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Abstract

Domain adaptation allows generative language
models to address specific flaws caused by the
domain shift of their application. However, the
traditional adaptation by further training on in-
domain data rapidly weakens the model’s abil-
ity to generalize to other domains, making the
open-ended deployments of the adapted mod-
els prone to errors. This work introduces novel
training objectives built upon a semantic simi-
larity of the predicted tokens to the reference.

Our results show that (1) avoiding the common
assumption of a single correct prediction by
constructing the training target from tokens’ se-
mantic similarity can mitigate catastrophic for-
getting during domain adaptation, while (2) pre-
serving the quality of adaptation, (3) with negli-
gible additions to compute costs. In the broader
perspective, the objectives grounded in a soft
token alignment pioneer the exploration of
the middle ground between the efficient but
naive exact-match token-level objectives and
expressive but computationally- and resource-
intensive sequential objectives.

1 Introduction

Large language models (LLMs) based on instances
of encoder-decoder architecture (Neyshabur et al.,
2015) nowadays serve as a strong default in gener-
ative applications of NLP, such as summarization
or machine translation, mainly thanks to their out-
standing ability to fluently model language. These
models still face issues with adequacy of the gen-
erated text (Ustaszewski, 2019) when applied to a
domain of data that differ from the training domain,
but such errors can be mitigated using domain adap-
tation (Saunders, 2021).

Identically to the pre-training of the generative
LLMs, the adaptation is commonly carried out us-
ing Maximum Likelihood Estimation (MLE) objec-
tive with teacher forcing (Bahdanau et al., 2015).
The widespread of such approach might be dedi-
cated to its data and resource efficiency.
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Figure 1: In-domain (ID) and out-of-domain (OOD)
change of the original BLEU in domain adaptation of
a translation model using MLE and the two introduced
objectives: TokenAlign and SeqAlign. Adaptation of
Transformer-base model on Wikipedia, evaluated on a
held-out set of the adapted domain (in-domain, ID) and
a variety of out-of-domain (OOD) datasets (§4.2).

T T T
0 2000 4000

Despite these benefits, model adaptation us-
ing MLE notoriously comes for a price of over-
specialisation to the target domain, also referred to
as catastrophic forgetting (Goodfellow et al., 2014),
characterized by a continuous decay of model per-
formance on the inputs from the domains other
than the adaptation domain (see Figure 1).

Our work addresses the loss of robustness char-
acteristic for domain adaptation by extending the
MLE objective with complementary objectives. We
construct targets of these objectives through soft
alignment of model predictions to the reference and
quantify the instantaneous quality of model outputs
by the quality of such alignment.

In our experiments, we find that using such ob-
jectives in domain adaptation can address the loss
of model robustness, eliminating a major portion of
model performance loss on out-of-domain (OOD),
caused by conventional adaptation while reach-



ing comparable or higher qualitative gains on the
adapted domain.

The main contributions of our work are the fol-
lowing. (i) We present a framework for train-
ing generative language models with an alterna-
tive training signal based on token similarity pro-
vided by an arbitrary embedding model. A similar
methodology can be applied for robust training and
adaptation of any language model. (ii) We intro-
duce efficient and accurate training objectives that
alleviate catastrophic forgetting of domain adap-
tation in NMT without losing adaptation quality.
(iii)) We study the aspects that impact LL.Ms’ ro-
bustness, relevant for the training and fine-tuning
of any generative LLM. Among others, we find that
a more robust model can be obtained merely by ex-
posing a generative model to its own predictions
during the training.

This paper is structured as follows. Section 2 sur-
veys and compares our work to the existing work
in training and adapting robust generative LLMs.
Section 3 introduces two main objectives that we
experiment with: TokenAlign and SeqAlign. Sec-
tion 4 describes our experimental methodology and
ablation analyses and Section 5 summarizes our
findings, highlighting the broader implications.

2 Background

Language generation is the modus operandi for a
set of problems requiring open-ended sequence of
tokens as the answer. Machine translation is the
representative of this group that we focus on, but
other tasks such as summarization (Lewis et al.,
2020), vision captioning (Wang et al., 2022), or
more recently prompting (Carlsson et al., 2022) are
also applications of the described framework.

In the commonly-used auto-regressive settings,
for each encoded input X; and reference Y, a
language model ©: ©(X;,Y;1.i-1) — Rlvocabl
is trained to generate a sequence by maximis-
ing the probability of generating the i-th token
yji = arg max(0©(X, Y} 1.i—1)) matching the ref-
erence Y;, while minimising the probability of the
other tokens of the vocabulary, as conditioned by
the previous reference tokens Y} 1 ;_1:

maxp(yji = VjilYj1.0-1,X;,0) (D)
This objective is implemented in the commonly-

used Maximum Likelihood Estimation (MLE) ob-
jective, that minimises a cross-entropy (CE) of

predicted distribution of ©(X, Y} 1.,-1) to the ex-
pected distribution, which is a one-hot encoding
E);; of the true reference token Y);; over the model
vocabulary, on the position ¢:

exp(O(Xj;, Yﬂzl)))
exp(FEji)

Lyre(©) = min ( log

This objective is commonly used both for train-
ing (Bahdanau et al., 2016; Vaswani et al., 2017)
and adaptation (Servan et al., 2016; Saunders,
2021) of generative LLMs.

While the adaptation brings benefits in modeling
domain-specific terminology (Sato et al., 2020) or
in avoiding inadequate generation artifacts such as
repetitions or hallucinations (Etchegoyhen et al.,
2018), it comes for a price of model generalization,
known also as catastrophic forgetting (Fig. 1). The
adapted models improve on the adapted domain
but gradually perform worse on other domains.

Selected work in domain adaptation of MT also
addresses the mitigation of catastrophic forgetting.
Freitag and Al-Onaizan (2016) obtain more robust
model by ensembling the original model with the
adapted one. Thompson et al. (2019) regularize
the training using Fischer Information Matrix. Chu
et al. (2017) enhance model robustness with mix-
ing the pre-training and adaptation samples. More
similar to ours, Dakwale and Monz (2017) use
regularization of the loss based on the distillation.
Our work differs from this branch in both data and
computational requirements. We do not presume
availability of pre-training data, nor do we need to
perform the simultaneous inference with the origi-
nal models.

