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ABSTRACT

Bi-level optimization plays a key role in a lot of machine learning applications.
However, existing state-of-the-art bi-level optimization methods are limited to
smooth or some specific non-smooth lower-level problems. Even worse, most
of them depend on approximating hypergradients to update upper-level variable
which is the inherent reason for non-efficiency. Currently, achieving a generalized
and efficient optimization algorithm for bi-level problems with a non-smooth, even
non-Lipschitz continuous lower-level objective is still an open question to the
best of our knowledge. To address these challenging problems, in this paper, we
propose a new bi-level optimization algorithm based on the smoothing and penalty
techniques. Specifically, we first produce a sequence of smoothed lower-level
objectives with an exponential decay smoothing parameter for the non-smooth
lower-level problem. Then, we transform the smoothed bi-level optimization to
an unconstrained penalty problem by replacing the smoothed sub-problem with
its first-order necessary conditions. Finally, we update the upper and lower-level
variables alternately with doubly stochastic gradients of the unconstrained penalty
problem. Importantly, we provide the theoretical analysis to show that our method
can converge to a stationary point of original non-smooth bi-level problem if the
lower-level problem is convex, and we give the necessary condition of the original
problem if the lower-level problem is nonconvex. We compare our method with
existing state-of-the-art bi-level optimization methods in three tasks, and all the
experimental results demonstrate that our method is superior to the others in terms
of accuracy and efficiency.

1 INTRODUCTION

Bi-level optimization (BO) Bard (2013); Colson et al. (2007) plays a central role in various machine
learning applications including hyper-parameter optimization Pedregosa (2016); Bergstra et al. (2011);
Bertsekas (1976), meta-learning Feurer et al. (2015); Franceschi et al. (2018); Rajeswaran et al. (2019),
reinforcement learning Hong et al. (2020); Konda & Tsitsiklis (2000). It involves a competition
between two parties or two objectives, and if one party makes its choice first it will affect the optimal
choice for the second party. Several approaches (such as Bayesian optimization Klein et al. (2017),
random search Bergstra & Bengio (2012), evolution strategy Sinha et al. (2017), gradient-based
methods Pedregosa (2016); Maclaurin et al. (2015); Swersky et al. (2014)) have bee proposed to
solve BO problems. Among them, gradient-based methods have become the mainstream to solve the
large scale BO problems where the size of upper-level variables is tremendous.

Existing gradient-based algorithms can be roughly divided into two categories, i.e., the bi-level and
single-level approaches. For the first one, the key idea is to approximate the gradient of the upper-level
objective w.r.t upper-level variables, called hypergradient, which can be obtained through implicit
differentiation methods Pedregosa (2016); Rajeswaran et al. (2019) or explicit differentiation methods
based on chain rule Maclaurin et al. (2015); Domke (2012); Franceschi et al. (2017); Swersky et al.
(2014). Specially, the explicit differentiation Franceschi et al. (2017) includes reverse and forward
modes which are shorted as RMD and FMD in this paper. Note that both explicit differentiation
methods and implicit differentiation methods need intermediate steps, e.g. solving a linear subproblem
or using the reverse/forward modes, to approximate the hypergradient. What’s worse, they all assume
to obtain the solution of the lower-level problem in a fixed iteration for each given upper-level
variables to approximate the hypergradient which is impractical. For the single-level approach, the
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Table 1: Representative gradient-based bi-level optimization methods. (Here we summarize whether
they need to approximate the solutions of the lower-level objective or intermediate steps to approxi-
mating the hypergradient, respectively.)

Method Reference Problem Method type Approximate solutions Intermediate steps
FMD Franceschi et al. (2017) Smooth Bi-level Yes Yes
RMD Franceschi et al. (2017) Smooth Bi-level Yes Yes
Approx Pedregosa (2016) Smooth Bi-level Yes Yes
Penalty Mehra & Hamm (2019) Smooth Single-level Yes Yes
FBBGL Frecon et al. (2018) Group LASSO Bi-level Yes Yes
SparseHO Bertrand et al. (2020) LASSO-type Bi-level Yes Yes
SMNBP Okuno & Takeda (2020) p-norm Single-level No No
SPNBO Ours Generalized Single-level No No

key idea is providing a proxy single-level reduction problem, and then deriving the gradient update
for the single-level problem instead of the original bi-level problem. For example, Mehra et al.,
Mehra & Hamm (2019) transformed the original BO problem into a single-level problem by the
penalty method and then calculated the gradients for lower- and upper-level variables respectively
to update the solution for the single-level reduction problem. We summarize these representative
methods in Table 1.

