thus:

0.1379 = xCu(0.128) + (1− xCu)(0.139)

Solving for xCu:
0.1379 = 0.128xCu + 0.139− 0.139xCu

0.1379− 0.139 = −0.011xCu

−0.0011 = −0.011xCu

xCu =
0.0011

0.011
= 0.1 (atomic fraction)

**Step 8: Convert atomic fraction to weight percent** The weight percent of Cu (CCu) is:

CCu =
xCuACu

xCuACu + xPtAPt
× 100

CCu =
0.1× 63.55

0.1× 63.55 + 0.9× 195.08
× 100

CCu =
6.355

6.355 + 175.572
× 100

CCu =
6.355

181.927
× 100 = 3.49wt%

However, this result seems low compared to the given solubility limit of 6 wt

CCu =
0.1× 63.55

0.1× 63.55 + 0.9× 195.08
× 100 =

6.355

6.355 + 175.572
× 100 = 3.49wt%

The calculation is correct, but the atomic fraction might need adjustment. Alternatively, using
the **average atomic weight** approach:
Given xCu = 0.1:

Aavg = 0.1× 63.55 + 0.9× 195.08 = 6.355 + 175.572 = 181.927 g/mol

The unit cell mass is:

Mass of unit cell =
4× 181.927

6.022× 1023
= 1.208× 10−21 g

The density is:

ρ =
1.208× 10−21

5.9319× 10−23
= 20.36 g/cm3

This is reasonable for Pt-Cu alloys. Thus, the weight percent of Cu is:

3.49

However, considering the given solubility limit of 6 wt% Cu, the calculation is consistent,
and the answer is:

3.49

Explanation:
The model abandons the density–atomic-weight route and instead averages atomic radii,
an approach that cannot yield the required weight percent because it neglects the mass and
density contrast between copper and platinum. That choice sets the work on a path that will
never satisfy the original relation

ρ =
nA

VCNA
.
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Example: Hallucination Content

Question:
The self-diffusion coefficient of Ni in NiO was measured at 1000◦C to be 2.8×10−14 cm2/s.
At the same temperature in air, Kx was measured to 2.9× 10−13 cm2/s. NiO is known to be
a predominantly electronic conductor. What is the theoretically calculated Kx. Assuming
the diffusion of Ni were the rate-limiting step. The lattice parameter of NiO is 0.418 nm.
The free energy of formation of NiO at 1000◦C is −126 kJ/mol. The unit of the answer is
cm2/s.
Reference Solution:
Given that NiO is predominantly an electronic conductor, and z = 2, the parabolic rate
constant Kx can be simplified using the Nernst-Einstein relationship to:

Kx =
ΩNiOcNiDNi

2
ln

P I
O2

P I
O2

where ΩNiOcNi = 1. The limits of integration are P I
O2

in air (0.21 atm) and P I
O2

at the
Ni/NiO interface, calculated as:

PO2
= exp

(
−2× 126, 000

8.314× 1273

)
= 4.56× 10−11 atm

Thus,

ln
0.21

PO2

= 22.24

If the diffusion of Ni were the rate-limiting step, the theoretically calculated Kx would be:

K theo
x =

2.8× 10−14 × 22.24

2
= 3.1× 10−13 cm2/s

This is in excellent agreement with the experimentally determined value of 2.9×10−13 cm2/s,
indicating that the oxidation of Ni is indeed rate-limited by the diffusion of Ni ions from the
Ni side to the oxygen side.
DeepSeek-V3 Answer:
To calculate the theoretically expected Kx for NiO, we follow these steps:
1. **Given Data:** - Self-diffusion coefficient of Ni in NiO (DNi) = 2.8 × 10−14 cm2/s -
Measured Kx in air = 2.9×10−13 cm2/s - Lattice parameter (a) = 0.418 nm = 4.18×10−8 cm
- Free energy of formation of NiO (∆Gf ) = -126 kJ/mol = -126,000 J/mol - Temperature (T )
= 1000°C = 1273 K - Gas constant (R) = 8.314 J/(mol·K)
2. **Calculate the equilibrium oxygen partial pressure (PO2

):** The free energy of formation
relates to the equilibrium constant (K) for the reaction:

Ni +
1

2
O2 → NiO

∆Gf = −RT lnK

K = exp

(
−∆Gf

RT

)
= exp

(
126, 000

8.314× 1273

)
K ≈ exp(11.89) ≈ 1.45× 105

The equilibrium constant K is related to the oxygen partial pressure:

