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Abstract

Solving transport problems, i.e. finding a map transporting one given distribution
to another, has numerous applications in machine learning. Novel mass trans-
port methods motivated by generative modeling have recently been proposed, e.g.
Denoising Diffusion Models (DDMs) and Flow Matching Models (FMMs) im-
plement such a transport through a Stochastic Differential Equation (SDE) or an
Ordinary Differential Equation (ODE). However, while it is desirable in many
applications to approximate the deterministic dynamic Optimal Transport (OT)
map which admits attractive properties, DDMs and FMMs are not guaranteed to
provide transports close to the OT map. In contrast, Schrödinger bridges (SBs)
compute stochastic dynamic mappings which recover entropy-regularized versions
of OT. Unfortunately, existing numerical methods approximating SBs either scale
poorly with dimension or accumulate errors across iterations. In this work, we
introduce Iterative Markovian Fitting (IMF), a new methodology for solving SB
problems, and Diffusion Schrödinger Bridge Matching (DSBM), a novel numerical
algorithm for computing IMF iterates. DSBM significantly improves over previ-
ous SB numerics and recovers as special/limiting cases various recent transport
methods. We demonstrate the performance of DSBM on a variety of problems.

1 Introduction

Mass transport problems are ubiquitous in machine learning (Peyré and Cuturi, 2019). For discrete
measures, the Optimal Transport (OT) map can be computed exactly but is computationally inten-
sive. In a landmark paper, Cuturi (2013) showed that an entropy-regularized version of OT can be
computed more efficiently using the Sinkhorn algorithm (Sinkhorn, 1967). This has enabled the use
of OT techniques in a variety of applications ranging from biology (Bunne et al., 2022) to shape
correspondence (Feydy et al., 2017). However, applications involving high-dimensional continuous
distributions and/or large datasets remain challenging for these techniques.

One of such data-rich applications is generative modeling, a central transport problem in machine
learning which requires designing a deterministic or stochastic mapping transporting a reference
“noise” distribution to the data distribution. For example, Generative Adversarial Networks (Good-
fellow et al., 2014) define a static, deterministic transport map, while Denoising Diffusion Models
(DDMs) (Song et al., 2021b; Ho et al., 2020) build a dynamic, stochastic transport map by simulating
a Stochastic Differential Equation (SDE), whose drift is learned using score matching (Hyvärinen,
2005; Vincent, 2011). The excellent performances of DDMs have motivated recent developments
of Bridge Matching and Flow Matching models, which are dynamic transport maps using SDEs
(Song et al., 2021a; Peluchetti, 2021; Liu, 2022; Albergo et al., 2023) or ODEs (Albergo and Vanden-
Eijnden, 2023; Heitz et al., 2023; Lipman et al., 2023; Liu et al., 2023b). Compared to DDMs, Bridge
and Flow Matching methods do not rely on a forward “noising” diffusion converging to the reference
distribution in infinite time, and are also more generally applicable as they can approximate transport
maps between two general distributions based on their samples. Nonetheless, these transport maps
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Figure 1: Relationship between
DSBM and existing methods.

Sets for alternating projections Preserved properties

IPF P0 = π0; PT = πT M,R(Q)

IMF M;R(Q) P0 = π0, PT = πT

Table 1: Comparison between Iterative Markovian Fitting (IMF)
and Iterative Proportional Fitting (IPF). The Schrödinger Bridge is
the unique P s.t. P0 = π0, PT = πT , P ∈ M, P ∈ R(Q) simul-
taneously by Proposition 5. M is the space of (regular) Markov
measures andR(Q) the space of reciprocal measures of Q.

are not necessarily close to the OT map minimizing the Wasserstein-2 metric, which is appealing for
its many attractive properties (Peyré and Cuturi, 2019; Villani, 2009).

In contrast, the Schrödinger Bridge (SB) problem is a dynamic version of entropy-regularized OT
(EOT) (Föllmer, 1988; Léonard, 2014b). The SB is the finite-time diffusion which admits as initial
and terminal distributions the two distributions of interest and is the closest in Kullback–Leibler
divergence to a reference diffusion. Numerous methods to approximate SBs numerically have been
proposed, see e.g. (Bernton et al., 2019; Chen et al., 2016; Finlay et al., 2020; Caluya and Halder,
2021; Pavon et al., 2021), but these techniques tend to be restricted to low-dimensional settings.
Recently, novel techniques using diffusion-based ideas have been proposed in (De Bortoli et al.,
2021; Vargas et al., 2021; Chen et al., 2022) based on Iterative Proportional Fitting (IPF) (Fortet,
1940; Kullback, 1968; Rüschendorf and Thomsen, 1993), a continuous state-space extension of the
Sinkhorn algorithm (Essid and Pavon, 2019). These approaches have been shown to scale better
empirically, but numerical errors tend to accumulate over iterations (Fernandes et al., 2021).

In this paper, our contributions are three-fold. First, we introduce Iterative Markovian Fitting (IMF), a
new procedure to compute SBs which alternates between projecting on the space of Markov processes
and on the reciprocal class, i.e. the measures which have the same bridge as the reference measure of
SB (Léonard et al., 2014). We establish various theoretical results for IMF. Contrary to IPF, the IMF
iterates always preserve the initial and terminal distributions. The differences between IPF and IMF
are presented in Table 1. Second, we propose Diffusion Schrödinger Bridge Matching (DSBM), a
novel algorithm approximating numerically the SB solution derived from IMF. DSBM requires at
each iteration solving a simple regression problem in the spirit of Bridge and Flow Matching, and does
not suffer from the time-discretization and “forgetting” issues of previous DSB techniques (De Bortoli
et al., 2021; Vargas et al., 2021; Chen et al., 2022). Finally, we demonstrate the performance of
DSBM on a variety of transport tasks.2

Notations. We denote by P(C), the space of path measures, i.e. P(C) = P(C([0, T ],Rd)) where
T > 0. The subset of Markov path measures associated with an SDE of the form dXt = vt(Xt)dt+
σtdBt, with σ, v locally Lipschitz, is denotedM. For any Q ∈ M, the reciprocal class of Q is
denoted R(Q), see Definition 3. We also denote Qt its marginal distribution at time t, Qs,t the
joint distribution at times s and t, Qs|t the conditional distribution at time s given state at time
t, and Q|0,T ∈ P(C) its diffusion bridge. Unless specified otherwise, all gradient operators ∇
are w.r.t. the variable xt with time index t. Let (X,X ) and (Y,Y) be probability spaces. Given
a Markov kernel K : X × Y → [0, 1] and a probability measure µ defined on X , we write µK
the probability measure on Y such that for any A ∈ Y we have µK(A) =

∫
X

K(x,A)dµ(x). In
particular, for any joint distribution Π0,T over Rd ×Rd, we denote the mixture of bridges measure as
Π = Π0,TQ|0,T ∈ P(C), which is short for Π(·) =

∫
Rd×Rd Q|0,T (·|x0, xT )Π0,T (dx0,dxT ).

2 Dynamic Mass Transport Techniques

2.1 Denoising Diffusion and Bridge Matching Models

Denoising Diffusion Models (Song et al., 2021b; Ho et al., 2020) are a popular class of generative
models. They define a forward noising process Q ∈M using the SDE dXt = − 1

2Xtdt+ dBt on
the time-interval [0, T ], where X0 ∈ Rd is drawn from the data distribution π0 and (Bt)t∈[0,T ] is a d-

2Code can be found at https://github.com/yuyang-shi/dsbm-pytorch.
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dimensional Brownian motion. This diffusion3 converges towards the standard Gaussian distribution
N(0, Id) as T →∞. A generative model is given by its time-reversal (Yt)t∈[0,T ] = (XT−t)t∈[0,T ],
where Y0 ∼ QT and dYt = { 1

2Yt + ∇ logQT−t(Yt)}dt + dBt (Anderson, 1982; Haussmann
and Pardoux, 1986). In practice, (Yt)t∈[0,T ] is initialized with Y0 ∼ πT = N(0, Id), and the Stein
score∇ logQt(xt) = EQ0|t [∇ logQt|0(Xt|X0) |Xt = xt] is approximated using a neural network
sθ(t, xt) minimizing the denoising score matching loss EQ0,t

[‖∇ logQt|0(Xt|X0)− sθ(t,Xt)‖2].

An alternative to considering the time-reversal of a forward noising process is to “build bridges”
between the two distributions and learn a mimicking diffusion process. This approach generalizes
DDMs and allows for more flexible choices of sampling processes. We call this framework Bridge
Matching and adopt a presentation similar to Peluchetti (2021); Liu et al. (2022b), where πT is the
data distribution.4 We denote Q ∈M the path measure associated with the following process

dXt = ft(Xt)dt+ σtdBt, X0 ∼ Q0. (1)

Consider now the distribution of this process pinned down at an initial and terminal point x0, xT ,
denoted Q|0,T (·|x0, xT ). Under mild assumptions, the pinned process Q|0,T (·|x0, xT ) is a diffusion
bridge and is given by

dX0,T
t = {ft(X0,T

t ) + σ2
t∇ logQT |t(xT |X0,T

t )}dt+ σtdBt, X0,T
0 = x0, (2)

which satisfies X0,T
T = xT using Doob h-transform theory (Rogers and Williams, 2000). Next, we

define an independent coupling Π0,T = π0 ⊗ πT , and let Π = Π0,TQ|0,T . This path measure Π is a
mixture of bridges. We aim to find a Markov diffusion dYt = {ft(Yt) + vt(Yt)}dt + σtdBt on
[0, T ] which admits the same marginals as Π; i.e. for any t ∈ [0, T ], Yt ∼ Πt, so YT ∼ πT . For
such vt, a generative model for sampling data distribution πT is obtained by simulating (Yt)t∈[0,T ].
It can be verified that indeed Yt ∼ Πt for v?t (xt) = σ2

tEΠT |t [∇ logQT |t(XT |Xt) |Xt = xt]. We
present the theory behind this idea more formally using Markovian projections in Section 3.1. In
practice, we do not have access to v?t and it is learned using neural networks with regression loss

EΠt,T
[‖σ2

t∇ logQT |t(XT |Xt)− vθ(t,Xt)‖2]. (3)

For ft = 0 and σt = σ, Q|0,T is a Brownian Bridge and we have

X0,T
t = t

T xT +(1− t
T )x0 +σt(Bt− t

TBT ), dX0,T
t = {(xT −X0,T

t )/(T − t)}dt+σtdBt, (4)

with (Bt − t
TBT ) ∼ N(0, t(1− t

T ) Id). The regression loss (3) associated with (4) is given by

EΠt,T
[‖(XT −Xt)/(T − t)− vθ(t,Xt)‖2]. (5)

Letting σ → 0, we recover Flow Matching models (see Appendix A.1 for further details).

2.2 Schrödinger Bridges and Optimal Transport

The Schrödinger Bridge (SB) problem (Schrödinger, 1932) consists in finding a path measure
PSB ∈ P(C) such that

PSB = argminP{KL(P|Q) : P0 = π0, PT = πT }, (6)

where Q ∈ P(C) is a reference path measure. In what follows, we consider Q defined by the diffusion
process (1) which is Markov, and without loss of generality, we assume Q0 = π0. Hence PSB is the
path measure closest to Q in terms of Kullback–Leibler divergence which satisfies the initial and
terminal constraints PSB

0 = π0 and PSB
T = πT .

Another crucial property of PSB is that it can also be defined as a mixture of bridges PSB = ΠSB
0,TQ|0,T ,

where ΠSB
0,T = argminΠ0,T

{KL(Π0,T |Q0,T ) : Π0 = π0, ΠT = πT } is the solution of the static SB
problem (Léonard, 2014b). In particular, for Q associated with (σBt)t∈[0,T ] we have

ΠSB
0,T = argminΠ0,T

{EΠ0,T
[||X0 −XT ||2 − 2σ2T H(Π0,T ) : Π0 = π0, ΠT = πT },

3This is known as the Ornstein–Uhlenbeck (OU) process or VPSDE (Song et al., 2021b).
4To keep notations consistent with existing works, π0 is the data distribution in the context of DDM and SB,

whereas πT is the data distribution in Bridge Matching. However, both SB and Bridge Matching methods allow
transfer between arbitrary distributions π0, πT , so this distinction is not important.
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where H(µ) denotes the entropy, i.e. ΠSB
0,T is the solution of the entropy-regularized OT problem. In

this case, the SB can also be obtained theoretically by solving the following problem (Dai Pra, 1991)

vSB = argminv{
∫ T

0
EPt

[||v(t,Xt)||2]dt : dXt = v(t,Xt)dt+ σdBt, P0 = π0, PT = πT }.
Then PSB is given by the SDE with drift vSB initialized with X0 ∼ π0. For σ = 0, we recover the
classical OT problem and the Benamou–Brenier formula (Benamou and Brenier, 2000).

A common approach to solve (6) is the Iterative Proportional Fitting (IPF) method (Fortet, 1940;
Kullback, 1968; Rüschendorf, 1995) defining a sequence of path measures (P̃n)n∈N where

P̃2n+1 = argminP̃{KL(P̃|P̃2n) : P̃T = πT }, P̃2n+2 = argminP̃{KL(P̃|P̃2n+1) : P̃0 = π0}, (7)

with initialization P̃0 = Q. This procedure alternates between projections on the set of path measures
with given initial distribution π0 and terminal distribution πT . It can be shown (De Bortoli et al., 2021)
that (P̃n)n∈N are associated with diffusions and that for any n ∈ N, P̃2n+1 is the time-reversal of P̃2n

with initialization πT , and P̃2n+2 is the time-reversal of P̃2n+1 with initialization π0. Leveraging this
property, De Bortoli et al. (2021) proposed Diffusion Schrödinger Bridge (DSB), an algorithm which
learns the time-reversals iteratively. In particular, DDMs can be seen as the first iteration of DSB.

3 Iterative Markovian Fitting

3.1 Markovian Projection and Reciprocal Projection

Markovian Projection. Projecting on Markov measures is a key ingredient in our methodology
and in the Bridge Matching framework. This concept was introduced multiple times in the literature
(Gyöngy, 1986; Peluchetti, 2021; Liu et al., 2022b). In particular, we focus on Markovian projection
of path measures given by a mixture of bridges Π = Π0,TQ|0,T ∈ P(C).

Definition 1. Assume that Q is given by (1) and that for any (x0, xT ) ∈ Rd, Q|0,T (·|x0, xT ) is
associated with (X0,T

t )t∈[0,T ] given by dX0,T
t = {ft(X0,T

t )+σ2
t∇ logQT |t(xT |X0,T

t )}dt+σtdBt,
with σ : [0, T ]→ (0,+∞). Then, when it is well-defined, we introduce the Markovian projection of
Π, M? = projM(Π) ∈M, which is associated with the SDE

dX?
t = {ft(X?

t ) + v?t (X?
t )}dt+ σtdBt, v?t (xt) = σ2

tEΠT |t [∇ logQT |t(XT |Xt) |Xt = xt].

Note that in our definition σt > 0 so ∇ logQT |t(xT |xt) is well-defined, but Flow Matching can be
recovered as the deterministic case in the limit σt = σ → 0. In the following proposition, we show
that the Markovian projection is indeed a projection for the reverse Kullback–Leibler divergence, and
that it preserves marginals of Πt.
Proposition 2. Assume that σt > 0. Let M? = projM(Π). Then, under mild assumptions, we have

M? = argminM{KL(Π|M) : M ∈M},

KL(Π|M?) = 1
2

∫ T
0
EΠ0,t [‖σ2

tEΠT |0,t [∇ logQT |t(XT |Xt) |X0,Xt]− v?t (Xt)‖2]/σ2
t dt.

In addition, we have that for any t ∈ [0, T ], M?
t = Πt. In particular, M?

T = ΠT .

Reciprocal Projection. While the Markovian projection ensures that the obtained measure is
Markov, the associated bridge measure is not preserved in general, i.e. projM(Π)|0,T 6= Π|0,T =
Q|0,T . Measures with same bridge as Q are said to be in its reciprocal class (Léonard et al., 2014).
Definition 3. Π ∈ P(C) is in the reciprocal class R(Q) of Q ∈ M if Π = Π0,TQ|0,T . We define
the reciprocal projection of P ∈ P(C) as Π? = projR(Q)(P) = P0,TQ|0,T .

Similarly to Proposition 2, we have the following result, which justifies the term reciprocal projection.
Proposition 4. Let P ∈ P(C), Π? = projR(Q)(P). Then, Π? = argminΠ{KL(P|Π) : Π ∈ R(Q)}.

