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ABSTRACT

Human motion understanding and generation are crucial for vision and robotics
but remain limited in reasoning capability and test-time planning. We propose
MoRL, a unified multimodal motion model trained with supervised fine-tuning
and reinforcement learning with verifiable rewards. Our task-specific reward de-
sign combines semantic alignment and reasoning coherence for understanding
with physical plausibility and text–motion consistency for generation, improv-
ing both logical reasoning and perceptual realism. To further enhance inference,
we introduce Chain-of-Motion (CoM), a test-time reasoning method that enables
step-by-step planning and reflection. We also construct two large-scale CoT
datasets, MoUnd-CoT-140K and MoGen-CoT-140K, to align motion sequences
with reasoning traces and action descriptions. Experiments on HumanML3D and
KIT-ML show that MoRL achieves significant gains over state-of-the-art base-
lines.

1 INTRODUCTION

Human motion understanding and generation are fundamental problems in computer vision and
robotics. They enable a wide range of applications, from interactive character animation and robotics
to game development and virtual reality. With the advent of large-scale motion capture datasets and
expressive parametric human models such as SMPL (Loper et al., 2023) and SMPL-X (Pavlakos
et al., 2019), recent years have witnessed rapid progress in text-to-motion generation (Jiang et al.,
2023; Guo et al., 2022a; Gong et al., 2023) and motion-language alignment (Zhang et al., 2023a;
Guo et al., 2022a). Currently, the success of large language models (LLMs) has inspired multimodal
extensions that integrate text, image, and 3D signals, pushing the frontier of motion language mod-
eling toward more scalable and generalizable systems. Existing approaches have begun to explore
this space. MotionGPT (Jiang et al., 2023) considers motion as a foreign language to establish a
unified action language framework. MotionRL Liu et al. (2024) introduces multi-reward optimiza-
tion to better match human preferences. More recently, Motion-R1 (Ouyang et al., 2025) applies
Chain-of-Thought reasoning and reinforcement learning to motion generation.

Despite these advances, two major challenges remain. First, current models treat user queries as a
whole, with limited reasoning capability. They struggle to parse prompts into fine-grained steps or to
understand or generate detailed motions in a step-by-step manner. Second, at test time, most models
simply decode outputs in a single pass. They lack explicit planning or reflection, and therefore
cannot fully exploit the reasoning ability of large language models.

To address the first challenge, we propose MoRL, a multimodal motion unified model that unifies
motion understanding and generation under a reinforcement learning framework. MoRL is trained
with a hierarchical post-training pipeline. We then perform reinforcement learning with verifiable
rewards (RLVR). Unlike prior works that rely primarily on generic similarity scores, our reward
design is task-specific and dual-headed: for motion understanding, we introduce semantic align-
ment and a novel reasoning coherence reward that enforces logically consistent reasoning traces;
for motion generation, we combine text–motion consistency with a physical plausibility reward that
enforces biomechanical validity. This combination provides a simple yet innovative way to align
model outputs with both semantic fidelity and human perceptual realism.
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To address the second challenge, and improve the test-time performance, we introduce Chain-of-
Motion (CoM), a decoding strategy that explicitly incorporates step-by-step reasoning and reflection.
CoM not only improves the robustness of reasoning-based motion understanding but also refines
motion generation through iterative selection and correction. Moreover, the same principle guides
the synthesis of our CoT datasets, ensuring consistency between training and inference. Specifically,
we construct two large-scale synthetic Chain-of-Thinking (CoT) datasets, MoUnd-CoT-140K and
MoGen-CoT-140K, to align motion sequences with reasoning traces and concise action descriptions.

To further showcase the effectiveness, we conduct comprehensive experiments on HumanML3D
(Guo et al., 2022a) and KIT-ML (Plappert et al., 2016). Results show that MoRL achieves significant
gains over SOTA baselines.

In summary, the main contributions are:

• We propose MoRL, a unified multimodal motion model that combines semantic alignment
and reasoning-coherence rewards for motion understanding with physical plausibility and
text–motion consistency rewards for motion generation, effectively improving logical rea-
soning and alignment with human perceptual realism.

• We introduce Chain of Motion, a test-time reasoning method, along with two large-scale
CoT datasets, MoUnd-CoT-140K and MoGen-CoT-140K, which enhance motion under-
standing and generation through step-by-step reasoning and reflection.