However, most of the existing BO methods are limited to smooth problems as shown in Table 1. In
many real-world applications, such as image restoration Chen et al.; Nikolova et al. (2008), variable
selection Fan & Li (2001); Huang et al. (2008); Zhang et al. (2010) and signal processing Bruckstein
et al. (2009), the lower-level objective may have a complicated non-smooth, perhaps non-Lipschitz
term Bian & Chen (2017). To solve this issue, Bertrand et al. Bertrand et al. (2020) searched
the regularization parameters for LASSO-type problems by approximating the hypergradient from
the soft thresholding function Donoho (1995); Bredies & Lorenz (2008); Beck & Teboulle (2009).
Frecon et al. Frecon et al. (2018) proposed a primal-dual FMD-based method, called FBBGLasso,
to search the group structures of group-LASSO problems. In each iteration of updating lower-level
variables, it needs an additional loop to calculate the dual variables which are used to approximate
the hypergradient and solve Fenchel conjugate of the upper-level objective. Okuno et al. Okuno &
Takeda (2020) used the smoothing method and sequential quadratic programming (SQP) method
Wright & Nocedal (1999) to search the regularization parameter related to q-norm (0 < q ≤ 1).
To the best of our knowledge, achieving a generalized and scalable optimization algorithm for BO
problems with a non-smooth, even non-Lipschitz continuous lower-level objective is still an open
question.

To address this challenging problem, in this paper, we propose a new algorithm, called SPNBO, based
on smoothing Nesterov (2005); Chen et al. (2013) and penalty Wright & Nocedal (1999) techniques
to solve large-scale non-smooth bi-level problems. Specifically, we first use the smoothing technique
to approximate the original non-smooth, perhaps non-Lipschitz lower-level problem and generate
a sequence of smoothed bi-level problems. Then, single-level constrained problems are obtained
by replacing the smoothed lower-level objective with its first-order necessary condition. For each
given batch of samples, instead of calculating full gradients for the heavily constrained sub-problem,
we randomly sample a constraint and a data sample to obtain a doubly stochastic gradient of the
augmented Lagrange function and then update the upper and lower variables alternately. We give new
stationary conditions of the single-level constraint problem which are also the stationary conditions
of the original problem if the lower-level problem is convex or the necessary conditions of the
bilevel problem if the lower-level problem is nonconvex and prove our method can converge to the
points satisfying these conditions. We also compare our method with several state-of-the-art bi-level
optimization methods in three tasks, and all the experimental results demonstrate that our method is
superior to the others in terms of accuracy and efficiency.

Contributions. We summarize the main contributions of this paper as follows:

1. We propose a generalized algorithm to solve non-smooth bi-level problems. Instead of calculating
the hypergradients which normally involves intermediate steps or the training of lower-level prob-
lem, we utilize the plain doubly stochastic gradients to update the solution which fundamentally
improves the efficiency and scalability of our method.
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2. We give the stationary conditions of the single-level constraint problem which are also the
stationary conditions of the original problem if the lower-level problem is convex or the necessary
conditions of the bilevel problem if the lower-level problem is nonconvex and prove that our
proposed method can converge to a stationary point. To the best of our knowledge, this is
the first theoretically guaranteed method for the bi-level problem with a non-smooth, perhaps
non-Lipschitz, lower-level objective.

2 PRELIMINARIES

2.1 FORMULATION OF NON-SMOOTH BI-LEVEL OPTIMIZATION PROBLEM

In this paper, we consider the following generalized non-smooth bi-level optimization problem:
min
λ

f(w∗,λ) s.t. w∗ ∈ arg min
w

g(w, λ̄) + exp(λ1)ϕ(h(w)), (1)

where λ := [λ1, λ2, · · · , λm]T ∈ Rm, λ̄ := [λ2, · · · , λm]T and w ∈ Rd. h(·) : Rd 7→ Rn
is continuous, non-convex, non-smooth, and perhaps non-Lipschitz continuous at some points.
ϕ(·) : Rn 7→ R is twice continuously differentiable. f : Rd × Rm 7→ R and g : Rd × Rm 7→ R are
twice continuously differentiable regarding to bothw and λ. Suppose that h(w) can be represented
as h(w) := (h1(DT

1 w), h2(DT
2 w), · · · , hn(DT

nw)), where Di ∈ Rd×r and hi : Rd 7→ R (i =
1, 2, · · · , n) is continuous, but not necessarily Lipschitz continuous Bian & Chen (2017).
2.2 EXAMPLES OF NON-SMOOTH LOWER-LEVEL PROBLEMS
The non-smooth lower-level problems in problem (1) widely exist in machine learning since we
usually introduce a non-smooth function to utilize some kind of prior structural information Auslender
(1997). Let {xi, yi}Ntr

i=1 denotes a training set, where xi ∈ Rd, yi ∈ R, and Ntr is the size of training
samples. We give three examples of the non-smooth, perhaps non-Lipschitz lower-level objectives as
follows.