The reciprocal projection Π? of a Markov path measure M does not preserve the Markov property in
general. In fact, the Schrödinger Bridge is the unique path measure which satisfies the initial and
terminal conditions, is Markov and is in the reciprocal class of Q, see (Léonard, 2014b).
Proposition 5. Let P be a Markov measure in the reciprocal class of Q such that P0 = π0, PT = πT .
Then, under assumptions on Q, π0 and πT , P is unique and is equal to the Schrödinger Bridge PSB.
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3.2 Iterative Markovian Fitting

Based on Proposition 5, we propose a novel methodology called Iterative Markovian Fitting (IMF) to
solve Schrödinger Bridges. We consider a sequence (Pn)n∈N such that

P2n+1 = projM(P2n), P2n+2 = projR(Q)(P2n+1), (8)

with P0 such that P0
0 = π0, P0

T = πT and P0 ∈ R(Q). These updates correspond to alternatively
performing Markovian projections and reciprocal projections.

Combining Proposition 2 and Definition 3, we get that for any n ∈ N, Pn0 = π0 and PnT = πT . This
property is in contrast to the IPF algorithm (7) for which the marginals at the initial and final times
are not preserved. We highlight this duality between IPF (7) and IMF (8) in Table 1.

We conclude this section with a theoretical analysis of IMF. First, we start by showing a Pythagorean
theorem for both the Markovian projection and the reciprocal projection.
Lemma 6. Under mild assumptions, if M ∈M, Π ∈ R(Q) and KL(Π|M) < +∞, we have

KL(Π|M) = KL(Π|projM(Π)) + KL(projM(Π)|M).

If KL(M|Π) < +∞, we have

KL(M|Π) = KL(M|projR(Q)(M)) + KL(projR(Q)(M)|Π).

Using Lemma 6, we have the following proposition.
Proposition 7. Under mild assumptions, we have KL(Pn+1|PSB) ≤ KL(Pn|PSB) < ∞, and
limn→+∞KL(Pn|Pn+1) = 0.

Hence, for the IMF sequence (Pn)n∈N, the Markov path measures (P2n+1)n∈N are getting closer to
the reciprocal class, while the reciprocal path measures (P2n+2)n∈N are getting closer to the set of
Markov measures. Proposition 7 should be compared with (Rüschendorf, 1995, Proposition 2.1, Equa-
tion (2.16)) which shows that, for the IPF sequence (P̃n)n∈N, we have limn→+∞KL(P̃n+1|P̃n) = 0.
This result is similar to Proposition 7 but for the forward Kullback–Leibler divergence.

Using Proposition 7, we finally prove the convergence of the IMF sequence (Pn)n∈N to the
Schrödinger Bridge. This result was first shown in the concurrent work (Peluchetti, 2023, The-
orem 2). We present a simpler proof in Appendix C.6.
Theorem 8. Under mild assumptions, the IMF sequence (Pn)n∈N admits a unique fixed point
P? = PSB, and limn→+∞KL(Pn|P?) = 0.

4 Diffusion Schrödinger Bridge Matching

In this section, we present Diffusion Schrödinger Bridge Matching (DSBM), a practical algorithm for
solving the SB problem obtained by combining the IMF procedure with Bridge Matching.

Iterative Markovian Fitting in practice. IMF alternatively projects on the Markov classM and
the reciprocal classR(Q). We denote Mn+1 = P2n+1 ∈M and Πn = P2n ∈ R(Q). Assuming we
know how to sample from the bridge Q|0,T given the initial and terminal conditions, sampling from
the reciprocal projection projR(Q)(M) is simple: First, sample (X0,XT ) from the joint distribution
M0,T .5 Then, sample from the bridge Q|0,T (·|X0,XT ). The bottleneck of IMF is in the computation
of Markovian projections. By Definition 1, M? = projM(Π) is associated with the process

dXt = {ft(Xt) + σ2
tEΠT |t [∇ logQT |t(XT |Xt) |Xt]}dt+ σtdBt, X0 ∼ π0.

By Proposition 2, we can learn M? using Mθ? given by

dXt = {ft(Xt) + vθ?(t,Xt)}dt+ σtdBt, X0 ∼ π0, (9)

θ? = argminθ{
∫ T

0
EΠt,T

[‖σ2
t∇ logQT |t(XT |Xt)− vθ(t,Xt)‖2]/σ2

t dt : θ ∈ Θ}, (10)

5In practice, we sample the SDE associated with M and save a batch of joint samples (X0,XT ). This is
similar to the trajectory caching procedure in De Bortoli et al. (2021), but we only retain initial and final samples.
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where {vθ : θ ∈ Θ} is a parametric family of functions, usually given by a neural network. The
optimal vθ?(t, xt) = σ2

tEΠT |t [∇ logQT |t(XT |Xt) |Xt = xt] for any t ∈ [0, T ] and xt ∈ Rd.

With the above two procedures for computing projR(Q)(M) and projM(Π), we can now describe a
numerical method implementing IMF (8). Let Π0 = Π0

0,TQ|0,T where Π0
0 = π0, Π0

T = πT . Learn
M1 ≈ projM(Π0) given by (9) with vθ? given by (10). Next, sample from Π1 = projR(Q)(M1) =

M1
0,TQ|0,T by sampling from M1

0,T and reconstructing the bridge Q|0,T . We iterate the process to
obtain a sequence (Πn,Mn+1)n∈N. In practice, this algorithm performs poorly (see Figure 3), since
the approximate minimization (10) for computing Mn+1 may not admit Mn+1

T = πT exactly as in
Proposition 2. Instead, we incur a bias between Mn+1

T and πT which accumulates for each n ∈ N.

To mitigate this problem, we alternate between a forward Markovian projection and a backward
Markovian projection. This procedure is justified by the following proposition.

Proposition 9. Assume that Π = Π0,TQ|0,T with Q associated with dXt = ft(Xt)dt + σtdBt.
Under mild conditions, the Markovian projection M? = projM(Π) is associated with both

dXt = {ft(Xt) + σ2
tEΠT |t [∇ logQT |t(XT |Xt) |Xt]}dt+ σtdBt, X0 ∼ Π0, (11)

dYt = {−fT−t(Yt) + σ2
T−tEΠ0|T−t

[∇ logQT−t|0(Yt|YT ) |Yt]}dt+ σT−tdBt,Y0 ∼ ΠT .(12)

In Proposition 9, (11) is the definition of the Markovian projection, see Definition 1. However, (12)
is an equivalent representation as a time-reversal. In practice, (Yt)t∈[0,T ] is approximated with

dYt = {−fT−t(Yt) + vφ?(T − t,Yt)}dt+ σT−tdBt, Y0 ∼ πT , (13)

φ? = argminφ{
∫ T

0
EΠ0,t

[‖σ2
t∇ logQt|0(Xt|X0)− vφ(t,Xt)‖2]/σ2

t dt : φ ∈ Φ}. (14)

The optimal vφ?(t, xt) = σ2
tEΠ0|t [∇ logQt|0(Xt|X0) |Xt = xt] for any t ∈ [0, T ] and xt ∈ Rd.

Algorithm 1 Diffusion Schrödinger Bridge Matching

1: Input: Joint distribution Π0
0,T , tractable bridge Q|0,T ,

number of outer iterations N ∈ N.
2: Let Π0 = Π0

0,TQ|0,T .
3: for n ∈ {0, . . . , N − 1} do
4: Learn vφ? using (14) with Π = Π2n.
5: Let M2n+1 be given by (13).
6: Let Π2n+1 = M2n+1

0,T Q|0,T .
7: Learn vθ? using (10) with Π = Π2n+1.
8: Let M2n+2 be given by (9).
9: Let Π2n+2 = M2n+2

0,T Q|0,T .
10: end for
11: Output: vθ? , vφ?

Note that X0 ∼ π0 in the forward
projection, while Y0 ∼ πT in the
backward projection. Therefore, us-
ing the backward projection removes
the bias on πT accumulated from the
forward projection. Leveraging the
time-symmetry of the Markovian pro-
jection and alternating between (13)
and (9) yields the DSBM methodol-
ogy summarized in Algorithm 1.

It is also possible to learn both the for-
ward and backward processes at each
step, and enforce that the backward
and forward processes match. We ex-
plore this in Appendix G.

Initialization coupling. We now relate Algorithm 1 to the classical IPF and practical algorithms
such as DSB (De Bortoli et al., 2021). Instead of initializing DSBM with Π0

0,T given by a coupling
between π0, πT , if we initialize it by Π0

0,T = Q0,T where Q0 = π0 and QT |0 is given by the reference
process defined in (1), then DSBM also recovers the IPF iterates used in DSB.

Proposition 10. Suppose the families of functions {vθ : θ ∈ Θ} and {vφ : φ ∈ Φ} are rich enough
so that they can model the optimal vector fields. Let (Πn,Mn+1)n∈N be the optimal DSBM sequence
in Algorithm 1 initialized with Π0

0,T = Q0,T , and let (P̃n)n∈N be the optimal DSB sequence given by
the IPF iterates in (7). Then for any n ∈ N, n ≥ 1, we have Mn = P̃n.

We will thus call DSBM-IPF, the DSBM algorithm initialized with the joint distribution given by
the forward reference process Π0

0,T = Q0,T ; and DSBM-IMF, the DSBM algorithm initialized with
an independent coupling Π0

0,T = π0 ⊗ πT . However, the training procedure of DSBM-IPF is very
different from the one of (De Bortoli et al., 2021; Chen et al., 2022). In existing works, P̃n+1 is
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obtained as the time-reversal of P̃n which requires full trajectories from P̃n, see e.g. (De Bortoli et al.,
2021, Proposition 6). In contrast, in Algorithm 1 we only use the coupling Mn

0,T to create the bridge
measure Πn = Mn

0,TQ|0,T . By doing so, (i) the losses (10) and (14) can be easily evaluated at any
time t ∈ [0, T ]; (ii) the trajectory caching procedure in DSBM is more computationally and memory
efficient; (iii) while every IPF iteration P̃n is also supposed to be inR(Q), in practice one can observe
a forgetting of the bridge Q|0,T (Fernandes et al., 2021). In DSBM, this effect is countered by explicit
projections on the reciprocal class. See Appendix F for more details.

Probability flow ODE. At equilibrium of DSBM, we have that (Yt)t∈[0,T ] given by (13) is the
time reversal of (Xt)t∈[0,T ] given by (9) and are both associated with the optimal Schrödinger Bridge
path measure P?. As a result, we have that vφ?(t, x) = −vθ?(t, x) + σ2

t∇ logP?t (x). Hence, a
probability flow (Z?t )t∈[0,T ] such that Law(Z?t ) = P?t for any t ∈ [0, T ] is given by

dZ?t = {ft(Z?t ) + 1
2 [vθ?(t,Z?t )− vφ?(t,Z?t )]}dt, Z?0 ∼ π0.

See also De Bortoli et al. (2021); Chen et al. (2022) for derivation of this result. Note however that
the path measure induced by (Z?t )t∈[0,T ] does not correspond to P?; in particular, (Z?0,Z

?
T ) is not

an entropic OT plan. However, since for any t ∈ [0, T ], Z?t has marginal distribution P?t , we can
compute the log-likelihood of the model (Song et al., 2021b; Huang et al., 2021).

5 Related Work

Markovian projection and Bridge Matching. The concept of Markovian projection has been
rediscovered multiple times (Krylov, 1984; Gyöngy, 1986; Dupire, 1994). In the machine learning
context, this was first proposed by Peluchetti (2021) to define Bridge Matching models. More recently,
Liu et al. (2022b) derived theoretical properties of the Markovian projection in Proposition 2, first
part of Lemma 6, and applied Bridge Matching for learning data on discrete and constrained domains.

Bridge and Flow Matching. Flow Matching corresponds to deterministic bridges with determinis-
tic samplers (ODEs) and has been under active study (Liu et al., 2023b; Liu, 2022; Lipman et al.,
2023; Albergo and Vanden-Eijnden, 2023; Heitz et al., 2023; Pooladian et al., 2023; Tong et al.,
2023). Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021a) can also be formulated as a
discrete-time version of Flow Matching, see Liu et al. (2023b). These models have been extended
to the Riemannian setting by Chen and Lipman (2023). Recently, Albergo et al. (2023) studied the
influence of stochasticity in the bridge, through the concept of stochastic interpolants. Liu et al.
(2023a); Delbracio and Milanfar (2023) used Bridge Matching to perform image restoration tasks
and noted benefits of stochasticity empirically. Closely related to our work is the Rectified Flow
algorithm of Liu et al. (2023b), which corresponds to an iterative Flow Matching procedure in order
to improve the straightness of the flow and thus eases its simulation. An iterative rectifying procedure
using stochastic interpolants is also proposed in (Albergo et al., 2023, Section 3.5). Our proposed
DSBM-IMF algorithm is closest to Rectified Flow, which can be seen as the deterministic limiting
case of DSBM-IMF as σ → 0. However, there are a few important theoretical and practical differ-
ences. Most notably, we adopt the SDE approach which is crucial for the validity of Proposition 5 as
well as for the empirical performance of DSBM. We discuss further distinctions between DSBM and
Rectified Flow in Appendix A.3.

Diffusion Schrödinger Bridge. Schrödinger Bridges (Schrödinger, 1932) are ubiquitous in
probability theory (Léonard, 2014b) and stochastic control (Dai Pra, 1991; Chen et al., 2021). More
recently, they have been used for generative modeling: De Bortoli et al. (2021) introduced the DSB
algorithm and Vargas et al. (2021); Chen et al. (2022) introduced similar algorithms. The case of Dirac
delta terminal distribution was investigated by Wang et al. (2021). These methods were later extended
to solve conditional simulation and more general control problems (Shi et al., 2022; Thornton et al.,
2022; Liu et al., 2022a; Chen et al., 2023; Tamir et al., 2023). In Somnath et al. (2023), SBs are
learned using one Bridge Matching iteration, assuming access to the true Schrödinger static coupling.
Our proposed method DSBM-IPF is closest to DSB, but with improved continous-time training and
projections on the reciprocal class which mitigate two limitations of DSB. Concurrently with our
work, Peluchetti (2023) independently introduced the DSBM-IMF approach (named IDBM therein).
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6 Experiments

2D Experiments. We first show our proposed methods can generate correct samples and learn lower
kinetic energy transport maps in some 2D examples. We compare our method DSBM with flow-based
methods including Flow Matching (FM) (Lipman et al., 2023), Conditional Flow Matching (CFM),
OT-CFM (Tong et al., 2023), and Rectified Flow (RF) (Liu et al., 2023b); and other SB methods
including DSB (De Bortoli et al., 2021) and SB-CFM (Tong et al., 2023). OT-CFM and SB-CFM
utilizes sample-based mini-batch OT or EOT solvers (Fatras et al., 2021; Flamary et al., 2021) to
define an approximate OT or SB static coupling Π̃OT

0,T or Π̃SB
0,T , see also Pooladian et al. (2023);

Stromme (2023). We can also utilize this idea in the DSBM-IMF framework, which corresponds to
using the initialization coupling Π0

0,T = Π̃SB
0,T in Algorithm 1. This approximate SB coupling Π̃SB

0,T

also satisfies Π̃SB
0 = π0 and Π̃SB

T = πT but can provide a better initialization than the independent
coupling Π0

0,T = π0 ⊗ πT . We name this approach DSBM-IMF+. The rest of the methods do not use
OT solvers. DSB and DSBM directly learn the EOT map as the solution of the diffusion process.

In Table 2, we show the 2-Wasserstein distance between the true and generated samples, as well as
the integrated path energy defined as E[

∫ T
0
||v(t,Zt)||2dt] where v is the learned drift along the ODE

trajectory Zt. For direct comparability, we report for DSBM using its probability flow ODE. Lower
path energies represent shorter (and potentially easier to integrate) trajectories. We find that in this low
dimensional setting, OT-CFM performs the best by utilizing OT solvers, but DSBM outperforms FM
and CFM when OT solvers are not used. Further, DSBM outperforms DSB on all datasets, suggesting
DSBM solves the SB problem with higher accuracy. The results also show that among SB methods,
DSBM-IMF+ can achieve lower sampling error than DSBM-IPF and DSBM-IMF. It also performs
better than SB-CFM on 3 of the datasets and achieve lower path energy on all datasets. Finally, we
find Rectified Flow achieves lower sampling error than DSBM except for the moons-8gaussians
task, for which DSBM is significantly more accurate. Since RF can be informally seen as DSBM
in the case σ → 0, this suggests the optimal σ varies for each task and between generative and
general transfer tasks. Figure 2 visualizes how σ affects the straightness and sample quality of learned
transport maps between two mixture distributions.