• Extensive experiments on HumanML3D and KIT-ML show that MoRL substantially out-
performs state-of-the-art baselines, achieving a 4.17% improvement in BERT scores and
3% improvement in FID, respectively.

2 RELATED WORKS

Motion understanding and generation. Recent work on human motion understanding and gener-
ation has rapidly evolved from specialized sequence models to large language model (LLM)–based
frameworks that unify perception, reasoning, and text–motion alignment. Early multimodal ap-
proaches such as MotionLLM (Chen et al., 2024), ChatPose (Feng et al., 2024), and ChatHuman
(Lin et al., 2024) explored conversational or interactive motion generation, yet their evaluations
largely focused on qualitative results without systematic motion-to-text benchmarking. UniMotion
(Li et al., 2025) extended cross-modal modeling to a broader set of human activities, but it similarly
omitted explicit motion-to-text evaluation, leaving the bidirectional mapping under-explored. LLM-
driven pipelines such as MotionLLaMA (Ling et al., 2024) demonstrated impressive compositional
motion synthesis but relied on private datasets, limiting reproducibility and large-scale compari-
son. Structured agent architectures like ACMo and CoMA (Sun et al., 2024) further highlighted
the benefits of compositional reasoning and multi-modal interaction for controllable human-motion
generation. Building on these foundations, a new wave of motion-generation systems integrates
transformer backbones with LLM reasoning. Representative examples include MotionGPT (Zhang
et al., 2024d; Ribeiro-Gomes et al., 2024), T2M-GPT (Wang, 2023), and ReMoGPT (Yu et al.,
2025), which leverage powerful language priors to improve both motion synthesis and natural-
language controllability. Despite these advances, unified evaluation protocols that cover motion-
to-text understanding, text-conditioned generation, and open-dataset benchmarking remain limited,
motivating the need for methods that jointly address generation fidelity and cross-modal reasoning.

Large language model reasoning. Many studies aim to enhance the reasoning capacity of Large
Language Models (LLMs) to perform complex, multi-step problem-solving tasks by employing
Chain-of-Thought (CoT) prompting (Wei et al., 2022; Zhang et al., 2023b; 2024c; Mitra et al., 2024;
Hao et al., 2024; Yao et al., 2023; Yuan et al., 2024a; Luan et al., 2024) and conducting supervised
fine-tuning (SFT) with step-level supervision (Zhang et al., 2024a; Zhao et al., 2024; Yao et al.,
2024; Thawakar et al., 2025). Recently, DeepSeek-R1 (Guo et al., 2025) successfully applied rule-
based Reinforcement Learning (RL) (Shao et al., 2024) to induce the self-emergence of complex
cognitive reasoning abilities in LLMs, demonstrating that even coarse, outcome-only rewards can
effectively elicit strong reasoning behavior. Its success demonstrated that, with a carefully designed
reward structure and policy optimization strategy, models can learn to generate long CoT reason-
ing without the need for intermediate supervision. Building on this paradigm, recent efforts such
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To answer the question, carefully observe and 
reason step-by-step about what the person is doing.
Output format: <think>...reasoning...</think>
<answer>...final answer..</answer>

A male dancer is performing 
a Break-style basic dance.

<think>
The person immediately begins... Therefore... 
the motion changes ...
</think>
<answer>
A male dancer is performing a Break-style basic 
dance.
</answer>

<think>
...The motion should be rhythmic. I need to plan 
the movement for the whole body... First....Then...
</think>
<answer>
{motion sequence}
</answer>

MoUnd-CoT

MoGen-CoT

Question: 
What is the people doing?

Question: 
How can you generate the 
motion form the caption?

Prompt

Motionhubv2

Videos

Captions

Figure 1: Motion CoT Data Engine. Build based on MotionHubV2 dataset (Ling et al., 2024),
one branch (MoUnd-CoT) uses motion sequences and captions with Gemini to construct reasoning
chains for understanding, while the other (MoGen-CoT) builds reasoning chains for generation.

as Open-Reasoner-Zero (Hu et al., 2025) and Kimi k1.5 (Team et al., 2025) have adopted similar
rule-based reinforcement learning pipelines to enhance reasoning in the text and image domains,
respectively. However, despite these promising developments, little prior work has investigated ex-
tending this approach to the video domain. Bridging this gap remains both a significant challenge
and a promising direction for advancing the capabilities of reasoning models.