Specific problem of MLE and other approaches
is referred to as exposure bias: while in the teacher-
forced training, the model’s i-th prediction ©(.X);
is conditioned by the correctly-generated previous
tokens from the reference Yj 1. ;_1, in generation,
the model conditions its predictions on its own
outputs ©(X j)1..i—1. This discrepancy might be
magnified under a domain shift where the model
does not learn to follow reference in generation.

Exposure bias can be addressed by sampling
strategies constructing the sequence of previous
tokens Y} 1 ;—1 by sampling from both reference
and generated tokens (Bengio et al., 2015; Zhang
et al., 2019), but such mixed priors do not always
persist the original meaning. Different work
utilize sequential objectives, such as Minimum
Risk Training (MRT) (Ranzato et al., 2016) that



optimize model weights based on a complete
output sequence, regardless of specific tokens.
Such evaluation is provided by one of the MT
measures (Shen et al., 2016; Wang and Sennrich,
2020; Unanue et al., 2021) or by a feedback of
adversarial model, penalizing ©, for instance, for
distinguishing generated and original text (Yang
et al., 2018; Yu et al., 2016) or violating language
morphology (Mi et al., 2020). Despite some gains,
sequence-level objectives face specific problems
of reinforcement learning (RL), such as a fragility
to the optimization settings (Pineau et al., 2021),
and are also more resource-demanding as they
require a sequence of predictions for a single
update, which constrain their applicability in
low-resource domain adaptation. Additionally,
further analyses of Choshen et al. (2020) show
that sequential objectives reach performance gains
comparable to a constant training signal, raising
doubts about the justification of their extensive
data and compute demands. Inspired by this
finding, we also critically assess our methods
against a random feedback baseline (§4.3).

Closer to our work, others construct the train-
ing signal from alignment of model’s instanta-
neously generated sequence to the reference. Xu
et al. (2019) build soft alignment between fully-
generated hypotheses based on hidden states of
bidirectional LSTM encoder-decoder and weigh
the predicted probability distribution by such align-
ment in the training objective. Similarly, Lu et al.
(2020) complement MLE and sentence-level objec-
tive with the objective minimizing a dot-product
of the best-matching hidden representations of to-
kens of a hypothesis and a reference. Chen et al.
(2019) and later Zhang et al. (2020a) introduce
the matching scheme that use the Optimal trans-
port cost (Kusner et al., 2015) of the embeddings
of reference to the hypothesis as their objective
loss. All of these studies use instances of recur-
rent encoder-decoder networks and hidden encoder
representations as to the token embeddings.

Our work extends the branch of research utiliz-
ing token representations in the training but differs
in some important aspects; We focus on more chal-
lenging settings of very-low to medium-resource
adaptation, instead using more recent Transformer
models pre-trained on a large mixture of domains
(Tiedemann and Thottingal, 2020). Additionally,
instead of building the alignment on the trained
model embeddings, our framework uses static pre-
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Figure 2: Token alignment mechanism allows us to
represent tokens (sg) of the trained model © using an
arbitrary Embedding model ©,,,,. We define alignment
of a ©’s segment ¢}, to another text ¢5 through a distance
of their embeddings given by ©,,,.

trained embeddings as token representations that
remain domain-agnostic in adaptation.

3 Soft Alignment Objectives

Following section introduces two novel objectives
that use the described alignment mechanism as
their target.

3.1 Token Alignment

Unlike the previous work (Xu et al., 2019; Lu et al.,
2020; Chen et al., 2019), our alignment circum-
vents the representation using model’s own embed-
dings, as we argue that model’s own feedback in
adaptation is likely impacted by the forgetting.

The alignment mechanism is overviewed in Fig-
ure 2. As the vocabulary of our chosen embedding
model ©,,,; is usually not aligned with the vocab-
ulary of the trained model ©, we first tokenize
input text ¢; using both © and O.,,;,’s tokenizer,
obtaining segments sy and s. respectively. We
match each segment sf, with a segment s2 of O,
such that s/ has the largest spatial overlap with
sg. Therefore, each ©’s segment sé gets associated
with an embedding of ©,,,;.

Subsequently, we define an alignment A of any
segment s}, to another text ¢o:
min

Alsp,t2) =1~
( 0 2) 6j€@em/7(t2)

dist(e}, e’)  (3)
where dist is a distance measure defined for the
selected embedding system. In our experiments,
we use standard Euclidean distance as the measure.
A more explicit description of the alignment algo-
rithm can be found in Appendix D.

3.2 TokenAlign Objective

TokenAlign is designed as a minimal adjustment to
MLE (Eq. (2)), inheriting most of its efficiency.
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Figure 3: TokenAlign objective replaces one-hot tar-
gets of MLE with alignment A (§3.1) computed as a
maximum similarity between the embeddings of the
candidate and reference tokens, guiding the model © to
predict higher probabilities for the tokens similar to the
reference, according to the representations of O,,,,.

However, TokenAlign circumvents the naive as-
sumption of MLE that only a single token of the
reference is a correct prediction by also encourag-
ing the model to up-weight predictions that can be
accurately aligned to the reference (Fig. 3):

exp(0(Xj, Yj,1..z'—1))>
exp(A(vocy,Y;))

L141ign(©) = min <— log

where vocy is the token vocabulary of ©, and
A(sé"w', Y;) are the alignments for each token of
the vocabulary (sp) to the given reference Y.

Relying on the same training approach as
with the conventional MLE objective, TokenAlign
presents a alternative of the MLE of similar data
and compute efficiency (Appendix C). However,
TokenAlign still does not address the exposure bias
as the model © is still updated conditionally to the
previous reference tokens Yj ;1 as the prefixes,
rather than its own outputs.

3.3 SeqAlign Objective

By utilizing the token-level embeddings, we cir-
cumvent the feedback sparsity of conventional
sequence-level objectives and provide the language
model with updates for every prediction step, rather
than its whole hypothesis.

Hence, instead of constructing the prediction
prefixes from the references Y, we construct the
prefixes by iteratively selecting the tokens accord-
ing to the current outputs of ©; Specificaly, we use
©’s outputs as a probability distribution and con-
struct a generation strategy I1? that stochastically
samples next token(s) from this distribution.