High-Dimensional Gaussian Experiment. We next perform the Gaussian transport experiment in
De Bortoli et al. (2021) with dimension d = 50 to verify the scalability of our proposed approach.
The true SB can be computed analytically in this case (Bunne et al., 2023). In Figure 3, we plot the
convergence of the learned mean E[X0], variance Var(X0), and covariance Cov(X0,XT ) between
times 0, T . We also consider RF and a related baseline IMF-b, which performs IMF numerically but
only in the backward direction. All methods converge approximately to the correct mean. However,

2-Wasserstein (Euler 20 steps)
Dataset moons scurve 8gaussians moons-8gaussians

DSBM-IPF 0.140±0.006 0.140±0.024 0.315±0.079 0.812±0.092
DSBM-IMF 0.144±0.024 0.145±0.037 0.338±0.091 0.838±0.098

DSBM-IMF+ 0.123±0.014 0.130±0.025 0.276±0.030 0.802±0.172
DSB 0.190±0.049 0.272±0.065 0.411±0.084 0.987±0.324

SB-CFM 0.129±0.024 0.136±0.030 0.238±0.044 0.843±0.079

FM 0.212±0.025 0.161±0.033 0.351±0.066 -
CFM 0.215±0.028 0.171±0.023 0.370±0.049 1.285±0.314
RF 0.129±0.022 0.126±0.019 0.267±0.041 1.522±0.304

OT-CFM 0.111±0.005 0.102±0.013 0.253±0.040 0.716±0.187

Path energy
moons scurve 8gaussians moons-8gaussians

1.598±0.034 2.110±0.059 14.91±0.310 42.16±1.026
1.580±0.036 2.092±0.053 14.81±0.255 41.00±1.495
1.594±0.043 2.116±0.018 14.88±0.252 41.09±1.206

- - - -
1.649±0.035 2.144±0.044 15.08±0.209 45.69±0.661

2.227±0.056 2.950±0.074 18.12±0.416 -
2.391±0.043 3.071±0.026 18.00±0.090 116.5±2.633
1.185±0.052 1.633±0.074 14.84±0.441 37.61±3.906
1.178±0.020 1.577±0.036 15.10±0.215 30.50±0.626

Table 2: Sampling quality as measured by 2-Wasserstein distance and path energy for the 2D
experiments. ±1 SD over 5 seeds. Best values are in bold and second best are italicized.

Figure 2: Learned SB probability flow between two mixtures of Gaussians (green→ yellow).
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Figure 3: Convergence of Gaussian experiment in d = 50.

KL ×10−3 d = 5 d = 20 d = 50

DSB 3.26±1.60 13.0±3.49 32.8±1.28

SB-CFM 1.45±0.73 12.3±1.47 49.4±3.91

DSBM-IPF 1.23±0.23 4.42±0.76 8.75±0.87

DSBM-IMF 1.34±0.51 5.05±0.95 9.76±1.67

Table 3: Average KL(Pt|PSB
t )

at 21 uniformly spaced t.

(a) OT-CFM (b) DSB (c) DSBM-IPF

Figure 4: Samples of MNIST digits transferred from letters.
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Figure 5: FID vs iteration.

the variance estimates become inaccurate for RF and IMF-b. Among SB methods, DSB and IMF-b
also gave inaccurate SB covariance estimates as the number of iteration increases. On the other hand,
DSBM does not suffer from this issue. In Table 3, we further quantify the accuracy and compare with
SB-CFM (Tong et al., 2023) by computing the KL divergence between the marginal distributions of
the learned process Pt and the true SB PSB

t . Our proposed methods achieve similar KL divergence as
SB-CFM in dimension d = 5, but are much more accurate in higher dimensions.

MNIST, EMNIST transfer. We test our method for domain transfer between MNIST digits and
EMNIST letters as in De Bortoli et al. (2021). We compare DSBM as a direct substitute of DSB, and
also with Bridge Matching (BM) (Peluchetti, 2021; Liu et al., 2022b), CFM, OT-CFM and RF. We
plot some output samples from different algorithms in Figure 4 and the convergence of FID score in
Figure 5. We find that OT-CFM becomes less applicable in higher dimensions and produces samples
of worse quality (Figure 4a). On the other hand, image quality deteriorates during training of DSB
and RF. DSBM achieves higher quality samples visually, and does not suffer from deterioration. It is
also about 30% more efficient than DSB in terms of runtime.

CelebA transfer. Next, we evaluate and perform some ablations of our method on a transfer
task on the CelebA 64 × 64 dataset. We consider the images given by the tokens male/old and
female/young. In Figures 6 and 7, we show that as σ increases, the quality of the images (as
measured by the FID score) increases until σ is too high, but the alignment (as measured by LPIPS)
between the generated image and the original sample decreases. Additionally, we investigate the
dependency between σ and image dimension in Figure 8. In particular, for the same σ = 1, the
outputs of DSBM for CelebA 128× 128 are better aligned with the original data than for CelebA
64× 64. This is in agreement with the observations of Chen (2023); Hoogeboom et al. (2023) that
the noise schedule in diffusion models should scale with the resolution.

AFHQ transfer. We demonstrate the scalability of our method on an additional transfer experiment
on the AFHQ 512×512 dataset between the classes cat and wild. The results are shown in Figure 9.
On this higher-dimensional problem, we observe that DSBM can also generate realistic samples
which are similar to the input.

Unpaired Fluid Flows Downscaling. Finally, we apply DSBM to perform downscaling of geo-
physical fluid dynamics, i.e. super-resolution of low resolution spatial data. We use the dataset in
(Bischoff and Deck, 2023), which consists of unpaired low (64× 64) and high (512× 512) resolution
fields. As shown in Figure 10, DSBM is able to learn high resolution reconstructions by only slightly
noising the low resolution input. In contrast, Bischoff and Deck (2023) use two diffusion models in
forward and backward directions (Diffusion-fb) based on Meng et al. (2022), which improves over
the Random baseline. Figure 11 shows that DSBM-IPF and DSBM-IMF achieve much lower `2
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Figure 6: Left to right: initial and
generated samples (64 × 64) ob-
tained after 20 DSBM-IMF itera-
tions for σ2 ∈ {0.01, 0.1, 1, 10}.
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Figure 7: FID (blue) and LPIPS
(red) scores (lower is better for
both) as we vary σ2.

Figure 8: Top to bottom:
DSBM (σ = 1) 64 × 64;
128×128; original images.

(a) Transfer between classes cat and wild. (b) Transfer between classes wild and cat.

Figure 9: DSBM domain transfer results on the AFHQ 512× 512 dataset.

(a) (b)

Figure 10: (a) Left to right: source low resolution
sample, intermediate state and final reconstruction of
DSBM-IPF; (b) an unpaired high resolution sample.
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Figure 11: `2 distance between low res-
olution source and high resolution recon-
structed fields.

distances for all frequency classes in the dataset than Diffusion-fb (and thus Random), indicating
DSBM is able to reconstruct high resolution fields consistent with the low resolution source.

7 Discussion

In this work, we introduce IMF, a new methodology for learning Schrödinger Bridges. IMF is an
alternative to the classical IPF and can be interpreted as its dual. Building on this new framework, we
present two practical algorithms, DSBM-IPF and DSBM-IMF, for learning SBs. These algorithms
mitigate the time-discretization and bias accumulation issues of existing methods. However, DSBM
still has some limitations. First, our results suggest DSBM is most effective for solving general
transport problems. For generative modeling, we only find minor improvements compared to Bridge
and Flow Matching on CIFAR-10 (see Appendix I.6). Second, while DSBM is more efficient than
DSB, it still requires sampling from the learned process during the caching step. Finally, the EOT
problem becomes more difficult to solve numerically for small values of σ.

In future work, we would like to further investigate the differences between DSBM-IMF and DSBM-
IPF. IMF also appears useful for developing a better understanding of the Rectified Flow algorithm
(Liu et al., 2023b), as IMF minimizes a clear objective (6) and Rectified Flow can be seen as a
limiting case of it. Finally, Rectified Flow has also been extended to solve OT problems with general
convex costs by Liu (2022), and it would be interesting to derive a SB version of this extension.
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Outline of the Appendix

In Appendix A, we first clarify the relationship between different methods in the existing literature
and our proposed DSBM framework. In Appendix B, we focus on the family of linear SDEs, and
draw a link between the parameterization of bridges in this paper and the stochastic interpolant in
Albergo et al. (2023). In Appendix C, we give proofs for results in the main text. In Appendix D,
we present additional theoretical results for IMF in the Gaussian case. In Appendix E, we derive the
discrete-time version of Markovian projection. In Appendix F, we explain the benefits of DSBM
compared to DSB in more detail. In Appendix G, we describe a method for learning the forward
and backward processes jointly and propose a consistency loss between the forward and backward
processes. In Appendix H, we present additional methodological details for a practical scaling of
the loss function to reduce variance, similar to standard Denoising Diffusion Models. In Appendix I,
we give further details for all experiments and additional experimental results. Finally, we discuss
broader impacts of our work in Appendix J.

A Discussion of Existing Works

A.1 Bridge Matching and Flow Matching Models

In this section, we clarify the relationship between variants of Flow Matching and show that they are
equivalent under some conditions. We follow the nomenclature of Tong et al. (2023). We refer to the
algorithm originally proposed in Lipman et al. (2023) using linear probability paths and described
in (Tong et al., 2023, Section 4.1) as Flow Matching (FM), and the algorithm proposed in (Tong
et al., 2023, Section 4.2) as Conditional Flow Matching (CFM). There is a small constant parameter
σmin in both algorithms, which controls the smoothing of the modeled distribution. We consider the
case σmin = 0. Then CFM recovers exactly the 1st iteration of Rectified Flow (Liu et al., 2023b).
Furthermore, FM, CFM and the 1st iteration of Rectified Flow are all equivalent when performing
generative modeling with a standard Gaussian π0. We refer to them collectively as Flow Matching
models (FMMs) as they only differ in the smoothing method. We also present them all under the
Bridge Matching framework. These models can also be interpreted in the context of stochastic
interpolants (Albergo and Vanden-Eijnden, 2023; Albergo et al., 2023). Finally, we present recent
applications of Bridge Matching and show that some of the objectives in Somnath et al. (2023); Liu
et al. (2023a); Delbracio and Milanfar (2023) are identical.

Flow Matching and Conditional Flow Matching. In Flow Matching (FM), the objective (Lipman
et al., 2023, Equation (21)) is

EΠt,T
[‖(XT −Xt)/(T − t)− vθ(t,Xt)‖2],

where Πt,T is given by πT (XT )N(Xt;
t
TXT , (1− t

T )
2
).

In Conditional Flow Matching (CFM), X0,T
t = t

TXT + (1− t
T )X0, with X0 ∼ N(0, Id) and the

objective (Tong et al., 2023, Equation (16)) is given by

EΠ0,T
[‖(XT −X0)/T − vθ(t,X0,T

t )‖2]. (15)

This is the same as (Liu et al., 2023b, Equation (1)). Furthermore, (XT −X0)/T = (1− t
T )(XT −

X0)/(T − t) = (XT −X0,T
t )/(T − t), so the CFM objective is equivalent to

EΠt,T
[‖(XT −X0,T

t )/(T − t)− vθ(t,X0,T
t )‖2]. (16)

The optimal vθ(t, xt) = (EΠT |t [XT |Xt = xt]− xt)/(T − t). In the case of generative modeling,
π0 is a standard Gaussian distribution and Π0,T is given by N(X0; 0, Id)πT (XT ). Thus, Πt,T is
also given by πT (XT )N(X0,T

t ; tTXT , (1− t
T )

2
). Therefore, the FM (Lipman et al., 2023) and CFM

(Tong et al., 2023) objectives are exactly the same. However, CFM is also applicable when π0 is not
Gaussian distributed, so CFM is a generalized version of FM6.

6In the case σmin > 0, FM and CFM are indeed different in how smoothing is performed, and we refer to
Tong et al. (2023) for a more detailed analysis.
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Stochastic Interpolant. In (Albergo and Vanden-Eijnden, 2023; Albergo et al., 2023), the concept
of stochastic interpolant is introduced. In Albergo and Vanden-Eijnden (2023), the interpolation is
deterministic (not necessarily linear), of the form It(x0, xT ) = α(t)x0 + β(t)xT , while in Albergo
et al. (2023), the interpolation is stochastic given by It(x0, xT ) = α(t)x0 + β(t)xT + γ(t)Z for
Z ∼ N(0, Id). In Albergo and Vanden-Eijnden (2023), an ODE is learned and the associated velocity
field vθ is obtained by minimizing the following objective (Albergo and Vanden-Eijnden, 2023,
Equation (9))

EΠ0,T
[‖∂tIt(X0,XT )− vθ(t,X0,T

t )‖2].

Hence, if It(x0, xT ) = t
T x0 + (1− t

T )xT , we recover (15).

Link with Bridge Matching. When Q is associated with the Brownian motion (σBt)t∈[0,T ] and
σ → 0 in Bridge Matching, we recover the same objective (5) as the Flow Matching objective (16),
since ∇ logQT |t(XT |Xt) = (XT − Xt)/(σ

2(T − t)). Bridge Matching can also be applied to
general distributions π0, πT ; i.e. π0 does not have to be restricted to a Gaussian. Therefore, Bridge
Matching is a generalized version of Flow Matching, see also (Liu et al., 2022b, Equation (10)).

Inverse problems and interpolation. Somnath et al. (2023) and Liu et al. (2023a) present Bridge
Matching algorithms between aligned data (X0,XT ) ∼ Π0,T . The objectives (Somnath et al., 2023,
Equation (8)) and (Liu et al., 2023a, Equation (12)) are equivalent to the Bridge Matching objective
(3). The main difference between Liu et al. (2023a) and Somnath et al. (2023) resides in the choice
of Π0,T . In the case of Somnath et al. (2023), this choice is motivated by the access to aligned data
with applications in biology assuming they are distributed as the true Schrödinger static coupling,
i.e. Π0,T = ΠSB

0,T . In the case of Liu et al. (2023a), Π0,T corresponds to a pairing between clean and
corrupted images, e.g. with Π0 = π0 the distribution of clean images and ΠT = πT the distribution
of corrupted images obtained from the clean images using the degradation kernel ΠT |0.

Finally, in (Delbracio and Milanfar, 2023, Equation (5)) the authors consider a reconstruction process
of the form

dXt = (EΠ0|t [X0 |Xt]−Xt)/tdt, XT ∼ ΠT , (17)
where here we have replaced F (xt, t) by EΠ0|t [X0 |Xt = xt]. This is justified if the ‖ · ‖p norm in
(Delbracio and Milanfar, 2023, Equation (4)) is replaced by ‖ · ‖22 (or any Bregman Loss Function, see
Banerjee et al. (2005)). In Delbracio and Milanfar (2023), Π0,T corresponds to the joint distribution
of clean and corrupted images as in Liu et al. (2023a). Exchanging the role of Π0 and ΠT , (17) can
be rewritten equivalently as

dXt = (EΠT |t [XT |Xt]−Xt)/(T − t)dt, X0 ∼ Π0.

We thus obtain the optimal Flow Matching vector field vθ(t, xt) = (EΠT |t [XT |Xt = xt]−xt)/(T−
t) in (16). Note that Delbracio and Milanfar (2023) also incorporates a stochastic version of their
objective (Delbracio and Milanfar, 2023, Equation (7)). It remains an open question whether this
objective can be understood as a special instance of the Bridge Matching framework.

A.2 On DSBM and Existing Works

In this section, we show that the DSBM framework recovers the above existing algorithms for
different choices of bridges Q|0,T and couplings Π0

0,T in Algorithm 1. For the independent coupling
Π0

0,T = π0 ⊗ πT and Brownian bridge Q|0,T (4) with diffusion parameter σt = σ, the loss function
(10) recovers the Brownian Bridge Matching loss (5). Letting σ → 0, we recover Flow Matching
(Lipman et al., 2023). In this case, further iterations repeating lines 7-9 in Algorithm 1 (with only
forward projections) recover Rectified Flow (Liu et al., 2023b). If the coupling Π0

0,T is given by
an estimation of the OT map between π0 and πT , then the first iteration recovers OT-CFM (Tong
et al., 2023; Pooladian et al., 2023). Finally, for general bridges Q|0,T , if we are given the optimal
Schrödinger Bridge static coupling Π0

0,T = ΠSB
0,T , then the DSBM procedure converges in one

iteration and we recover Somnath et al. (2023).

