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ABSTRACT

Solid-state materials, which are made up of periodic 3D crystal structures, are par-
ticularly useful for a variety of real-world applications such as batteries, fuel cells
and catalytic materials. Designing solid-state materials, especially in a robust and
automated fashion, remains an ongoing challenge. To further the automated de-
sign of crystalline materials, we propose a method to learn to design valid crystal
structures given a crystal skeleton. By incorporating Euclidean equivariance into
a policy network, we pose the problem of designing new crystals as a sequential
prediction task suited for imitation learning. At each step, given an incomplete
graph of a crystal skeleton, an agent assigns an element to a specific node. We
adopt a behavioral cloning strategy to train the policy network on data consisting
of curated trajectories generated from known crystals.

1 INTRODUCTION

Crystalline substances form a major class of naturally occurring materials, from salts and precious
stones to metallic objects. Despite recent advancements in simulation algorithms for computational
solid-state chemistry (Corpinot & Bučar, 2019), designing novel crystalline materials with desired
structural and chemical properties remains a cumbersome and specialized task. The highly relevant
applications of solid-state materials, including energy-efficient semiconductors, biosensors, and
technologies to mitigate climate change, make designing automated discovery methods even more
impactful. The past few years have witnessed significant progress in leveraging artificial intelligence
for the design of structural entities such as small molecules and polymers (Chen et al., 2020; Cheng
et al., 2022; Adams & Coley, 2022; Gebauer et al., 2019). Recent works have attempted to use
generative models and reinforcement learning for material design (Xie et al., 2021; Pan et al., 2022).

Solid-state crystals consist of unit cells that repeat infinitely in a periodic manner. By con-
sidering crystal design as a sequential prediction task, we can train an agent to construct crystal
structures based on partially constructed crystals in a unit cell. At each step of the sequence,
the agent can predict a missing atom (action) in this partially completed structure (state). In
a sequential learning framework, reinforcement learning (RL) methods can help in learning
an optimal policy by exploring the vast chemical space with the aim of maximizing a reward
function (Arulkumaran et al., 2017). However, this is an extremely challenging task for online
RL techniques considering the discrete and high dimensional action space: With more than 100
elements in the periodic table, a simple cubic structure with 8 atoms leads to combinatorial
search space of 1016, which only increases with more complex crystal skeletons. This design
challenge is further complicated by the fact that a large fraction of those trajectories leads to
invalid crystals, which do not provide useful learning signals. On the other hand, offline RL and
imitation learning methods can learn behaviors from large databases of transitions obtained through
experiments and simulations. In particular, behavioral cloning (BC), learns to imitate an expert be-
havior policy from an existing dataset without the help of a reward function (Kanervisto et al., 2020).

We train a BC agent (which is known to be successful when trained on good-quality datasets
(Torabi et al., 2018)) on a sizeable set of transitions generated from an existing material dataset
consisting of state-action pairs. We model the policy using neural networks and maximize its
likelihood. Precisely, given a graph of a partially filled crystal (skeleton) containing positional and
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lattice information, the policy predicts the type of atom to be placed in a given location (Figure
1a). The primary goal of this work is to examine whether BC can be used to sequentially construct
crystals. We use ablation studies to compare the performance of the agent by varying the size of the
data and the model.

2 METHODS

2.1 DATASET

In this work, we use the Perov-5 database (Castelli et al., 2012), which consists of 18,928 perovskite
materials that have the same structure but different compositions. All crystals in the dataset have
5 atoms in their unit cells, with 56 unique elements altogether. The generic chemical formula for
perovskites is ABX3 (e.g. CaTiO3) and their unit cells generally have a cubic structure. As
explained in Section 2.3, we use this dataset to generate trajectories of state-action transitions of
partially constructed crystal skeletons and the corresponding atom type at a given location.

