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Abstract

Empirical studies have demonstrated that the noise in stochastic gradient descent1

(SGD) aligns favorably with the local geometry of loss landscape. However,2

theoretical and quantitative explanations for this phenomenon remain sparse. In this3

paper, we offer a comprehensive theoretical investigation into the aforementioned4

noise geometry for over-parameterized linear (OLMs) models and two-layer neural5

networks. We scrutinize both average and directional alignments, paying special6

attention to how factors like sample size and input data degeneracy affect the7

alignment strength. As a specific application, we leverage our noise geometry8

characterizations to study how SGD escapes from sharp minima, revealing that the9

escape direction has significant components along flat directions. This is in stark10

contrast to GD, which escapes only along the sharpest directions. To substantiate11

our theoretical findings, both synthetic and real-world experiments are provided.12

1 Introduction13

Stochastic gradient descent (SGD) and its variants have become the de facto optimizers for training14

machine learning models (Bottou, 1991). Unlike full-batch gradient descent (GD), SGD uses only15

mini-batches of data in each iteration, which injects noise into the optimization process. This noise16

can have a pronounced impact on both the convergence behavior (Thomas et al., 2020; Wojtowytsch,17

2023; Feng and Tu, 2021; Simsekli et al., 2019) and the generalization capabilities (Zhang et al.,18

2017; Keskar et al., 2017; Wu et al., 2017; Zhu et al., 2019; Smith et al., 2020) of the algorithm.19

Zhu et al. (2019); Wu et al. (2020); Xie et al. (2020) showed that SGD noise is highly anisotropic and20

in particular, the noise covariance matrix aligns well with the Hessian matrix. As such, they propose21

a Hessian-based approximation of the noise covariance: Σ(θ) ≈ σ2H(θ), where Σ(θ) and H(θ)22

denote the noise covariance and Hessian matrices at θ, respectively and σ serves as a small constant23

denoting the noise magnitude. Subsequent works (Feng and Tu, 2021; Mori et al., 2022; Wojtowytsch,24

2021; Liu et al., 2021) presented an improved Hessian-based approximation: Σ(θ) ≈ 2L(θ)H(θ) for25

regression problems with square loss, where L(θ) denotes the loss value. This refined approximation26

acknowledges the fact that the noise magnitude is proportional to the loss value.27

However, the alignment between SGD noise and local landscape geometry remains empirical observa-28

tions, lacking quantitative characterization and theoretical grounding. Hessian-based approximations29

are not accurate, as underscored by Thomas et al. (2020). A recent effort by Wu et al. (2022)30

employed a normalized cosine similarity between Σ(θ)–which is close to the Hessian matrix in low31

loss regions–and the empirical Fisher matrix G(θ) as a metric to quantify the alignment. This metric32

is inspired by analyzing the dynamical stability of SGD (Wu et al., 2018) and can be interpreted33

as certain type of average alignment. Nevertheless, the analysis in Wu et al. (2022) is restricted to34

over-parameterized linear models (OLMs) and operates under the assumption of infinite data, leaving35

open questions about the generalizability of such alignment in more practically relevant settings.36

Our contribution. Let n, d denote the sample size, input dimension, respectively. Then, our37

contributions can be summarized as follows.38
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• We first extend the average alignment analysis (Wu et al., 2022) to finite sample scenarios,39

offering a comprehensive investigation of how factors like sample size and input data degeneracy40

impact the alignment strength. We establish that, as long as deff ≳ log n, the alignment strength41

is lower-bounded for both OLMs and two-layer neural networks–models not considered in Wu42

et al. (2022). Here, deff represents an effective input dimension, and this condition accommodates43

the important regimes like n ∼ log(deff) (for sparse recovery) and n ∼ deff (the proportional44

scaling).45

• We then delve into a directional alignment analysis, probing whether the component of noise46

energy along a specific direction is proportional to the curvature in that direction. Our results47

show that for OLMs, as long as n ≳ d, the strength of directional alignment is lower-bounded48

acorss all directions and the entire parameter space.49

• Lastly, we provide a detailed analysis of the mechanisms by which SGD escapes from sharp50

minima by leveraging our noise geometry results. We show that the escape direction of SGD51

exhibits significant components along flat directions of the local landscape. This stands in stark52

contrast to GD, which escapes from minima only along the sharpest direction. We also discuss53

the implications of this unique escape behavior, providing a preliminary explaination of how54

cyclical learning rate (Smith, 2017; Loshchilov and Hutter, 2017) can help find flatter minima.55

It is worth noting that our theoretical guarantees apply effectively to both isotropic and anisotropic56

inputs, and the guaranteed alignment strength is independent of the degree of overparameterization.57

In addition, all theoretical findings are supported by numerical experiments conducted on both58

small-scale and larger-scale models, provided in Appendix C and D. Overall, our work advances59

the theoretical understanding of the geometry of SGD noise and provides insights into how SGD60

navigates the loss landscape.61

2 Preliminaries62

Let {(xi, yi)}ni=1 ⊂ Rd × R be the training set and f(·;θ) : Rd → R be the model parameterized63

by θ ∈ Rp. Let ℓi(θ) = 1
2 (f(xi;θ)− yi)

2 be the square loss at the i-th sample and L(θ) =64
1
n

∑n
i=1 ℓi(θ) be the empirical risk. To minimize L(·), the mini-batch SGD updates as follows65

θ(t+ 1) = θ(t)− η
B

∑
i∈Bt ∇ℓi(θ(t)), where Bt = {γt,1, · · · , γt,B} is a batch with size |Bt| = B,66

and γt,1, · · · , γt,B i.i.d.∼ U([n]). To isolate the impact of noise, the SGD update is often reformulated67

as θ(t + 1) = θ(t) − η (∇L(θ(t)) + ξ(t)), where ∇L(θ(t)) is the full-batch gradient and ξ(t)68

represents the mini-batch noise satisfying E[ξ(t)] = 0,E[ξ(t)ξ(t)⊤] = Σ(θ(t))/B with the noise69

covariance given by Σ(θ) = 1
n

∑n
i=1 ∇ℓi(θ)∇ℓi(θ)⊤ − ∇L(θ)∇L(θ)⊤. In the above setup, the70

Hessian matrix of the empirical risk is given byH(θ) = G(θ)+ 1
n

∑n
i=1 (f(xi;θ)− yi)∇2f(xi;θ),71

where G(θ) = 1
n

∑n
i=1 ∇f(xi;θ)∇f(xi;θ)⊤ is the empirical Fisher matrix. When the fit errors are72

small, we haveG(θ) ≈ H(θ) and in particular, for global minima θ∗,H(θ∗) = G(θ∗). Additionally,73

for linear regression f(x;θ) = θ⊤x, H(θ) = G(θ) ≡ 1
n

∑n
i=1 xix

⊤
i .74

Over-parameterized linear models (OLMs). An OLM is defined as f(x;θ) = F (θ)⊤x, where75

F : Rp → Rd denotes a general re-parameterization function. Although f(·;θ) only represents linear76

functions, the corresponding loss landscape can be highly non-convex. Some typical examples include77

(i) the linear model F (w) = w; (ii) the diagonal linear network: F (θ) = (α2
1 − β2

1 , . . . , α
2
d − β2

d)
⊤;78

and (iii) the linear network: F (θ) = W1W2 · · ·WL. Notably, OLMs have been widely used to79

analyze the optimization and implicit bias of SGD (Arora et al., 2019; Woodworth et al., 2020; Pesme80

et al., 2021; HaoChen et al., 2021; Azulay et al., 2021).81

Noise Geometry. Before proceeding to our refined characterization of the noise geometry, we first82

recall two existing results on quantifying the geometry of SGD noise.83

• Mori et al. (2022) proposed the following Hessian-based approximation: Σ(θ) ≈ 2L(θ)G(θ).84

It reveals 1) the noise magnitude is proportional to the loss value; 2) the noise covariance aligns85

with the Fisher matrix. This approximation is intuitive and helpful for understanding, but it86

cannot be accurate in general.87

• Online SGD for OLMs with Gaussian inputs. Suppose x ∼ N (0, S) and n = ∞ (i.e.,88

online SGD). For OLMs, Wu et al. (2022) derived the following analytical expression89

Σ(θ) = 2L(θ)G(θ) +∇L(θ)∇L(θ)⊤.90
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3 Average Alignment91

Let Σ1(θ) =
1
n

∑n
i=1 ∇ℓi(θ)∇ℓi(θ)⊤,Σ2(θ) = ∇L(θ)∇L(θ)⊤. Then Σ(θ) = Σ1(θ)−Σ2(θ). It92

is commonly believed that the magnitude of the full-batch gradient ∇L is relatively small compared93

to the sample gradients {∇ℓi}i. Consequently, the influence of Σ2(θ) would be negligible compared94

to Σ1(θ). Following Wu et al. (2022), we consider the following metrics of quantifying average95

alignment: µ(θ) = Tr(Σ(θ)G(θ))
2L(θ)∥G(θ)∥2

F
.96

Wu et al. (2022) guarantees µ(θ) ≥ 1 in an infinite data scenario. The following theorem extends97

it to finite-sample cases and the proof can be found in Appendix G. To simplify the statement, we98

define the effective dimension of inputs as deff := min{srk(S), srk(S2)}, where S represents the99

input covariance matrix and srk(S) = tr(S)/∥S∥2 is the stable rank of S. In particular, when S is100

isotropic, we have deff = d.101

Theorem 3.1 (OLM). Consider OLMs and assume x1, . . . ,xn
i.i.d.∼ N (0, S). For any ϵ, δ ∈ (0, 1),102

(a) if n/ log(n/δ) ≳ 1/ϵ2 and deff ≳ log(n/δ)/ϵ2, then w.p. at least 1 − δ, it holds that103

infθ∈Rp µ(θ) ≥ (1−ϵ)2
(1+ϵ)2cond2(∇F (θ)∇F (θ)⊤)

;104

(b) if n ≳ d+ log(1/δ), then w.p. at least 1− δ, it holds that infθ∈Rp µ(θ) ≳ 1.105

Result (a) is established by leveraging the high dimensionality of inputs, as stated by the condition106

deff ≳ log n, which is particularly relevant for low-sample regimes. Notably, this includes the107

important regimes like n ∼ log(deff) (for sparse recovery) and n ∼ deff (the proportional scaling).108

In contrast, result (b) is pertinent to the enough-data regime where n ≳ d. Notably, the alignment109

holds no matter how degenerate the covariance matrix is. In a summary, these two results are110

complementary and collectively span all the regimes of interest.111

Example. Consider the isotropic case where S = Id and linear regression F (w) = w. In this case,112

∇F (w) ≡ Id and thus, Theorem 3.1 implies that it holds that infθ∈Rp µ(θ) ≳ 1 as long as n ≳ 1.113

Consider two-layer neural networks given by f(x;θ) =
∑m
k=1 akϕ(b

⊤
k x) with ak ∈ {±1} to be114

fixed. We use θ = (b⊤1 , · · · , b⊤m)⊤ ∈ Rmd to denote the concatenation of all trainable parameters.115

Here, ϕ : R 7→ R is an activation function with a nondegenerate derivative as defined below.116