A.3 DSBM and Rectified Flow

We discuss the differences in more detail between our proposed DSBM method and Rectified
Flow. Both Rectified Flow and DSBM are general frameworks for building transport maps between
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two general distributions π0, πT . However, there are a few important theoretical and practical
differences. Firstly, we adopt the SDE approach as opposed to the ODE approach in Rectified
Flow. This distinction is crucial in theory, as Proposition 5, which guarantees the uniqueness of the
characterization of SB, is valid only when σt > 0. Consequently, Rectified Flow is not guaranteed
to converge to the dynamic optimal transport solution (see e.g. counterexample in Liu (2022)). In a
following work, Liu (2022) established formal connections between Rectified Flow and OT when
restricting the class of vector fields to gradient fields. In DSBM, the connection to OT is obtained
by considering its entropy-regularized version. Furthermore, by adopting the SDE approach, we
observe significant improvements of sample quality in our experiments when performing transport
between two general distributions. This is in line with the theoretical analysis in Albergo et al.
(2023). On the other hand, while Bridge Matching also achieves high sample quality using the
SDE approach, the transported samples are much more dissimilar to the input data (see e.g. Figures
14, 15, 19). Lastly, Rectified Flow also performs Markovian projections iteratively, but only in the
forward direction. Consequently, the bias in the learned marginals PnT is accumulated and cannot be
corrected in later iterations, i.e. the first iteration of RF will achieve the most accurate marginal P1

T .
Subsequent iterations can improve the straightness of the flow, but at the cost of sampling accuracy of
PnT . We observe in practice that this becomes particularly problematic if the first iteration of Rectified
Flow (which is equivalent to CFM) fails to provide a good transport and learn an accurate P1

T , e.g.
in the case of moons-8gaussians (Table 2), Gaussian transport (Figure 3), and MNIST, EMNIST
transfer (Figure 5 and Figure 13). As Rectified Flow cannot recover from this issue, we observe the
accuracy of PnT only deteriorates in further iterations as n increases. In our methodology, we leverage
Proposition 9 to perform forward and backward Bridge Matching, and we observe that the marginal
accuracy is able to improve with iteration.

B The Design Space of Brownian Bridges

B.1 Relationship to Stochastic Interpolants

From stochastic interpolants to Brownian bridges. In this section, we draw a link between our
parameterization of bridges and the one used in Albergo et al. (2023). In Albergo et al. (2023), a
stochastic interpolant is defined as

Xt = ᾱtx0 + β̄txT + γ̄tZ, (18)

where Z ∼ N(0, Id). Since their methodology and analysis mainly relies on the probability flow,
they work with (18), which is easier to analyse. In our setting, as we deal mostly with diffusions, it is
natural to parameterize Brownian bridges as follows

dXt = {−αtXt + βtxT }dt+ γtdBt. (19)

The goal of this section is to derive explicit formulas between the parameters ᾱt, β̄t and γ̄t of (18)
and the parameters αt, βt and γt of (19). Consider (Xt)t∈[0,T ] given by (19). We have that for any
t ∈ [0, T ]

Xt = exp[−At]x0 +
∫ t

0
βs exp[As −At]dsxT +

∫ t
0
γs exp[As −At]dBs,

where At =
∫ t

0
αsds. Therefore, we have that

ᾱt = exp[−
∫ t

0
αsds], β̄t =

∫ t
0
βs exp[−

∫ t
s
αudu]ds, γ̄2

t =
∫ t

0
γ2
s exp[−2

∫ t
s
αudu]ds,

(20)

αt = − ᾱ
′
t

ᾱt
, βt = β̄′t + β̄tαt, γ2

t = (γ̄2
t )′ + 2γ̄2

t αt = 2γ̄tγ̄
′
t + 2γ̄2

t αt. (21)

Using this relationship, we get that the Markovian projection, see Definition 1, is given by

dX?
t = f?t (Xt)dt+ γtdBt, f?t (xt) = EΠT |t [−αtXt + βtXT |Xt = xt].

We have that

f?t (xt) = EΠT |t [−αtXt + βtXT |Xt = xt]

= EΠ0,T |t [−αt(ᾱtX0 + β̄tXT + γ̄tZ) + βtXT |Xt = xt].
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Using (21), we get that

f?t (xt) = EΠ0,T |t [ᾱ
′
tX0 + β̄′tXT +

ᾱ′tγ̄t
ᾱt

Z |Xt = xt].

In Albergo et al. (2023), it is shown that ∇ logM?
t (xt) = −EΠ0,T |t [Z |Xt = xt]/γ̄t, where M? is

the Markovian projection. The probability flow associated with (X?
t )t∈[0,T ] is given by

dZ?t = {f?t (Z?t )−
γ2
t

2 ∇ logM?
t (Z

?
t )}dt

= {EΠ0,T |t [ᾱ
′
tX0 + β̄′tXT + (−αtγ̄t +

γ2
t

2γ̄t
)Z |Xt = Z?t ]}dt

= {EΠ0,T |t [ᾱ
′
tX0 + β̄′tXT + γ̄′tZ |Xt = Z?t ]}dt.

Hence, we recover (Albergo et al., 2023, Theorem 2.6).

Non-Markov path measures. A natural question is whether (19) arises as the bridge measure of
some Markov measure. For instance, if Q is associated with (x0 + Bt)t∈[0,T ], then pinning the
process at xT at time T , we get that the associated bridge measure Q|0,T is given by

dX0,T
t = (xT −Xt)/(T − t)dt+ dBt.

Therefore, we recover (19) with αt = βt = 1
T−t and γt = 1. Using (20), we get that ᾱt = 1− t

T ,
β̄t = t

T and γ̄2
t = (T − t)t/T . We recover (4), upon noting that Bt − t

TBT is Gaussian with zero
mean and variance (T − t)t/T .

More generally, we consider a Markov measure Q associated with (Xt)t∈[0,T ] such that

dXt = −atXtdt+ ctdBt, X0 = x0.

We now derive the associated bridge measure Q|0,T :

XT = exp[−ΛT + Λt]Xt +
∫ T
t
cs exp[Λs − ΛT ]dBs,

with Λt =
∫ t

0
asds. We have that

c2t∇xt
logQT |t(xT |xt) = (c2t exp[Λt − ΛT ]/

∫ T
t
c2s exp[2(Λs − ΛT )]ds)xT

− (c2t exp[2(Λt − ΛT )]/
∫ T
t
c2s exp[2(Λs − ΛT )]ds)xt.

Therefore, combining this result and (2), we get that Q|0,T is associated with

αt = at + c2t exp[−2
∫ T
t
asds]/

∫ T
t
c2s exp[−2

∫ T
s
audu]ds,

βt = c2t exp[−
∫ T
t
asds]/

∫ T
t
c2s exp[−2

∫ T
s
audu]ds, γt = ct.

In that case (at, ct)t∈[0,T ] entirely parameterize (αt, βt, γt)t∈[0,T ]. Hence, in the Ornstein-Uhlenbeck
setting, if Q|0,T is the bridge of a Markov measure, it is fully parameterized by two functions while
in the non-Markov setting it is parameterized by three functions.

In this paper, we present our framework in the Markovian setting as the Schrödinger Bridge problem
is usually defined with respect to Markov reference measures. However, our methodology could be
extended in a straightforward fashion to the non-Markovian setting. This would allow for a further
exploration of the design space of DSBM.

B.2 Linear SDE and Bridge Matching

In this section, we study further the diffusion bridge of linear SDEs. Arbitrary Markov measures
can be chosen to build bridges; however, we want to be able to compute some representations of the
bridge in an explicit way. More precisely, denoting (X0,T

t )t∈[0,T ] the diffusion bridge with x0, xT
the initial and final condition, we want to have access to the following:

• integral sampler: we want to have a formula to sample X0,T
t for any t ∈ [0, T ] without

having to run a stochastic process forward or backward.
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• forward sampler: we want to have a forward SDE for X0,T
t with explicit coefficients, which

might depend on xT , running in a forward fashion terminating at xT .

• backward sampler: we want to have a backward SDE for Y0,T
t = X0,T

T−t with explicit
coefficients, which might depend on x0, running in a backward fashion terminating at x0.

We focus on linear SDEs of the form dXt = −αβtXtdt + σβ
1/2
t dBt, which are particularly

amenable, where (βt)t∈[0,T ] is a schedule with β ∈ C([0, T ], (0,+∞)).

B.2.1 Brownian motion

First, we consider the Brownian motion setting and let (Xt)t∈[0,T ] be associated with Q with
dXt = β

1/2
t dBt. We consider (X0,T

t )t∈[0,T ] conditioned at both ends X0,T
0 = x0 and X0,T

T = xT .
First, using (Barczy and Kern, 2013, Theorem 3.3), we have that for any t ∈ [0, T ]

X0,T
t = R(t,T )

R(0,T )x0 + R(0,t)
R(0,T ) (xT −XT ) + Xt,

with R(s, t) =
∫ t
s
βudu = σ2(Bt −Bs), where for any t ∈ [0, T ], Bt =

∫ t
0
βsds. Therefore, we get

that
X0,T
t = (1− B(t)

B(T ) )x0 + B(t)
B(T ) (xT −XT ) + Xt. (22)

(22) defines the integral sampler. In addition, using (Barczy and Kern, 2013, Theorem 3.2), we have

X0,T
0 = x0, dX0,T

t = {−σ2βt/γ(t, T )X0,T
t + σ2βt/γ(t, T )xT }dt+ σβ

1/2
t dBt,

where γ(s, t) = σ2(B(t)−B(s)). Therefore, we get that

X0,T
0 = x0, dX0,T

t = {− βt

B(T )−B(t)X
0,T
t + βt

B(T )−B(t)xT }dt+ σβ
1/2
t dBt. (23)

(23) defines the forward sampler. Finally, we derive the backward sampler by considering the
time-reversal of the forward unconditional process (initialized at x0). Following Haussmann and
Pardoux (1986),

Y0,T
0 = xT , dY0,T

t = σ2βT−t∇ logQT−t|0(Y0,T
t |x0)dt+ σβ

1/2
T−tdBt. (24)

In addition, we have that

Xt = x0 + σB(t)1/2εt, εt ∼ N(0, Id).

Hence, we get that for any t ∈ [0, T ] and x ∈ Rd

∇ logQt|0(x|x0) = −(x− x0)/(σ2B(t)).

Combining this result and (24), we get

Y0,T
0 = xT , dY0,T

t = {− βT−t

B(T−t)Y
0,T
t + βT−t

B(T−t)x0}dt+ σβ
1/2
T−tdBt. (25)

Combining (22), (23) and (25), we get

X0,T
t = λtx0 + ϕt(xT −XT ) + Xt.

X0,T
0 = x0, dX0,T

t = {κftX
0,T
t + Ψf

t xT }dt+ σβ
1/2
t dBt,

Y0,T
0 = xT , dY0,T

t = κbT−tY
0,T
t + Ψb

T−tx0}dt+ σβ
1/2
T−tdBt,

with

λt = 1− B(t)
B(T ) , ϕt = B(t)

B(T ) ,

κft = − βt

B(T )−B(t) , Ψf
t = βt

B(T )−B(t) ,

κbt = − βt

B(t) , Ψb
t = βt

B(t) .
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B.2.2 Ornstein-Uhlenbeck

Second, we consider the Ornstein-Uhlenbeck setting and let (Xt)t∈[0,T ] with dXt = −αβtXtdt+

σβ
1/2
t dBt, with α 6= 0. We consider (X0,T

t )t∈[0,T ], the stochastic process (Xt)t∈[0,T ] conditioned
at both ends X0,T

0 = x0 and X0,T
T = xT . First, using (Barczy and Kern, 2013, Theorem 3.3), we

have that for any t ∈ [0, T ]

X0,T
t = R(t,T )

R(0,T )x0 + R(0,t)
R(0,T ) (xT −XT ) + Xt,

with R(s, t) = exp[α(B(t)−B(s))]γ(s, t), with γ(s, t) =
∫ t
s
σ2β(u) exp[−2α(B(t)−B(u))]du.

In particular, we have

γ(s, t) = σ2

2α (1− exp[−2α(B(t)−B(s))], R(s, t) = σ2

α sinh(α(B(t)−B(s))). (26)

Therefore, we get that

X0,T
t = sinh(α(B(T )−B(t))

sinh(αB(T )) x0 + sinh(αB(t))
sinh(αB(T )) (xT −XT ) + Xt. (27)

(27) defines the integral sampler. In addition, using (Barczy and Kern, 2013, Theorem 3.2) and (26),
we have X0,T

0 = x0 and

dX0,T
t = {−αβtXt − σ2βt exp[−2α(B(T )−B(t))]

γ(t,T ) X0,T
t + σ2βt exp[−α(B(T )−B(t))]

γ(t,T ) xT }dt+ σβ
1/2
t dBt

= {−αβtXt − 2αβt

exp[2α(B(T )−B(t))]−1X
0,T
t + 2αβt

exp[−α(B(T )−B(t))]−exp[−α(B(T )−B(t))]xT }dt+ σβ
1/2
t dBt

= {−αβt exp[2α(B(T )−B(t))]+1
exp[2α(B(T )−B(t))]−1X

0,T
t + 2αβt

exp[−α(B(T )−B(t))]−exp[−α(B(T )−B(t))]xT }dt+ σβ
1/2
t dBt

= {−αβt coth(α(B(T )−B(t)))X0,T
t + αβt csch(α(B(T )−B(t)))xT }dt+ σβ

1/2
t dBt.

In the formula, coth is the hyperbolic cotangent function defined as coth(x) = 1
tanh(x) = cosh(x)

sinh(x)

and csch is the hyperbolic cosecant function defined as csch(x) = 1
sinh(x) . Combining this result and

(26), we get that

X0,T
0 = x0, dX0,T

t = {−αβt coth(α(B(T )−B(t)))X0,T
t +αβt csch(α(B(T )−B(t)))xT }dt+σβ1/2

t dBt.
(28)

(28) defines the forward sampler. Finally, we derive the backward sampler by considering the
time-reversal of the forward unconditional process (initialized at x0). Following Haussmann and
Pardoux (1986),

Y0,T
0 = xT , dY0,T

t = {αβT−tY0,T
t + σ2βT−t∇ logQT−t|0(Y0,T

t |x0)}dt+ σβ
1/2
T−tdBt.

(29)
In addition, we have that

Xt = exp[−αB(t)]x0 + σ√
2α

(1− exp[−2αB(t)])1/2εt, εt ∼ N(0, Id).

Hence, we get that for any t ∈ [0, T ] and x ∈ Rd

∇ logQt|0(x|x0) = −2α(x− exp[−αB(t)]x0)/(σ2(1− exp[−2αB(t)])).

Combining this result and (29), we get Y0,T
0 = xT and

dY0,T
t = {αβT−tY0,T

t − 2αβT−t

1−exp[−αB(T−t)]Y
0,T
t + 2αβT−t exp[−αB(T−t)]

1−exp[−2αB(T−t)] x0}dt+ σβ
1/2
T−tdBt

= {−αβT−t 1+exp[−2αB(T−t)]
1−exp[−2αB(T−t)]Y

0,T
t + 2αβT−t

exp[αB(T−t)]−exp[−αB(T−t)]x0}dt+ σβ
1/2
T−tdBt

= {−αβT−t coth(αB(T − t))Y0,T
t + αβT−t csch(αB(T − t))xT }dt+ σβ

1/2
T−tdBt.

Therefore

Y0,T
0 = xT , dY0,T

t = {−αβT−t coth(αB(T−t))Y0,T
t +αβT−t csch(αB(T−t))xT }dt+σβ1/2

T−tdBt.
(30)
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Combining (27), (28) and (30), we get

X0,T
t = λtx0 + ϕt(xT −XT ) + Xt.

X0,T
0 = x0, dX0,T

t = {κftX
0,T
t + Ψf

t xT }dt+ σβ
1/2
t dBt,

Y0,T
0 = xT , dY0,T

t = {κbT−tY
0,T
t + Ψb

T−tx0}dt+ σβ
1/2
T−tdBt,

with

λt = sinh(α(B(T )−B(t))
sinh(αB(T )) , ϕt = sinh(αB(t))

sinh(αB(T )) ,

κft = −αβt coth(α(B(T )−B(t))), Ψf
t = αβt csch(α(B(T )−B(t))),

κbt = −αβt coth(αB(t)), Ψb
t = αβt csch(αB(t)).