2.2 CRYSTAL REPRESENTATION

We represent the unit cell of a crystal as a graph G = (V,E), where the nodes V with |V | = N
are the individual atoms of the unit cell and neighboring atoms form an edge E (|E| = M ). For
the edges, we applied the CrystalNN method (Pan et al., 2021), which determines the neighbors of
nodes in a crystal graph. Each node v ∈ V consists of two features - the first represents the one-hot
encoding of the atom type (hv) and the second denotes the position of the atom in the 3-dimensional
space (xv). hv has an extra dimension to indicate whether node v is already filled with an atom or
not. The global features of the crystal are the lengths (l) and angles (α) of the 3D lattice. An
additional graph feature (f ) that indicates the node that the agent has to focus on for prediction at a
particular step is also given as input to the policy network.

2.3 TRAJECTORY GENERATION

We generated a dataset of trajectories consisting of sequential state-action transitions from Perov-5
crystals, which we utilized to train the BC agent. Concretely, the trajectories consist of state-action
pairs obtained from a deterministic policy πβ(a|s), which are actions that correspond to the true
identity of the atom at a given position in an incomplete crystal. Here, states are crystal skeleton
graphs and actions are one of the 56 elements in the action space A. The initial state s0 is a graph
G0 of a crystal skeleton (containing lattice and positional information) with all the nodes being
unfilled, and the focus feature f indicating the first node to focus for atom type prediction. Next, we
leverage a breadth-first search traversals of the graph from multiple source nodes to determine the
order of nodes to focus on in the trajectory. In this manner, we can obtain multiple trajectories for
each crystal, and we generated up to 5 trajectories (with different source nodes) per crystal for our
experiments.

2.4 POLICY NETWORK

The policy network πθ(a|s) is used to transform a given state into an effective representation and
predict the action. In this study, we use an equivariant graph neural network, or EGNN (Satorras
et al., 2021) backbone which consists of message passing layers that respect equivariance to the
Euclidean group (group of translations, rotations, and reflections). The embeddings obtained from
the EGNN were aggregated across the nodes of the graph to obtain graph-level embeddings. Further,
each of the graph-level features, i.e., the lengths (l), angles (α), and focus (f ) were passed through a
linear network and concatenated with the outputs of EGNN, before passing through an output layer
for action prediction (Figure 1b).
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Algorithm 1 Training Behavioral Cloning Agent

Generate data D of size ND consisting of transitions (si,ai) using existing crystals
Initialize parameters of policy network πθ0 , t = 0
for j = 1 to max epochs do

for i = 1 to ND do
Compute âi = πθt(si)
Calculate loss L(θt) = CrossEntropy(âi,ai)
Compute gradients and backpropogate: θt+1 ← θt − α∇L(θt), α is the learning rate
t← t+ 1

end for
end for

(a) Predicting the atom type at a given
node of a crystal skeleton graph using
learned policy πθ

(b) Policy network architecture using E(n) Equivariant GNN
(EGNN). Concretely, the policy applies the following oper-
ations: 1) h

(K)
v ,x

(K)
v = EGNN(s,hv,xv), 2) t =

AGGv

([
h

(K)
v ,x

(K)
v

])
, 3) y = σ1([l ∥α ∥ f ]), 4) â =

σ2([t ∥ y]), where σ1, σ2 are linear layers.

Figure 1: Procedure for sequentially constructing crystals via behavioral cloning with trajectory
described in a) and the policy network described in b).

3 EXPERIMENTS

3.1 TRAINING AND EXPERIMENTS

For our first set of experiments, we trained the policy network on the dataset by varying the number
of trajectories per crystal, and the learning performances were compared to a random agent. The
models were trained for 1000 epochs with the cross-entropy loss and accuracy1 (fraction of correctly
predicted atoms) being recorded for the training (11,356 crystals) and validation set (3,787 crystals),
as shown in Figure 2a. Next, we ran experiments by replacing EGNN with a Graph Convolutional
Network (GCN) (Kipf & Welling, 2016) to determine if Euclidean equivariance plays a role in the
performance of the agent. The accuracy curves for both experiments are shown in Figure 2.

1For the training and validation set, the average accuracy was computed by determining the average number
of correctly predicted actions. For the test set, the accuracy was computed after sequentially reconstructing the
crystal starting from the initial state using the learned policy.