Assumption 3.2. There exist constants β > α > 0 such that α ≤ ϕ′(z) ≤ β holds for any z ∈ R.117

Example 3.3. (i) A typical activation function that satisfies Assumption 3.2 is α-Leacky ReLU: ϕ(z) =118

max{αz, z}, where α ∈ (0, 1). (ii) Moreover, the assumption also holds for Sigmoid with the trunca-119

tion trick (to prevent gradient vanishing of Sigmoid): ϕ(z) = 1/(1 + exp(−sgn(z)min{|z|,M})),120

where M > 0 is the truncation constant.121

Theorem 3.4 (2NN). Consider the two-layer network f(·;θ) with the activation function satisfying122

Assumption 3.2 and assume x1, · · · ,xn i.i.d.∼ N (0, S). For any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2123

and deff ≳ log(n/δ)/ϵ2, then w.p. at least 1− δ, it holds that inf
θ∈Rmd

µ(θ) ≥ α2(1−ϵ)2
β2(1+ϵ)2 .124

Remark 3.5. We would like to emphasize that the conditions presented in Theorem 3.1 and 3.4 are125

independent of the model size p.126

The numerical validation is referred to Appendix C.127

4 Directional Alignment128

In Section 3, we focused solely on average alignment. Subsequently, we delve into a specific type of129

directional alignment: whether noise energy along a direction is proportional to the curvature of loss130

landscape along that direction. To this end, we define the following metric to measure the strength of131

directional alignment.132

Definition 4.1 (Directional Alignment). Given v ∈ Rp, the alignment along v is defined as g(θ;v) :=133

v⊤Σ(θ)v
2L(θ)(v⊤G(θ)v)

, where v⊤Σ(θ)v = E[(ξ(θ)⊤v)2] denotes the noise energy along direction v,134

v⊤G(θ)v is the curvature of loss landscape along v, and 2L(θ) is only a scaling factor.135

Theorem 4.2 (One-sided bound). Consider OLMs and assume x1,x2, . . . ,xn
i.i.d.∼ N (0, S). For136

any δ ∈ (0, 1), if n ≳ d+ log(1/δ), then w.p. at least 1− δ, we have infθ,v∈Rp g(θ;v) ≳ 1.137
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This theorem establishes that a sample size satisfying n ≳ d is sufficient to guarantee a uniform lower138

bound for alignment across all directions and the entire parameter space. The subsequent theorem139

builds upon this by offering a two-sided bound on alignment strength, albeit at the cost of requiring a140

larger sample size.141

Theorem 4.3 (Two-sided bound). Consider OLMs and assume x1,x2, . . . ,xn
i.i.d.∼ N (0, S).142

For any ϵ, δ ∈ (0, 1), if n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
,143

then w.p. at least 1 − δ, we have the following two-side uniform bounds for the directional144

alignment: (i). 1−ϵ
(1+ϵ)2 ≤ infθ,v∈Rp g(θ;v) ≤ supθ,v∈Rp g(θ;v) ≤ 2+ϵ

(1−ϵ)2 ; (ii). 1−ϵ
(1+ϵ)2 ≤145

infθ∈Rp,⟨v,∇L(θ)⟩=0 g(θ;v) ≤ supθ∈Rp,⟨v,∇L(θ)⟩=0 g(θ;v) ≤ 1+ϵ
(1−ϵ)2 .146

Notably, for directions satisfying v ⊥ ∇L(θ), the alignment strength is nearly 1. The proofs of the147

above two theorems are deferred to Appendix H. The numerical validation is referred to Appendix C.148

5 How SGD Escapes from Sharp Minima149

Let w = θ − θ∗ and zi = ∇f(xi;θ∗). Then, G(θ∗) = 1
n

∑n
i=1 ziz

⊤
i and the linearized SGD150

of iterates as follows w(t + 1) = w(t) − η (G(θ∗)w(t) + ξ(t)), where ξ(t) is the SGD noise. In151

addition, in this section, we simply use L(w) = 1
2w

TG(θ∗)w to denote the corresponding loss. We152

make the following assumption on the noise alignment.153

Assumption 5.1 (Eigen-directional alignment). let G(θ∗) =
∑d
i=1 λiuiu

⊤
i be the eigen decom-154

position of G(θ∗). Assume that there exist A1, A2 > 0 such that it holds for any w ∈ Rd,155

A1L(w)λi ≤ E[|ξ(w)⊤ui|2] ≤ A2L(w)λi.156

For linear models under the setting of Theorem 4.3, Assumption 5.1 is provably valid. It is important157

to clarify, however, that the above assumption only requires the alingment along eigen-directions,158

which is considerably less stringent compared to the uniform directional alignment specified in159

Theorem 4.3.160

Eigen-decomposition of SGD. By leveraging Assumption 5.1, we can analyze the SGD dynamics161

in the eigenspace. Let w(t) =
∑d
i=1 wi(t)ui with wi(t) = u⊤

i w(t). Then, wi(t + 1) = (1 −162

ηλi)wi(t)+ηξ(t)
⊤ui. Taking the expectation of the square of both sides, we obtain E

[
w2
i (t+1)

]
=163

(1− ηλi)
2E
[
w2
i (t)

]
+ η2E[|u⊤

i ξ(t)|2], where the noise term: E[|u⊤
i ξ(t)|2] ∼ λiL(wt) according164

to Assumption 5.1.165

Let Xt =
∑k
i=1 λiE[w2

i (t)], Yt =
∑d
i=k+1 λiE[w2

i (t)], denoting the components of loss energy166

along sharp and flat directions, respectively. Let Dk(t) = Yt/Xt, which measures the concentration167

of loss energy along flat directions. Analogously, let Pk(t) =
∑d
i=k+1 E[w2

i (t)]/
∑k
i=1 E[w2

i (t)],168

which measure the concentration of variance along flat directions. It is easy to show that Pk(t) ≥169

Dk(t)λk/λk+1. Therefore, when λk/λk+1 is lower bounded, a concentration of loss energy along170

flat directions can lead to a similar concentration in terms of variance.171

Theorem 5.2 (Escape of SGD). Suppose Assumption 5.1 holds and let η = β
∥G(θ∗)∥F . Then, there172

exists absolute constants c1, c2 > 0 such that if β ≥ c1, then SGD will escape from that minima and173

for any k ∈ [d], it holds that when t ≥ max
{
1,

log
(
c2/η(

∑k
i=1 λ

2
i )

1/2
)

log β

}
: Dk(t) ≳

∑d
i=k+1 λ

2
i∑k

i=1 λ
2
i

.174

The proof can be found in Appendix I. This theorem reveals that during SGD’s escape process, the175

loss rapidly accumulates a significant component along flat directions of the loss landscape. The176

precise loss ratio between the flat and sharp directions is governed by the spectrum of Hessian matrix.177

In particular, D1(t) ≳ srk(G2)− 1, indicating that in high dimension, i.e., srk(G2) ≫ 1, the loss178

energy along the sharpest directions becomes negligible during the SGD’s escape process. This179

stands in stark contrast to GD, which always escapes along the sharpest direction:180

Proposition 5.3 (Escape of GD). Consider GD with learning rate η = β/λ1. If β > 2, then181

D1(t) ≤
∑d
i=2

λi(1−ηλi)2tw2
i (0)

λ1(1−ηλ1)2tw2
1(0)

.182

In particular, if w1(0) ̸= 0 and λ1 > λ2, then the above proposition implies that D1(t) decreases to 0183

exponentially fast for GD. The numerical validation is referred to Appendix C.184

Furthermore, as an implication of SGD’s escaping direction, we explain the implicit bias of cyclical185

learning rate in Appendix B.186
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A Other Related Work322

Noise geometry. Ziyin et al. (2022) provides a detailed analysis of the noise structure of online323

SGD for linear regression. We instead consider nonlinear models and finite-sample regimes. We also324

acknowledge the existence of works such as Simsekli et al. (2019); Zhou et al. (2020), which argue325

that the magnitude of SGD noise is heavy-tailed. However, our particular focus is on the noise shape326

and the observation that the noise magnitude is directly proportional to the loss value.327

Escape from minima and saddle points The phenomenon of SGD escaping from sharp minima328

exponentially fast was initially studied in Zhu et al. (2019) as an indicator of how much SGD dislikes329

sharp minima. This provides an explanation of the famous “flat minima hypothesis” (Hochreiter and330

Schmidhuber, 1997; Keskar et al., 2017; Wu and Su, 2023)—one of the most important observations in331

explaining the implicit regularization of SGD. However, existing analyses of the escape phenomenon332

have primarily focused on the escape rate (Wu et al., 2018; Zhu et al., 2019; Xie et al., 2020; Mori333

et al., 2022; Ziyin et al., 2022). In contrast, we extends this focus by providing analysis of escape334
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direction, which is enabled by our characterizations of the noise geometry. Kleinberg et al. (2018)335

introduced an alternative perspective, positing that SGD circumvents local minima by navigating336

an effective loss landscape that results from the convolution of the original landscape with SGD337

noise. In this context, our noise geometry characterizations can be beneficial in understanding the338

effective loss landscape. In addition, prior works like (Daneshmand et al., 2018; Xie et al., 2022) has339

illustrated that the alignment of noise with local geometry facilitates the rapid saddle-point escape of340

SGD. Our work offers theoretical substantiation for the alignment assumptions in these studies.341

B Explaining the Implicit Bias of Cyclical Learning Rate342

Gaining insights into the escape direction of SGD can be valuable for understanding its optimization343

dynamics, generalization properties, and the overall behavior. A more detailed discussion on this344

topic is available in Section E. In this section, however, we concentrate a specific example, illustrating345

the role of escape direction in enhancing the implicit bias of SGD through Cyclical Learning Rate346

(CLR) (Smith, 2017; Loshchilov and Hutter, 2017). As shown in Figure 2 of Huang et al. (2018),347

utilizing CLR enables SGD to cyclically escapes from (when increasing LR) and slides into (when348

decreasing LR) sharp regions, ultimately progressing towards flatter minima. We hypothesize that349

escape along flat directions plays a pivotal role in guiding SGD towards flatter region in this process.350

0 1000 2000

w2
1 + 1 = 1

Tr(∇2L(w))

0.000

0.025

0.050

0.075

0.100

w
2 2

`(w; x) = w2
2x

2

2(w2
1+1)

GD

SGD

Figure 1: Visualization of the trajectories of
SGD+CLR v.s. GD+CLR for our toy model.
Both cases use the same CLR schedule. We
can observe that SGD+CLR moves signifi-
cantly towards flatter region, while GD+CLR
only osccilates along the sharpest direction.
We have extensively tuned the learning rates
for GD+CLR but do not obseve significant
movement towards flatter region in any case.

351
Following Ma et al. (2022), we consider a toy OLM352

f(x;w) = (w2/
√
w2

1 + 1)x with x ∼ N (0, 1). For sim-353

plicity, we consider the online setting, where the landscape354

L(w) = w2
2/[2(w

2
1 + 1)].