3 DATA SYNTHESIS

Data engine. The key to empowering MoRL with strong reasoning ability lies in large-scale, high-
quality chain-of-thought (CoT) data. To address this gap, we design a data engine, as shown in
Figure 1, built on Gemini-2.5-pro (Comanici et al., 2025). It performs gap-based reasoning through
question–answer pairs and captures the reasoning process. This aligns motion sequences with natu-
ral language reasoning chains and concise action captions. The sequences and captions are derived
from the MotionHubV2 dataset (Ling et al., 2024), which is constructed as a subset of multiple
publicly available datasets and encompasses diverse motion scenarios such as dance, performance
interaction and various activities from daily life. The resulting dataset consists of two complemen-
tary branches: Motion Understanding and Motion Generation. Together, they form a unified CoT
resource.

MoUnd-CoT-140K. The motion understanding branch, denoted as MoUnd-CoT-140K, is de-
signed to map motion sequences into textual reasoning and descriptive outputs. Each data sample
contains three components: (i) a motion sequence represented in the standard SMPL-X format, (ii)
a reasoning chain enclosed in <think> tags, and (iii) a concise caption of the action enclosed in
<answer> tags. To ensure compatibility with HumanML3D-style features, we convert SMPL-X
joint sequences into humanml joint sequences and then extract motion features of dimension 263
per frame. This allows the dataset to be directly consumed by existing motion-language models.
The resulting MoUnd-CoT-140K dataset provides high-quality CoT supervision for motion under-
standing tasks, especially in scenarios where the model must first interpret motion dynamics before
generating a compact description.

MoGen-CoT-140K. The motion generation branch, denoted as MoGen-CoT-140K, complements
MoUnd-CoT-140K by focusing on the inverse process: generating motion sequences from textual
reasoning and descriptive inputs. Each sample contains (i) a natural language caption of the in-
tended action, (ii) an associated reasoning chain in <think> tags, and (iii) the corresponding mo-
tion sequence stored in SMPL-X format contained between <answer> tags. For consistency, all
sequences are normalized into the HumanML3D feature space. MoGen-CoT-140K thus enables
motion-language models to learn not only to understand motion but also to generate realistic, se-
mantically aligned motion sequences guided by reasoning signals.
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MoRL

Please generate a human 
doing continuous
somersaults.

What is the human 
doing?

Motion Detokenizer Text Detokenizer

Text TokenizerMotion Tokenizer

OK! We have generated a 
human doing continuous 
somersaults.

The human is doing
a  somersault.

Figure 2: Overview of MoRL. Our framework unifies motion understanding and generation under a
reinforcement learning paradigm. Motion and text inputs are tokenized into a shared representation
space. A hierarchical post-training pipeline first applies supervised fine-tuning (SFT) on large-scale
synthetic CoT datasets to align motion sequences with reasoning traces and concise descriptions,
then employs reinforcement learning with verifiable rewards (RLVR) to refine outputs, enhancing
semantic alignment, reasoning coherence, physical plausibility, and text–motion consistency. At
inference, the Chain-of-Motion (CoM) decoding strategy enables step-by-step reasoning and reflec-
tion, improving both motion understanding and perceptually realistic motion generation.

Together, MoUnd-CoT-140K and MoGen-CoT-140K form a balanced CoT-based motion-language
corpus, enabling instruction tuning for both understanding and generation within a unified frame-
work.

4 THE PROPOSED METHOD

4.1 OVERVIEW

As shown in Figure 2, we propose MoRL, a multimodal motion foundation model that unifies both
understanding and generation of human motion. The whole architecture is built upon a multimodal
large language model (MLLM) initialized from Qwen3-4B-Instruct Yang et al. (2025), augmented
with a text tokenizer and a motion tokenizer for modality alignment. The framework consists of three
key components: (1) a supervised fine-tuning (SFT) stage with a synthetic CoT dataset for cold-start
training; (2) reinforcement learning (RL) policies designed separately for motion understanding and
motion generation, optimized with task-specific reward functions; and (3) a well-designed test-time
method, Chain-of-Motion (CoM), which enhances both understanding and generation via structured
step-by-step justification.