Using that tanh(x) ∼ x and sinh(x) ∼ x for x → 0, we recover the Brownian motion setting by
letting α→ 0. Note that Albergo et al. (2023) show that given an integral sampler, which does not
necessarily comes from a Markovian process, a forward sampler with the same marginals can be
defined, although it does not necessarily satisfies the fact that the paths have the same distribution.

C Proofs

C.1 Proof of Proposition 2

We refer the reader to Chung and Walsh (2006); Rogers and Williams (2000) for an introduction to
Doob h-transform. Our theoretical treatment of the Doob h-transform closely follows Palmowski
and Rolski (2002).

First, we introduce the infinitesimal generator A given for any f ∈ C∞c ([0, T ]× Rd,R), t ∈ [0, T ]
and x ∈ Rd by

Af(t, x) = 〈ft(x),∇f(t, x)〉+
σ2
t

2 ∆f(t, x) + ∂tf(t, x). (31)
The following assumption ensures that the diffusion associated with Q as well as its Markovian
projections are well-defined.
A1. f , σ and (t, xt) 7→ EΠT |t [∇ logQT |t(XT |Xt) |Xt = xt] are locally Lipschitz and there exist
C > 0, ψ ∈ C([0, T ],R+) such that for any t ∈ [0, T ] and x0, xt ∈ Rd, we have

‖ft(xt)‖ ≤ C(1 + ‖xt‖), C ≥ σt ≥ 1/C,

‖EΠT |t [∇ logQT |t(XT |Xt) |Xt = xt]‖ ≤ Cψ(t)(1 + ‖xt‖).

We consider the following assumption, which will ensure that we can apply Doob h-transform
techniques.
A2. For any x0 ∈ Rd, ΠT |0 is absolutely continuous w.r.t. QT |0. For any x0 ∈ Rd, let ϕT |0 be
given for any xT ∈ Rd by ϕT |0(xT |x0) = dΠT |0(xT |x0)/dQT |0(xT |x0) and assume that for any
x0 ∈ Rd, xT 7→ ϕT |0(xT |x0) is bounded. For any x0 ∈ Rd, let ϕt|0 given for any xt ∈ Rd and
t ∈ [0, T ] by

ϕt|0(xt|x0) =
∫
Rd ϕT |0(xT |x0)dQT |t(xT |xt). (32)

Finally, we assume that for any x0 ∈ Rd, (t, xt) 7→ 1/ϕt|0(xt|x0) and (t, xt) 7→ Aϕt|0(xt|x0) are
bounded.

This means that for any x0 ∈ Rd, (t, xt) 7→ ϕt(xt|x0) is a good function in the sense of (Palmowski
and Rolski, 2002, Proposition 3.2). Note here that these assumptions could be relaxed on a case-by-
case basis. We leave this study for future work.

The following lemma is a direct consequence of A2 and (32). It ensures that the h-function ϕt|0
satisfies the backward Kolmogorov equation.
Lemma 11. Assume A2. Then, ϕ ∈ C1,2([0, T )× Rd,R) and Aϕ|0 = 0.

Using (31), we have that for any x0 ∈ Rd and f ∈ C∞c ([0, T ]× Rd,R), t ∈ [0, T ] and xt ∈ Rd

(A(fϕ|0)− fAϕ|0)(t, xt)/ϕ|0(t, xt) = Af(t, xt) + σ2
t 〈∇f(t, xt),∇ logϕt|0(xt|x0)〉.
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Finally, we consider the following assumption, which will ensure that the Doob h-transform is
well-defined.
A 3. For any x0 ∈ Rd, there exists C ≥ 0 such that for any t ∈ [0, T ] and xt ∈ Rd,
‖∇ logϕt|0(xt|x0)‖ ≤ C(1 + ‖x0‖+ ‖xt‖).

We are now ready to state and prove Proposition 2. Note that the Markovian projection is defined in
Definition 1. Finally, we defineM the space of path measures such that P ∈ M if P is associated
with dXt = {ft(Xt) + vt(Xt)}dt+ σtdBt, with σ, v locally Lipschitz. This restriction of Markov
measures allows us to apply the entropic version of the Girsanov theorem (Léonard, 2012). It has no
impact on our methodology.
Proposition. Assume A1, A2, A3. Let M? = projM(Π). Then,

M? = argminM{KL(Π|M) : M ∈M},

KL(Π|M?) = 1
2

∫ T
0
EΠ0,t [‖σ2

tEΠT |0,t [∇ logQT |t(XT |Xt) |X0,Xt]− v?t ‖2]/σ2
t dt.

In addition, we have that for any t ∈ [0, T ], M?
t = Πt. In particular, M?

T = ΠT .

Proof. First, we recall that Π is given by Π = Qϕ0,T with ϕ0,T =
dΠ0,T

dQ0,T
. In particular, we have

Π|0 = Q|0ϕT |0, where ϕT |0 =
dΠT |0
dQT |0

. Therefore, using Lemma 11, (Palmowski and Rolski, 2002,
Lemma 3.1, Lemma 4.1), the remark following (Palmowski and Rolski, 2002, Lemma 4.1), A1, A2
and A3, we get that Π|0 is Markov and associated with the distribution of (Xt)t∈[0,T ] given for any
t ∈ [0, T ] by

Xt =
∫ t

0
{fs(Xs) + σ2

s∇ logϕs|0(Xs|X0)}ds+
∫ t

0
σsdBs, (33)

where for any t ∈ [0, T ], x0, xt ∈ Rd we recall that
ϕt|0(xt|x0) =

∫
Rd ϕT |0(xT |x0)dQT |t(xT |xt). (34)

First, we have that for any t ∈ [0, T ], xt, x0 ∈ Rd

Qt|0(xt|x0)ϕt|0(xt|x0) =
∫
Rd Qt|0,T (xt|xT , x0)dΠT |0(xT |x0) = Πt|0(xt|x0).

Therefore, we get that for any t ∈ [0, T ] and xt, x0 ∈ Rd

ϕt|0(xt|x0) =
dΠt|0(xt|x0)

dQt|0(xt|x0) . (35)

In addition, we have the following identity for any t ∈ [0, T ], x0, xt, xT ∈ Rd

QT |0(xT |x0)Qt|0,T (xt|x0, xT ) = Qt|0(xt|x0)QT |t(xT |xt).
Using (34), this result and (35), we get that for any t ∈ [0, T ] and x0, xt ∈ Rd

∇ logϕt|0(xt|x0) =
∫
Rd

ΠT |0(xT |x0)QT |t(xT |xt)

QT |0(xT |x0)ϕt|0(xt|x0) ∇ logQT |t(xT |xt)dxT

=
∫
Rd

ΠT |0(xT |x0)Qt|0,T (xt|x0,xT )

Qt|0(xt|x0)ϕt|0(xt|x0) ∇ logQT |t(xT |xt)dxT

=
∫
Rd

Πt,T |0(xt,xT |x0)

Πt|0(xt|x0) ∇ logQT |t(xT |xt)dxT
=
∫
Rd ∇ logQT |t(xT |xt)dΠT |t,0(xT |xt, x0).

Hence, combining this result and (33), we get

Xt =
∫ t

0
{fs(Xs) + σ2

sEΠT |t,0 [∇ logQT |t(XT |Xt) |Xt,X0]}ds+
∫ t

0
σsdBs.

Let M be Markov defined by dXt = {ft(Xt) + vt(Xt)}dt + σtdBt, such that KL(Π|M) < +∞
with σ, v locally Lipschitz. Using (Léonard, 2012, Theorem 2.3), we get that

KL(Π|M) = 1
2

∫ T
0
EΠ0,t

[‖σ2
tEΠT |t,0 [∇ logQT |t(XT |Xt) |Xt,X0]− vt(Xt)‖2]/σ2

t dt.

In addition, we have that for any t ∈ [0, T ],
EΠ0,t

[‖σ2
tEΠT |t,0 [∇ logQT |t(XT |Xt) |Xt,X0]− vt(Xt)‖2]

≥ EΠ0,t [‖σ2
tEΠT |t,0 [∇ logQT |t(XT |Xt) |Xt,X0]− v?t (Xt)‖2],

where v?t (xt) = σ2
tEΠT |t [∇ logQT |t(XT |Xt) |Xt = xt] which concludes the first part of the proof.

For the second part of the proof, we show that for any t ∈ [0, T ], we have M?
t = Πt. First, we

have that M?
t and Πt satisfy the same Fokker-Planck equation, see (Peluchetti, 2021, Theorem 2) for

instance. We conclude by uniqueness of the solutions of the Fokker-Planck equation under A1 and
A3, see Bogachev et al. (2021) for instance.
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C.2 Proof of Proposition 4

Proof. By the additive property of KL divergence (Léonard, 2014a), KL(P|Π) = KL(P0,T |Π0,T ) +
EP0,T

[KL(P|0,T |Π|0,T )]. Restricting Π|0,T = Q|0,T directly gives that the KL minimizer is
Π? with Π?

0,T = P0,T , and thus Π? = P0,TQ|0,T which we recall is short for Π?(·) =∫
Rd×Rd Q|0,T (·|x0, xT )P0,T (dx0,dxT ).

C.3 Proof of Proposition 5

This result is a direct consequence of (Léonard, 2014b, Theorem 2.12), which we recall here for
completeness.

Proposition. Assume that Q ∈ M, that Q0 = QT = Q̄, that for any x0, xT ∈ Rd,
dQ0,T /d(Q̄⊗Q̄)(x0, xT ) ≥ exp[−A(x0)−A(xT )] withA ≥ 0 measurable,

∫
Rd×Rd exp[−B(x0)−

B(xT )]dQ(x0, xT ) < +∞ with B ≥ 0 measurable. Assume that there exists t0 ∈ (0, T ) and X
measurable such that Qt0(X) > 0 and for all x ∈ X, Q0,T � Q0,T |t0(·|Xt0 = x). In ad-
dition, assume that KL(π0|Q̄) < +∞, KL(πT |Q̄) < +∞,

∫
Rd(A + B)(x0)dπ0(x0) < +∞,∫

Rd(A+B)(xT )dπT (xT ) < +∞.

Then there exists a unique Schrödinger Bridge PSB. In addition let P be a Markov measure in the
reciprocal class of Q such that P0 = π0 and PT = πT . Assume that KL(P|Q) < +∞. Then P is the
unique Schrödinger Bridge PSB.

Proof. The first part of the proof is a consequence of (Léonard, 2014b, Theorem 2.12(a)). The second
part is a consequence of (Léonard, 2014b, Theorem 2.12(b)) and (Léonard et al., 2014, Theorem
2.14).

C.4 Proof of Lemma 6

Lemma. Let M ∈ M and Π ∈ R(Q) and assume A1, A2, A3. If KL(Π|M) < +∞ and
KL(projM(Π)|M) < +∞ we have

KL(Π|M) = KL(Π|projM(Π)) + KL(projM(Π)|M). (36)

For any P ∈ P(C), if KL(P|Π) < +∞, we have

KL(P|Π) = KL(P|projR(Q)(P)) + KL(projR(Q)(P)|Π). (37)

Proof. We start with the proof of (36). Similarly to Proposition 2, where we have M ∈M to ensure
that we can apply (Léonard, 2012, Theorem 2.3), we get

KL(Π|M) = 1
2

∫ T
0
EΠ0,t

[‖vt(Xt)− σ2
tEΠT |0,t [∇ logQT |t(XT |Xt) |X0,Xt]‖2]/σ2

t dt.

In addition, we have

KL(projM(Π)|M) = 1
2

∫ T
0
EΠt

[‖vt(Xt)− σ2
tEΠT |t [∇ logQT |t(XT |Xt) |Xt]‖2]/σ2

t dt.

Finally, using Proposition 2, we have that

KL(Π|projM(Π))

= 1
2

∫ T
0
EΠ0,t

[‖σ2
tEΠT |0,t [∇ logQ(XT |Xt) |X0,Xt]− σ2

tEΠT |t [∇ logQ(XT |Xt) |Xt]‖2]/σ2
t dt

= 1
2

∫ T
0

(EΠ0,t
[‖EΠT |0,t [∇ logQ(XT |Xt) |X0,Xt]‖2]− EΠt

[‖EΠT |t [∇ logQ(XT |Xt) |Xt]‖2])σ2
t dt.
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Using this result, we have

2KL(Π|projM(Π)) + 2KL(projM(Π)|M)

=
∫ T

0
(EΠ0,t [‖EΠT |0,t [∇ logQ(XT |Xt) |X0,Xt]‖2]− EΠt [‖EΠT |t [∇ logQ(XT |Xt) |Xt]‖2])σ2

t dt

+
∫ T

0
EΠt

[‖vt(Xt)/σ
2
t − EΠT |t [∇ logQT |t(XT |Xt) |Xt]‖2]σ2

t dt

=
∫ T

0
(EΠ0,t

[‖EΠT |0,t [∇ logQ(XT |Xt) |X0,Xt]‖2]− EΠt
[‖EΠT |t [∇ logQ(XT |Xt) |Xt]‖2])σ2

t dt

+
∫ T

0
(EΠt [‖vt(Xt)/σ

2
t ‖2] + EΠt [‖EΠT |t [∇ logQT |t(XT |Xt) |Xt]‖2])σ2

t dt

− 2
∫ T

0
EΠt

[〈vt(Xt)/σ
2
t ,EΠT |t [∇ logQT |t(XT |Xt) |Xt]〉]σ2

t dt

=
∫ T

0
EΠ0,t

[‖EΠT |0,t [∇ logQ(XT |Xt) |X0,Xt]‖2]σ2
t dt+

∫ T
0
EΠt

[‖vt(Xt)/σ
2
t ‖2]σ2

t dt

− 2
∫ T

0
EΠt [〈vt(Xt)/σ

2
t ,EΠT |t [∇ logQT |t(XT |Xt) |Xt]〉]σ2

t dt

=
∫ T

0
EΠ0,t

[‖EΠT |0,t [∇ logQ(XT |Xt) |X0,Xt]‖2]σ2
t dt+

∫ T
0
EΠt

[‖vt(Xt)/σ
2
t ‖2]σ2

t dt

− 2
∫ T

0
EΠ0,t

[〈vt(Xt)/σ
2
t ,EΠT |0,t [∇ logQT |t(XT |Xt) |X0,Xt]〉]σ2

t dt = 2KL(Π|M),

which concludes the first part of the proof.

For (37), define Π? = projR(Q)(P) = P0,TQ|0,T . Using (Csiszár, 1975, Equation 2.6), we have

KL(P|Π) = KL(P|Π?) +
∫
C log(dΠ?

dΠ (ω))dP(ω)

= KL(P|Π?) +
∫
Rd×Rd log(

dΠ?
0,T

dΠ0,T
(x0, x1))dP0,T (x0, x1)

= KL(P|Π?) +
∫
Rd×Rd log(

dΠ?
0,T

dΠ0,T
(x0, x1))dΠ?

0,T (x0, x1) = KL(P|Π?) + KL(Π?|Π),

which concludes the proof.

C.5 Proof of Proposition 7

Proposition. Assume that the conditions of Proposition 5 and Lemma 6 apply for Pn for every
n ∈ N and for the Schrödinger Bridge PSB, we have KL(Pn+1|PSB) ≤ KL(Pn|PSB) < ∞, and
limn→+∞KL(Pn|Pn+1) = 0.

Proof. We follow the technique of Rüschendorf (1995) but for the reverse Kullback–Leibler diver-
gence. Applying Lemma 6, we get for any N ∈ N

KL(P0|PSB) = KL(P0|P1) + KL(P1|PSB) =
∑N
i=0 KL(Pi|Pi+1) + KL(PN+1|PSB),

which concludes the proof.

C.6 Proof of Theorem 8

Theorem. Assume that the conditions of Proposition 5 and Lemma 6 apply for Pn for every n ∈ N
and for the Schrödinger Bridge PSB, the IMF sequence (Pn)n∈N admits a unique fixed point P? = PSB,
and limn→+∞KL(Pn|P?) = 0.