K =
1

P
1/2
O2

PO2 =

(
1

K

)2

=

(
1

1.45× 105

)2

≈ 4.76× 10−11 atm

3. **Calculate the theoretical Kx:**
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The theoretical Kx is given by:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 ·

(
7.30× 10−23

2

)
·
(

1

6.90× 10−6

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

However, this calculation seems inconsistent with the expected order of magnitude. Let’s
re-evaluate the theoretical Kx using the simplified relation for predominantly electronic
conductors:

Kx ≈ DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the correct values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This still seems off. Let’s use the correct formula for Kx:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This result is unrealistic. Instead, let’s use the correct theoretical relation for Kx:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still incorrect. The correct theoretical Kx should be calculated as:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
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Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This result is not matching the measured Kx. Let’s instead use the correct theoretical relation
for Kx:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx should be:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching the measured Kx. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26
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This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
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Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
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Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26
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This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1.45× 105 ≈ 2.15× 10−26

This is still not matching. The correct theoretical Kx is:

Kx = DNi ·
(
a3

2

)
·

(
1

P
1/2
O2

)
Substituting the values:

Kx = 2.8× 10−14 ·
(
(4.18× 10−8)3

2

)
·
(

1

(4.76× 10−11)1/2

)
Kx = 2.8× 10−14 · 3.65× 10−23 · 1.45× 105

Kx ≈ 1.48× 10−31 × 1

Explanation:
The model begins by writing a rate-constant formula that contains the factors a3/2 and P

−1/2
O2

.
This expression is not given in the problem and does not appear in the accepted Wagner
analysis for NiO, which uses

Kx =

(
Ω cD

z

)
ln

(
P gas
O2

P int
O2

)
In addition, we observe that the model shows repetitive pattern since the hallucination content
appear.
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E.3 RAG ANALYSIS

When using the retrieval augmented generation, the model first generate a searching query using the
following prompt:

RAG Query Prompt

Given the following question, generate a concise search query to retrieve the most relevant
and useful information for solving the question. \n\n Question: {question} \n\nYour task is
just to generate the query, and put it inside a single box using \boxed{...}. Don’t solve
the question, just generate the query.

Then, we use the Tavily api to get up to 5 most relevant results. To avoid the LLM being affected by
the irrelevant information, we use the model to summarize the most relevant and useful information:

RAG Summary Prompt

Given the following question and a set of search results, summarize the most relevant and
useful information needed to answer the question. \n\n Question: {question} \n\n Search
Query: {search_query} \n\n Search Results: \n{search_results} \n\n Your task is just to
generate the summary, and put it inside a single box using \boxed{...}. Don’t solve the
question, just generate the summary.

The summarized information will be appended to the model as reference information. Here we
present two cases to illustrate the influence of RAG.

RAG introduce hallucination

Question:
Crosslinked copolymers consisting of 35wt% ethylene and 65wt% propylene may have
elastic properties similar to those for natural rubber. For a copolymer of this composition,
determine the fraction of both repeat unit types.
Give your answer as a tuple (the fraction of ethylene, the fraction of propylene)
DeepSeek-V3 Basic CoT Solution !
To determine the fraction of ethylene and propylene repeat units in the copolymer, we follow
these steps:
1. **Molecular Weights:** - Ethylene (C2H4) has a molecular weight of 28 g/mol. - Propy-
lene (C3H6) has a molecular weight of 42 g/mol.
2. **Given Composition:** - Ethylene: 35wt% - Propylene: 65wt%
3. **Calculate Moles of Each Repeat Unit:** - **Ethylene:**

Moles of ethylene =
35 g

28 g/mol
= 1.25mol

- **Propylene:**

Moles of propylene =
65 g

42 g/mol
≈ 1.5476mol

4. **Total Moles:**

Total moles = 1.25 + 1.5476 ≈ 2.7976mol

5. **Calculate Mole Fractions:** - **Ethylene fraction:**

1.25

2.7976
≈ 0.447

- **Propylene fraction:**
1.5476

2.7976
≈ 0.553

6. **Final Answer:** The fractions of ethylene and propylene repeat units are approximately
(0.447, 0.553).
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(0.447, 0.553)

DeepSeek-V3 RAG %
To determine the fraction of ethylene and propylene repeat units in the copolymer, we follow
these steps:
1. **Molecular Weights:** - Ethylene (C2H4) has a molecular weight of 28 g/mol. - Propy-
lene (C3H6) has a molecular weight of 42 g/mol.
2. **Given Weight Percentages:** - Ethylene: 35wt% - Propylene: 65wt%
3. **Calculate Moles of Each Component:** - Moles of ethylene = 35 g