Consequentially, instead of generating a single
hypothesis for each input, we can obtain a set of
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Figure 4: SeqAlign objective further replaces the refer-
ence prefixes in the training with ©’s own predictions.
Using the token alignment scheme A (§3.1), we differ-
entiate the quality of the predicted tokens as their best
possible match to the reference, according to the aligned
tokens’ embeddings.

hypotheses Y; ~ I17(X;, ©) that can be aligned
to Y} and used by SegAlign to condition the up-
dates of © (Fig. 4). A desirable property of this
approach is that the prefixes of such hypotheses are
realistically likely to occur during ©’s generation.
Similar approach has been applied in most of the
work on sequence objectives (Neubig, 2016; Shen
et al., 2017; Edunov et al., 2018) to approximate
REINFORCE algorithm (Williams, 1992).

SeqgAlign associates the tokens of model vocabu-
lary vocg with their alignment quality A(s;"w', Y;)
and utilizes such quality as the target. Finally, by
incorporating the described generation strategy I1°,
we formulate SegAlign loss as following:

Lsatign(©) = min |[O(X;,Vj1.i-1) — A(vocg,Y;)
where Y; ~ T1?(X;, ©) (5)

Note that given the embeddings for all tokens
of the vocabulary, this objective can also be for-
mulated as a minimization of the cross-entropy,
similarly to TokenAlign. We further investigate the
impact of the loss formulation in Section 4.3.

3.4 Embeddings Contextualization

Both TokenAlign and SeqAlign assess the model
prediction quality by its alignment to the reference,
which require the embeddings of O.,,,,. Given the
pre-computed embedding vocabulary of context-
insensitive embedding models, such as GloVe (Pen-
nington et al., 2014) or FastText (Bojanowski et al.,
2017), both objectives can be used without further
adjustments. However, the use of context-sensitive
embedding models faces the following issues.

(i) Computation of contextual embeddings re-



quires expensive inference of large language mod-
els, such as BERT. Without refinements, an exam-
ple of obtaining contextual representations for each
possible token in generating a 10-token hypothesis,
i.e. computing a loss for a single sample would
require 101! inferences of ©,,,;, where || is a size
of the vocabulary of ©, commonly in ranges of
30,000-60,000 tokens.

(ii) Bidirectional contextual embeddings inferred
in incomplete context are less accurate. Given the
exponential growth of hypotheses space, the con-
textual embeddings can be (a) either inferred within
a synthetic context, or (b) inferred incrementally
for the each following token using a unidirectional
model. We find that both these heuristics signif-
icantly alter the pairwise distance of contextual
embeddings.

In the SeqAlign objective, we address this prob-
lem by limiting the embedded vocabulary to the
top-n highest-scored tokens of © in each predic-
tion step (denoted ©™). By fixing n = 3 over our
experiments, we need to infer the contextual em-
beddings of only Zle 3|T19(X;)| of the highest-
scored tokens for each sampled hypothesis Hz (X).
In our experiments, we also keep the number of
sampled hypotheses K fixed to K = 10 and we
do not adjust © by the scores of the tokens other
than the top ones. As the context, we use the com-
plete hypothesis from which the token sé € 0™ is
sampled. Therefore, the alignment A for distance-
based objectives is adjusted as:

A(sh,ta) if sh € O

6
0 otherwise ©

.A/(Sg, tz) = {

In TokenAlign, which require embeddings of all
tokens of the vocabulary, we address the compu-
tational overhead in a decontextualization process.
We obtain the decontextualized embedding e’ for
each segment s’ as an average of the contextual-
ized embeddings corresponding to all the occur-
rences of s’ in the texts of the training domain X:

. . 1 ,
e = O = Y Oy ()
€ X;eX;sieX;

where #s is the number of occurrences of a seg-
ment s? in X.

While such process also causes qualitative de-
cay of the contextual representations, it has been
shown that decontextualized representations still

outperform context-agnostic embeddings in ma-
chine translation evaluation (Stefdnik et al., 2021).
Nevertheless, we further analyze decontextualiza-
tion impact in Section 4.3.

In our experiments, we use the decontextual-
ized multilingual BERT embeddings (Devlin et al.,
2019), extracted from 9-th hidden layer chosen as
optimal for evaluation (Zhang et al., 2020b).

4 Methodology

We evaluate the impact of the proposed training
objectives in the domain adaptation experiments
and compare the results with the adaptation using
the commonly-used MLE objective as the baseline
(§2). We use the novel objectives as the weighted
complements of the MLE objective (Eq. (2)), aim-
ing to extend the modeled space of the problem
complexity:

Lptign(©) = Lyre(©) + o - Lyeworj(©)  (8)
4.1 Datasets

We choose the data configurations of our experi-
ments to allow the reader to extrapolate trends and
conclusions invariant to the covariates of adapta-
tion quality that we consider essential.

Domains. To assess the distributional robust-
ness of the models, we train and evaluate among all
pairs of the following OPUS domains (Tiedemann,
2012): Wikimedia, OpenSubtitles, Bible, TEDTalks,
DGT/Law and EMEA/Medical. We choose the set
of domains that reflects both minor (Wikimedia
— OpenSubtitles) and major (EMEA/Medical —
Bible) domain shifts between the training and eval-
uation. Our selection reflects on real-world settings
where practitioners commonly adapt the model to
a specialized domain such as law or medicine, but
need to keep an operational level of quality on any
input.

Data size. We focus on the applications where
the size of parallel corpora available for adapta-
tion ranges from very low-resource (50,000 aligned
sentences, Bible) to medium-resource (5,100,000
sentences, DGT/Law).

Language pairs. Our evaluated language pairs
are: Estonian — English, German — English En-
glish — Czech, English — Ukrainian, English —
German and English — Chinese. We pick the
English-centric pairs in order to maximize the num-
ber of out-of-domain evaluation sources for the
adapted language pair. Our settings cover target
languages of Latin, Cyrillic and Chinese alphabets.



4.2 Experimental Setup

Data configuration As the OPUS sources do not
contain standard splits, we split the data into train-
validation-test. We first de-duplicate the samples
and draw 500 validation and 1,000 test samples
from each domain.

Hyperparameters & training We perform the
adaptations from the bilingual Transformer-base
models of Vaswani et al. (2017) using the check-
points of Tiedemann and Thottingal (2020) pre-
trained for a translation of the corresponding lan-
guage pair on a mixture of OPUS sources.