Proof. By Proposition 7, KL(Pn|PSB) ≤ KL(P0|PSB) < ∞ for all n ∈ N. Now, using the
coercivity of KL(·|PSB) (this is where our analysis differs from the one of the IPF), we have
that the IMF sequence (Pn)n∈N and its subsequences (Mn+1)n∈N and (Πn)n∈N are subsets of
{P ∈ P(C) : KL(P|PSB) ≤ KL(P0|PSB)} which is (relatively) compact. Thus, (Mn+1)n∈N
contains a convergent subsequence Mnj → M? as j → ∞, and (Πnj )j∈N contains a further
convergent subsequence Πnjk → Π? weakly as k → ∞. As the Markov and the reciprocal
classes are closed under weak convergence, M? ∈ M and Π? ∈ R(Q). Now, by the lower semi-
continuity of KL divergence in the weak topology (van Erven and Harremoes, 2014, Theorem
19), 0 ≤ KL(M?|Π?) ≤ lim infk→∞KL(Mnjk |Πnjk ) = 0. Hence, M? = Π? which we denote
as P? ∈ M ∩ R(Q). Also, P? satisfies P?0 = π0 and P?T = πT as is satisfied by all Pn. By
Proposition 5, P? is the unique Schrödinger Bridge PSB. Finally, limn→+∞KL(Pn|P?) = 0 follows
using limk→∞KL(Mnjk |P?) = 0 and the monotonicity of KL(Pn|PSB) by Proposition 7.
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C.7 Proof of Proposition 9

Proof. The proof is similar to the one of Proposition 2.

In particular, the time-reversal of Q|0,T (·|x0, xT ) is associated with

dY0,T
t = {−fT−t(Y0,T

t ) + σ2
T−t∇ logQT−t|0(Y0,T

t |x0)}dt+ σT−tdBt, Y0,T
0 = xT . (38)

One can view both (11) (12) as SDEs with drift defined as the conditional expectation of the drift of
(2) (38) under Π0,T |t in the forward and backward directions respectively.

C.8 Proof of Proposition 10

Proof. We proceed by induction. Firstly, for Π0
0,T = Q0,T , Π0 = P̃0 = Q at initialization. We can

also define M0 = Q, such that M0 = P̃0 and Πn = projR(Q)(Mn) for all n ∈ N. By (De Bortoli
et al., 2021, Section 3.5), the optimal DSB sequence P̃n is Markov and P̃n = P̃n0,TQ|0,T , where P̃n0,T
is the IPF sequence of the static SB problem. In other words, P̃n ∈M∩R(Q).

Suppose M2n+1 = P̃2n+1. By definition, M2n+2
0 = P̃2n+2

0 = π0, i.e. both forward processes are
initialized at π0. In DSB, by De Bortoli et al. (2021), P̃2n+2 is defined as the time-reversal of P̃2n+1,
such that P̃2n+2

|0 = P̃2n+1
|0 . Hence, P̃2n+2 = π0P̃2n+1

|0 .

In DSBM, we first perform reciprocal projection Π2n+1 = projR(Q)(M2n+1) = M2n+1
0,T Q|0,T .

Since M2n+1 = P̃2n+1 ∈ R(Q), however, we have that Π2n+1 = M2n+1. Furthermore, since
M2n+1 = P̃2n+1 ∈ M, projM(Π2n+1) = projM(M2n+1) = M2n+1. Thus, M2n+2 given by
(9) is such that M2n+2

0 = π0 and M2n+2
|0 = projM(Π2n+1)|0 = M2n+1

|0 . We conclude that

M2n+2 = π0M2n+1
|0 = P̃2n+2. Similar arguments holds for the the reverse projection (13). Therefore,

Mn = P̃n for all n ∈ N.

C.9 The set of Markov measures is not convex

The result of Lemma 6 should be compared with the information geometry result of (Csiszár,
1975, Theorem 2.2), which states that if C is a convex set and P ∈ C, then under mild conditions,
KL(P|Q) = KL(P|projC(Q)) + KL(projC(Q)|Q), where projC(Q) = argminP{KL(P|Q) : P ∈
C} is the projection of Q on C. Note that, contrary to Lemma 6, (Csiszár, 1975, Theorem 2.2) is
given for the forward Kullback–Leibler divergence whereas Lemma 6 is given for the reverse KL
divergence. In addition, (Csiszár, 1975, Theorem 2.2) requires the projection set C to be convex
which is not satisfied for the space of Markov measures M. We give a simple counter-example
proving that the set of Markov measures is not convex.

Let p1(x0, x1, x2) = p1(x0)p1(x1|x0)p1(x2|x1) and p2(x0, x1, x2) = p2(x0)p2(x1|x0)p2(x2|x1)
on {0, 1}3 such that

p1(x0 = 1) = α0, p1(x1 = 1|x0) = α1, p1(x2 = 1|x1) = α2.

Additionally, we set

p2(x0 = 1) = β0, p2(x1 = 1|x0) = β1, p2(x2 = 1|x1) = β2.

Finally, we set q = (1/2)p1 + (1/2)p2. Consider q(x2 = 1|x1 = 1, x0 = 1) = q(x2 = 1, x1 =
1, x0 = 1)/q(x1 = 1, x0 = 1) and q(x2 = 1|x1 = 1) = q(x2 = 1, x1 = 1)/q(x1 = 1). Let

∆ = 4[q(x2 = 1, x1 = 1, x0 = 1)q(x1 = 1)− q(x2 = 1, x1 = 1)q(x1 = 1, x0 = 1)]

= (α0α1α2 + β0β1β2)(α1 + β1)− (α1α2 + β1β2)(α0α1 + β0β1)

= α0α1β1α2 + β0α1β1β2 − β0α1β1α2 − α0α1β1β2

= α1β1β2(β0 − α0) + α1β1α2(α0 − β0)

= α1β1(β0 − α0)(β2 − α2).

q is Markov if and only if ∆ = 0. Therefore q is not Markov as soon as α0 6= β0 and α2 6= β2.
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C.10 Impact of the resolution on the entropic regularization

In this section, we show how the resolution of the input affects the entropic regularization. First,
we consider the Schrödinger bridge problem between π0 and π1 (T = 1) with Q associated with
(σBt)t∈[0,1]. In that case the static Schrödinger Bridge is given by P?0,1 such that

P?0,1 = argmin{
∫
Rd×Rd ‖x0 − x1‖2dP(x0, x1)− εKL(P|π0 ⊗ π1) : P0 = π0, P1 = π1}

where ε = 2σ2. We now describe the solution of a higher dimensional problem given by the
upsampling of the marginals. Let f ∈ N with f ≥ 1 and down : Rfd → Rd such that for
any k ∈ {1, . . . , d}, and x ∈ Rfd, down(x) = x̄ with x̄ ∈ Rd and x̄k = xkf . We also denote
up : Rd → Rfd such that for any k ∈ {1, . . . , d}, and x̄ ∈ Rd, up(x̄) = x with x ∈ Rfd and
x̄k = x(k−1)f+j , for j ∈ {1, . . . , d}. Note that down ◦ up = Id.

We denote πup
0 = up#π0 and πup

1 = up#π1. We extend up and down to Rd × Rd and Rfd × Rfd

by letting for any x̄, ȳ ∈ Rd and x, y ∈ Rfd

up(x̄, ȳ) = (up(x̄),up(ȳ)), down(x, y) = (down(x),down(y)).

First, note that since up◦down = Id on up(Rd) we get that for any P supported on up(Rd)×up(Rd),
using (Kullback, 1997, Theorem 4.1)

KL(P|πup
0 ⊗ π

up
1 ) = KL(down#P|π0 ⊗ π1).

Second let P such that P0 = πup
0 and P1 = πup

1 . Then, P is supported on up(Rd) × up(Rd).
Therefore, for any P such that P0 = πup

0 and P1 = πup
1

KL(P|πup
0 ⊗ π

up
1 ) = KL(down#P|π0 ⊗ π1).

Finally, for any P such that P0 = πup
0 and P1 = πup

1 we have∫
Rfd×Rfd ‖x0 − x1‖2dP(x0, x1) = f2

∫
Rd×Rd ‖x̄0 − x̄1‖2d(down#P)(x̄0, x̄1).

Therefore, for any P such that P0 = πup
0 and P1 = πup

1 we have∫
Rfd×Rfd ‖x0 − x1‖2dP(x0, x1)− εKL(P|πup

0 ⊗ π
up
1 )

= f2(
∫
Rfd×Rfd ‖x̄0 − x̄1‖2d(down#P)(x̄0, x̄1)− (ε/f2)KL(down#P|π0 ⊗ π1)).

Therefore, we have the following result.
Proposition 12. Let ε > 0. P? is the solution of the static Schrödinger bridge with marginals πup

0 ,
πup

1 and regularization ε if and only if down#P? is the solution of the static Schrödinger bridge with
marginals π0, π1 and regularization ε/f2.

This means in particular that the Schrödinger Bridge is not invariant via upsampling. In Appendix I.4,
we confirm these results visually upon noting that for the same σ, running DSBM at resolution
64× 64 and 128× 128 gives different results, even after downsampling of the 128× 128 results.

D Convergence of IMF in the Gaussian setting

In this section, we study the IMF in an one-dimensional Gaussian case. We consider T = 1,
Π0 = Π1 = N(0, (1/2β2)) and Q associated with (σBt)t∈[0,1] where σ > 0. In what follows, we
let

Σ0 = (1/2β2)

(
1 c2

c2 1

)
, (39)

where c ∈ [0, 1]. We also denote σ̄2 = 2σ2β2. We start with the following result which gives an
explicit expression of some marginals of the reciprocal projection.
Lemma 13. Let Π0

0,1 = N(0,Σ0) with Σ0 given by (39). Let Π0 = Π0
0,1Q|0,1. For any t ∈ [0, 1], we

have that Π0
0,1,t = N(0,Σ) with

Σ = (1/2β2)

 1 c2 atk
c2 1 a1−t

k

atk a1−t
k btk

 ,

where we have
atk = 1− t+ tc2, btk = 1 + t(1− t)(2(c2 − 1) + σ̄2).
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Proof. Let t ∈ [0, 1] and X0,1
t ∼ Π0

t|0,1 = Qt|0,1. Using (Barczy and Kern, 2013, Theorem 3.3), we
get that

X0,1
t = (1− t)X0 + tX1 + σ(t(1− t))1/2Z,

with Z ∼ N(0, Id) independent from (X0,X1). Hence, we get that E[X0,1
t ] = 0, and

Cov(X0,X
0,1
t ) = E[X0,1

t X0] = (1− t)/(2β2) + tc2/(2β2) = atk/(2β
2).

Similarly, we get that Cov(X1,X
0,1
t ) = a1−t

k /(2β2). Finally, we get that

Var(X0,1
t ) = E[((1− t)X0 + tX1)2] + σ2t(1− t)

= (1− t)2/(2β2) + 2t(1− t)c2/(2β2) + t2/(2β2) + σ̄2t(1− t)/(2β2)

= (1− 2t+ 2t2 + 2t(1− t)c2 + σ̄2t(1− t))/(2β2)

= (1 + t(1− t)(2(c2 − 1) + σ̄2))/(2β2),

which concludes the proof.

Leveraging Lemma 13, we can give an explicit expression of the drift term in the Markovian
projection.
Lemma 14. Let Π0

0,1 = N(0,Σ0) with Σ0 given by (39). Let Π0 = Π0
0,1Q|0,1. For any t ∈ [0, 1]

and xt ∈ Rd, we have that

σ2EΠ0
1|t

[∇ logQ1|t|Xt = xt] = (1−2t)(c2−1)−σ̄2t
1+t(1−t)(2(c2−1)+σ̄2)xt.

Hence, the Markovian projection of Π0, denoted M1 is associated with (Xt)t∈[0,1] with

X0 ∼ Π0, dXt = (1−2t)(c2−1)−σ̄2t
1+t(1−t)(2(c2−1)+σ̄2)Xt + σdBt. (40)

Proof. Using (Barczy and Kern, 2013, Theorem 3.2), we get that Q|0,1 is associated with

dX0,1
t = σ2∇ logQ1|t(x1|Xt)dt+ σdBt, X0,1

0 = x0,

where for any t ∈ [0, 1), we have and xt ∈ Rd, σ2∇ logQ1|t(x1|xt) = (x1−xt)/(1− t). Therefore,
we get that M1 is associated with (Xt)t∈[0,1] such that

dXt = EΠ0
1|t

[σ2∇ logQ1|t(X1|Xt)|Xt]dt+ σdBt, X0 = x0.

Therefore, we get that

dXt = (EΠ0
1|t

[X1|Xt]− xt)/(1− t)dt+ σdBt, X0 = x0.

Using Lemma 13, we have that for any t ∈ [0, 1] and xt ∈ Rd, EΠ0
1|t

[X1|Xt = xt] = a1−t
k /btkxt. In

addition, we have for any t ∈ [0, 1]

a1−t
k /btk − 1 = (t+ (1− t)c2 − 1− t(1− t)(2(c2 − 1) + σ̄2))/(1 + t(1− t)(2(c2 − 1) + σ̄2))

= ((1− t)(c2 − 1)− t(1− t)(2(c2 − 1) + σ̄2))/(1 + t(1− t)(2(c2 − 1) + σ̄2))

= (1− t)((c2 − 1)− t(2(c2 − 1) + σ̄2))/(1 + t(1− t)(2(c2 − 1) + σ̄2))

= (1− t)((1− 2t)(c2 − 1)− tσ̄2))/(1 + t(1− t)(2(c2 − 1) + σ̄2)),

which concludes the proof.

Note that since σ > 0 and c2 ∈ [0, 1], we get that for any t ∈ [0, 1], 1 + t(1− t)(2(c2− 1) + σ̄2) > 0
and therefore the drift is well-defined, smooth and sublinear. In particular, (40) admits a unique
strong solution. In what follows, we denote G : [0, 1]× [0, 1]→ R given for any t ∈ [0, 1] by

G(t, c2) =
∫ t

0
(1−2s)(c2−1)−σ̄2s

1+s(1−s)(2(c2−1)+σ̄2)ds.

We have the following useful lemma.
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Lemma 15. Let c ∈ [0, 1], σ̄ > 0 and p = 2c2 + σ̄2. We distinguish three cases:

(a) If p < 2, then

G(1, c2) = −σ̄2(4− p2)−1/2 tan−1((4− p2)1/2/p).

(b) If p = 2, then
G(1, c2) = −σ̄2/2.

(c) If p > 2, then

G(1, c2) = −σ̄2(p2 − 4)−1/2 tanh−1((p2 − 4)1/2/p).

This lemma is useful combined with the following proposition, which gives the analytical update
formula of Gaussian IMF covariances as a function of G(1, c2).
Proposition 16. Let Π0

0,1 = N(0,Σ0) with Σ0 given by (39). Then Π1
0,1 = N(0,Σ1) with

Σ1 = (1/2β2)

(
1 c21
c21 1

)
, c21 = f(c20),

with f : [0, 1]→ [0, 1] given for any c ∈ [0, 1] by

f(c2) = exp[G(1, c2)].

Proof. We have that X1 = exp[G(1, c2)]X0 + M1, where M1 is a Gaussian random variable with
zero mean independent from X0. Therefore, we get that Cov(X0,X1) = exp[G(1, c2)]/(2β2). In
addition, we have that E[X2

1] = E[X2
0] = 1/2β2, which concludes the proof.

Iterating the procedure in Proposition 16, we obtain a sequence of IMF covariances (c2n)n∈N satisfying
c2n+1 = f(c2n). Finally, we show that this iterative procedure recovers the true SB coupling ΠSB

0,1 =

N(0,ΣSB) as a fixed point. The formula of ΣSB is given e.g. in (Bunne et al., 2023, Equation (2))
which we use below.
Proposition 17. Let ΠSB

0,1 = N(0,ΣSB) be the true static SB solution, with

ΣSB = (1/2β2)

(
1 c2SB
c2SB 1

)
, c2SB =

1

2
(
√

4 + σ̄4 − σ̄2).

Then ΠSB
0,1 is a fixed point of the iterative procedure in Proposition 16, i.e. f(c2SB) = c2SB.

Proof. By straightforward calculations, pSB = 2c2SB + σ̄2 =
√

4 + σ̄4. If σ̄ = 0, pSB = 2 and thus
G(1, c2SB) = −σ̄2/2 = 0. Hence f(c2SB) = exp(G(1, c2SB)) = 1 = c2SB. If σ̄ > 0, we have pSB > 2

andG(1, c2SB) = − tanh−1(σ̄2/
√

4 + σ̄4). Hence, f(c2SB) = exp(G(1, c2SB)) = 1
2 (
√

4 + σ̄4−σ̄2) =

c2SB. We thus correctly recover the true static SB solution ΠSB
0,1 as fixed point of IMF.