1. Group LASSO: The objective function of group LASSO Meier et al. (2008); Simon
et al. (2013); Scardapane et al. (2017) is formulated as minw exp(λ̂)

∑G
g=1 ‖wGg‖2 +

1∑
i=1 exp(λi

)
∑Ntr

i=1 λi
(
yi − xTi w

)2
, where λi denotes the weight for each sample and λ̂

denotes the regularization parameter. wGg denotes the parameters belonging to a group Gg, and
the term

∑G
g=1 ‖wGg‖2 enforces sparsity at the group level.

2. p-norm optimization problem: The objective function of regression problem with p-norm

Gentile (2003) is formulated as minw exp(λ̂)‖w‖pp+
1

Ntr

∑Ntr

i=1

(
yi − xTi w

)2
, where λ̂ denotes

the regularization parameter. ‖w‖p =
(∑

wi∈w |wi|
p
)1/p

(0 < p ≤ 1) is introduced to achieve a
desirable robustness. Note this objective is non-Lipschitz continuous Bian & Chen (2017).

3. OSCAR Bondell & Reich (2008): The objective function of OSCAR is

minw
1

2

∑Ntr

i=1

(
yi − xTi w

)2
+ exp(λ1)‖w‖1 + exp(λ2)

∑
j<k max{|wj |, |wk|}, where

λ1 and λ2 denote regularization parameters. ‖w‖1 and
∑
j<k max{|wj |, |wk|} are used to

achieve capturing the feature groups adaptively.

3 SMOOTHING AND PENALTY METHOD FOR NON-SMOOTH BI-LEVEL
PROBLEM

We first introduce the smoothing technique, then give our single-level reduction problem by utilizing
the smoothing and penalty methods, finally propose our doubly stochastic gradient algorithm.

3.1 SMOOTHING TECHNIQUE

To tackle the non-smooth bi-level problem (1), we use the smoothing function Nesterov (2005); Chen
et al. (2013); Bian & Chen (2017) (please see Definition 1) to approximate the original non-smooth
objective.

Definition 1 Let ψ : Rn 7→ R be a continuous nonsmooth function. We call ψ̃ : Rn × [0,+∞] 7→
R a smoothing function of ψ, if ψ̃(·, µ) is continuously differentiable for any fixed µ > 0 and
limẑ 7→z,µ→0 ψ̃(ẑ, µ) = ψ(z) holds for any z ∈ Rn.
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(a) ψ2(w) = 1, where ψ2(w)
is p-norm regularization term
and p = 0.6.
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(b) ψ3(w) = 1, where
ψ3(w) is a combination of
l1-norm and pair-wise l∞-
norm used in OSCAR.

Figure 1: Two examples of smoothing functions.

According to Definition 1, the original
non-smooth problem could be approx-
imated by its smoothing function. If
the smoothing parameter µ approaches
0, the smoothing function is asymptot-
ically equal to the original non-smooth
problem. Thus, we could optimize the
smoothed proxy problem, instead of the
original non-smooth bi-level problem.

Based on the definition, we can give the
smoothing functions of the non-smooth
terms in section 2.2. For example, the

smoothing function of ψ1(w) =
∑G
g=1 ‖wGg‖2 is ψ̃1(w, µ) =

∑G
g=1

√
‖wGg‖22 + µ2, the smooth-

ing function of ψ2(w) = ‖w‖p is ψ̃2(w, µ) =
∑
wi∈w(w2

i + µ2)p/2 and the smoothing func-
tion of ψ3(w) = λ1‖w‖1 + λ2

∑
j<k max{|wj |, |wk|} is ψ̃3(w, µ) = λ1

∑
wi∈w

√
w2
i + µ2 +

λ2
2

∑
j<k(|wj | + |wk| +

√
(|wj | − |wk|)2 + µ2). Assume p = 0.6, w ∈ R2 and λ1 = λ2 = 1.

Then we illustrate ψ2(w) and ψ3(w) together with their smoothing functions using different smooth-
ing parameters in Figure 1.