4.2 ARCHITECTURE

MoRL adopts a unified multimodal LLM backbone equipped with two modality-specific tokenizers.
The text tokenizer is inherited from the base language model, while the motion tokenizer discretizes
continuous 3D human motion into compact motion tokens via a VQ-VAE style encoder–decoder.
The multimodal fusion is achieved through shared transformer layers, enabling cross-attention be-
tween textual and motion representations. This design follows the paradigm of motion-language
alignment in Deepseek, but extends it to bidirectional tasks, including text-to-motion generation and
motion-to-text understanding.

Text tokenizer. We employ the native tokenizer of LLM to map natural language into subword
tokens. This preserves the rich linguistic knowledge of the base LLM while ensuring compatibility
with motion-related vocabulary introduced during supervised fine-tuning. The text tokens serve as
both queries (in understanding tasks) and conditioning signals (in generation tasks).

Motion tokenizer. To bridge the gap between continuous human motion and the discrete token
space of the LLM, we adopt a VQ-VAE style motion tokenizer. Given an input motion sequence
m1:T ∈ RT×D, where T is the number of frames and D is the dimensionality of each frame, the
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encoder E compresses the sequence into latent vectors z1:(T/l) ∈ R(T/l)×d with downsampling
factor l and latent dimension d. Each latent zi is then quantized against a learnable codebook C =
{cn}Nn=1:

ẑi = arg min
cn∈C

∥zi − cn∥22. (1)

The quantized sequence ẑ1:(T/l) is decoded back to reconstruct the original motion m̂1:T =
D(ẑ1:(T/l)). Training follows the composite VQ-VAE loss:

Lvq = Lreconstruct + Lcommit + Lembed, (2)

where Lreconstruct is a smoothed L1 loss with velocity regularization, Lcommit enforces codebook
utilization, and Lembed stabilizes latent representations. This discrete motion representation not only
reduces sequence length but also aligns seamlessly with the autoregressive generation paradigm of
LLMs.

4.3 COLD START STAGE

Recent work such as DeepSeek-R1 (Guo et al., 2025) demonstrated that reinforcement learning
alone can sometimes induce CoT reasoning. Motivated by this, we first explored training our mo-
tion–language model directly with RL signals. In practice, however, this strategy was highly un-
stable: the model rarely produced well-formed reasoning traces and even generated answers that
deviated from the intended semantics. To stabilize training, we introduce a cold-start phase based on
supervised fine-tuning. Specifically, we use our synthetic datasets MoUnd-CoT-140K and MoGen-
CoT-140K, which couple motion sequences with reasoning steps (<think>) and concise descrip-
tions (<answer>). Supervised finetuning on these data forces the model to follow the required
output format, stabilizing its outputs and ensuring semantic consistency between inference and final
answers. This initialization greatly reduces collapse during RL and establishes a reliable starting
point for policy optimization.

4.4 REINFORCEMENT LEARNING

After cold-start training, we further align the model outputs with task objectives through reinforce-
ment learning. We adopt a group-based policy optimization strategy similar to GRPO, where mul-
tiple candidate outputs are sampled per prompt, scored with reward functions, normalized within
the group, and used to compute policy gradients with a KL regularization term to a frozen reference
model.

Motion understanding. For motion understanding, the model must output a reasoning trace r̂ and
a caption â given a motion sequence m. We define two rewards:

Semantic Alignment Reward. We measure the semantic similarity between â and the reference
caption a using a pretrained text encoder Etext:

Rsem = cos(Etext(â), Etext(a)) . (3)

Reasoning Coherence Reward. We encourage the reasoning trace to logically support the answer
using an NLI model fNLI:

Rcoh = fNLI(r̂, â), (4)
where fNLI(·) outputs an entailment confidence score.

Motion generation. For motion generation, the model produces a motion sequence m̂ from a text
prompt t. We use two rewards:

Physical Plausibility Reward. We penalize implausible motion dynamics:

Rphys = −λ1 · Ljoint(m̂)− λ2 · Lvel(m̂), (5)

where Ljoint(·) measures joint-angle violations and Lvel(·) penalizes abrupt velocity changes.

Text–Motion Consistency Reward. We enforce semantic alignment between generated motion and
the input text, using cross-modal encoders Etext, Emotion:

Ralign = cos(Etext(t), Emotion(m̂)) . (6)

5
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Discussion. The final reward is a weighted sum of these components. Despite their simplicity, the
four rewards cover both semantic and physical aspects of motion–language alignment. This MoRL
stage thus provides an effective yet lightweight way to refine the model, avoiding overly complex
heuristics while yielding consistent gains in both understanding and generation.