We visualize the convergence of this fixed point procedure for a variety of parameter settings in
Figure 12. The convergence appears to be very fast in only two or three iterations.
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Figure 12: Convergence of IMF in the analytic case given by Proposition 16.
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E Discrete-Time Markovian Projection

We derive in this section a discrete-time version of the Markovian projection and show that, in some
limiting case, we recover the continuous-time projection. In the discrete case, we let

π(x0:N ) = π(x0, xN )
∏N−1
k=0 qk+1|0,k,N (xk+1|x0, xk, xN )

= π(x0, xN )
∏N−2
k=0 qk+1|k,N (xk+1|xk, xN ).

We consider a Markovian measure p given by p(x0:N ) = p(x0)
∏N−1
k=0 pk+1|k(xk+1|xk). Now let us

compute KL(π|p). We have

KL(π(x0:N )|p(x0:N )) =
∑N−2
k=0

∫
Rd×Rd KL(qk+1|k,N |pk+1|k)πk,N (xk, xN )dxkdxN

+ KL(π0|p0) +
∫
Rd KL(π(xN |x0)|p(xN |xN−1))π(x0, xN−1)dx0dxN−1.

In what follows, we denote

L0 = KL(π0|p0),LN =
∫
Rd KL(π(xN |x0)|p(xN |xN−1))π(x0, xN−1)dx0dxN−1,

Lk+1 =
∫
Rd×Rd KL(qk+1|k,N |pk+1|k)πk,N (xk, xN )dxkdxN ,

We have the following proposition.
Proposition 18. The minimizer pk+1|k of Lk+1 is given by

pk+1|k(xk+1|xk) =
∫
Rd qk+1|k,N (xk+1|xk, xN )πN |k(xN |xk)dxN . (41)

If p0 = q0, then for any k ∈ {0, . . . , N − 1}, pk = πk. In addition, assume that pk+1|k(xk+1|xk) =

exp[−‖xk+1 − xk − γf(xk)‖2/(2γ)]/(2πγ)−d/2 and qk+1|k,N (xk+1|xk, xN ) = exp[−‖xk+1 −
xk− γf(xk, xN )‖2/(2γ)]/(2πγ)d/2. Finally, assume that ‖xk+1−xk‖ ≤ γ1/2. Then, we have that

f(xk) =
∫
Rd f(xk, xN )π(xN |xk)dxN + o(γ1/2). (42)

Proof. The proofs of (41) and (42) are straightforward and left to the reader. We now prove that if
p0 = π0, then for any k ∈ {1, . . . , N}, pk = πk. First, we have that for any k ∈ {0, . . . , N − 1},

π(xk, xk+1, xN ) = π(xk, xN )q(xk+1|xk, xN ).

Assume now that pk = πk, then we have

pk+1(xk+1) =
∫
Rd pk(xk)pk+1|k(xk+1|xk)dxk

=
∫
Rd×Rd pk(xk)qk+1|k,N (xk+1|xk, xN )πN |k(xN |xk)dxkdxN

=
∫
Rd×Rd πk(xk)qk+1|k,N (xk+1|xk, xN )πN |k(xN |xk)dxkdxN

=
∫
Rd×Rd πk,k+1,N (xk, xk+1, xN )dxkdxN = πk+1(xk+1),

which concludes the proof.

In particular, in the previous proposition, if f(xk, xN ) = ∇ log q(xN |xk), i.e. we have a discretiza-
tion of the bridge then f(xk) =

∫
Rd ∇ log q(xN |xK)π(xN |xk)dxN , which recovers the Markovian

projection in continuous-time.

F Comparing DSBM-IPF and DSB

We analyze further the differences between DSBM-IPF proposed here and DSB proposed in De Bortoli
et al. (2021) and related algorithms in Vargas et al. (2021); Chen et al. (2022). All algorithms solve
the SB problem using the IPF iterates. However, DSB-type algorithms solve for the IPF iterates using
time-reversals, whereas DSBM solves for the iterates using Markovian and reciprocal projections. A
comparison between these two methodologies is made in Section 4.

We investigate here further benefit (iii) of DSBM in Section 4, i.e. the benefit of explicitly projecting
onto the reciprocal class of Q. Intuitively speaking, we directly incorporate the reference measure
Q in the training procedure as our inductive bias. More formally, suppose we have at the current
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IPF iteration M2n (Markov diffusion in the forward direction) and want to learn M2n+1 (Markov
diffusion in the backward direction). Due to training error and the forgetting issue (Fernandes et al.,
2021), however, M2n no longer has the correct bridge Q|0,T . Now suppose we first perform IMF for
M2n and learn M2n,? in the forward direction. That is to say, we repeat alternative reciprocal and
Markovian projections and obtain a sequence (M2n,m)m∈N in the forward direction converging to
M2n,?. Then M2n,? now has the correct bridge Q|0,T by Proposition 7, since M2n,? is the SB between
M2n

0 and M2n
T . Theoretically, M2n

t = M2n,?
t for t = 0, T , but due to training error accumulating

it may be that M2n
T 6= M2n,?

T . However, M2n
0 = M2n,?

0 , since M2n,? is in the forward direction
and starting from samples from π0. As a result, we can obtain a Markov forward diffusion M2n,?,
which has M2n,?

0 = π0 and the correct bridge Q|0,T . These are the same set of properties that the
reference measure Q has. As a result, replacing Q with M2n,? in (6) results in the same SB solution.
Consequently, now continuing the IPF iterations from M2n,?

0 , it is as if we restart IPF afresh using a
modified SB problem

PSB = argmin{KL(P|M2n,?) : P0 = π0, PT = πT }.

If M2n,? is closer than Q to M? in the sense of KL divergence, then we obtain a better initialization
of the IPF procedure. As proposed in Algorithm 1, DSBM performs the Markovian and reciprocal
projection only once before switching between the forward and backward directions. However, it is
still beneficial compared to DSB with less bias accumulation in the bridge.

Algorithmically, one main difference between DSB-type algorithms and DSBM due to the above
distinction occurs in the trajectory caching step. In DSB, a fixed discretization of SDE needs to
be chosen, and all intermediate samples from the discretized Euler-Maruyama simulation of the
SDE need to be saved. Furthermore, a second set of drift evaluation needs to be performed for all
datapoints in the trajectory (De Bortoli et al., 2021, Equations (12), (13)). The IPML algorithm in
Vargas et al. (2021) is also similar to DSB, but Gaussian processes are used to fit the drifts of forward
and backward SDEs instead of neural networks. In Chen et al. (2022), the implicit score matching
loss is used instead, but all intermediate points in the SDE trajectory also need to be saved. On the
contrary, DSBM does not require intermediate samples during trajectory caching and only retains the
joint samples at times 0, T . Then, the intermediate trajectories are reconstructed using the reference
bridge Q|0,T .

G Joint Training of Forward and Backward Processes

We recall below the DSBM algorithm given in Algorithm 1.

Algorithm 2 Diffusion Schrödinger Bridge Matching

1: Input: Joint distribution Π0
0,T , tractable bridge Q|0,T , number of outer iterations N ∈ N.

2: Let Π0 = Π0
0,TQ|0,T .

3: for n ∈ {0, . . . , N − 1} do
4: Learn vφ? using (14) with Π = Π2n.
5: Let M2n+1 be given by (13).
6: Let Π2n+1 = M2n+1

0,T Q|0,T .
7: Learn vθ? using (10) with Π = Π2n+1.
8: Let M2n+2 be given by (9).
9: Let Π2n+2 = M2n+2

0,T Q|0,T .
10: end for
11: Output: vθ? , vφ?

Our main observation comes from Proposition 9. In particular, under mild assumptions, we have that
the Markovian projection M = projM(Π) is associated with

dXt = {ft(Xt) + σ2
tEΠT |t [∇ logQT |t(XT |Xt) |Xt]}dt+ σtdBt, X0 ∼ π0,

dYt = {−fT−t(Yt) + σ2
T−tEΠ0|T−t

[∇ logQT−t|0(Yt|YT ) |Yt]}dt+ σT−tdBt, Y0 ∼ πT .
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Considering the following losses,

θ? = argminθ{
∫ T

0
EΠt,T

[‖σ2
t∇ logQT |t(XT |Xt)− vθ(t,Xt)‖2]/σ2

t dt : θ ∈ Θ}, (43)

φ? = argminφ{
∫ T

0
EΠt,0

[‖σ2
t∇ logQt|0(Xt|X0)− vφ(t,Xt)‖2]/σ2

t dt : φ ∈ Φ}. (44)

If the families of functions {vθ : θ ∈ Θ} and {vφ : θ ∈ Φ} are rich enough, we have for any
t ∈ [0, T ] and xt ∈ Rd, vθ?(t, xt) = σ2

tEΠT |t [∇ logQT |t(XT |Xt) | Xt = xt] and vφ?(t, xt) =

σ2
tEΠ0|t [∇ logQt|0(Xt|X0) |Xt = xt]. In practice, this means that the Markovian projection can

be computed in a forward or backward fashion equivalently.

Therefore, given a coupling Π = Π2n, we can update both vθ and vφ. This means that we train the
forward and backward model jointly. We then consider M2n+1

b associated with (13) and M2n+1
f

associated with (9). Note that if the families of functions {vθ : θ ∈ Θ} and {vφ : θ ∈ Φ} are rich
enough then M2n+1

f = M2n+1
b .

Mixture from forward and backward. Once we have obtained both the forward update and the
backward update, our next task is to define the new mixture of bridge Π2n+1. In Algorithm 1, since
we train only the backward model M2n+1 = M2n+1

b , we define Π2n+1 = M2n+1
0,T Q|0,T . In the case

of joint training, we have access to M2n+1
b and M2n+1

f . One way to define a new mixture of bridge
is to compute Π2n+1 = 1

2 (M2n+1
b,0,T Q|0,T + M2n+1

f,0,T )Q|0,T . This choice ensures that in the case where
M2n+1
f = M2n+1

b we have

Π2n+1 = M2n+1
f,0,TQ|0,T = M2n+1

b,0,T Q|0,T .

It also ensures that all the steps in the joint DSBM training algorithms are symmetric. We leave the
study of an optimal combination of M2n+1

f and M2n+1
b for future work.

Consistency loss. In addition to the losses (43) and (44), we also consider an additional consistency
loss. A similar idea was explored in Song (2022). In DSB (De Bortoli et al., 2021; Chen et al., 2022)
and DSBM, see Algorithm 1, the processes parameterized by vθ (forward) and vφ backward are
identical only at equilibrium. Thus imposing the forward and the backward processes match at each
step of DSB or DSBM would lead to some bias. However, this is not the case in the joint training
setting. Indeed, in that case, we have M2n+1

f = M2n+1
b if the families are rich enough. Therefore,

we get that

dYt = {−fT−t(Yt) + vφ(T − t,Yt)}dt+ σT−tdBt, Y0 ∼ πT , (45)

is the time reversal of

dXt = {ft(Xt) + vθ(t,Xt)}dt+ σtdBt, X0 ∼ π0. (46)

Computing the time-reversal of (45), we have

dXt = {ft(Xt)− vφ(t,Xt) + σ2
t∇ log Π2n

t (Xt)}dt+ σtdBt, X0 ∼ π0. (47)

Identifying (47) and (46), we get that for any t ∈ [0, T ] and xt ∈ Rd

vθ(t, xt) = −vφ(t, xt) + σ2
t∇ log Π2n

t (xt). (48)

We highlight that letting σt → 0 for any t ∈ [0, T ], we get that vθ = −vφ, which confirms that the
time-reversal of an ODE is simply given by flipping the sign of the velocity. Therefore, we propose
the following loss which links the parameters θ and φ

Lcons(θ, φ) =
∫ T

0
EΠ2n

t
[‖vθ(t,Xt) + vφ(t,Xt)− σ2

t∇ log Π2n
t (Xt)‖2]/σ2

t dt.

Leveraging tools from implicit score matching (Hyvärinen, 2005) and the divergence theorem, we
get that

Lcons(θ, φ) =
∫ T

0
EΠ2n

t
[‖vθ(t,Xt) + vφ(t,Xt)‖2/σ2

t + 2div(vθ(t,Xt) + vφ(t,Xt))]dt+ C,

where C ≥ 0 is a constant which does not depend on θ and φ. Alternatively, (48) shows that

∇ log Π2n
t (xt) = EΠ2n

T |t
[∇ logQT |t|Xt = xt] + EΠ2n

0|t
[∇ logQt|0|Xt = xt].
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We thus also have the following denoising score matching consistency loss

Lcons(θ, φ) =
∫ T

0
EΠ2n

0,t,T
[‖vθ(t,Xt)+vφ(t,Xt)−σ2

t (∇ logQT |t(XT |Xt)+∇ logQt|0(Xt|X0))‖2]/σ2
t dt,

The advantage of this DSM loss is that it does not rely on any divergence computation.

Below, we recall the two losses used to estimate the Markovian projection (43) and (44)

L(θ) =
∫ T

0
EΠt,T

[‖σ2
t∇ logQT |t(XT |Xt)− vθ(t,Xt)‖2]/σ2

t dt,

L(φ) =
∫ T

0
EΠt,0 [‖σ2

t∇ logQt|0(Xt|X0)− vφ(t,Xt)‖2]/σ2
t dt.

The complete loss we consider in the joint training of the algorithm is of the form

Lλ(θ, φ) = L(θ) + L(φ) + λLcons(θ, φ), (49)

where λ > 0 is an additional regularization parameter. We now state a version of DSBM which
performs joint training in Algorithm 3.

Algorithm 3 Diffusion Schrödinger Bridge Matching (Joint Training)

1: Input: Coupling Π0
0,T , tractable bridge Q|0,T , N ∈ N

2: Let Π0 = Π0
0,TQ|0,T .

3: for n ∈ {0, . . . , N − 1} do
4: Learn vφ? , vθ? using (49) with Π = Πn.
5: Let Mn+1

f be given by (9).
6: Let Mn+1

b be given by (13).
7: Let Mn+1 = 1

2 (Mn+1
f + Mn+1

b ).
8: Let Πn+1 = Mn+1

0,T Q|0,T .
9: end for

10: Output: vθ? , vφ?

H Loss Scaling

Similar to the loss weighting in standard diffusion models (Song et al., 2021b; Ho et al., 2020), we
derive a similar weighting to reduce the variance of our objective. We focus on the forward direction
of Markovian projection in this case, and the backward case can be derived similarly. Our forward
loss in the DSBM framework is given by (10), where the inner expectation is given by

EΠt,T
[‖σ2

t∇ logQT |t(XT |Xt)− vθ(t,Xt)‖2].

Letting Q|0,T be a Brownian bridge with diffusion parameter σ and assuming T = 1, this becomes

E(X0,X1)∼Π0,1,Z∼N (0,Id)[‖X1 −X0 − σ
√
t/(1− t)Z− vθ(t,X0,T

t )‖2]

with X0,T
t = tX1 + (1 − t)X0 + σ

√
t(1− t)Z. When t ≈ 1, we see that the regression target

is dominated by the noise term σ
√
t/(1− t)Z which needs to be predicted based on information

contained within X0,T
t . The loss will have an approximate scale of σ2t/(1− t) when t ≈ 1 which

will be very large. To avoid these large values affecting gradient descent, we can downweight the loss
by 1 + σ2t/(1− t) (we can add 1 to effectively cause no loss scaling when t is close to 0)

(1 + σ2t/(1− t))−1E(X0,X1)∼Π0,1,Z∼N (0,Id)[‖X1 −X0 − σ
√
t/(1− t)Z− vθ(t,X0,T

t )‖2].

Similar arguments can be applied to the backward loss (14)

EΠt,0 [‖σ2
t∇ logQt|0(Xt|X0)− vφ(t,Xt)‖2]

= E(X0,X1)∼Π0,1,Z∼N (0,Id)[‖X0 −X1 − σ
√

(1− t)/tZ− vφ(t,X0,T
t )‖2],

which we then downweight by 1 + σ2(1− t)/t

(1 + σ2(1− t)/t)−1E(X0,X1)∼Π0,1,Z∼N (0,Id)[‖X0 −X1 − σ
√

(1− t)/tZ− vφ(t,X0,T
t )‖2].
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I Experiments

In this section, we present further details of the experiment setups as well as further experiment
results. In all experiments, we use Brownian motion for the reference measure Q with corresponding
Brownian bridge (4) and T = 1. We use the Adam optimizer with learning rate 10−4 and SiLU
activations unless specified otherwise. The experiments are run on computing clusters with a mixture
of both CPU and GPU resources.