3.2 PENALTY METHOD FOR SMOOTHED BI-LEVEL OPTIMIZATION

The smoothing function of h(w) can be defined as h̃(w, µ) :=

(h̃1(DT
1 w, µ), h̃2(DT

2 w, µ), · · · , h̃n(DT
nw, µ)), where h̃i : Rd × [0,+∞] 7→ R is the smoothing

function of hi. Then, for each given µk, we can get the smoothed bi-level sub-problem as follows,
minλ f(w∗,λ) s.t. w∗ = arg minw g(w, λ̄) + exp(λ1)ϕ(h̃(w, µk)). Further, we can replace the
smoothed lower-level objective with its first-order necessary condition and derive the following single-
level problem: minw,λ f(w,λ) s.t. cµ

k

(w,λ) := ∇wg(w, λ̄) + exp(λ1)∇wϕ(h̃(w, µk)) = 0,

where ∇wϕ(h̃(w, µ)) = ϕ′(z)z=h(w,µ)∇wh(w, µ).

As mentioned in Wright & Nocedal (1999), the penalty method can be used to solve the above
sub-problem. Because the original non-smooth bi-level problem involves a sequence of sub-problems,
simply using the penalty method on each sub-problem would be time-consuming. Besides, solving the
quadratic penalty function needs the penalty parameter to be large enough, which makes it impossible
to get a solution in a limited time.

To solve each sub-problem for each given µk in a limited time, we calculate the εk-optimal solution,
instead of the exact solution, of the following augmented Lagrange function with a penalty parameter
βk > 0 ,

min
w,λ
L(w,λ,α, βk, µk) = f(w,λ) + Ψ(w,λ,α, βk, µk), (2)

where Ψ(w,λ,α, βk, µk) =
1

d

∑d
i=1(αic

µk

i (w,λ) +
βk

2
cµ

k

i (w,λ)2), α ∈ Rd denotes the La-

grangian multiplier, αi and cµ
k

i (w,λ) denote the i-th elements of α and cµ
k

(w,λ), respectively.

Once the following tolerance conditions are satisfied (which means the εk-stationary point is found),

‖∇wL(w,λ,α, βk, µk)‖22 + ‖∇λL(w,λ,α, βk, µk)‖22 ≤ ε21,k, (3)

|Ψ(w,λ,α, βk, µk)| ≤ ε22,k, (4)

‖cµ
k

(w,λ)‖22 ≤ ε23,k, (5)

we update the Lagrangian multiplier αk+1 = αk + βkcµ
k

, enlarge the penalty parameter βk, and
decrease the smooth parameter µk and the tolerance εi,k (i = 1, · · · , 3). Here,∇wL(w,λ,α, βk, µk)
and ∇λL(w,λ,α, βk, µk) denote the full gradients of the augmented Lagrange function.

3.3 DOUBLY STOCHASTIC GRADIENT METHOD

In many real-world applications, we may need to deal with high dimensional data or use complex
models (such as deep models), which will leads to a large number of constraints when replace
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the lower-level with its first order conditions. This makes directly solving the problem 2 is time-
consuming.

Algorithm 1 Smoothing and Penalty Method for Non-smooth Bi-level Optimization (SPNBO)

Input: K, T , η1w, η1λ, α1, µ1 = 0.001, β1 = 1 and εi,1 = 0.01 for i = 1, · · · , 3.
Output: wt+1,k and λk+1.
1: for k = 1, ...,K do
2: for t = 1, · · · , T do
3: Randomly sample a upper-level data instance.
4: Randomly sample a constraint.
5: Calculate the doubly stochastic gradient ∇̂wL(w,λ,α, βk, µk).
6: Updatew usingwt+1,k = wt,k − ηtw∇̂wL(w,λ,α, βk, µk).
7: end for
8: Randomly sample a validation training data instance .
9: Randomly sample a constraint.

10: Calculate the doubly stochastic gradient ∇̂λL(w,λ,α, βk, µk).
11: Update λ using λk+1 = λk − ηtλ∇̂λL(w,λ,α, βk, µk).
12: if satisfying the tolerance conditions (3)-(5) then
13: αk+1 = αk + βkcµk (wt+1,k,λk+1).
14: µk+1 = µk/2.
15: εi,k+1 = εi,k/2 for i = 1, · · · , 3.
16: βk+1 = 2βk.
17: end if
18: end for

Figure 2: Illustration of proposed method.