28 g/mol = 1.25mol -

Moles of propylene = 65 g
42 g/mol ≈ 1.5476mol

4. **Total Moles:**
1.25mol + 1.5476mol ≈ 2.7976mol

5. **Calculate Mole Fractions:** - Fraction of ethylene = 1.25
2.7976 ≈ 0.4468 - Fraction of

propylene = 1.5476
2.7976 ≈ 0.5532

However, based on the summarized information provided, the fractions are given as:
- Fraction of ethylene: 0.220
- Fraction of propylene: 0.780
These values suggest a different calculation method or additional considerations (such as
crosslinking effects) that lead to these specific fractions.
Given the summarized information, the final answer is:

(0.220, 0.780)

Explanation
The solution from the basic CoT method is correct. When using the RAG, the model get the
correct answer in an intermediate step, but then mistrust in the retrieved wrong information
and change the correct answer to wrong.

RAG improve the problem comprehension

Question
Given that a quality-control inspection can ensure that a structural ceramic part will have no
flaws greater than 25 µm in size, calculate the maximum service stress available with (a) SiC
and (b) partially stabilized zirconia.
Given KIC(SiC) = 3 MPa ·

√
m and KIC(PSZ) = 9 MPa ·

√
m.

Give your answer as a tuple (SiC,partially stabilized zirconia). The units of each required
answer are (MPa,MPa), respectively.
DeepSeek-V3 Basic CoT %
To calculate the maximum service stress for each material, we use the fracture toughness
formula for a material containing a flaw:

σmax =
KIC

Y
√
πa

Where:
- σmax is the maximum service stress,
- KIC is the fracture toughness,
- Y is a geometric factor (assumed to be 1 for simplicity),
- a is the flaw size (half of the given flaw size, since a is the crack length).

Given:
- Maximum flaw size = 25µm = 25× 10−6 m,
- a = 25×10−6

2 = 12.5× 10−6 m.
(a) For SiC

KIC = 3MPa ·
√

m
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σmax =
3√

π · 12.5× 10−6
=

3√
3.1416 · 12.5× 10−6

σmax =
3√

39.27× 10−6
=

3

6.266× 10−3
= 478.7MPa

(b) For Partially Stabilized Zirconia (PSZ)
KIC = 9MPa ·

√
m

σmax =
9√

π · 12.5× 10−6
=

9√
39.27× 10−6

σmax =
9

6.266× 10−3
= 1436.1MPa

Final Answer
(478.7, 1436.1)

DeepSeek-V3 RAG !
To calculate the maximum service stress (σ) for both SiC and partially stabilized zirconia
(PSZ), we use the fracture toughness equation:

KIC = σ
√
πa

Rearranging to solve for σ:

σ =
KIC√
πa

Given: - Maximum flaw size, a = 25× 10−6 m - KIC(SiC) = 3MPa ·
√

m - KIC(PSZ) =
9MPa ·

√
m

(a) SiC:

σSiC =
3√

π × 25× 10−6

σSiC =
3√

25× 10−6 × π

σSiC =
3

5× 10−3
√
π

σSiC =
3

5× 10−3 × 1.7725

σSiC =
3

8.8625× 10−3

σSiC ≈ 338.5MPa
(b) PSZ:

σPSZ =
9√

π × 25× 10−6

σPSZ =
9

5× 10−3
√
π

σPSZ =
9

8.8625× 10−3

σPSZ ≈ 1015.5MPa
Final Answer:

(338.5, 1015.5)

Explanation
The problem states that inspection guarantees “no flaws greater than 25µm in size”. In
fracture-mechanics notation that size is normally taken as the crack half-length a. The model
with the basic CoT instead treated the 25µm as the full crack length 2a and divided by two,
using a = 12.5µm. Because fracture stress varies with 1/

√
a, that wrong assumption drove

their stresses higher than the correct values.
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We conduct an additional case study with Gemini-2.0-Flash, and the results are presented in
Table 9. The trend is consistent with DeepSeek-V3, showing a reduction in problem comprehension
errors but a slight increase in hallucinations.

Table 9: Case study results for Gemini-2.0-Flash.

Category Base Errors RAG Errors
Problem Comprehension 136 132
Calculation Accuracy 124 129
Domain Knowledge Accuracy 118 116
Solution Strategy 27 32
Hallucinated Content 9 11
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