We perform a hyperparameter search over the
parameters of learning rate, objectives weights o
and objective-specific batch size. We detail the
values and ranges of this search in Appendix B.

After fixing the objectives’ parameters, we set
up the experiments to closely resemble the tradi-
tional training process; We run each experiment un-
til early-stopping by in-domain validation BLEU,
with the patience of 20 evaluations, i.e., 10,000
updates and evaluate the model with the best val-
idation score for testing. If the model does not
improve over the first 10,000 updates, we evaluate
the resulting model after the 10,000 updates.

We implement our experiments using Adaptor
library (Stefanik et al., 2022), allowing the release
of our implementations in a transparent but self-
contained and easy-to-reproduce form.'

Evaluation To discourage the effect of the ran-
dom variance in the performance of the trained
model, we report all test scores as the average of
the performance in the interval of 5 preceding and
5 succeeding checkpoints, resulting in a single, av-
erage test evaluation for each domain.

We collect evaluations of BLEU in the default
settings of SacreBLEU (Post, 2018), obtaining
a single (average) evaluation of in-domain (ID)
BLEU and a set of corresponding evaluations
for all listed domains other than the in-domain
(OOD). Given the availability of the sources, this
results in four OOD evaluations for all pairs except
(en—ukr) and (en—zh) with the datasets for two
OOD evaluations.

To enable mutual comparability, we finally nor-
malize both ID and OOD results by the perfor-
mance of the initial checkpoint and report the

"Each of our experiments can be reproduced by running a
single script; see the README in the attached repository (to
be linked here: github.com/attached/repository)

change of performance in percentage. We report
a single scalar value, or an interval in a form
<mean=trange covering all results>.

4.3 Ablation Experiments

In a set of additional experiments, we estimate the
impact of the crucial components of the soft align-
ment objectives on the adaptation accuracy and
robustness. While these assessments are also an
ablation study quantifying the impact of our design
decisions, significantly, these experiments also as-
sess the impact of different aspects of training of
generative language models on their robustness.

Impact of teacher forcing Teacher forcing, i.e.
replacing model’s own outputs with the preceding
tokens of the reference (§2), commonly used in
both training and adaptation, circumvents the prob-
lem of alignment of the model’s generated output
to the reference. We suspect that the discrepancy
between the training and generation can be magni-
fied under the distribution shift and hence, can be
one of the causes of the catastrophic forgetting.

To assess this assumption, we implement a min-
imal objective conditioning the training by the
model’s own outputs and compare the difference in
the model robustness to MLE. We adjust the Seg-
Align by replacing A with a random alignment as
target(s) A,quq, While providing the model with its
own-generated outputs as prefixes:

ESRand(G) = min [Q(Xp H?z—l) - -Arand (9)

This approach is similar to Choshen et al. (2020),
using a constant training signal in sequential
training and showing the gains similar to expen-
sive MRT maximising BLEU (§2). Additionally,
this experiment also quantifies the impact of the
embedding-based training signal of SeqAlign.

Impact of decontextualization While the Token-
Align utilize the decontextualized grounding em-
beddings (§3.4), the decontextualization likely af-
fects the quality of the grounding embeddings, de-
creasing the quality of such-constructed targets by
unknown level.

However, as described in Section 3.4, it is not
computationally feasible to simply infer the contex-
tualized embeddings for each candidate token of
the generated hypotheses. To allow the comparison
of the contextualized and decontextualized version
of the same system, we circumvent this problem by
adjusting the SeqAlign’s alignment A’ (Eq. (6)) to


github.com/attached/repository

A BLEU Bible TEDTalks Opensubs Wiki Medica/EMEA Law/DGT
(de—en) (en—zh) (en—ukr) (en—-cze) (est—en) (en—de)
62,000 pairs 155,000 pairs 877,000 pairs 1,003,000 pairs 1,021,000 pairs 5,105,000 pairs
Orig. BLEU 21.89 29.01 26.12 34.04 54.85 33.56
MLE ID — 8% + 7% + 4% + 9% +38% - 1%
00D —-53%+36% —23%+23% —15%+9% —-15%+5% —-35%+10% —19% +11%
TokenAlign D —21% + 2% + 8% +12% +45% + 1%
O0OD - 2%+1% —-10% +12% — 1% +1% — 6% +£6% — 6% + ™ + 6% £20%
SeqAlign ID —-23% + 7% - 8% + 8% +31% + 7%
00D — 1% +1% —-20%+£22% — 2% +3% “12%+5% — 1% +2% + 3%+13%

Table 1: Evaluation of adaptation quality and robustness: A change of BLEU score relative to the original model,
when adapting pre-trained Transformer-base on the titled domain, as measured on a held-out set of the training
domain (in-domain, ID) and other listed domains available for the same language pair (out-of-domain, OOD).

utilize the decontextualized embeddings instead of
the contextualized ones:

‘CSqulign—dec ( 6) = 'CSA lign (6 ) -A, dec )

A/dec(Sé,tQ) = min D(e’;lec, eziec) (10)
e]deue®dec(t2)

All other parameters (§4.2) remain unchanged.

Impact of the loss formulation While for the
sequential objectives, the choice of distance-based
loss is compulsed by the lack of alignment A, in
our cases, the alignment is known. Hence we can
formulate the training objective(s) as the minimiza-
tion of either a distance loss or a cross-entropy loss.

This analysis evaluates the impact of this choice
by introducing an analogous objective to SeqAlign-
dec (§4.3), which, on the contrary, utilizes the CE
loss composing the targets for every predicted to-
ken as the quality of its alignment to the reference:

: exp(O(X;, 117 ;_(X;)))

Lsce(O) mm( log oxp(Adee (000, Y)) )

(11
Identically to SegAlign, we sample the conditioning
prefixes from the model’s own hypotheses using
the stochastic generation strategy I1¢. To avoid the
overhead of inference of contextual embeddings,
we also use the alignment A’ 4. based on decon-
textualized embeddings (Eq. (10)).