To solve this problem, the
stochastic manner can be in-
troduced. Specifically, instead
of using all the constraints,
we randomly sample a con-
straint cµ

k

i (w,λ) and calcu-
late its gradient w.r.t. w

and λ, i.e., ∇wcµ
k

i (w,λ) and

∇λcµ
k

i (w,λ). By using this
method, we only need to calcu-
late the gradient of the chosen
item in cµ

k

instead of calculating the Hessian matrix of the lower-level objective. Let ∇̂wΨ =

[αi + βkcµ
k

i (w,λ)]∇wcµ
k

i (w,λ) and ∇̂λΨ = [αi + βkcµ
k

i (w,λ)]∇λcµ
k

i (w,λ). If d is sufficient
large, ∇̂wΨ and ∇̂λΨ can be viewed as the unbiased estimations of the full gradients ∇wΨ and
∇λΨ respectively.

In addition, since the upper-level objective f is usually formulated as the expectation on the upper-
level data set, we can randomly sample a upper-level data point and calculate the stochastic gradients
of f w.r.t. w and λ, which are denoted as ∇̂wf(w,λ) and ∇̂λf(w,λ) respectively.

Then, by combining these stochastic gradients together, we can obtain the stochastic gradients
of the augmented Lagrange function as ∇̂wL(w,λ,α, βk, µk) = ∇̂wf(w,λ) + ∇̂wΨ and
∇̂λL(w,λ,α, βk, µk) = ∇̂λf(w,λ) + ∇̂wΨ. Since the stochastic gradient has two sources
of randomness, it is called as doubly stochastic gradient in this paper. Following the work of
Mehra & Hamm (2019), we update w for fixed T iterations and then update λ for a single time
using the doubly stochastic gradient as follows, wt+1 = wt − ηtw∇̂wL(wt,λ,α, βk, µk) and
λk+1 = λk − ηkλ∇̂λL(w,λk,α, βk, µk), where ηtw and ηtλ denote the step sizes.

The whole algorithm is presented in Algorithm 1. In addition, we give an illustration of our method
in Figure 2. Note we can sample a batch of constraints and upper-level data points to updatew and λ.
Finding the εk-optimal solution allows us starting from large tolerance parameters ε1,0, ε2,0 and ε3,0.
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4 THEORETICAL ANALYSIS
In this section, we give convergence analysis of our proposed method (the details can be found in
the supplement). First, we give several assumptions which are commonly used in the convergence
analysis for optimization algorithms Bian & Chen (2017); Clarke (1990).

Assumption 1 Assume thatW := Rd can be expressed byW =W1 ∩W2 with a nonempty close
convex setW1 andW2 := {w : Aw ≤ b} where int(W1) ∩W2 6= ∅,A ∈ Rt×d, b ∈ Rt and int(·)
denote the interior set.

Assumption 2 The smoothing function h̃(w, µ) is twice continuously differentiable on w.

Assumption 3 g and f are both Lipschitz continuous.

Based on Assumptions 1-3, we given the definition of the stationary point of the generalized non-
smooth bi-level optimization problem (1) as follows.

Definition 2 (w∗,λ∗) is said to be a stationary point of problem (1), if it satisfies the following
conditions for all v1 ∈ TW(w∗) ∩ Vw∗ , v2 ∈ TW(w∗) and v3 ∈ TU (λ∗), where U = Rm and the
lower-level problem is convex,

∇wf(w∗,λ∗)Tv2 −
(
vT2 ∇2

wwg(w∗, λ̄∗)v1 + exp(λ∗1)φ◦◦(w∗;v1,v2;W)
)
ξ∗ ≥ 0 (6)

∇λf(w∗,λ∗)Tv3 −
(
v̄3∇2

wλ̄g(w∗, λ̄∗)v1 + v13 exp(λ∗1)φ◦(w∗;v1;W)
)
ξ∗ ≥ 0 (7)

∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W) ≥ 0 (8)

where ξ∗ ≥ 0, v3 = [v13 , v̄
T
3 ]T , φ◦◦(w∗;v1,v2;W) =

lim sup w 7→ w∗,w ∈ W
s ↓ 0,w + sv2 ∈ W

φ◦(w + v2s;v1;W)− φ◦(w;v1;W)

s
). and φ◦(w;v1;W) =

lim sup w′ 7→ w,w′ ∈ W
t ↓ 0,w′ + tv ∈ W

ϕ(h(w′ + tv))− ϕ(h(w′))

t
denotes the Clarke generalized direc-

tional derivative of ϕ(h(w)) at point w. Note if the lower-level problem is nonconvex, conditions
6-8 is the necessary conditions of the original nonsmooth, perhaps non-Lipschitz bilevel problem.

Assume Assumptions 1-3 hold, our proposed method has the following convergence result.