The global minima valley is S = {w : w2 = 0} and for355

w ∈ S, tr[∇2L(w)] = 1/(1+w2
1). Hence, the minimum356

gets flatter along the valley S when |w1| grows up. In357

Figure 1, we visualize the trajectories for both SGD+CLR358

and GD+CLR. One can observe that359

• SGD escape from the minima along both the flat360

direction e1 and sharp direction e2. The component361

of along e1 leads to considerable increase in w2
1(t),362

facilitating the movement towards flatter region along363

the minimum valley S.364

• On the contrary, GD escapes only along e2, yielding365

no increase in w2
1(t). Thus, we cannot observe clear366

movement towards flatter region for GD+CLR.367

Thus, in this toy model, the fact that SGD escapes along flat directions is crucial in amplifying the368

implicit bias towards flat minima.369

Nonetheless, understanding how the above mechanism manifests in practice remains an open question370

that warrants further investigation. We defer this topic to future work, as the primary focus of this371

paper is to understand the noise geometry rather than exhaustively explore its applications.372

C Small-scale Experiments373

C.1 Average Alignment374

In this section, we present small-scale experiments to corroborate our theoretical results with a 4-layer375

linear network and two-layer ReLU network (both layers are trainable). Both isotropic and anistropic376

input distributions are examined and in parituclar, for the anistropic case, we set λ2k(S) = 1/
√
k. As377

for sample size, we set n = 5 log(deff) to focus on the low-sample regime. The results are reported378

in Figure 2 and it is evident that across all examined scenarios, the alignment strength is consistently379

lower-bounded and independent of the model size.380
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(b) Two-layer ReLU networks
Figure 2: The alignment strength is independent of model size. Two types of models: 4-layer linear network,
and two-layer neural network are examined. In experiments, we set n = 5 log(deff), deff = 50. The error bar
corresponds to the standard deviation over 20 independent runs.

C.2 Directional Alignment381

In this experiment, we consider the alignment along the eigen-directions of Hessian matrix. Let382

G(θ) =
∑
k λk(θ)uk(θ)uk(θ)

⊤ be the eigen-decomposition of G(θ) respectively, where {λk(θ)}k383

are the eigenvalues in a decreasing order and {uk(θ)} are the corresponding eigen-directions. Note384

that λk(θ) is the curvature of local landscape along uk(θ). Decompose SGD noise along these eigen-385

directions: ξ(θ) =
∑
k rk(θ)uk(θ), where rk(θ) = ξ(θ)⊤uk(θ) denotes the noise component in386

the direction of uk(θ). Consequently, the (scaled) expected noise magnitude in the direction uk(θ) is387

given by αk(θ) = E[r2k(θ)]/2L(θ) = u⊤
k Σ(θ)uk(θ)/2L(θ). For comparison, let {µk(θ)}k denote388

the eigenvalues of Σ(θ)/2L(θ). When clear from the context, we will omit dependence on θ for389

simplicity.390

In Figure 3a, we examine linear regression in the regimes with limited data. Surprisingly, even391

with significantly fewer samples, we still observed that the noise energy along each eigen-direction392

remained roughly proportional to the corresponding curvature and the ratio is close 1. However,393

we noticed that the eigenvalues of Σ(θ)/2L(θ) decayed much faster than that of G(θ), indicating394

that the condition n ≳ d stated in Theorem 4.2 is necessary to ensure uniform alignment across all395

directions. In Figure 3b, we further consider the classification of CIFAR-10 with a small convolutional396

neural network (CNN) and fully-connected neural network (FNN). We can see that the obsevation is397

consistent with Figure 3a, where the alignment along eigen-directions is significant.398
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(b) Small neural networks
Figure 3: How the components of noise energy in eigen-directions {αk}k are proportional to the corresponding
curvatures {λk}k. αk/λk can reflect the directional alignment along the eigen-directions of the local landscape.
The eigenvalues of Σ/2L are also plotted as comparison. (a) Linear models on Gaussian data in the regimes
with limited data, where we fix d = 103 and change n accordingly (n = d/4, n = 8 log d). (b) 4-layer CNN
and 4-layer FNN on CIFAR-10 dataset. For more experimental details, we refer to Appendix F.

C.3 Escaping Direction399

Figure 4 presents numerical comparisons of the escaping directions between SGD and GD. It is400

evident that D1(t) exponentially decreases to zero for GD, indicating that GD escapes along the401

sharpest direction. In contrast, for SGD, D1(t) remains significantly large, indicating that SGD402

retains a substantial component along the flat directions during the escape process. Furhermore,403

the value of D1(t) positively correlates with srk(G2), as predicted by our Theorem 5.2. These404

observations provide empirical confirmation of our theoretical predictions.405
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Figure 4: Comparison of escape directions between SGD and GD. The problem is linear regression and both
SGD and GD are initialized near the global minimum by w(0) ∼ N (w∗, e−10Id/d). To ensure escape, we
choose η = 1.2/ ∥G∥F and η = 4/(λ1 + λ2) for SGD and GD, respectively. Please refer to Appendix F for
more experimental details.

D Larger-scale Experiments for Deep Neural Networks406

We have already provided small-scale experiments to confirm our theoretical findings. We now turn407

to justify the practical relevance by examining the classification of CIFAR-10 dataset (Krizhevsky408

and Hinton, 2009) with practical VGG nets (Simonyan and Zisserman, 2015) and ResNets (He et al.,409

2016). Note that larger-scale experiments on average alignment have been previously presented in Wu410

et al. (2022). Thus, our focus here is on investigate the directional alignment and escape direction of411

SGD. We refer to Appendix F for experimental details.412

The directional alignment along eigen-directions. Figure 5 presents the directional align-413

ments of SGD noise for ResNet-38 and VGG-13. The alignment is examined along the eigen-414

directions of the local landscape. The three quantities: λk, αk, and µk under ℓ1 normalization415

(i.e., λk/ ∥λ∥1, αk/ ∥α∥1, µk/ ∥µ∥1) are plotted. Here, λk and αk represent the curvature and the416

component of noise energy along the k-th eigen-direction, respectively. µk corresponds to the k-th417

eigenvalue of the noise covariance matrix, which is included for comparison. One can see that418

the alignment between αk and λk still exists for ResNet-38 and VGG-13, but the ratio between419

them becomes significantly larger. As a comparison, we refer to Figure 3b, where the ratio is well-420

controlled for small-scale networks trained for classifying the same dataset. We hypothesize that thiis421

observation is consistent with our theoretical results in Section 4: one-sided bounds require much422

less samples.423
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Figure 5: Three distributions ({λk}k, {αk}k, and {µk}k) for larger-scale neural networks, which reflect the
directional alignment along the eigen directions of the local landscape.

The escape direction of SGD. For large models, it is computationally prohibitive to compute the424

quantity Dk(t) since it needs to compute the whole spectrum. Thus, we consider to measure the425

component along different directions without reweighting. Let θ∗ be the minimum of interest426

and θ(t) be SGD/GD solution at step t. Define pk(t) = ⟨θ(t)− θ∗,u1⟩ for k = 1 and pk(t) =427

(
∑k
i=1 ⟨θ(t)− θ∗,ui⟩2)1/2 for k > 1; rk(t) = (∥θ(t)− θ∗∥2−p2k(t))1/2. Notably, pk(t) and rk(t)428

represent the component along sharp and flat directions, respectively.429

In Figure 6, we plot (pk(t), rk(t)) for VGG-19 and ResNet-110, where we examine various k values.430

The plots clearly demonstrate that the escape direction of SGD exhibits significant components along431

the flat directions. On the other hand, GD tends to escape along much sharper directions. These432

empirical findings align well with our theoretical findings in Section 5.433

11



0.000 0.002 0.004

rk(t)

0.000

0.005

0.010

0.015

p k
(t

)

VGG-19 (k = 5)

GD

SGD

0.00 0.01 0.02 0.03 0.04

rk(t)

−0.02

0.00

0.02

0.04

p k
(t

)

ResNet-110 (k = 1)

GD

SGD

0.00 0.01 0.02

rk(t)

0.00

0.01

0.02

0.03

0.04

p k
(t

)

ResNet-110 (k = 10)

GD

SGD

Figure 6: The red curves are 50 escaping trajectories of SGD and their average; the blue curves corresponding
to GD. The sharp minimum θ∗ is found by SGD. Then, we run SGD and GD starting from θ∗ and the learning
rates are tuned to ensure escaping.

E Conclusion and Future Work434

In this paper, we present a comprehensive investigation of the geometry of SGD noise, demonstrating435

both average and directional alignment between the noise and local geometry. We substantiate436

these claims through both theoretical analyses and empirical evidence. Furthermore, we explore the437

implications of these findings by analyzing the escape direction of SGD and its role in enhancing the438

implicit bias toward flatter minima through cyclical learning rate.439

Understanding the noise geometry is crucial for comprehending many aspects of stochastic optimiza-440

tion, including but not limited to convergence rates, generalization capabilities, and dynamic behavior.441

We offer an illustrative example through analyzing the escape direction of SGD. Another particularly442

relevant application of our noise geometry framework lies in deciphering the Edge of Stability (EoS)443

and the associated unstable convergence phenomena, as elaborated below.444

• Studies (Cohen et al., 2020; Wu et al., 2018) showed that in training neural networks, GD typically445

occurs in a EoS phase, where the the stability condition is violated. During EoS phase, GD446

repeatedly slides into sharp regions and then, escapes from there. Due to the fact that GD escapes447

along the sharpest direction (as stated in our Proposition 5.3), GD in the EoS phase will keep448

oscillating along the sharpest directions and decreasing the loss along other flat directions. Thus,449

EoS facilitates the unstable convergence of GD (Ahn et al., 2022). Similar EoS-related phenomena450

and unstable convergence patterns are also observed in SGD (Lee and Jang, 2022). However, to451

fully characterize the EoS phase in the context of SGD, it is imperative to understand the underlying452

noise structure. Specifically, one must elucidate the mechanism by which noise compels SGD to453

move away from sharp minima.454

• In addition, our finding can potentially be used to explain why the training curve of SGD can be455

more stable than that of GD—A very counter-intuitive phenomenon. As shown in Fig. 2 of Geiping456

et al. (2021), GD training often encounters sudden large loss spikes and in contrast, SGD training457

does not have this issue (although there are small loss fluctuations), implying that minibatch noise458

can stabilizes the training to some extent. This can potentially be explained by our theory as459

follows. For both SGD and GD, the unstable dynamics is inevitable in training neural networks460

due to progressive sharpening, i.e., entering the EoS phase. During the EoS phase, GD escapes461

along the sharpest direction, leading to a sudden large loss spike if the curvature along the sharpest462

direction becomes extremely large. In contrast, for SGD, the escape happens along much flatter463

directions, for which it is unlikely to trigger a large loss spike.464

F Experimental Setups465

In this section, we provide the experiment details for directional alignment experiments (in Figure 3466

and Figure 5) and escaping experiments (in Figure 4 and Figure 6).467

Small-scale experiments (Figure 3 and 4).468

• In Figure 3, we conduct experiments on linear regression and a 4-layer linear network: d→469

m→ m→ m→ 1 with m = 50. The inputs {xi}ni=1 are drawn from N (0, Id). In the first470

three experiments, we fix d = 103 and change n accordingly (n = 4d2, n = d, n = d/4).471
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For the last experiment, we set d = 104 and n = log d. Regarding the parameter θ, it is472

drawn from N (0, Ip).473

• In Figure 4, we conduct escaping experiments on linear regression with w∗ = 0. Both SGD474

and GD are initialized near the global minimum by w(0) ∼ N (0, e−10Id/d). To ensure475

escaping, we choose η = 1.2/ ∥G∥F and η = 4/(λ1 + λ2) for SGD and GD, respectively.476