5 Results

Table 1 compares the results of adaptation using
the standard MLE objective and our two main ob-
jectives: TokenAlign and SeqAlign, as trained on a
selected domain and evaluated on a held-out set of
the same domain (ID) and other domains (OOD).
The domains are ordered ascending by the size of

ABLEU: 1D OOD
0. MLE + 8% +£31% —21% £ 29%
1. TokenAlign +9%+30% — 2%+ %
2. SeqAlign +3%+27% —1%+ 8%
3. SRand +3%+31% - 6%+ 5%
4. SeqAlign-dec  + 5% £ 31% — 6% +27%
5. SCE + 4% £ 32% —17% + 44%

Table 2: Results of Ablation experiments: Average
change of BLEU scores relative to the original model,
when adapting Transformer-base model with a given
objective. The intervals cover the averages of 6 in-
domain and 20 out-of-domain evaluations (§4.2).

the training data. Table 2 further aggregates the
results per-objective and additionally includes the
objectives from our Ablation experiments. More
detailed, per-domain results including the ablation
objectives can be found in Table 4 in Appendix E.

Alignment-based objectives improve robustness
Both TokenAlign and SegAlign objectives consis-
tently improve the model robustness (OOD) over
the MLE in all the evaluated cases. In addition,
comparing TokenAlign to MLE, we also see the ad-
vances in the adaptation quality (ID), in three out
of four cases where MLE was able to deliver any
ID improvements. In ID performance, SeqAlign
is the only one able to utilize the higher resource
availability of the Law/DGT domain, but lacks in
ID substantially on Medical/EMEA domain. In
OOD evaluations, SeqAlign performs comparably
to TokenAlign. Nevertheless, all objectives remain
to fail to adapt in very low-resource adaptation of
a significant domain shift (Bible).

While the results confirm our main hypothesis
that circumventing MLE’s assumption of a single-
truth prediction largely improve model’s distribu-



tional robustness, we observe discrepancies in in-
domain performance over different sizes of the
training data similar to MLE. Even though Seg-
Align utilizes larger volumes of conditioning pre-
fixes, its performance on the two smallest domains
is inferior to both TokenAlign and MLE, while on
the contrary, it is the most efficient among objec-
tives in medium-resource Law/DGT. This could be
a consequence of the lower quality of the model’s
self-generated prefixes under large domain shifts
(Bible domain).

Avoiding teacher-forcing improves robustness
A comparison of the results of SRand and MLE
in Table 2 shows that the mere exposition of the
model to its own hypotheses reduces the forget-
ting of MLE by 71% in average (—21% — —6%).
However, constructing the non-informative targets
for self-generated inputs also causes a decay in
adaptation quality (+8% — +3%).

Alignment-based targets complement avoiding
teacher-forcing A comparison of the results of
SRand to SeqAlign (Table 4 in Appendix E) shows
robustness superiority of SegAlign in four out of
five scenarios, suggesting that the enhancements
in robustness might be attributed both to the
semantically-constructed targets and avoidance of
the teacher forcing. While the aggregate in-domain
results of SeqAlign and SRand in Table 2 are very
similar, the per-domain results reveal that their
results vary over domains and the suggested 1D
tie of SRand to SeqAlign and is largely attributed
to SRand’s better result on Bible, where both
objectives fail to improve ID nevertheless.

Decontextualization does not carry a large qual-
itative drop Both objectives grounding its tar-
gets in decontextualized embeddings (TokenAlign
and SeqAlign-dec) show relatively good average
results on both in-domain and out-of-domain (Ta-
ble 2), where TokenAlign is the only objective
reaching in-domain gains superior to MLE in aver-
age. A comparison of SegAlign to its decontextual-
ized instance (SeqAlign-dec) specifically evaluates
the impact of decontextualization, in the settings
of absolute distance loss and no teacher forcing.
We see that while the decontextualization leads
to a relatively large average loss in the robust-
ness (—1% — —6%), SeqAlign-dec outperforms
SeqAlign on the in-domain (+3% — +5%). Per-
domain results (Table 4 in Appendix E) show that
this is attributed mainly to the superior adaptation

performance of SeqAlign-dec in the low-resource
Opensubs (en—ukr) domain, suggesting that the
averaging of decontextualization might also have a
denoising effect in the low-resource settings. This
case opposes our suspicion that decontextualization
by embeddings’ averaging might produce quality
representations only in higher-resource settings.

Loss formulation impacts model robustness
A comparison of SeqAlign-dec and SCE in Ta-
ble 2 assesses the difference in performance when
varying the loss formulation in the sequence align-
ment objective. The difference is significant in
OOD evaluation, where changing a distance-based
loss to the entropy-based causes a significant drop
(=6% — —17%), comparable to the drop of the
traditional MLE, also built upon CE loss (—21%).
However, the superior performance of CE-based
TokenAlign contradicts that distance-based loss is
always a better choice and optimal selection of the
loss remains convoluted by other covariates.

6 Conclusion

Our work sets out to explore the alternatives
between the efficient yet naive MLE objective
and expressive but resource- and computationally-
demanding sequential objectives, building the train-
ing signal in the alignment of the semantic token
representations. We build an alignment mechanism
applicable with any chosen embedding system and
propose two main objectives that utilize the con-
structed alignment as its target; either (i) keeping
or (ii) circumventing the teacher-forcing of the ref-
erence in training. We find that both approaches
persist robustness of the adapted model much bet-
ter than the traditional approach while obtaining
comparable results in the quality of adaptation.

We thoroughly investigate the impact of selected
design choices on the robustness of generative
LLMs in the ablation experiments. Among oth-
ers, we find that a relatively large portion of the
model’s robustness can be recovered by including
the model’s own outputs among the inputs. Future
work might also benefit from the qualitative assess-
ment of the impact of the decontextualization elim-
inating the computational overhead of applying the
contextualized embeddings in dynamic contexts.

We look forward for future work that will
explore the potential of applying semantically-
grounded objectives in a more robust and efficient
pre-training and adaptation for numerous other ap-
plications of language models.



References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, USA.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Neural Machine Translation by Jointly
Learning to Align and Translate.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. In Ad-
vances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the ACL,
5:135-146.

Fredrik Carlsson, Joey Ohman, Fangyu Liu, Severine
Verlinden, Joakim Nivre, and Magnus Sahlgren. 2022.
Fine-grained controllable text generation using non-
residual prompting. In Proceedings of the 60th An-
nual Meeting of the ACL (Volume 1: Long Papers),
pages 6837-6857, Dublin, Ireland. ACL.