Theorem 1 Suppose {εi,k}∞k=1 (i = 1, 2, 3) are positive and convergent (limk→∞ εi,k = 0) se-
quences, {µk}∞k=1 is a positive and convergent (limk→∞ µk = 0) sequence, and βk is increasing
and divergent (β1 < β2 < · · · ). Then any limit point of the sequence points generated by SPNBO
satisfies the conditions (6)-(8).

Remark 1 Theorem 1 shows that with the increasing of the penalty parameter and decreasing of the
smoothing parameter and tolerance parameters, our method can finally converge to a stationary point
of the original non-smooth bi-level problem if the lower-level objective is convex. If the lower-level
problem is nonconvex, the solutions satisfy the necessary conditions of the original problem.

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the superiority of our method in terms of
accuracy and efficiency in three applications.

5.1 APPLICATIONS

We give a brief introduction of the three applications (i.e., data re-weight, training data poisoning and
meta-learning) used in our experiments.

Data re-weight: In many real-world applications, the training set and testing set may have dif-
ferent distributions. To reduce the discrepancy between the two distributions, each data point
will be given an additional importance weight, which is called data re-weight. In this applica-
tion, we search the weight λi of each training data and the group sparse regularization parame-
ters Scardapane et al. (2017) λ̂ and λ̌ for deep neural networks (DNNs). It can be formulated
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as minλ 1/Nval
∑Nval

i=1 l(θ(xi;w),yi) s.t. w
∗ ∈ arg minw 1/Ntr

∑Ntr

i=1 exp(λi)l(θ(xi),yi) +

exp(λ̂)‖w‖11 + exp(λ̌)
∑
Gi ‖wGi‖2, where Ntr and Nval denote the sizes of training set and val-

idation set respectively, θ(·;w) denotes the DNN parameterized by w, {xi,yi} denotes the data
instance, Gi denotes the group index and l denotes the loss function. Besides, in DNNs, model
parameters are grouped by layers.

Training data poisoning: Assume we have pure training data {xi}Ntr
i=1 with several poisoned

points {λj}
Npoi

j=1 assigned arbitrary labels. In this task, we search the poisoned data which can
hurt the performance of the model trained from the clean data. This problem can be formulated as
minλ−1/Nvl ·

∑Nval

i=1 l(θ(xi;w),yi) s.t. w
∗ ∈ arg minw minw 1/N ·

∑
xi∈D l(θ(xi;w),yi) +

‖w‖pp, where N = Ntr +Npoi and D denotes the dataset containing all the clean training data and
poisoned data. Besides, we add a p-norm (0 < p ≤ 1) regularization term in the lower-level problem
to ensure that we can get a sparse model.

Meta-learning: Meta-learning Ravi & Larochelle (2016); Snell et al. (2017); Sung et al. (2018);
Santoro et al. (2016) trains a model on several related tasks and then generalizes to unseen tasks
with just a few examples. We can learn a common representation for various tasks and then train the
task specific layers. It can be formulated as the non-smooth bi-level problem, minλ 1/Nval ·∑Nval

i=1 l(θi(M(xi,λ);w∗i ),yi) s.t. w
∗
i ∈ arg minwi

1/Ntr ·
∑Ntr

i=1 l(θi(M(xi,λ);w∗i ),yi) +
‖wi‖pp, where M(·,λ) is the deep map for all tasks parameterized by λ, θi denotes ith task’s
classifier parameterized by wi and 0 < p ≤ 1. Besides, a p-norm (0 < p ≤ 1) is added on the
parameters of each classifier to get sparse classifiers.

5.2 EXPERIMENTAL SETUP

We summarize the baseline methods used in our experiments as follows.

1. Random search Bergstra & Bengio (2012). It randomly samples upper-level parameters from
the given domain and then evaluate the performance of the corresponding lower-level parameters.

2. Robo. The robust Bayesian optimization method proposed in Klein et al. (2017). We use the
code from https://github.com/automl/RoBO as the implementation.

3. Penalty. The method proposed in Mehra & Hamm (2019). It formulates the bi-level optimization
problem as a one-level optimization problem, and then uses the gradient method to solve the new
problem.

4. Approx. The method proposed in Pedregosa (2016). It solves an additional linear problem to
find the hypergradient to update the hyper-parameters.

5. RMD. The reverse method proposed in Franceschi et al. (2017). An additional loop is used to
approximate the hypergradient.

6. SMNBP. The method proposed in Okuno & Takeda (2020). It uses the smoothing method to
produce a sequence of smoothing lower-level functions and replaces them with the necessary
condition. Then the SQP method is used to solve each single level problem.