We fix n = 105 and d = 103, and the inputs {xi}ni=1 are drawn from N (0,diag(λ)/d),477

where λ ∈ Rd and λ1 ≥ λ2 = · · · = λd ≥ 0. Moreover, we set λ1 = 1 change λ2478

accordingly to obtain different srk(G2).479

Larger-scale experiments (Figure 5 and 6).480

• Dataset. For the experiments in Figure 5 and 6, we use the CIFAR-10 dataset with label=0, 1481

and the full CIFAR-10 dataset to train our models, respectively.482

• Models. We conduct experiments on large-scale models: 4-layer CNN (p = 43, 072),483

4-layer FNN (p = 219, 200), ResNet-38 (p = 558, 222), VGG-13 (p = 605, 458), ResNet-484

110 (p = 1, 720, 138), and VGG-19 (p = 20, 091, 338).485

Specifically, we use standard ResNets (He et al., 2016) and VGG nets (Simonyan and486

Zisserman, 2015) without batch normalization. For ResNets, we follow Zhang et al. (2019)487

to use the fixup initialization in order to ensure that the model can be trained without batch488

normalization. Moreover, the architecture of 4-layer CNN is Conv(3, 6, 5) → ReLU →489

MPool(2, 2) → Conv(6, 16, 5) → ReLU → MPool(2, 2) → Linear(400, 100) → ReLU →490

Linear(100, 2). and the 4-layer FNN is a ReLU-activated fully-connected network with491

the architecture: 784 → 256 → 64 → 32 → 2.492

• Training. All explicit regularizations (including weight decay, dropout, data augmentation,493

batch normalization, learning rate decay) are removed, and a simple constant-LR SGD is494

used to train our models. Specifically, all these models are trained by SGD with learning495

rate η = 0.1 and batch size B = 32 until the training loss becomes smaller than 10−4.496

Efficient computations of the top-k eigen-decomposition ofG and Σ. We utilize the functions eigsh497

and LinearOperator in scipy.sparse.linalg to calculate top-k eigenvalues and eigenvectors498

of G and Σ, and the key step is to efficiently calculate Gv and Σv for any given v ∈ Rp.499

• For small-scale experiments, they can be calculated directly.500

• For the large-scale models, we need further approximations since the computation complex-501

ity O(np) is prohibitive in this case. To illustrate our method, we will use Gv as an example502

and apply a similar approach to Σv. Notice that the formulation Gv = 1
n

∑n
i=1(x

⊤
i v)xi503

are all in the form of sample average, which allows us to perform Monte-Carlo approxi-504

mation. Specifically, we randomly choose b samples {xij}bj=1 from x1, . . . ,xn and use505

1
b

∑b
j=1(x

⊤
ij
v)xij estimate Gv, with the computation complexity O(bp). For the experi-506

ments on CIFAR-10, we test b’s with different values and find that b = 2k is sufficient to507

obtain a reliable approximation of the top-k eigenvalues and eigenvectors. Hence, for all508

large-scale experiments in this paper, we use b = 2k to speed up the computation of the509

top-k eigenvalues and eigenvectors.510

G Proofs in Section 3: Average alignment511

G.1 Proof of Theorem 3.1 (a)512

For clarity, in a slightly different order from the main text, we first prove for the linear model513

(Example) and then for the OLM (Theorem 3.1). This is also convenient for us to compare the514

difference between the proof for the two-layer neural network (Theorem 3.4) and the proof for the515

linear model.516

Step I. Proof for linear models.517
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For the linear model, i.e., θ = w and F (w) = w in OLMs, we have518

µ(w) =
Tr (Σ(w)G(w))

2L(w) ∥G(w)∥2F

=

Tr

((
1
n

n∑
j=1

xjx
⊤
j

)(
1
n

n∑
i=1

(F (θ)⊤xi)
2(∇F (θ)⊤xi)(∇F (θ)⊤xi)⊤

))
(

1
n

n∑
i=1

(F (θ)⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2)

=

1
n2

n∑
i=1

n∑
j=1

(w⊤xi)
2
(
x⊤
i xj

)2
(

1
n

n∑
i=1

(w⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i xj

)2) ≥

(
1
n

n∑
i=1

(w⊤xi)
2
)(

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i xj

)2)
(

1
n

n∑
i=1

(w⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i xj

)2)

=

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i xj

)2
max
i∈[n]

1
n

n∑
j=1

(
x⊤
i xj

)2 ≥
min
i∈[n]

∥xi∥4 + (n− 1) min
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i xj)

2

max
i∈[n]

∥xi∥4 + (n− 1)max
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i xj)

2
.

(1)

Then we only need to estimate ∥xi∥4 and 1
n−1

∑
j ̸=i

(x⊤
i xj)

2 for each i ∈ [n], respectively.519

Step I (i). Estimation of ∥xi∥4.520

Let yi = S1/2xi, then ∥xi∥2 = y⊤
i Syi and y1, · · · ,yn

i.i.d.∼ N (0, Id).521

For a fix i ∈ [n], by Lemma J.2, there exists an absolute constant C1 > 0 such that for any ϵ ∈ (0, 1),522

we have523

P
(∣∣∣y⊤

i Syi − Tr(S)
∣∣∣ ≥ ϵTr(S)

)
≤ 2 exp

(
−C1 min

{
ϵ2Tr2(S)

∥S∥2F
,
ϵTr(S)

∥S∥2

})
.

Noticing that Tr(S) ∥S∥2 = λ1
∑
i λi ≥

∑
i λ

2
i = ∥S∥F , we thus have524

Tr2(S)

∥S∥2F
≥ Tr(S)

∥S∥2
= srk(S).

Therefore,525

P
(∣∣∣y⊤

i Syi − Tr(S)
∣∣∣ ≥ ϵTr(S)

)
≤ 2 exp

(
−C1

Tr(S)

∥S∥2
min

{
ϵ, ϵ2

})
= 2 exp

(
−C1ϵ

2srk(S)
)
.

Applying a union bound over all i ∈ [n], we have526

P
(∣∣∣ ∥xi∥2 − Tr(S)

∣∣∣ ≥ ϵTr(S),∀i ∈ [n]
)
≤ 2n exp

(
−C1ϵ

2srk(S)
)
.

In the other word, for any ϵ, δ ∈ (0, 1), if srk(S) ≳ log(n)/ϵ2, then w.p. at least 1− δ/3, we have527

(1− ϵ)2 ≤ ∥xi∥42
Tr2(S)

≤ (1 + ϵ)2, ∀i ∈ [n].

Step I (ii). Estimation of 1
n−1

∑
j ̸=i

(x⊤
i xj)

2.528

First, we fix i ∈ [n]. Notice that (x⊤
i xj)

2 (j ̸= i) are not independent, so we need estimate by some529

decoupling tricks.530

We denote yi := S−1/2xi, then y1, · · · ,yn
i.i.d.∼ N (0, Id) and (x⊤

i xj)
2 = (y⊤

i Syj)
2.531
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For any fixed v ∈ Sd−1, by Lemma J.1, for any ϵ ∈ (0, 1), we have532

P

∣∣∣ 1

n− 1

∑
j ̸=i

(v⊤yj)
2 − 1

∣∣∣ ≥ ϵ


≤P

∣∣∣ 1

n− 1

∑
j ̸=i

(v⊤yj)
2 − 1

∣∣∣ ≥ ϵ

 ≤ 2 exp
(
−C2(n− 1)ϵ2

)
,

where C2 > 0 is an absolute constant, independent of v and ϵ.533

Then we have534

P

∣∣∣ 1

n− 1

∑
j ̸=i

(x⊤
i xj)

2 − x⊤
i Sxi

∣∣∣ ≥ ϵx⊤
i Sxi


=P

∣∣∣ 1

n− 1

∑
j ̸=i

(y⊤
i Syj)

2 − ∥Syi∥22
∣∣∣ ≥ ϵ ∥Syi∥22


zi:=Syi/∥Syi∥2= P

∣∣∣ 1

n− 1

∑
j ̸=i

(z⊤
i yj)

2 − 1
∣∣∣ ≥ ϵ


=E

I
∣∣∣ 1

n− 1

∑
j ̸=i

(z⊤
i yj)

2 − 1
∣∣∣ ≥ 1




=Ezi

E
I
∣∣∣ 1

n− 1

∑
j ̸=i

(z⊤
i yj)

2 − 1
∣∣∣ ≥ 1


∣∣∣∣∣zi


≤Ezi

[
2 exp

(
−C2(n− 1)ϵ2

)]
= 2 exp

(
−C2(n− 1)ϵ2

)
.

Applying a union bound over all i ∈ [n], we have535

P

∣∣∣ 1

n− 1

∑
j ̸=i

(x⊤
i xj)

2 − x⊤
i Sxi

∣∣∣ ≥ ϵx⊤
i Sxi,∀i ∈ [n]

 ≤ 2n exp
(
−C2(n− 1)ϵ2

)
.

In the other word, for any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2, then w.p. at least 1− δ/3, we have536

1− ϵ ≤
1

n−1

∑
j ̸=i(x

⊤
i xj)

2

x⊤
i Sxi

≤ 1 + ϵ, ∀i ∈ [n].

Step I (iii). Estimation of x⊤
i Sxi.537

Let yi = S1/2xi, then x⊤
i Sxi = y⊤

i S
2yi and y1, · · · ,yn

i.i.d.∼ N (0, Id).538

In the same way as Step I(i), we obtain that: for any ϵ, δ ∈ (0, 1), if srk(S2) ≳ log(n)/ϵ2, then539

w.p. at least 1− δ/3, we have540

1− ϵ ≤ x⊤
i Sxi

Tr(S2)
≤ 1 + ϵ, ∀i ∈ [n].

Combining our results in Step I (i), Step I (ii), and Step I (iii), we obtain the result for Linear Model:541

for any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2 and min{srk(S), srk(S2)} ≳ log(n)/ϵ2, then w.p. at542

least 1− δ/3− δ/3− δ/3 = 1− δ, we have543

µ(w) ≥
(1− ϵ)2Tr2(S) + (n− 1)(1− ϵ) min

i∈[n]
x⊤
i Sxi

(1 + ϵ)2Tr2(S) + (n− 1)(1 + ϵ)max
i∈[n]

x⊤
i Sxi
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≥ (1− ϵ)2Tr2(S) + (n− 1)(1− ϵ)2Tr(S2)

(1 + ϵ)2Tr2(S) + (n− 1)(1 + ϵ)2Tr(S2)
=

(1− ϵ)2

(1 + ϵ)2
.