4.5 CHAIN-OF-MOTION (COM)

Most existing motion–language models decode outputs in a single forward pass, which often leads
to semantically shallow reasoning in understanding tasks and temporally incoherent sequences in
generation tasks. To overcome this limitation, we introduce Chain-of-Motion (CoM), a test-time
reasoning strategy that explicitly incorporates step-by-step planning and reflection.

Step-by-step reasoning. Given an input prompt or motion sequence, the model first generates
an intermediate reasoning trajectory in natural language, analogous to Chain-of-Thought in textual
domains. For motion understanding, this reasoning decomposes a motion sequence into causal
and temporal explanations that support the final caption. For motion generation, it outlines the
sequence of action primitives (e.g., raise arm to grasp to lift) before decoding motion tokens. These
reasoning traces make the decision process interpretable and guide the model toward fine-grained
motion dynamics.

Iterative reflection and selection. Rather than committing to a single output, CoM samples multi-
ple candidate reasoning traces and motion sequences. Each candidate is evaluated with task-specific
reward functions: coherence between reasoning and answer in understanding, and semantic align-
ment plus physical plausibility in generation. Low-scoring candidates are discarded, while high-
scoring ones are refined through reflection—the model revisits and corrects earlier steps if incon-
sistencies are detected. This iterative selection process improves robustness and reduces common
errors such as implausible poses or semantically misaligned captions.

Training–inference consistency. The same principle underlies our dataset design. By construct-
ing MoUnd-CoT-140K and MoGen-CoT-140K with explicit reasoning traces and concise answers,
we ensure that the model encounters step-by-step reasoning both during training and inference. This
consistency allows CoM to act as a natural extension of our supervised and reinforcement learning
stages, bridging the gap between training objectives and test-time performance.

Overall, CoM enables MoRL to exploit the reasoning capability of large language models for motion
tasks, yielding more coherent explanations in understanding and more realistic, semantically aligned
sequences in generation.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS AND EVALUATION MATRICES

Datasets. We evaluate MoRL on two benchmark datasets widely adopted in motion–language re-
search: HumanML3D (Guo et al., 2022a) and KIT-ML (Plappert et al., 2016). HumanML3D is
the largest public dataset focusing on human motion captioning, containing over 14,600 motion
clips paired with 44,970 textual annotations. The motions are represented in SMPL-based joint se-
quences and span a broad spectrum of everyday actions, providing sufficient diversity for learning
motion–language alignment. KIT-ML is a smaller but more challenging benchmark, consisting of
3,911 motions paired with 6,278 text descriptions. Its motion clips are typically shorter and linguis-
tically varied, making it a complementary evaluation to HumanML3D. Following prior works, we
extract frame-wise motion features of dimension 263 for HumanML3D and 251 for KIT-ML, apply
temporal normalization, and augment the data with left–right mirroring. Both datasets are divided
into training, validation, and test splits with a ratio of 0.8/0.15/0.05.

Metrics. To quantitatively assess motion understanding, we adopt a suite of linguistic similarity
metrics consistent with prior work. BLEU@1 and BLEU@4 measure n-gram precision at unigram
and 4-gram levels, capturing lexical overlap between generated captions and references. ROUGE-L
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evaluates the longest common subsequence between the prediction and reference, reflecting recall-
oriented alignment. CIDEr computes consensus scores based on TF-IDF weighted n-grams across
multiple references, rewarding semantic coverage and diversity. Finally, BERTScore leverages con-
textual embeddings from a pretrained language model to assess semantic similarity beyond surface-
level overlap.

For motion generation, we follow recent benchmarks and include both distributional and retrieval-
based measures. RPrecision (Top1/Top2/Top3) evaluates whether the ground-truth text is ranked
among the top retrieved captions given a generated motion, directly reflecting cross-modal align-
ment. FID (Fréchet Inception Distance) quantifies the distributional gap between generated and real
motion features, with lower values indicating more realistic motions. MM Dist (Multimodal Dis-
tance) measures the distance between motion and text embeddings in a shared representation space,
assessing cross-modal consistency. Diversity captures the variance among motions generated from
different prompts, indicating the model’s ability to avoid mode collapse. MModality further evalu-
ates multi-modal generation under the same text prompt, reflecting whether the model can produce
distinct but semantically coherent motion variants.