Liqun Chen, Yizhe Zhang, Ruiyi Zhang, Chenyang Tao,
Zhe Gan, Haichao Zhang, Bai Li, Dinghan Shen,
Changyou Chen, and Lawrence Carin. 2019. Im-
proving Sequence-to-Sequence Learning via Optimal
Transport. ArXiv, abs/1901.06283.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri
Abend. 2020. On the weaknesses of reinforcement
learning for neural machine translation. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An Empirical Comparison of Domain Adaptation
Methods for Neural Machine Translation. In Pro-
ceedings of the 55th Annual Meeting of the ACL (Vol-
ume 2: Short Papers), pages 385-391, Vancouver,
Canada. ACL.

Praveen Dakwale and Christof Monz. 2017. Fine-
Tuning for Neural Machine Translation with Limited
Degradation across In- and Out-of-Domain Data. In
Proceedings of the XVI Machine Translation Summit
(Vol. 1: Research Track), pages 156—169, Nagoya,
Japan.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. of the 2019 Conference of
the NAACL: Human Language Technologies, pages
41714186, Minneapolis, USA. ACL.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’ Aurelio Ranzato. 2018. Classical Struc-
tured Prediction Losses for Sequence to Sequence
Learning. In Proceedings of the 2018 Conference
of the NAACL: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 355-364, New Orleans,
Louisiana. ACL.

Thierry Etchegoyhen, Anna Ferndndez Torné, Andoni
Azpeitia, Eva Martinez Garcia, and Anna Matamala.
2018. Evaluating Domain Adaptation for Machine
Translation Across Scenarios. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. ELRA.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast Do-
main Adaptation for Neural Machine Translation.
ArXiv.

Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C.
Courville, and Yoshua Bengio. 2014. An Empirical
Investigation of Catastrophic Forgeting in Gradient-
Based Neural Networks. CoRR, abs/1312.6211.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-
berger. 2015. From Word Embeddings To Document
Distances. In Proc. of International Conference on
Machine Learning, volume 37, pages 957-966, Lille,
France. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proc. of the 58th Annual
Meeting of the ACL, pages 7871-7880.

Wenjie Lu, Leiying Zhou, Gongshen Liu, and Quan-
hai Zhang. 2020. A mixed learning objective for
neural machine translation. In Proceedings of the
19th Chinese National Conference on Computational
Linguistics, pages 974-983, Haikou, China. Chinese
Information Processing Society of China.

Chenggang Mi, Lei Xie, and Yanning Zhang. 2020. Im-
proving Adversarial Neural Machine Translation for
Morphologically Rich Language. IEEE Transactions
on Emerging Topics in Computational Intelligence,

4(4):417-426.

Graham Neubig. 2016. Lexicons and Minimum Risk
Training for Neural Machine Translation: NAIST-
CMU at WAT 2016. In Proceedings of the 3rd Work-
shop on Asian Translation (WAT2016), pages 119—
125, Osaka, Japan. The COLING 2016 Organizing
Committee.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.
2015. In Search of the Real Inductive Bias: On the
Role of Implicit Regularization in Deep Learning.
ArXiv:1412.6614.


http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://aclanthology.org/Q17-1010.pdf
https://aclanthology.org/Q17-1010.pdf
https://aclanthology.org/Q17-1010.pdf
https://doi.org/10.18653/v1/2022.acl-long.471
https://doi.org/10.18653/v1/2022.acl-long.471
https://doi.org/10.18653/v1/2022.acl-long.471
https://doi.org/10.48550/ARXIV.1901.06283
https://doi.org/10.48550/ARXIV.1901.06283
https://doi.org/10.48550/ARXIV.1901.06283
https://doi.org/10.48550/ARXIV.1901.06283
https://doi.org/10.48550/ARXIV.1901.06283
https://openreview.net/forum?id=H1eCw3EKvH
https://openreview.net/forum?id=H1eCw3EKvH
https://openreview.net/forum?id=H1eCw3EKvH
https://doi.org/10.18653/v1/P17-2061
https://doi.org/10.18653/v1/P17-2061
https://doi.org/10.18653/v1/P17-2061
https://staff.science.uva.nl/c.monz/ltl/publications/mtsummit2017.pdf
https://staff.science.uva.nl/c.monz/ltl/publications/mtsummit2017.pdf
https://staff.science.uva.nl/c.monz/ltl/publications/mtsummit2017.pdf
https://staff.science.uva.nl/c.monz/ltl/publications/mtsummit2017.pdf
https://staff.science.uva.nl/c.monz/ltl/publications/mtsummit2017.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://aclanthology.org/L18-1002
https://aclanthology.org/L18-1002
https://aclanthology.org/L18-1002
https://doi.org/10.48550/ARXIV.1612.06897
https://doi.org/10.48550/ARXIV.1612.06897
https://doi.org/10.48550/ARXIV.1612.06897
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.48550/ARXIV.1312.6211
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.acl-main.703.pdf
https://aclanthology.org/2020.ccl-1.90
https://aclanthology.org/2020.ccl-1.90
https://aclanthology.org/2020.ccl-1.90
https://doi.org/10.1109/TETCI.2019.2960546
https://doi.org/10.1109/TETCI.2019.2960546
https://doi.org/10.1109/TETCI.2019.2960546
https://doi.org/10.1109/TETCI.2019.2960546
https://doi.org/10.1109/TETCI.2019.2960546
https://aclanthology.org/W16-4610
https://aclanthology.org/W16-4610
https://aclanthology.org/W16-4610
https://aclanthology.org/W16-4610
https://aclanthology.org/W16-4610
http://arxiv.org/abs/1412.6614
http://arxiv.org/abs/1412.6614
http://arxiv.org/abs/1412.6614

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the EMNLP, pages
1532-1543, Doha, Qatar. ACL.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Lariviere, Alina Beygelzimer, Flo-
rence d’ Alche Buc, Emily Fox, and Hugo Larochelle.
2021. Improving Reproducibility in Machine Learn-
ing Research (A Report from the NeurIPS 2019 Re-
producibility Program). Journal of Machine Learn-
ing Research, 22(164):1-20.