From the arbitrary of w, we have infw∈Rd µ(w) ≥ (1−ϵ)2
(1+ϵ)2 .544

Step II. Proof for OLMs.545

µ(θ) =
Tr (Σ(θ)G(θ))

2L(θ) ∥G(θ)∥2F

=

Tr

((
1
n

n∑
j=1

(∇F (θ)⊤xj)(∇F (θ)⊤xj)⊤
)(

1
n

n∑
i=1

(F (θ)⊤xi)
2(∇F (θ)⊤xi)(∇F (θ)⊤xi)⊤

))
(

1
n

n∑
i=1

(F (θ)⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2)

=

1
n2

n∑
i=1

n∑
j=1

(F (θ)⊤xi)
2
(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2
(

1
n

n∑
i=1

(F (θ)⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2)

≥

(
1
n

n∑
i=1

(F (θ)⊤xi)
2
)(

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2)
(

1
n

n∑
i=1

(F (θ)⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2) =

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2
max
i∈[n]

1
n

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2

≥
min
i∈[n]

∥∥∇F (θ)⊤xi∥∥4 + (n− 1) min
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

max
i∈[n]

∥∇F (θ)⊤xi∥4 + (n− 1)max
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

.

(2)
We can still prove the theorem by the similar way as Step I.546

By replacing xi and xj (j ̸= i) in Step I (i) with ∇F (θ)∇F (θ)⊤xi and xj (j ̸= i), respectively, in547

the similar way as Step I (i), we can obtain: for any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2, then w.p. at548

least 1− δ, we have549

1− ϵ ≤
1

n−1

∑
j ̸=i(x

⊤
i ∇F (θ)∇F (θ)⊤xj)2

x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi

≤ 1 + ϵ, ∀i ∈ [n];

Combining the estimation above with Step I (ii) and Step I (iii), we obtain that: for any ϵ, δ ∈ (0, 1),550

if n/ log(n/δ) ≳ 1/ϵ2 and srk(S2) ≳ log(n)/ϵ2, then w.p. at least 1− δ, we have551

1− ϵ ≤
1

n−1

∑
j ̸=i(x

⊤
i ∇F (θ)∇F (θ)⊤xj)2

x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi

≤ 1 + ϵ, ∀i ∈ [n];

(1− ϵ)2 ≤ ∥xi∥42
Tr2(S)

≤ (1 + ϵ)2, ∀i ∈ [n];

1− ϵ ≤ x⊤
i Sxi

Tr(S2)
≤ 1 + ϵ, ∀i ∈ [n].

These inequalities imply that:552

µ(θ) ≥
min
i∈[n]

λ2min(∇F (θ)∇F (θ)⊤) ∥xi∥42 + (n− 1) min
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

max
i∈[n]

λ2min(∇F (θ)∇F (θ)⊤) ∥xi∥
4
2 + (n− 1)max

i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

≥
(1− ϵ)2 min

i∈[n]
λ2min(∇F (θ)∇F (θ)⊤)Tr2(S) + (n− 1)(1− ϵ) min

i∈[n]
x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi

(1− ϵ)2 max
i∈[n]

λ2max(∇F (θ)∇F (θ)⊤)Tr2(S) + (n− 1)(1 + ϵ)max
i∈[n]

x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi
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≥
(1− ϵ)2 min

i∈[n]
λ2min(∇F (θ)∇F (θ)⊤)Tr2(S) + (n− 1)(1− ϵ)λ2min(∇F (θ)∇F (θ)⊤) min

i∈[n]
x⊤
i Sxi

(1 + ϵ)2 max
i∈[n]

λ2max(∇F (θ)∇F (θ)⊤)Tr2(S) + (n− 1)(1 + ϵ)λ2max(∇F (θ)∇F (θ)⊤)max
i∈[n]

x⊤
i Sxi

≥
(1− ϵ)2 min

i∈[n]
λ2min(∇F (θ)∇F (θ)⊤)Tr2(S) + (n− 1)(1− ϵ)2λ2min(∇F (θ)∇F (θ)⊤)Tr(S2)

(1 + ϵ)2 max
i∈[n]

λ2max(∇F (θ)∇F (θ)⊤)Tr2(S) + (n− 1)(1 + ϵ)2λ2max(∇F (θ)∇F (θ)⊤)Tr(S2)

=
(1− ϵ)2

(1 + ϵ)2cond2(∇F (θ)∇F (θ)⊤)
.

Hence, we have proved Theorem 3.1.553

G.2 Proof of Theorem 3.1 (b)554

This result is a direct corollary of Theorem 4.2, which is proved in Appendix H.555

Under the same setting as Theorem 4.2, Theorem 4.2 gives us the uniform lower bound: there exists556

an absolute constant C > 0 such that557

inf
θ,v∈Rp

g(θ;v) ≥ C,

which means that for any θ ∈ Rp,v ∈ Sp−1, we have558

v⊤Σ(θ)v ≥ C · 2L(θ)v⊤G(θ)v.

Consider the orthogonal decomposition of G(θ): G(θ) =
∑p
k=1 λkuku

⊤
k . Notice that559

Tr(Σ(θ)G(θ)) =

p∑
k=1

λku
⊤
k Σ(θ)uk,

∥G(θ)∥F = Tr(G(θ)G(θ)) =

p∑
k=1

λku
⊤
k G(θ)uk.

Then we obtain560

Tr(Σ(θ)G(θ)) ≥ C · 2L(θ)
p∑
k=1

λku
⊤
k G(θ)uk = C · 2L(θ) ∥G(θ)∥2F ,

which means µ(θ) ≥ C. From the arbitrariness of θ, it holds that infθ∈Rp µ(θ) ≥ C.561

G.3 Proof of Theorem 3.4562

For two-layer neural networks with fixed output layer, the gradient is563

∇f(xi;θ) =
(
a1σ

′(b⊤1 xi)x
⊤
i , · · · , amσ′(b⊤mxi)x

⊤
i

)⊤
∈ Rmd.

For simplicity, denote ∇fi(θ) := ∇f(xi;θ), ui(θ) := fi(θ)− fi(θ
∗). Then we have:564

L(θ) = 1

2n

n∑
i=1

u2i (θ), G(θ) =
1

n

n∑
i=1

∇fi(θ)∇fi(θ)⊤, Σ(θ) =
1

n

n∑
i=1

u2i (θ)∇fi(θ)∇fi(θ)⊤.

µ(θ) =

Tr

((
1
n

n∑
i=1

∇fi(θ)∇fi(θ)⊤
)(

1
n

n∑
i=1

u2i (θ)∇fi(θ)∇fi(θ)⊤
))

(
1
n

n∑
i=1

u2i (θ)

)(
1
n2

n∑
i=1

n∑
j=1

(∇fi(θ)⊤∇fi(θ))2
)
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=

1
n

n∑
i=1

u2i (θ)
1
n

n∑
j=1

(
∇fi(θ)⊤∇fj(θ)

)2
(

1
n

n∑
i=1

u2i (θ)

)(
1
n2

n∑
i=1

n∑
j=1

(∇fi(θ)⊤∇fi(θ))2
)

≥
min
i∈[n]

1
n

n∑
j=1

(
∇fi(θ)⊤∇fj(θ)

)2
1
n2

n∑
i=1

n∑
i=1

(∇fi(θ)⊤∇fj(θ))2
≥

min
i∈[n]

1
n

n∑
j=1

(
α2mx⊤

i xj
)2

1
n2

n∑
i=1

n∑
i=1

(
β2mx⊤

i xj
)2 =

α2

β2

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i xj

)2
1
n2

n∑
i=1

n∑
i=1

(
x⊤
i xj

)2 .

Notice that the last term
min
i∈[n]

1
n

n∑
j=1

(x⊤
i xj)

2

1
n2

n∑
i=1

n∑
i=1

(x⊤
i xj)

2
is independent of θ and the same as (1) for the linear565

model . Then repeating the same proof of Linear Model, the result of this theorem differs from Linear566

Model by only the factor α2/β2. In other words, under the same condition with Linear Model, w.p. at567

least 1− δ, we have568

inf
θ∈Rmd

µ(θ) ≥ α2

β2

(1− ϵ)2

(1 + ϵ)2
.

569

H Proofs in Section 4: Directional Alignment570

For the OLM f(x;θ) = F (θ)Tx, let r(θ) = F (θ)− F (θ∗). Then, we have571

Ĝ(θ) =
1

n

n∑
i=1

∇F⊤(θ)xix
⊤
i ∇F (θ)

L̂(θ) = 1

2n

n∑
i=1

(
u⊤(θ)xi

)2
Σ̂(θ) =

1

n

n∑
i=1

(
r⊤(θ)xi

)2∇F⊤(θ)xix
⊤
i ∇F (θ),

(3)

and for the population case:572

G(θ) = E
[
∇F⊤(θ)xx⊤∇F (θ)

]
= ∇F⊤(θ)S∇F (θ)

L(θ) = 1

2
E
[(
r⊤(θ)x

)2]
=

1

2
r(θ)⊤Sr(θ)

Σ(θ) = E
[(
r⊤(θ)x

)2∇F⊤(θ)xx⊤∇F (θ)
]

Lemma H.1 (Proposition 2.3 in (Wu et al., 2022)). Let the data distribution be N (0, S). Then we
have

Σ(θ) = ∇L(θ)∇L(θ)⊤ + 2L(θ)G(θ).
Lemma H.2. Under the same conditions in Lemma H.1, if u(θ) ̸= 0 and ∇F (θ)v ̸= 0, then we573

have:574 (
∇L(θ)⊤v

)2 ≤ 2L(θ)v⊤G(θ)v.

Proof. Noticing that L(θ) = 1
2r(θ)

⊤Sr(θ), we have ∇L(θ) = ∇F (θ)⊤Su(θ). Hence,575 (
∇L(θ)⊤v

)2
= v⊤∇F (θ)⊤Sr(θ)r(θ)⊤S∇F (θ)v = ⟨∇F (θ)v, r(θ)⟩2S

Lemma J.6
≤ ∥∇F (θ)v∥2S ∥r(θ)∥

2
S = 2L(θ)

(
v∇F (θ)⊤S∇F (θ)v

)
= 2L(θ)v⊤G(θ)v.

576
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Lemma H.3. Let x1, · · · ,xn i.i.d.∼ N (0, Id). For any ϵ, δ ∈ (0, 1), if we choose n ≳577

(d+ log(1/δ)) /ϵ2, then w.p. at least 1− δ, we have:578

sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(v⊤xi)
2 − 1

∣∣∣∣∣ ≤ ϵ.

Proof. By Lemma J.3 with K =
√
C1, we know that: w.p. at least 1− 2 exp(−u), we have579 ∥∥∥∥∥ 1n

n∑
i=1

xix
⊤
i − Id

∥∥∥∥∥ ≤ C2

(√
d+ u

n
+
d+ u

n

)
,

where C2 is an absolute positive constant. Equivalently, we can rewrite this conclusion. For any580

ϵ, δ ∈ (0, 1), if we choose n ≳ (d+ log(1/δ)) /ϵ2, then w.p. at least 1− δ, we have:581

sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(v⊤xi)
2 − 1

∣∣∣∣∣ ≤
∥∥∥∥∥ 1n

n∑
i=1

xix
⊤
i − Id

∥∥∥∥∥ ≤ ϵ.