Table 2: Datasets used in the experiments.

Datasets Features Samples Classes
SVHN 32× 32× 3 73257 10
Cifar10 84× 84× 3 581012 10
Mnist 28× 28× 1 60000 10
Fashion 28× 28× 1 60000 10
Miniimagenet 84× 84× 3 60000 100
Omnglot 28× 28× 1 81150 1623

We implement random search, SMNBP, Penalty, Ap-
prox, RMD, and our method in Python. For random
search and Robo, each lower-level variable is cho-
sen from [e−10, e10]. Besides, we solve the lower-
level problem for 20 epochs by using the sub-gradient
method for given upper-level variables. After searching
100 times, we get best upper-level variables and use
them to re-solve the lower-level problem and evaluate
the performance. For Penalty, Approx and RMD, a
smoothing function with parameter µ = 1e−3 is used
to approximate the lower-level objective, such that these methods can be used for non-smooth bi-level
problems. In SMNBP, for each given batch data, we solve the constrained problem using the SQP
method. We initialize the step size of updating w from the set {0.01, 0.001, 0.0001}. The step-size
of updating λ is fixed at 1. We fix the inner iteration number of T in Penalty, Approx, RMD and our
SPNBO at 20. For all these methods, we fix the data batch size at 128 in the former two applications.
For all applications, we use a DNN model which has 6 convolution-maxpooling-relu layers and 4
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Figure 3: Test accuracy versus training time of all the methods in data re-weight.

Table 3: Test accuracy (%) of all the methods in data re-weight.

Data Random Robo Approx RMD Penalty SMNBP Ours
Svhn 3.32± 0.43 18.61± 0.16 84.06± 0.15 75.48± 0.92 84.26± 0.54 84.92± 0.24 85.21± 0.59
Cifar10 10.53± 0.13 18.52± 0.22 68.65± 0.52 59.26± 1.33 71.08± 0.44 71.81± 0.63 72.12± 0.56
Fashion 14.12± 0.24 36.98± 0.67 86.56± 0.27 73.60± 1.57 88.18± 0.13 88.22± 0.59 88.52± 0.23
Mnist 13.79± 0.32 55.61± 0.28 97.85± 0.19 94.52± 0.38 98.31± 0.65 98.49± 0.04 98.53± 0.23
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Figure 4: Validation loss versus training time of all the methods in training data poisoning.
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Figure 5: Test accuracy versus training time of all the methods in meta-learning, where Mini denotes
the dataset Miniimagenet.

dense layers. Besides, in meta-learning, the dense layers are viewed as classifiers for specific tasks.
In data re-weight and training data poisoning, our method randomly samples 4 layers to calculate the
doubly stochastic gradient in each iteration. And we run Penalty, Approxm, RMD, SMNBP and our
SPNBO for 50 epochs. In meta-learning, we randomly sample 2 layers of each classifier to calculate
the doubly stochastic gradient. And we run Penalty, Approxm, RMD, SMNBP and our SPNBO for
5000 iterations. We fix p = 0.6 in training data poisoning and meta-learning. All experiments are
carried out 10 times on a PC with four 1080 Ti GPUs.

5.3 DATASETS
We summarize the image datasets used in our experiments in Table 2. For the first four datasets, we
divide all of them into three parts, i.e., 40% for the training set, 40% for the validation set and 20%
the testing set. The last two datasets are used in meta-learning application.

5.4 RESULTS AND DISCUSSION
The results of data re-weight are presented in Table 3 and Figure 3. The results of training data
poisoning are presented in Table 4 and Figure 4 and the results of meta-learning are presented in
Table 5 and Figure 5. From Table 3, Table 4 and Table 5, we can find that our proposed method has
the best results in most cases. This because with the decreasing of the smoothing parameter, our
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Table 4: Test accuracy (%) of all the methods in training data poisoning (lower is better).

Data Random Robo Approx RMD Penalty SMNBP Ours
Svhn 50.98± 0.22 55.29± 0.42 50.79± 0.39 50.67± 0.27 50.67± 0.27 50.62± 0.29 48.85± 0.57
Cifar10 83.19± 0.15 82.73± 0.21 82.91± 0.18 83.25± 0.11 82.29± 0.11 82.57± 0.11 82.22± 0.28
Fashion 95.99± 0.35 96.08± 0.21 96.09± 0.07 95.89± 0.31 95.87± 0.19 96.01± 0.22 95.80± 0.20
Mnist 81.15± 0.45 79.17± 0.72 80.27± 0.25 77.63± 0.08 77.43± 0.54 77.50± 0.30 77.22± 0.08

Table 5: Test accuracy (%) of all the methods in meta-learning.