Matt Post. 2018. A Call for Clarity in Reporting BLEU
Scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Belgium, Brussels. ACL.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence Level Train-
ing with Recurrent Neural Networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 24, 2016,
Conference Track Proceedings.

Shoetsu Sato, Jin Sakuma, Naoki Yoshinaga, Masashi
Toyoda, and Masaru Kitsuregawa. 2020. Vocabulary
Adaptation for Domain Adaptation in Neural Ma-
chine Translation. In Findings of the ACL: EMNLP
2020, pages 4269-4279. ACL.

Danielle Saunders. 2021. Domain Adaptation and
Multi-Domain Adaptation for Neural Machine Trans-
lation: A Survey. CoRR, abs/2104.06951.

Christophe Servan, Josep Maria Crego, and Jean Senel-
lart. 2016. Domain specialization: a post-training
domain adaptation for Neural Machine Translation.
ArXiv, abs/1612.06141.

Shiqi Shen, Yong Cheng, Zhongjun He, W. He, Hua Wu,
Maosong Sun, and Yang Liu. 2016. Minimum Risk
Training for Neural Machine Translation. In Pro-
ceedings of the 54th ACL (Volume 1: Long Papers),
pages 1683-1692, Berlin, Germany. ACL.

Shiqgi Shen, Yang Liu, and Maosong Sun. 2017. Opti-
mizing Non-Decomposable Evaluation Metrics for
Neural Machine Translation. Journal of Computer
Science and Technology, 32:796-804.

Michal Stefanik, Vit Novotny, Nikola Groverova, and
Petr Sojka. 2022. Adaptor: Objective-Centric Adap-
tation Framework for Language Models. In Proceed-
ings of the 60th Annual Meeting of the ACL: Sys-
tem Demonstrations, pages 261-269, Dublin, Ireland.
ACL.

Michal Stefanik, Vit Novotny, and Petr Sojka. 2021.
Regressive ensemble for machine translation quality
evaluation. In Proceedings of the Sixth Conference
on Machine Translation, pages 1041-1048. ACL.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah,
Kevin Duh, and Philipp Koehn. 2019. Overcoming
Catastrophic Forgetting During Domain Adaptation

of Neural Machine Translation. In Proceedings of the
2019 Conference of the NAACL: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2062-2068, Minneapolis, Minnesota. ACL.

Jorg Tiedemann. 2012. Parallel Data, Tools and Inter-
faces in OPUS. In Proc. of the Eighth International
Conf. LREC, pages 2214-2218, Istanbul, Turkey.
ELRA.

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT - building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479-480, Lisboa, Portugal. EAMT.

Inigo Jauregi Unanue, Jacob Parnell, and Massimo Pic-
cardi. 2021. BERTTune: Fine-Tuning Neural Ma-
chine Translation with BERTScore. In Proceedings
of the 59th Annual Meeting of the ACL and the 11th
IJCNL (Volume 2: Short Papers, pages 915-924.
ACL.

Michael Ustaszewski. 2019. Exploring Adequacy
Errors in Neural Machine Translation with the
Help of Cross-Language Aligned Word Embeddings.
In Proceedings of the Human-Informed Transla-
tion and Interpreting Technology Workshop (HiT-IT
2019), pages 122—128, Varna, Bulgaria. Incoma Ltd.,
Shoumen, Bulgaria.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, L.ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Proc. of the 31st NIPS conference,
volume 30 of NIPS ’17, pages 6000-6010, Red Hook,
NY, USA. Curran Associates Inc.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the ACL, pages 3544-3552. ACL.

Yiyu Wang, Jungang Xu, and Yingfei Sun. 2022. End-
to-End Transformer Based Model for Image Caption-
ing.

Ronald J. Williams. 1992. Simple Statistical Gradient-
Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8:229-256.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proc. of the 2020 Conf. EMNLP: System Demonstra-
tions, pages 38-45. ACL.

Weijia Xu, Xing Niu, and Marine Carpuat. 2019. Dif-
ferentiable Sampling with Flexible Reference Word
Order for Neural Machine Translation. In Proceed-
ings of the 2019 Conference of the NAACL: Human


https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://jmlr.org/papers/v22/20-303.html
http://jmlr.org/papers/v22/20-303.html
http://jmlr.org/papers/v22/20-303.html
http://jmlr.org/papers/v22/20-303.html
http://jmlr.org/papers/v22/20-303.html
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1511.06732
https://doi.org/10.18653/v1/2020.findings-emnlp.381
https://doi.org/10.18653/v1/2020.findings-emnlp.381
https://doi.org/10.18653/v1/2020.findings-emnlp.381
https://doi.org/10.18653/v1/2020.findings-emnlp.381
https://doi.org/10.18653/v1/2020.findings-emnlp.381
https://doi.org/10.48550/arXiv.2104.06951
https://doi.org/10.48550/arXiv.2104.06951
https://doi.org/10.48550/arXiv.2104.06951
https://doi.org/10.48550/arXiv.2104.06951
https://doi.org/10.48550/arXiv.2104.06951
https://doi.org/10.48550/ARXIV.1612.06141
https://doi.org/10.48550/ARXIV.1612.06141
https://doi.org/10.48550/ARXIV.1612.06141
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.1007/s11390-017-1760-9
https://doi.org/10.1007/s11390-017-1760-9
https://doi.org/10.1007/s11390-017-1760-9
https://doi.org/10.1007/s11390-017-1760-9
https://doi.org/10.1007/s11390-017-1760-9
https://doi.org/10.18653/v1/2022.acl-demo.26
https://doi.org/10.18653/v1/2022.acl-demo.26
https://doi.org/10.18653/v1/2022.acl-demo.26
https://aclanthology.org/2021.wmt-1.112
https://aclanthology.org/2021.wmt-1.112
https://aclanthology.org/2021.wmt-1.112
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://doi.org/10.18653/v1/2021.acl-short.115
https://doi.org/10.18653/v1/2021.acl-short.115
https://doi.org/10.18653/v1/2021.acl-short.115
https://doi.org/10.26615/issn.2683-0078.2019_015
https://doi.org/10.26615/issn.2683-0078.2019_015
https://doi.org/10.26615/issn.2683-0078.2019_015
https://doi.org/10.26615/issn.2683-0078.2019_015
https://doi.org/10.26615/issn.2683-0078.2019_015
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.48550/ARXIV.2203.15350
https://doi.org/10.48550/ARXIV.2203.15350
https://doi.org/10.48550/ARXIV.2203.15350
https://doi.org/10.48550/ARXIV.2203.15350
https://doi.org/10.48550/ARXIV.2203.15350
https://doi.org/10.1007/BF0099269
https://doi.org/10.1007/BF0099269
https://doi.org/10.1007/BF0099269
https://doi.org/10.1007/BF0099269
https://doi.org/10.1007/BF0099269
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/N19-1207
https://doi.org/10.18653/v1/N19-1207
https://doi.org/10.18653/v1/N19-1207
https://doi.org/10.18653/v1/N19-1207
https://doi.org/10.18653/v1/N19-1207