582

Lemma H.4 (Corollary 2 in (Cai et al., 2022)). Let x1, · · · ,xn i.i.d.∼ N (0, Id). There exists absolute583

constants C1, C2, C3 > 0, such that if n ≥ C3d, then w.p. at least 1− exp(−C2n), we have584

inf
u,v∈Sd−1

1

n

n∑
i=1

(x⊤
i u)

2(x⊤
i v)

2 ≥ C1.

With the preparation of Lemma H.3 and Lemma H.4, now we give the proof of Theorem 4.2.585

H.1 Proof of Theorem 4.2586

Let yi = S−1/2xi, then y1, · · · ,yn
i.i.d.∼ N (0, Id).587

g(θ;v) = =

1
n

n∑
i=1

(
r⊤(θ)xi

)2((
∇F (θ)v

)⊤
xi

)2
1
n

n∑
i=1

(
r⊤(θ)xi

)2
· 1
n

n∑
i=1

((
∇F (θ)v

)⊤
xi

)2

=

1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2((
S1/2∇F (θ)v

)⊤
yi

)2
1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2
· 1
n

n∑
i=1

((
S1/2∇F (θ)v

)⊤
yi

)2 ,
Case(i). If S1/2r(θ) = 0 or S1/2∇F (θ)v = 0, we have g(θ;v) = 0

0 = 1, this theorem holds.588

Case (ii). If S1/2r(θ) ̸= 0 and S1/2∇F (θ)v ̸= 0, we define the following normalized vectors:589

r̃(θ) :=
S1/2r(θ)∥∥∥S1/2r(θ)

∥∥∥ ∈ Sd−1 w̃(θ;v) :=
S1/2∇F (θ)v∥∥∥S1/2∇F (θ)v

∥∥∥ ∈ Sd−1.

From the homogeneity of g(θ;v), we have:590

g(θ;v) =

1
n

n∑
i=1

(
r̃(θ)⊤yi

)2(
w̃(θ;v)⊤yi

)2
1
n

n∑
i=1

(
r̃(θ)⊤yi

)2
· 1
n

n∑
i=1

(
w̃(θ;v)⊤yi

)2 .
One the one hand, with the help of Lemma H.4, there exists C1 > 0 such that if we choose591

n ≳ d+ log(1/δ), then w.p. at least 1− δ/2, we have:592

inf
w,u∈Sd−1

1

n

n∑
i=1

(w⊤yi)
2(u⊤yi)

2 ≥ C1.
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On the other hand, with the help of Lemma H.3, if we choose ϵ = 1/2 and n ≳ d+ log(1/δ), then593

w.p. at least 1− δ/2, we have:594

sup
w∈Sd−1

1

n

n∑
i=1

(w⊤yi)
2 ≥ 1 +

1

2
=

3

2
,

Combining these two bounds, we obtain that: if we choose ϵ = 1/2 and n ≳ d + log(1/δ), then595

w.p. at least 1− δ, we have:596

inf
w,u∈Sd−1

1
n

∑n
i=1(w

⊤yi)
2(u⊤yi)

2

1
n

∑n
i=1(w

⊤yi)
2 · 1

n

∑n
i=1(u

⊤yi)
2

≥
inf

w,u∈Sd−1

1
n

∑n
i=1(w

⊤yi)
2(u⊤yi)

2(
sup

w∈Sd−1

1
n

∑n
i=1(w

⊤yi)
2

)2 ≥ 4C1

9
,

which implies that597

inf
θ,v∈Rp

g(θ;v) ≥ min

{
1, inf

w,u∈Sd−1

1
n

∑n
i=1(w

⊤yi)
2(u⊤yi)

2

1
n

∑n
i=1(w

⊤yi)
2 · 1

n

∑n
i=1(u

⊤yi)
2

}
≥min

{
1,

4C1

9

}
.

598

H.2 Proof of Theorem 4.3599

We first need a few lemmas.600

Lemma H.5. Let y1, · · · ,yn
i.i.d.∼ N (0, Id). If n ≳ d2 + log2(1/δ), then w.p. at least 1 − δ, we601

have602

sup
v∈Sd−1

1

n

n∑
i=1

(y⊤
i v)

4 ≤ 8.

Proof. For Sd−1, its covering number has the bound:603 (
1

ρ

)d
≤ N (Sd−1, ρ) ≤

(
2

ρ
+ 1

)d
,

so there exist a ρ-net on Sd−1: V ⊂ Sd−1, s.t. |V| ≤
(

2
ρ + 1

)d
.604

Step I. Bounding the term on the ρ-net.605

For a fixed v ∈ V , due to yi
i.i.d.∼ N (0, Id), we can verify (y⊤

i v)
4 is sub-Weibull random variable:606

E exp
((

(y⊤
i v)

4
)1/2)

= E exp
(
(y⊤
i v)

2
)
≲ 1,

which means that there exist an absolute constant C1 ≥ 1 s.t.
∥∥(y⊤

i v)
4
∥∥
ψ1/2

≤ C1.607

By the concentration inequality for Sub-Weibull distribution with β = 1/2 (Lemma J.5) and608

E
[
(y⊤v)4

]
= 3, there exists an absolute constant C2 ≥ 1 s.t.609

P

(∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

)
≤ 2δ,

where ϕ(n; δ) = C2(
√

log(1/δ)
n + log2(1/δ)

n ). Applying a union bound over v ∈ V , we have:610

P

(
∃v ∈ Vs.t.

∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

)
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≤P

(⋃
v∈V

{∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

})
≤
∑
v∈V

P

(∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

)

≤2|V| exp
(
− n

C2
2

)
= 2

(
2

ρ
+ 1

)d
δ.

So w.p. at least 1− 2
(

2
ρ + 1

)d
δ, we have:611

max
v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 3 + ϕ(n; δ).

Step II. Estimate the error of the ρ-net approximation.612

For simplicity, we denote613

P := max
v∈Sd−1

1

n

n∑
i=1

[
(y⊤
i v)

4
]

, Q := max
v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
.

Let v ∈ Sd−1 such that 1
n

∑n
i=1

[
(y⊤
i v)

4
]
= P , then there exist v0 ∈ V , s.t. ∥v − v0∥ ≤ ρ.614

On the one hand,615 ∣∣∣∣∣ 1n
n∑
i=1

(y⊤
i v)

4 − 1

n

n∑
i=1

(y⊤
i v0)

4

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

(
(y⊤
i v)

4 − (y⊤
i v0)

4
)∣∣∣∣∣

=

∣∣∣∣∣ 1n
n∑
i=1

(
y⊤
i (v − v0)

) (
y⊤
i (v + v0)

) (
(y⊤
i v)

2 + (y⊤
i v0)

2
)∣∣∣∣∣

≤
∣∣∣∣∣ 1n

n∑
i=1

(
y⊤
i (v − v0)

) (
y⊤
i (v + v0)

)
(y⊤
i v)

2

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

(
y⊤
i (v − v0)

) (
y⊤
i (v + v0)

)
(y⊤
i v0)

2

∣∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

(
y⊤
i (v − v0)

)2 (
y⊤
i (v + v0)

)2√√√√ 1

n

n∑
i=1

(y⊤
i v)

4 +

√√√√ 1

n

n∑
i=1

(y⊤
i v0)4


≤ 4

√√√√ 1

n

n∑
i=1

(
y⊤
i (v − v0)

)4 4

√√√√ 1

n

n∑
i=1

(
y⊤
i (v + v0)

)4√√√√ 1

n

n∑
i=1

(y⊤
i v)

4 +

√√√√ 1

n

n∑
i=1

(y⊤
i v0)4


≤∥v − v0∥P 1/4 ∥v + v0∥P 1/4(

√
P +

√
Q) ≤ 2ρ

√
P (

√
P +

√
Q)

On the other hand,616 ∣∣∣∣∣ 1n
n∑
i=1

(y⊤
i v)

4 − 1

n

n∑
i=1

(y⊤
i v0)

4

∣∣∣∣∣ ≥ P −
n∑
i=1

(y⊤
i v0)

4 ≥ P −Q.

Hence, we obtain617

P −Q ≤ 2ρ
√
P (

√
P +

√
Q),

which means that618

P ≤
(

1

1− 2ρ

)2

Q.

Step III. The bound for any v ∈ Sd−1.619

Select ρ = 1
2 (1 − 1√

2
) and denote δ′ = 2( 2ρ + 1)dδ. And we choose n ≳ d2 + log2(1/δ′), which620

ensures ϕ(n; δ) ≤ 1.621
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Then combining the results in Step I and Step II, we know that: w.p. at least 1− δ′, we have:622

max
v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 3 + 1 = 4; max

v∈Sd−1

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 2max

v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
,

which means623

max
v∈Sd−1

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 2 · 4 = 8.

624

Lemma H.6. Let x1, · · · ,xn i.i.d.∼ N (0, Id). For any ϵ, δ ∈ (0, 1), if we choose625

n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
,

then w.p. at least 1− δ, we have:626

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x1)

2(v⊤x1)
2
]∣∣∣∣∣ ≤ ϵ.

Proof. For Sd−1, its covering number has the bound:627 (
1

ρ

)d
≤ N (Sd−1, ρ) ≤

(
2

ρ
+ 1

)d
,

so there exist two ρ-nets on Sd−1: W ⊂ Sd−1 and V ⊂ Sd−1, s.t.628

|W| ≤
(
2

ρ
+ 1

)d
, |V| ≤

(
2

ρ
+ 1

)d
.

Step I. Bounding the term on the ρ-net.629

In this step, will estimate the term
∣∣∣ 1n∑n

i=1(w
⊤xi)

2(v⊤xi)
2 − E

[
(w⊤x)2(v⊤x)2

]∣∣∣ for any w ∈630

W and v ∈ V .631

For fixed w ∈ W and v ∈ V , we denote Xw,v
i := (w⊤xi)

2(v⊤xi)
2. We can verify Xi is a632

sub-Weibull random variable with β = 1/2 (Definition J.4):633

E

[
exp

( ∣∣(w⊤xi)
2(v⊤xi)

∣∣1/2 )] = E

[
exp

(
|w⊤xi||v⊤xi|

)]

≤E

[
exp

(
(w⊤xi)

2 + (v⊤xi)
2

2

)]
= E

[
exp

( (w⊤xi)
2

2

)
exp

( (v⊤xi)
2

2

)]

Lemma J.6
≤

√√√√E

[
exp

(
(w⊤xi)2

)
·

√√√√E

[
exp

(
(v⊤xi)2

)] ∥(v⊤xi)
2∥
ψ1

≤C3

≲ 1,

which means that there exists an absolute constant C4 ≥ 1, s.t. ∥Xw,v
i ∥ψ1/2

≤ C4. By the634

concentration inequality for Sub-Weibull distribution with β = 1/2 (Lemma J.5), there exists an635

absolute constant C5 ≥ 1, s.t.636

P

(∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

)
≤ δ.

where ψ(n; δ) = C5

(√
log(1/δ)

n + (log(1/δ))2

n

)
.637
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Applying an union bound over w ∈ W and v ∈ V , we have:638

P

(
∃w ∈ W,v ∈ V, s.t.

∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

)

≤P

 ⋃
(w,v)∈W×V

{
∃w ∈ W,v ∈ V, s.t.

∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

}
≤

∑
(w,v)∈W×V

P

(
∃w ∈ W,v ∈ V, s.t.

∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

)

≤2|W||V|δ ≤ 2

(
2

ρ
+ 1

)2d

δ.

So w.p. at least 1− 2
(

2
ρ + 1

)2d
δ, we have:639

sup
w∈W,v∈V

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ ψ(n; δ).

Step II. Estimate the population error of the ρ-net approximation.640

Let w,v,w0,v0 ∈ Sd−1, s.t. ∥w −w0∥ ≤ ρ and ∥v − v0∥ ≤ ρ. For the population error, we have641 ∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣

=
∣∣∣E[((w⊤x)2 − (w⊤

0 x)
2
)
(v⊤x)2

]
+ E

[
(w⊤

0 x)
2
(
(v⊤x)2 − (v⊤

0 x)
2
)]∣∣∣

≤
∣∣∣E[((w⊤x)2 − (w⊤

0 x)
2
)
(v⊤x)2

]∣∣∣+ ∣∣∣E[(w⊤
0 x)

2
(
(v⊤x)2 − (v⊤

0 x)
2
)]∣∣∣

We first bound
∣∣∣E[((w⊤x)2 − (w⊤

0 x)
2
)
(v⊤x)2

]∣∣∣:642 ∣∣∣E[((w⊤x)2 − (w⊤
0 x)

2
)
(v⊤x)2

]∣∣∣ = ∣∣∣E[((w −w0)
⊤xx⊤(w +w0)(v

⊤x)2
]∣∣∣

≤
(
E
[(
(w −w0)

⊤xx⊤(w +w0)
)2])1/2 (E [(v⊤x)4

])1/2
≤
(
E
[(
(w −w0)

⊤x
)4])1/4 (E [((w +w0)

⊤x
)4])1/4 (E [(v⊤x)4

])1/2
≤3 ∥(w −w0)∥ ∥(w +w0)∥ ∥v∥2 ≤ 6ρ.

Repeating the proof above, we also have:643 ∣∣∣E[((w⊤x)2 − (w⊤
0 x)

2
)
(v⊤x)2

]∣∣∣ ≤ 6ρ.

Combining these two inequalities, we have:644 ∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣ ≤ 6ρ+ 6ρ = 12ρ.

Due to the arbitrariness of w,v,w0,v0, we obtain645

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣ ≤ 12ρ.

Step III. Estimate the empirical error of the ρ-net approximation.646

Let w,v,w0,v0 ∈ Sd−1, s.t. ∥w −w0∥ ≤ ρ and ∥v − v0∥ ≤ ρ. For the empirical error, we have647 ∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣
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=

∣∣∣∣∣ 1n
n∑
i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]
+

1

n

n∑
i=1

[
(w⊤

0 xi)
2
(
(v⊤xi)

2 − (v⊤
0 xi)

2
)]∣∣∣∣∣

≤
∣∣∣∣∣ 1n

n∑
i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

[
(w⊤

0 xi)
2
(
(v⊤xi)

2 − (v⊤
0 xi)

2
)]∣∣∣∣∣

We first bound
∣∣∣ 1n∑n

i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]∣∣∣:648 ∣∣∣∣∣ 1n

n∑
i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

[(
(w −w0)

⊤xix
⊤
i (w +w0)(v

⊤xi)
2
]∣∣∣∣∣

≤2ρ sup
u∈Sd−1

1

n

n∑
i=1

(x⊤
i u)

4.

Repeating the proof above, we also have
∣∣∣ 1n∑n

i=1

[
(w⊤

0 xi)
2
(
(v⊤xi)

2 − (v⊤
0 xi)

2
)]∣∣∣ ≤649

2ρ sup
u∈Sd−1

1
n

∑n
i=1(x

⊤
i u)

4. Combining these two bounds, we have:650 ∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 4ρ sup
u∈Sd−1

1

n

n∑
i=1

(x⊤
i u)

4.

Using Lemma H.5, if n ≳ d2 + log2(1/δ′), then w.p. at least 1 − δ′/2, we have651

sup
u∈Sd−1

1
n

∑n
i=1(x

⊤
i u)

4 ≤ 8.652

Hence, w.p. at least 1− δ′/2, we have653 ∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 32ρ.

Due to the arbitrariness of w,v,w0,v0, we obtain654

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 32ρ.

Step IV. The bound for any w,v ∈ Sd−1.655

Combining the results in Step I, II, and II, we know that w.p. at least 1− δ′

2 − ( 2ρ + 1)d, we have656

sup
w∈W,v∈V

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ ψ(n; δ),

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣ ≤ 12ρ,

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 32ρ.

Then for any w,v ∈ Sd−1, there exists w0 ∈ W,v0 ∈ V s.t. ∥w −w0∥ ≤ ρ and ∥v − v0∥ ≤ ρ, so657 ∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2 +
1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2
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− E
[
(w⊤

0 x)
2(v⊤

0 x)
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+ E
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2(v⊤
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]
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∣∣∣∣∣
+
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2 − E
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2
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− E
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(w⊤x)2(v⊤x)2

]∣∣∣∣∣
≤ sup

w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣
+ sup

w∈W,v∈V

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣
+ sup

w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣

≤32ρ+ ψ(n; δ) + 12ρ = 44ρ+ ψ(n; δ).

Due to the arbitrariness of w,v, we have658

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ 44ρ+ ψ(n; δ)

Select ρ = ϵ
66 and δ′/2 = 2(1 + 2

ρ )
2dδ. And we choose659

n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
,

which satisfies ψ(n; δ) ≤ ϵ/3.660

Then w.p. at least 1− δ′/2− δ′/2 = 1− δ′, we have661

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ 44

66
ϵ+

1

3
ϵ = ϵ.

662

With the preparation of Lemma H.1, H.3, and H.6, now we give the proof of Theorem 4.3.663

Proof of Theorem 4.3. Let yi = S−1/2xi, then y1, · · · ,yn
i.i.d.∼ N (0, Id).664

g(θ;v) =

1
n

n∑
i=1

(
r⊤(θ)xi

)2((
∇F (θ)v

)⊤
xi

)2
1
n

n∑
i=1

(
r⊤(θ)xi

)2
· 1
n

n∑
i=1

((
∇F (θ)v

)⊤
xi

)2

=

1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2((
S1/2∇F (θ)v

)⊤
yi

)2
1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2
· 1
n

n∑
i=1

((
S1/2∇F (θ)v

)⊤
yi

)2 ,
Case (i). If S1/2r(θ) = 0 or S1/2∇F (θ)v = 0, we have g(θ;v) = 0

0 = 1, this theorem holds.665

Case (ii). If S1/2r(θ) ̸= 0 and S1/2∇F (θ)v ̸= 0, we define the following normalized vectors:666

r̃(θ) :=
S1/2r(θ)∥∥∥S1/2r(θ)

∥∥∥ ∈ Sd−1 w̃(θ;v) :=
S1/2∇F (θ)v∥∥∥S1/2∇F (θ)v

∥∥∥ ∈ Sd−1.
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From the homogeneity of g(θ;v), we have:667

g(θ;v) =

1
n

n∑
i=1

(
r̃(θ)⊤yi

)2(
w̃(θ;v)⊤yi

)2
1
n

n∑
i=1

(
r̃(θ)⊤yi

)2
· 1
n

n∑
i=1

(
w̃(θ;v)⊤yi

)2 .
By Lemma H.3 and H.6, for any ϵ, δ ∈ (0, 1), if we choose668

n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
,

then w.p. at least 1− δ, the following inequalities hold:669

sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(v⊤yi)
2 − 1

∣∣∣∣∣ ≤ ϵ,

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤yi)
2(v⊤yi)

2 − E
[
(w⊤y1)

2(v⊤y1)
2
]∣∣∣∣∣ ≤ ϵ;

These imply that for any θ,v ∈ Rp, we have:670

E
[
(r̃(θ)⊤y)2(w̃(θ;v)⊤y)2

]
− ϵ

(1 + ϵ)2
≤ g(θ;v) ≤

E
[
(r̃(θ)⊤y1)

2(w̃(θ;v)⊤y1)
2
]
+ ϵ

(1− ϵ)2
. (4)

First, we derive the upper bound for (4):671

RHS =
ϵ

(1− ϵ)2
+

E
[
(r̃(θ)⊤y)2(w̃(θ;v)⊤y)2

]
(1− ϵ)2

(
r̃(θ)⊤r̃(θ)

)(
w̃(θ;v)⊤w̃(θ;v)

)
Homogeneity

=
ϵ

(1− ϵ)2
+

E
[
((S1/2r(θ))⊤y)2((S1/2∇F (θ)v)⊤y)2

]
(1− ϵ)2

((
S1/2r(θ)

)⊤
S1/2r(θ)

)((
S1/2∇F (θ)v

)⊤(
S1/2∇F (θ)v

))
=

ϵ

(1− ϵ)2
+

v⊤Σ(θ)v

2(1− ϵ)2L(θ)v⊤G(θ)v

Lemma H.1
=

ϵ

(1− ϵ)2
+

2L(θ)v⊤G(θ)v +
(
∇L(θ)⊤v

)2
2(1− ϵ)2L(θ)v⊤G(θ)v

=
1 + ϵ

(1− ϵ)2
+

(
∇L(θ)⊤v

)2
2(1− ϵ)2L(θ)v⊤G(θ)v

Lemma H.2
≤ 1 + ϵ

(1− ϵ)2
+

1

(1− ϵ)2
=

2 + ϵ

(1− ϵ)2
.

Moreover, if ⟨v,L(θ)⟩ = 0, then the bound is672

RHS ≤ 1 + ϵ

(1− ϵ)2
.

In the similar way, we can derive the lower bound for (4):673

LHS =
v⊤Σ(θ)v

2(1 + ϵ)2L(θ)v⊤G(θ)v
− ϵ

(1 + ϵ)2
Lemma H.1

=
2L(θ)v⊤G(θ)v +

(
∇L(θ)⊤v

)2
2(1 + ϵ)2L(θ)v⊤G(θ)v

− ϵ

(1 + ϵ)2

≥ 1

(1 + ϵ)2
− ϵ

(1 + ϵ)2
=

1− ϵ

(1 + ϵ)2
.

So for any S1/2u(θ) ̸= 0,S1/2∇F (θ)v ̸= 0, we have674

1− ϵ

(1 + ϵ)2
≤ g(θ;v) ≤ 2 + ϵ

(1− ϵ)2
.