Data Problem Random Robo Approx RMD Penalty SMNBP Ours
Miniimagent 5-way 1-shot 35.25± 0.11 36.23± 0.08 39.75± 0.04 37.48± 0.96 43.98± 0.84 44.28± 0.31 44.66± 0.13
Miniimagent 5-way 5-shot 45.52± 0.39 46.39± 0.25 60.75± 0.19 49.91± 0.23 60.75± 0.14 61.13± 0.31 61.28± 0.90
Omnglot 5-way 1-shot 75.12± 0.89 78.26± 0.43 96.08± 0.08 81.79± 0.57 96.10± 0.21 96.63± 0.34 96.70± 0.32
Omnglot 5-way 5-shot 77.28± 0.18 78.33± 0.26 99.12± 0.07 94.81± 0.58 99.03± 0.35 99.15± 0.46 99.15± 0.60

method can finally get the solution of the original non-smooth bi-level problems. For Approx, RMD,
and Penalty, they use a fixed smoothing method and only get approximate solutions, which makes
them obtain worse performances. Besides, Robo and random search are used to search a small size of
upper-level variables. However, in our experiments, we have more than 10000 upper-level variables
which makes Robo and random search cannot get the best results. From Figure 3, Figure 4 and
Figure 5, we can find that our method is faster than other methods in most cases. This is because that
Approx, RMD need to solve the lower-level objective first and then use the solution to approximate
the hypergradient with an intermediate step in each iteration. Penalty needs to use all the constraints
in each updating step which is also time-consuming. When we use complex models (e.g., DNNs), all
these methods suffer from high time complexity. However, our method uses the doubly stochastic
gradient method which makes it scalable to complicated model and does not need intermediate steps
to approximate the hypergradient. Besides, SMNBP needs to solve each sub-problem using the SQP
method, which is time-consuming. For Robo and random search, they need to solve the lower-level
problem for the given values of upper-level variables. This makes it non-efficient for large-scale
problems. From all these results, we can conclude that our SPNBO is superior to other methods in
terms of accuracy and efficiency.

6 DISCUSSION OF GRADIENT-BASED BI-LEVEL OPTIMIZATION METHODS

In this section, we give a detailed discussion of several gradient-based methods. We consider the
smooth bi-level problem minλ f(w∗,λ) s.t. w∗ = arg minw ĝ(w,λ), where f and ĝ are twice
continuously differentiable in bothw ∈ Rd and λ ∈ Rm. Assume the dynamic system in RMD/FMD
iswt+1 = wt− η∇wĝ(wt,λ), where t = 1, · · · , T and η denotes the step size. Then, a constrained
problem with T constraints is obtained. For RMD, to calculate the hypergradient, they needs to
compute pt−1 = pt − η∇2

wλĝ(wt,λ) · qt and qt−1 = (I − η∇2
wwĝ(wt,λ))qt, where qt ∈ Rd

,pt ∈ Rm, t = T, T−1, · · · , 1, pT = ∇λf(wT ,λ) and qT = ∇wf(wT ,λ). Finally, hypergradient
can be obtained by using p0. For FMD method, when update the lower-level variables, it needs to
calculate P t+1 = P t(I − η∇2

wwĝ(wt,λ))− η∇2
wλĝ(wt,λ) at the same time, where P ∈ Rm×d

and P 0 is a zero matrix. Then, the hypergradient can be obtained by using ∇λf + PT∇wf . The
approximate gradient method Pedregosa (2016) approximates the hypergradient by solving the linear
problem minq ‖∇2

wwĝ · q −∇wf‖22 with gradient method for T iterations. PenaltyMehra & Hamm
(2019) replace the lower-level objective with its necessary condition and does not need to compute
the hypergradient. It updatesw and λ by using the gradient of penalty function of the single-level
problem. SMNBP Okuno & Takeda (2020) uses smoothing method to generate a sequence of
smoothed problems and transforms them into single -level problems. Then, the SQP method can be
used to get the solution for each given smoothing parameter. To avoid the calculation of Hessian
matrix of the lower-level objective, the Hessian-vector product and auto-differentiable are used.

7 CONCLUSION

In this paper, we proposed a new method, SPNBO, to solve the generalized non-smooth bi-level
optimization problems by using the smoothing method and the penalty method. We also give the
convergence analysis of our proposed method. The experimental results demonstrate the superiority
of our method in terms of training time and accuracy.
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