3



Published at the ICLR 2023 Workshop on Machine Learning for Materials

0 200 400 600 800 1000
Epoch

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Training Accuracy

Random Agent
1 Trajectory
3 Trajectories
5 Trajectories

0 200 400 600 800 1000
Epoch

0.0

0.2

0.4

Validation Accuracy

Random Agent
1 Trajectory
3 Trajectories
5 Trajectories

(a) Training and validation accuracies after training with different number of trajectories per crystal
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(b) Training and validation accuracies for EGNN and GCN in the policy network (5 trajectories)

Figure 2: Results for crystal structure building using behavioral cloning (averaged over 5 runs).
From the above data, we observe: 1) BC policy clearly outperforms a random policy; 2. Training
a policy on more trajectories generally performs better; 3. EGNN outperforms GCN indicating the
benefits of incorporating E(n) equivariance into the policy network architecture.

3.2 EVALUATION

We use the learned policy πθ to sequentially fill nodes with atoms for the crystal skeleton graphs in
the test dataset, i.e., starting from the initial state s0 and given the order of traversal, the atoms are
sequentially filled in the crystal. The generated crystals were evaluated based on the test accuracy
(fraction of correctly predicted atom types for the crystal skeletons) and compositional validity -
composition is valid if the crystal’s overall charge is neutral, as computed by SMACT (Davies et al.
(2019)). Table 1 shows the performance of our BC agent trained on datasets containing different
number of trajectories for each crystal, and also with graph convolutional network (GCN) instead
of EGNN, compared with a random agent. Our models perform better than the random baseline.
The models trained on more samples appeared to perform better on test data, indicating that having
more transitions helps an agent to better model the complexity of the problem. Likewise, the agent
with EGNN outperformed the agent with GCN by a significant margin, suggesting the importance
of capturing the equivariance properties of crystal structures.

EGNN GCN Random
# Trajectories 1 3 5 5 5

Test Accuracy (%) 44.12 47.65 49.53 37.06 17.8
Validity (%) 96.08 96.48 96.75 95.03 82.20

Table 1: Results for crystals constructed by our BC agent evaluated on validity and coverage. EGNN
outperforms GCN and higher number of trajectories increases performance with best highlighted
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3.3 DISCUSSION

The learning curves indicate the prevalence of bias and non-generalizability. This could be due
to the choice of crystal representation, insufficient model complexity, optimization objective, or the
large and discrete nature of the problem. Further, the simple graph representation that we adopt does
not capture information about the periodicity in crystals. Also, in our experiments, the policy is not
constrained to any specific property, and our evaluation metrics (accuracy and validity) is generally
not sufficient while dealing with the crystal design problem.

4 CONCLUSION

The goal of this study is to demonstrate a way to formulate the problem of crystal design as a se-
quential prediction task using behavioral cloning. We show that by using an effective policy network
and sufficient samples of transitions during training, the agent can learn to mimic the examples in
the data. Despite the agent not being able to reach high performance in terms of accuracy, we claim
that such a framework could be used as a baseline for testing RL algorithms on the same task, or the
learned BC policy could serve as an initial policy for fine-tuning with online RL methods. Our future
directions are - de novo crystal design using RL approaches with energy-based reward functions, us-
ing more appropriate evaluation metrics; improving the complexity and expressiveness of our policy
network, such as multigraphs to capture periodicity and advanced models like DimeNet (Gasteiger
et al., 2020) or GemNet (Gasteiger et al., 2021) that capture geometric properties of molecular and
crystal structures.
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A APPENDIX

A.1 MODEL AND TRAINING DETAILS

For all the experiments, the following set of hyperparameters were used

1. Number of layers in GCN / EGNN: 4
2. Hidden size of each GNN layer: 256
3. Output dimension of GNN: 128
4. Output dimension of linear layer that processes graph features: 8
5. Loss function: Categorical cross-entropy
6. # Epochs: 1000
7. Training batch size: 2048
8. Optimizer: Adam
9. Learning rate: 10−3

10. Weight decay: 10−5

11. Model selection: Final model after last epoch

From the random agent and GCN agent, we trained on the dataset with 5 trajectories per crystal.
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