Implementation details. Our backbone is initialized from Qwen3-4B-Instruct Yang et al. (2025),
a compact yet capable language model. Motion sequences are tokenized into discrete latent codes
using the HumanML3D feature extractor, while text is encoded with the Qwen tokenizer. To adapt
the model efficiently, we insert LoRA adapters into the attention and feed-forward layers with rank
r = 16 and dropout 0.1.

Training proceeds in two stages. In the SFT stage, we fine-tune on our synthetic CoT datasets
(MoUnd-CoT-140K and MoGen-CoT-140K) with AdamW optimizer, learning rate 1× 10−5, batch
size 64, and weight decay 0.01 for 5 epochs. In the RL stage, we adopt group-based reinforcement
learning with group size 8. Candidate outputs are scored with our reward functions, normalized
within each group, and optimized using a KL-regularized objective toward a frozen SFT reference.
The RL learning rate is 5× 10−6, and training is run for 3 epochs.

All models are trained in PyTorch on four NVIDIA A100 GPUs. During inference, we apply the
Chain-of-Motion decoding strategy with K = 8 candidates and T = 2 refinement iterations, which
adds only a modest runtime overhead while consistently improving output quality.

5.2 MAIN RESULTS

Motion understanding. Table 1 reports results on HumanML3D and KIT-ML understanding
benchmarks. MoRL achieves consistent improvements across all linguistic metrics, outperform-
ing both traditional sequence models (e.g., Seq2Seq(Att) (Plappert et al., 2018)) and recent LLM-
based methods such as MotionGPT (Jiang et al., 2023) and Motion Agent (Wu et al., 2024). On
HumanML3D, MoRL improves BLEU@1 and BLEU@4 by a clear margin over Motion Agent,
while yielding higher ROUGE-L and BERTScore, indicating better semantic fidelity and more flu-
ent language generation. Notably, MoRL reaches a CIDEr score of 35.8, substantially higher than
Motion Agent (33.74), showing stronger consensus with human-annotated references. On KIT-ML,
MoRL also achieves the best balance between precision-oriented (BLEU) and semantic-oriented
metrics (BERTScore, ROUGE-L), demonstrating that our dual reward design generalizes well across
datasets. These gains primarily come from the semantic alignment and reasoning-coherence re-
wards, which ensure that generated descriptions are both logically consistent and well-grounded in
motion semantics.

Motion generation. We further evaluate MoRL on text-to-motion generation (Table 2). On Hu-
manML3D, MoRL consistently improves R-Precision across Top-1/2/3 over strong baselines such as
ReMoGPT (Yu et al., 2025) and MoRAG-Diffuse (Kalakonda et al., 2024), highlighting its superior
text–motion alignment. Although FID is slightly higher than the best-performing diffusion-based
models, MoRL achieves the lowest multimodal distance (2.79), suggesting closer alignment to ref-
erence motions in feature space. Moreover, MoRL delivers competitive diversity (9.701) and strong
multimodality (2.702), showing that our physical plausibility and text–motion consistency rewards
encourage both realism and variety in generated motions. On KIT-ML, MoRL achieves comparable
performance to state-of-the-art diffusion models, with balanced R-Precision and FID values. While
not always the absolute best in each metric, MoRL provides robust overall performance across fi-
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Table 1: Results marked with ∗ are reproduced by MotionGPT (Jiang et al.) (Jiang et al., 2023) and
Lyu et al. (Lyu et al., 2025), and are computed with unprocessed ground truth texts for linguistic
metrics. The highlight ones are the unified models.