I.1 2D Experiments

For the 2D experiments, we closely follow Tong et al. (2023) and the released code7, and use the
same synthetic datasets and the 2-Wasserstein distance between the test set and samples simulated
using probability flow ODE as the evaluation metric. However, we use 10000 samples in the test
set since we find the 2-Wasserstein distance can vary greatly with only 1000 samples (which can
be as high as 0.3 even between two set of samples both drawn from the ground truth distribution).
We use a simple MLP with 3 hidden layers and 256 hidden units to parameterize the forward and
backward drift networks. We use batch size 128 and 20 diffusion steps with uniform schedule at
sampling time. Each outer iteration is trained for 10000 steps and we train for 20 outer iterations. As
the initial coupling is more optimal in DSBM-IMF+, we reduce the number of outer iterations to 4
and train for 50000 steps in each outer iteration. For flow methods, we train for 200000 steps in total.
For Table 2 we use σt = 1 in all cases, except the moons-8gaussians dataset where we use σt = 5.
Note that FM cannot be used for the moons-8gaussians task since it requires a Gaussian source, but
CFM is applicable. The experiments are run using 1 CPU and take approximately 200 minutes (for
both training and testing).

I.1.1 Variance of the reference measure Q

We comment further on the effect of σt in the reference path measure Q. We assume a time-
homogeneous σt = σ for simplicity. In Figure 2, we vary σ and visualize the learned transport
for a 3gaussians problem of transporting between two Gaussian mixtures. In Table 4 we show the
2-Wasserstein distance between the test set and generated samples for this 3gaussians problem as
well as the moons-8gaussians problem. We find that large values of σ result in increasingly curved
transport paths, and correspondingly reduced performance when σ is excessively large. Conversely,
we also find reduced performance when σ is excessively small. We conjecture this is due to increased
optimization difficulty and bias accumulation. Firstly, the EOT problem becomes more difficult
to solve as σ is taken to 0, which would require a higher number of outer iterations. Further, the
introduction of noise also decreases optimization difficulty by smoothing the intermediate marginals
between the two terminal distributions. The benefit of setting σ > 0 and using a stochastic sampler
was also observed in Albergo et al. (2023); Delbracio and Milanfar (2023). Finally, we conjecture
setting σ > 0 could also increase the diversity of sampled couplings and may alleviate some bias
accumulation issues in the outer iterations. When σ = 0, these issues result in the artifacts observed
in the transferred samples (marked using yellow points) in Figure 2. The appropriate value for σ
depends on the spatial scaling of the problem as shown in Table 4, where the optimum σ is larger for
the larger scale moons-8gaussians problem.

3gaussians moons-8gaussians

σ 2-Wasserstein σ 2-Wasserstein

σ = 0 0.646±0.028 σ = 0 1.459±0.008

σ = 0.1 0.724±0.039 σ = 1.0 1.285±0.346

σ = 0.3 0.546±0.169 σ = 2.0 0.916±0.292

σ = 1.0 0.439±0.072 σ = 4.0 0.818±0.249

σ = 3.0 0.543±0.078 σ = 8.0 0.989±0.179

Table 4: 2-Wasserstein distance for varying value of σ used in the DSBM-IMF method.

7https://github.com/atong01/conditional-flow-matching (code released under MIT license)
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I.2 Gaussian Experiment

Similar to the 2D experiments, we use a simple MLP with 2 hidden layers and 256 hidden units to
parameterize the forward and backward drift networks. This is a smaller network compared to the
“large” network in De Bortoli et al. (2021). We use batch size 128 and 20 diffusion sampling steps
with uniform time schedule at inference time. Each outer iteration is trained for 10000 steps and
we train for 20 outer iterations. The experiments are also run using 1 CPU, and for the case d = 50
finish in approximately 200 minutes. We note that DSB, IMF-b, and DSBM methods all solve for the
Schrödinger Bridge transport, whereas Rectified Flow does not and so is not plotted on the covariance
convergence plot in Figure 3 since it is not comparable.

For Table 3, we assume the marginals of the learned process Pt are also independently Gaussian
distributed in each dimension. We thus estimate the KL divergence from the sample mean and
variance of each dimension of Pt using the analytic KL formula between Gaussian distributions.

I.3 MNIST Transfer Experiment

We follow De Bortoli et al. (2021) closely for the setup of this experiment. We use the set of first 5
letters of EMNIST (A-E, a-e) such that both domains have 10 classes in total. We use the same U-Net
architecture, batch size 128 and 30 diffusion sampling steps. The network size is approximately 6.6
million parameters. Each outer iteration is trained for 5000 steps. We refresh the cache dataloader
every 1000 steps with 10000 new samples. Contrary to De Bortoli et al. (2021), in our experiments
we find that we obtain better sampling quality for both DSB and DSBM using a uniform noising
schedule. We simply choose σt = 1 for all t and T = 1 in our experiments.

For DSBM-IPF, we train for at most 50 outer iterations (i.e. 250000 total number of steps). For
DSBM-IMF and Rectified Flow, since their first iteration corresponds to Bridge Matching and Flow
Matching respectively, we first pretrain the forward and backward networks for 100000 steps using
the Bridge Matching or Flow Matching losses. DSBM-IMF then switches to iterative training with
5000 steps per outer iteration, the same as DSBM-IPF. For Rectified Flow, we train for 50000 steps
per outer iteration. The experiments are performed using 2 GPUs and take approximately one day.

We provide further experiment results in Figures 13, 14 and 15. In Figure 13, we show samples
generated using different algorithms and at different points of convergence. Samples generated using
CFM and Rectified Flow with 2 rectified steps in (a) and (b) appear to be less clear and identifiable.
OT-CFM improves upon CFM slightly in (c), but many samples still appear to be unclear. For DSB,
the algorithm has not converged after 10 iterations, and many samples in (d) still appear to be letters.
After 20 iterations, there are still letter-like samples in Figure 4b, and the digit classes also appear to
be unbalanced with many instances of digit ‘0’. After 30 iterations, however, the sample quality of
DSB becomes very poor in (e). On the other hand, as shown in (f)-(j), we observe that DSBM-IPF
converges faster than DSB, with more accurate samples even in iterations 10 and 20, and the sample
quality continues to improve until the end of training after 50 iterations.

We present some additional trajectory samples at the end of training in Figures 14 and 15 in both
the forward and backward directions. We observe DSBM is able to transfer samples across the
two domains faithfully, and the output samples preserve interesting similarities compared to the
input, whereas Bridge Matching preserves much less similarity. The Mean Squared Distance (MSD)
between the initial and final samples also confirm that DSBM methods transfer more closely to the
original inputs, and DSBM-IMF further achieves the best FID score out of the three methods.

I.4 CelebA Transfer Experiment

For CelebA (Liu et al., 2015), we test DSBM on resized 64×64 and 128×128 resolution images. We
evaluate the dependency of the results with respect to σ > 0 on CelebA 64× 64. We also showcase
the scalibility of our method by training DSBM on CelebA 128× 128. In both cases, the dataset is
split between male/old and female/young. We gather 20000 samples of each class on which we
perform classical data augmentation such as horizontal flipping.

For our ablation study w.r.t. the value of σ > 0, we run DSBM for 20 iterations (note that the loss
and the quality was still improving after 20 DSBM iterations but by stopping the runs early we were
allowed to draw comparisons with more values of σ). We use a U-Net architecture with 4 resolution
levels and 2 residual blocks per resolution level. The batch size is fixed to 64 and the EMA rate is
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(a) CFM (b) Rectified Flow @ 3 (c) OT-CFM (d) DSB @ 10 (e) DSB @ 30

(f) DSBM-IPF @ 10 (g) DSBM-IPF @ 20 (h) DSBM-IPF @ 30 (i) DSBM-IPF @ 40 (j) DSBM-IPF @ 50

Figure 13: Samples of MNIST digits transferred from the EMNIST letters using different methods.
@ indicates the progressed number of outer iterations n+ 1.

fixed to 0.999. We refresh the cache dataloader every 500 steps with 10000 new samples. The SDE
sampler is chosen to be the modified Euler-Maruyama sampler, see Heng et al. (2021) for instance,
with a constant schedule for the stepsizes. We use 100 sampling steps at inference time and to refresh
the cache. For each outer DSBM iteration we train the model for 20000 iterations.

We provide additional transfer results in resolution 128× 128 in Figure 16. We do not change the
training setting for this experiment.

I.5 AFHQ Transfer Experiment

For AFHQ (Choi et al., 2020), we test DSBM between classes cat and wild with 512 × 512
resolution images. Each class contains approximately 5000 samples. We first pretrain the networks
using Bridge Matching for 100000 steps, then run DSBM for 20 iterations with 25000 steps per outer
iteration. We follow Liu et al. (2023b) and use the same U-Net architecture8. The batch size is 4
and the EMA rate is 0.999. We choose σ2 = 5 and again we use 100 sampling steps with constant
stepsizes.

I.6 CIFAR-10 Generative Modeling Experiment

We also test our method in the standard generative modeling framework on the CIFAR-10 dataset.
We again use a U-Net architecture with 4 resolution levels and 2 residual blocks per resolution level.
The network size is approximately 39.6 million parameters. The batch size is fixed to 128 and the
EMA rate is fixed to 0.9999. The AdamW optimizer is used for this task. For DSBM-IMF and
Rectified Flow, again we first pretrain the networks using the Bridge Matching or Flow Matching
losses, then switch to DSBM-IMF or RF training with 100000 steps per outer iteration. We find
that 1 or 2 additional outer iterations appear sufficiently effective on this task, and additional outer
iterations can cause sample quality to drop. For our main experiment, the pretraining stage ran for
approximately 6 days, and DSBM-IMF ran for approximately 4 additional days using 4 V100 GPUs.

The best results during training for each method are reported in Table 5 and Figure 17, where we
compute the FID score between 50000 samples in the CIFAR-10 training set and 50000 generated
samples following standard practice for this task. We observe that DSBM-IMF can clearly improve
upon Bridge Matching at the same value of σ, which suggests that further outer iterations in DSBM
is beneficial for improving sample quality. This is contrary to Rectified Flow, which causes the FID
score to worsen compared to Flow Matching after only 1 rectified iteration. However, as σ increases,

8https://github.com/gnobitab/RectifiedFlow/blob/main/ImageGeneration/configs/
rectified_flow/afhq_cat_pytorch_rf_gaussian.py (code released under Apache-2.0 license)
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FID 17.14
MSD 0.579

(a) Bridge Matching

FID 15.27
MSD 0.354

(b) DSBM-IPF

FID 10.59
MSD 0.375

(c) DSBM-IMF

Figure 14: Left: EMNIST to MNIST sample trajectory with 30 diffusion steps at t = 0, 1/3, 2/3, 1.
Right: FID score of final samples, and Mean Squared Distance between initial and final samples.

FID 9.402
MSD 0.561

(a) Bridge Matching

FID 13.59
MSD 0.359

(b) DSBM-IPF

FID 8.990
MSD 0.375

(c) DSBM-IMF

Figure 15: Left: MNIST to EMNIST sample trajectory with 30 diffusion steps at t = 0, 1/3, 2/3, 1.
Right: FID score of final samples, and Mean Squared Distance between initial and final samples.
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Figure 16: Transfer results between images given by the tokens female/young and male/old. Top
row: original images (left) and generated images (right). Bottom row: original images (left) and
generated images (right).

we observe the FID score worsens for both Bridge Matching and DSBM as more stochasticity is
introduced in the sampler. The best result of DSBM-IMF is obtained using σ2 = 0.2 and is slightly
better than FM (i.e. with σ2 = 0) using 100 Euler steps. On the other hand, using the dopri5 ODE
solver, FM achieves a FID of 4.055 with on average 148 integration steps. In Figure 17, we observe
that both RF and DSBM-IMF are very effective in improving sampling quality at low number of
diffusion steps, i.e. low number of function evaluations (NFEs), compared to Bridge and Flow
Matching as well as OT-CFM which improves upon CFM slightly. DSBM-IMF also achieves lower
FID score than RF as the NFEs are taken higher. Additional strategies such as distillation and fast
SDE solvers can also be useful for improving few-step sampling quality further.

I.7 Fluid Flows Experiment

We use the fluid flows dataset9 from Bischoff and Deck (2023). The dataset consists of unpaired low
(64 × 64) and high (512 × 512) resolution fields, as well as a context field with local information
for the high resolution field. The data fields consist of two channels representing supersaturation
and vorticity. The context field is dependent on the wavenumber kx = ky ∈ {1, 2, 4, 8, 16}, which

9https://github.com/CliMA/CliMADatasets.jl (code released under MIT license)
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σ2 FM RF

0 4.931 6.010

σ2 BM DSBM-IMF

0.2 5.427 4.511

0.5 8.274 6.896

1 12.749 9.881

Table 5: FID results on the
CIFAR-10 train set using 100
Euler(-Maruyama) steps.
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Figure 17: FID vs number
of diffusion steps (NFE) with
NFE between 1 and 1000.
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Figure 18: Zoomed-in version
of Figure 17 with NFE be-
tween 100 and 1000.

(a) Low-res (b) Diffusion-fb (c) Bridge Matching (d) DSBM-IPF (e) DSBM-IMF

Figure 19: (a) Source low resolution sample; (b)(c)(d)(e) intermediate state and final reconstruction
of each algorithm, for wavenumber kx = ky = 2.

specifies the frequency of the saturation specific humidity modulation. We follow Bischoff and Deck
(2023) for data processing and network architecture, which is given by a U-Net with an additional
spatial mean bypass network given by an MLP. The network size is approximately 11.3 million
parameters in total. We train using batch size 4, learning rate 2 × 10−4, for 5000 steps per outer
iteration and N = 12 outer iterations. We refresh the cache dataloader every 2500 steps with 1250
new samples. The training takes approximately 20 hours on a single RTX GPU. We used σ2 = 0.3
and sample using 30 diffusion steps without finetuning these parameters. For the Diffusion-fb method
in Bischoff and Deck (2023), we use the released code10 without modifying any parameters.

We visualize intermediate and final reconstruction samples for different algorithms in Figure 19.
We see that DSBM-IPF and DSBM-IMF provide consistent samples with the low resolution source,
whereas Diffusion-fb and Bridge Matching produce dissimilar samples. We also follow Bischoff
and Deck (2023) for a more refined statistical analysis in Figures 20, 21, 22. DSBM-IMF achieves
comparable performance as Diffusion-fb in terms of these statistical profiles, and can be comparatively
more accurate e.g. in the tails of the distributions in Figure 20, and for the case kx = ky = 4 in
Figure 21 for which the power spectrum of supersaturation is correctly captured by DSBM-IMF
but not by other methods. Comparing this analysis with Figure 11, DSBM-IMF is also significantly
more accurate in terms of conditional consistency than Diffusion-fb. On the other hand, DSBM-IPF
appears less accurate in terms of these unconditional statistics than Diffusion-fb and DSBM-IMF,
but achieves lower `2 distances from the input sources in Figure 11. This suggests that DSBM-IPF
and DSBM-IMF exhibit different empirical biases before convergence, and DSBM-IMF is more
preferable when the accuracy of the samples are important. This is in line with IMF theory as the
marginals π0, πT are preserved in IMF but not in IPF.

J Broader Impact

Our work focuses on theoretical and methodological research and is intended to bring closer the fields
of generative modeling and optimal transport. It can be useful for learning transport maps between
general distributions with high accuracy and high scalability, which can have useful applications

10https://github.com/CliMA/diffusion-bridge-downscaling (code released under Apache-2.0 li-
cense)
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Figure 20: KDE estimates of values in supersaturation and vorticity fields.
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Figure 21: Spectral density estimates of supersaturation and vorticity fields.
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Figure 22: KDE estimates of spatial means of the supersaturation field. The shaded areas denote 99%
confidence interval obtained using 10000 bootstrap samples.
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in machine learning, but also natural science areas such as physics, biology and geosciences in
which optimal transport maps with theoretical guarantees are appealing. Our fluid flows experiment
demonstrates such potentials. However, as is the case for generative models as a whole, intentional
malicious use could cause detrimental societal impacts.
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