Moreover, if ⟨v,∇L(θ)⟩ = 0, then675

1− ϵ

(1 + ϵ)2
≤ g(θ;v) ≤ 1 + ϵ

(1− ϵ)2
.
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Hence, we have proved this theorem: For any ϵ, δ > 0, if n ≳676

max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
, then w.p. at least 1 − δ,677

the strong alignment holds uniformly:678

(i).
1− ϵ

(1 + ϵ)2
≤ inf

θ,v∈Rp
g(θ;v) ≤ sup

θ,v∈Rp
g(θ;v) ≤ 2 + ϵ

(1− ϵ)2
,

(ii).
1− ϵ

(1 + ϵ)2
≤ inf

θ∈Rp,⟨v,∇L(θ)⟩=0
g(θ;v) ≤ sup

θ∈Rp,⟨v,∇L(θ)⟩=0

g(θ;v) ≤ 1 + ϵ

(1− ϵ)2
.

679

I Proofs in Section 5: Escape directions680

I.1 Proof of Theorem 5.2681

Recall that w(t) =
∑d
i=1 wi(t)ui with wi(t) = u⊤

i w(t). Then, wi(t + 1) = (1 − ηλi)wi(t) +682

ηξ(t)⊤ui. Taking the expectation of the square of both sides, we obtain683

E
[
w2
i (t+ 1)

]
= (1− ηλi)

2E
[
w2
i (t)

]
+ η2E[|u⊤

i ξ(t)|2],

According to Assumption 5.1, there exists A1, A2 > 0 such that for any i ∈ [d],684

A1λiL(wt) ≤ E[|uTi ξ(t)|] ≤ A2λiL(wt).

Let Xt =
∑k
i=1 λiE[w2

i (t)], Yt =
∑d
i=k+1 λiE[w2

i (t)] denote the components of loss energy along685

sharp and flat directions, respectively. And we denote Dk(t) := Yt/Xt.686

Plugging the fact that 2L(w(t)) = Xt + Yt into the two formulations above, we can obtain the687

following component dynamics:688

Xt+1 ≤ αkXt +A2η
2(

k∑
i=1

λ2i )(Xt + Yt),

Xt+1 ≥ A1η
2(

k∑
i=1

λ2i )(Xt + Yt),

Yt+1 ≥ A1η
2
( d∑
i=k+1

λ2i
)
(Xt + Yt),

(5)

where αk ≤ maxi=1,...,k |1− ηλi|2. The terms αkXt and βkYt capture the impact of the gradient,689

while the remaining terms originate from the noise.690

From (5), we have the following estimate about Dk(t+ 1):691

Dk(t+ 1) =
Yt+1

Xt+1
≥ A1η

2
(∑d

i=k+1 λ
2
i

)
(Xt + Yt)

αkXt +A2η2(
∑k
i=1 λ

2
i )(Xt + Yt)

=
A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + αk
A2η2

∑d
i=k+1 λ

2
i

Xt
Xt+Yt

≥A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 +
max

1≤i≤k
|1−ηλi|2

A2η2
∑k
i=1 λ

2
i

Xt
Xt+Yt

.

(6)

We will prove this theorem for the learning rate η = β
∥G(θ)∥F

, where β ≥ 1.1√
A1

.692

Case (I). Small learning rate η ∈ [ 1.1√
A1∥G(θ)∥F

, 1
λ1
].693
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In this step, we consider η = β
∥G(θ)∥F

such that β ≥ 1.1√
A1

and η ≤ 1
λ1

. Then we have:694

max
1≤i≤k

|1− ηλi|2

A2η2
∑d
i=k+1 λ

2
i

≤ 1

A2η2
∑k
i=1 λ

2
i

.

Notice that (5) also ensures:695

(Xt+1 + Yt+1) ≥ A1η
2
( d∑
i=1

λ2i
)
(Xt + Yt).

Combining this inequality with (5), we have the estimate:696

Xt+1

Xt+1 + Yt+1
≤ αkXt +A2η

2(
∑k
i=1 λ

2
i )(Xt + Yt)

Xt+1 + Yt+1

≤ αkXt

A1η2
(∑d

i=1 λ
2
i

)
(Xt + Yt)

+
A2(

∑k
i=1 λ

2
i )

A1

(∑d
i=1 λ

2
i

)
For simplicity, we denote Wt :=

Xt
Xt+Yt

, A := αk

A1η2
(∑d

i=1 λ
2
i

) , and B :=
A2(

∑k
i=1 λ

2
i )

A1

(∑d
i=1 λ

2
i

) .697

From η ≤ 1/3, we have αk ≤ 1 and A ≤ 1

A1η2
(∑d

i=1 λ
2
i

) = 1
A1β2 < 1. Moreover, it holds that698

Wt+1 ≤AWt +B ≤ A(AWt−1 +B) +B = A2Wt−1 +B(1 +A)

≤ · · · ≤ At+1W0 +B(1 +A+ · · ·+At) = At+1W0 +
1−At+1

1−A
B

On the one hand, if we choose699

t ≥
log
(
1/W0A2η

2
∑k
i=1 λ

2
i

)
log (A1β2)

,

then we have700

AtW0 ≤
(

αk

A1η2(
∑d
i=1 λ

2
i )

)t
W0≤

(
1

A1β2

)t
W0 ≤ A2η

2
k∑
i=1

λ2i .

On the other hand, if we choose t ≥ 1, then it holds that701

1−At

1−A
B ≤ B =

A2(
∑k
i=1 λ

2
i )

A1

(∑d
i=1 λ

2
i

) ≤ A2η
2

k∑
i=1

λ2i .

Hence, if we choose702

t ≥ max

1,
log
(
1/W0A2η

2
∑k
i=1 λ

2
i

)
log (A1β2)

 ,

then we have703

Xt

Xt + Yt
=Wt ≤ AtW0 +

1−At

1−A
B ≤ 2A2η

2
k∑
i=1

λ2i ,

which implies that704

RHS of (6) ≥ A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 +
max

1≤i≤k
|1−ηλi|2

A2η2
∑k
i=1 λ

2
i

Xt
Xt+Yt

28



≥A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + 1
A2η2

∑k
i=1 λ

2
i

· 2A2η2
∑k
i=1 λ

2
i

=
A1

∑d
i=k+1 λ

2
i

3A2

∑k
i=1 λ

2
i

.

Case (II). Large learning rate η ≥ 1/λ1.705

In this step, we consider η ≥ 1
λ1

. Then for any t ≥ 0, we have:706

RHS of (6) =
A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + αk∑d
i=k+1 λ

2
i

Xt
Xt+Yt

≥ A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 +
max
i∈[k]

|1−ηλi|2

A2η2
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i=1 λ

2
i

≥A1

∑d
i=k+1 λ

2
i

A2
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i=1 λ

2
i

· 1

1 + max{1,|1−ηλ1|2}
A2η2
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i=1 λ

2
i

≥ A1

∑d
i=k+1 λ

2
i

A2
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2
i

· 1

1 + 1
A2

=
A1

∑d
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2
i

(A2 + 1)
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i=1 λ

2
i

.

Combining Case (I) and (II), we obtain this theorem: If we choose the learning rate η = β
∥G(θ)∥F

,707

where β ≥ 1.1√
A1

, then for any708

t ≥ max

1,
log
(
1/W0A2η

2
∑k
i=1 λ

2
i

)
log (A1β2)

 ,

we have709

Dk(t+ 1) ≥ A1

∑d
i=k+1 λ

2
i

max{3A2, A2 + 1}∑k
i=1 λ

2
i

.

710

I.2 Proof of Proposition 5.3711

Recall that w(t) =
∑d
i=1 wi(t)ui withwi(t) = u⊤

i w(t). Then, for GD,wi(t+1) = (1−ηλi)wi(t),712

which implies:713

wi(t) = (1− ηλi)
twi(0).

Therefore, for η = β/λ1 (β > 2), it holds that714

D1(t) =

∑d
i=2 λiw

2
i (t)

λ1w2
1(t)

=

∑d
i=2 λi(1− ηλi)

2tw2
i (0)

λ1(1− ηλ1)2tw2
1(0)

.

715

J Useful Inequalities716

Lemma J.1 (Bernstein’s Inequality (Vershynin, 2018)). Suppose {X1, · · · , Xn} are independent717

sub-Exponential random variables with ∥Xi∥ψ1
≤ K. Then there exists an absolute constant c > 0718

such that for any t ≥ 0, we have:719

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

E
[
Xi

]∣∣∣∣∣ > t

)
≤ 2 exp

(
−cnmin

{ t

K
,
t2

K2

})
.

Lemma J.2 (Hanson-Wright’s Inequality (Vershynin, 2018)). Let X = (X1, · · · , Xn) ∈ Rn be a720

random vector with independent mean zero sub-Gaussian coordinates. Let A be an n× n matrix.721

Then, there exists an absolute constant c such that for every t ≥ 0, we have722

P
(∣∣∣X⊤AX − E[X⊤AX]

∣∣∣ ≥ t
)
≤ 2 exp

(
−cmin

{
t2

K4 ∥A∥2F
,

t

K2 ∥A∥2

})
,

where K = maxi ∥Xi∥ψ2
.723
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Lemma J.3 (Covariance Estimate for sub-Gaussian Distribution (Vershynin, 2018)). Let724

x,x1, · · · ,xn be i.i.d. random vectors in Rd. More precisely, assume that there exists K ≥ 1725

s.t. ∥⟨x,v⟩∥ψ2
≤ K ∥⟨x,v⟩∥L2

for any v ∈ Sd−1, Then for any u ≥ 0, w.p. at least 1− 2 exp(−u)726

one has727 ∥∥∥∥∥ 1n
n∑
i=1

xix
⊤
i − E

[
xx⊤]∥∥∥∥∥ ≤ CK2

(√
d+ u

n
+
d+ u

n

)∥∥E[xx⊤]∥∥ ,
where C is an absolute positive constant.728

Definition J.4 (Sub-Weibull Distribution). We define X as a sub-Weibull random variable if it has a729

bounded ψβ-norm. The ψβ-norm of X for any β > 0 is defined as730

∥X∥ψβ := inf
{
C > 0 : E

[
exp(|X|β/Cβ)

]
≤ 2
}
.

Particularly, when β = 1 or 2, sub-Weibull random variables reduce to sub-Exponential or sub-731

Gaussian random variables, respectively.732

Lemma J.5 (Concentration Inequality for Sub-Weibull Distribution, Theorem 3.1 in (Hao et al.,733

2019)). Suppose {Xi}ni=1 are independent sub-Weibull random variables with ∥Xi∥ψβ ≤ K. Then734

there exists an absolute constant Cβ only depending on β such that for any δ ∈ (0, 1/e2), w.p. at735

least 1− δ, we have736 ∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

E
[
Xi

]∣∣∣∣∣ ≤ CβK

(( log(1/δ)
n

)1/2
+

(
log(1/δ)

)1/β
n

)
.

Lemma J.6 (Cauchy-Schwarz Inequalities).737

(1) Let S ∈ Rn×n be a positive symmetric definite matrix. For any x,y ∈ Rn, we denote ⟨x,y⟩S :=738

x⊤Sy and ∥x∥S :=
√
⟨x,x⟩S , then we have |⟨x,y⟩S | ≤ ∥x∥S ∥y∥S .739

(2) Given two random variables X and Y , it holds that |E[XY ]| ≤
√
E[X2]

√
E[Y 2].740
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