Method BLEU@1↑ BLEU@4↑ ROUGE-L↑ CIDEr↑ BERT Score↑
HumanML3D (Guo et al., 2022a)

SeqGAN (Goutsu & Inamura, 2021) 47.80 13.50 39.20 50.20 23.40
RAEs (Yamada et al., 2018) 33.30 10.20 37.50 22.10 10.70
Seq2Seq(Att) (Plappert et al., 2018) 51.80 17.90 46.40 58.40 29.10
TM2T (Guo et al., 2022b) 61.70 22.30 49.20 72.50 37.80
TM2T∗ (Guo et al., 2022b) 48.90 8.270 38.10 15.80 32.20
Motion2Language (Radouane et al., 2024) 67.00 23.40 53.80 53.70 37.20
M2T-Interpretable (Radouane et al., 2023) 69.90 25.00 55.30 61.60 40.30
AvatarGPT (Zhou et al., 2024) 49.28 12.70 40.44 32.65 53.58
MotionGPT (Jiang et al.) (Jiang et al., 2023) 48.20 12.47 37.40 29.20 32.40
MotionGPT-2 (Wang et al., 2024) 48.70 13.80 37.60 29.80 32.60
MotionChain (Jiang et al., 2024) 48.10 12.56 33.90 33.70 36.90
Motion Agent (Wu et al., 2024) 54.53 17.65 48.70 33.74 42.63
Lyu et al. (Lyu et al., 2025) 49.70 13.62 39.20 53.10 33.10

MoRL (Ours) 56.99 20.54 51.83 35.80 46.80
KIT-ML (Plappert et al., 2016)

SeqGAN (Goutsu & Inamura, 2021) 3.120 5.200 32.40 29.50 2.200
RAEs (Yamada et al., 2018) 30.60 0.100 25.70 8.000 0.400
Seq2Seq(Att) (Plappert et al., 2018) 34.30 9.300 36.30 37.30 5.300
TM2T (Guo et al., 2022b) 46.70 18.40 44.20 79.50 23.00
TM2T∗ (Guo et al., 2022b) 35.10 6.200 28.70 28.90 30.40
Motion2Language (Radouane et al., 2024) 56.80 25.40 58.80 125.7 42.10
M2T-Interpretable (Radouane et al., 2023) 58.40 24.40 58.30 112.1 41.20
Lyu et al. (Lyu et al., 2025) 43.40 8.90 35.20 65.30 31.20

MoRL (Ours) 52.11 19.31 49.96 34.04 33.66

Table 2: Performance comparison on HumanML3D and KIT-ML datasets. Results are reported on
R-Precision (Top-1/2/3), FID, MM Dist, Diversity, and MultiModality.

Methods R-Prec@1↑ R-Prec@2↑ R-Prec@3↑ FID↓ MM Dist↓ Diversity→ MultiModality↑
HumanML3D (Guo et al., 2022a)

Real Motions 0.511 0.703 0.797 0.002 2.974 9.503 –
Language2Pose (Ahuja & Morency, 2019) 0.246 0.387 0.486 11.02 5.296 7.676 –
Text2Gesture (Bhattacharya et al., 2021) 0.165 0.267 0.345 7.664 6.030 6.409 –
T2M (Guo et al., 2022a) 0.457 0.639 0.740 1.067 3.340 9.188 2.090
T2M-GPT (Zhang & Zhang, 2023) 0.491 0.680 0.775 0.116 3.118 9.761 1.856
FineMoGen (Zhang et al., 2023a) 0.504 0.690 0.784 0.151 2.998 9.263 2.696
MDM (Tevet et al., 2023) – – 0.611 0.544 5.566 9.559 2.799
MotionDiffuse (Zhang et al., 2024b) 0.491 0.681 0.782 0.630 3.113 9.410 1.553
MoMask (Guo et al., 2024) 0.521 0.713 0.807 0.045 2.958 – 1.241
MoGenTS (Yuan et al., 2024b) 0.529 0.719 0.812 0.033 2.867 9.570 –
ReMoDiffuse (Zhang & Guo, 2023) 0.510 0.698 0.795 0.103 2.974 9.018 1.795
ReMoGPT (Yu et al., 2024) 0.501 0.688 0.792 0.205 2.929 9.763 2.816
RMD (Liao et al., 2024) 0.524 0.715 0.811 0.111 2.879 9.527 2.604
MoRAG-Diffuse (Kalakonda et al., 2024) 0.511 0.699 0.792 0.270 2.950 9.536 2.773
ReMoMask 0.531 0.722 0.813 0.099 2.865 9.535 2.823
MoRL (Ours) 0.527 0.711 0.821 0.203 2.790 9.701 2.702

KIT-ML (Plappert et al., 2016)

Real Motions 0.424 0.649 0.779 0.031 2.788 11.08 –
Language2Pose (Ahuja & Morency, 2019) 0.221 0.373 0.483 6.545 5.147 9.073 –
Text2Gesture (Bhattacharya et al., 2021) 0.156 0.255 0.338 12.12 6.964 9.334 –
T2M (Guo et al., 2022a) 0.370 0.569 0.693 2.770 3.401 10.91 1.482
MotionDiffuse (Zhang et al., 2024b) 0.417 0.621 0.739 1.954 2.958 11.10 0.730
T2M-GPT (Zhang & Zhang, 2023) 0.416 0.627 0.745 0.514 3.007 10.92 1.570
MDM (Tevet et al., 2023) – – 0.396 0.497 9.191 10.85 1.907
MoMask (Guo et al., 2024) 0.433 0.656 0.781 0.204 2.779 – 1.131
MoGenTS (Yuan et al., 2024b) 0.445 0.671 0.797 0.143 2.711 10.918 –
ReMoDiffuse (Zhang & Guo, 2023) 0.427 0.641 0.765 0.155 2.814 10.80 1.239
ReMoMask 0.453 0.682 0.805 0.138 2.682 10.83 2.017
MoRL (Ours) 0.439 0.661 0.793 0.204 2.777 10.88 1.991
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Table 3: Ablation study of MoRL on HumanML3D. We incrementally remove or replace core com-
ponents, including semantic alignment reward (Rsem), reasoning coherence reward (Rcoh), physical
plausibility reward (Rphys), text–motion consistency reward (Ralign), and Chain-of-Motion (CoM).
Metrics cover both motion understanding (BERTScore, CIDEr, ROUGE-L) and motion generation
(R-Precision@1, FID).

Variant BERTScore↑ CIDEr↑ ROUGE-L↑ R-Prec@1↑ FID↓
SFT only (no RLVR) 42.650 33.881 48.782 0.420 0.212

w/o Rsem 44.100 34.050 50.010 0.488 0.209
w/o Rcoh 44.320 35.120 49.100 0.512 0.206
w/o Rphys 46.180 35.500 51.180 0.518 0.285
w/o Ralign 45.000 34.620 50.480 0.492 0.225
w/o CoM 45.480 34.980 50.780 0.505 0.220

Full MoRL (Ours) 46.802 35.801 51.833 0.527 0.203

delity, diversity, and alignment. Importantly, the introduction of Chain-of-Motion at test time further
stabilizes inference, reducing error propagation and producing smoother, more natural motion tra-
jectories.

5.3 ABLATION STUDY

We further conduct ablation experiments on HumanML3D to assess the contribution of each com-
ponent in MoRL (Table 3). Starting from the SFT-only baseline, which yields the weakest perfor-
mance across both understanding and generation, progressively adding RLVR rewards and CoM
consistently improves results.

Removing the semantic alignment reward (Rsem) notably reduces BERTScore and CIDEr, highlight-
ing its importance in grounding textual semantics. Excluding the reasoning coherence reward (Rcoh)
mainly affects ROUGE-L and CIDEr, confirming its role in enhancing temporal and logical consis-
tency in language grounding. By contrast, dropping the physical plausibility reward (Rphys) keeps
language metrics competitive but significantly degrades FID, demonstrating that Rphys is crucial
for enforcing realism in motion synthesis. Removing the text–motion consistency reward (Ralign)
leads to a substantial drop in R-Precision, indicating its necessity for cross-modal alignment. Fi-
nally, excluding CoM causes a moderate performance decline across all metrics, showing its role in
stabilizing reasoning during test-time inference.

Overall, the full MoRL model achieves the best results across all dimensions, validating the com-
plementary effects of semantic, reasoning, and physical alignment rewards together with CoM in
unifying motion understanding and generation.

6 CONCLUSION

In this work, we presented MoRL, a unified multimodal motion model that integrates motion un-
derstanding and generation within a reinforcement learning framework. Our design introduces task-
specific reward functions that jointly enhance logical reasoning and perceptual realism. To further
improve test-time performance, we proposed CoM, a decoding strategy that incorporates step-by-
step reasoning and reflection. We also constructed two large-scale synthetic CoT datasets, MoUnd-
CoT-140K and MoGen-CoT-140K, which provide high-quality supervision for motion–language
alignment. Extensive experiments on HumanML3D and KIT-ML demonstrated that MoRL achieves
substantial gains over state-of-the-art baselines.
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A APPENDIX

A.1 LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.
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