Language Technologies, Volume 1 (Long and Short
Papers), pages 2047-2053, Minneapolis, Minnesota.
ACL.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2018.
Improving Neural Machine Translation with Con-
ditional Sequence Generative Adversarial Nets. In
Proceedings of the 2018 Conference of the NAACL:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1346-1355, New Orleans, Louisiana.
ACL.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2016. SeqGAN: Sequence Generative Adversarial
Nets with Policy Gradient. CoRR, abs/1609.05473.

Ruiyi Zhang, Changyou Chen, Xinyuan Zhang, Ke Bai,
and Lawrence Carin. 2020a. Semantic Matching for
Sequence-to-Sequence Learning. In Findings of the
ACL: EMNLP 2020, pages 212-222. ACL.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. BERTScore:
Evaluating Text Generation with BERT. In Proc. of
International Conference on Learning Representa-
tions.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the gap between training
and inference for neural machine translation. In Pro-
ceedings of the 57th Annual Meeting of the ACL,
pages 4334-4343, Florence, Italy. ACL.

A Limitations

Our work experiments with a range of adaptation
domains that we draw systematically to capture the
covariates enumerated in Section 4.1. However,
future work should acknowledge that these are not
all the covariates responsible for the success of
adaptation and the robustness of the final model.
Following is the non-exhaustive list of possible co-
variates that we do not control in this work. (i) the
adapted model size, (ii) the size of pre-training data,
(iii) pre-training configuration parameters, but also
(iv) the broad variance of adapted language pair(s);
(v) the variance of mutual similarity of languages
within the pair, and hence (vi) the difficulty of train-
ing the translation model.

To avoid difficulty with normalizing BLEU val-
ues over different writing systems, we did not per-
form our experiments on languages using other
than Latin and Cyrillic script and hence, our results
are not representative of some major languages
such as Chinese or Arabic. However, the alignment
approach presented in Section 3.1 and adapted by
all the proposed objectives is also applicable to
other writing systems.
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The evaluation of our experiments did not con-
sider the effect of randomness of the training pro-
cess. Despite the fact that our experiments were
run with a fixed random seed and initial value, mak-
ing our results deterministically reproducible, the
variance of the results among the experiments of
different random seeds was not investigated due
to the related infrastructural costs. However, all
our results are aggregated over larger set of check-
points and/or domains, ranging from 10 (IDs in
Table 1) to 720 (OODs in Table 2), as described in
Section 4.2.

The alignment scheme proposed in Section 3.1
has known biases; for instance, in the cases utiliz-
ing decontextualized embeddings, where both the
hypothesis and reference contain the multiple oc-
currences of the same word, the alignment scheme
will make the prediction of the same target token
equally good, regardless of the position. This flaw
could be further addressed by using the Optimal
transport alignment (Kusner et al., 2015), similarly
to Zhang et al. (2020a).

B Hyperparameter search

For each of the evaluated objectives, we perform
a hyperparameter search independently over the
selected parameters in the denoted range, based on
the best in-domain validation BLEU reached in the
adaptation to Wikimedia domain.

(1) learning rate: ranging from 2 - 107 to
2 - 10~%, with step 10. (2) objectives ratio o (Eq.
(8)): we manually set the weight of the additional
objective such that the loss values for both compo-
nents of the final loss are approximately balanced,
based the first 10 valuations. We do not perform
further tuning and use the same weights over all
experiments. (3) Batch size: For ML experiments,
we fix the effective batch size to 60, we pick the
optimal batch size for TokenAlign and SeqAlign
objectives over [1, 5, 10, 20].

Other parameters that we adjust and re-
main fixed over the experiments are following:
warmup steps = 1,000, LR schedule as con-
stant decay. Distance-based objectives including
SeqAlign introduce two new parameters: (i) K: a
number of the sampled hypotheses and (ii) n: a
number of most-likely tokens to align. To keep
the computation time feasible, we do not perform
further tuning and set these parameters to K = 10
and n = 3 over all the experiments. All other
parameters can be retrieved from the defaults of
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TrainingArguments of Transformers (Wolf et al.,
2020), version 4.10.2.

We treat the optimized hyperparameters as in-
dependent; hence we optimize each variable sepa-
rately. Our configuration results in experimenting
with 9 hyperparameter search runs for each objec-
tive, including MLE baseline.

C Computational demands

We performed the adaptation of each of the pro-
posed objectives on a server with a single NVidia
Tesla A100, 80 GB of graphic memory, 512 GB of
RAM and 64-Core Processor (AMD EPYC 7702P).
We also tested to train all our experiments using
lower configuration using a single NVidia Tesla T4,
16 GB of graphic memory, 20 GB of RAM and a
single core of Intel(R) Xeon(R) processor.

We benchmark the running times of the time-
demanding parts of the adaptation process in the
first-mentioned configuration. We find that the
proposed decontextualization process required by
TokenAlign, SCE and SegAlign-dec takes in these
settings between 50 minutes on the smallest domain
to 25 hours on the largest domain. Table 3 shows
the average speed of updates and a number of steps
that each of the designed objectives requires to
converge. Further details on our methodology are
described in Section 4.2.

Objective ~ Updates / hour Updates to converge
MLE 451 15,500
TokenAlign 404 24,000
SeqAlign 287 11,875
SRand 152 10,100
SeqAlign-dec 295 7,500
SCE 585 23,740

Table 3: Adaptation speed: Average number of updates
per hour and average number of updates to converge
that we measure over objectives in our experiments.

D Details of Alignment Algorithm

Algorithm 1 describes the alignment procedure that
we propose to obtain grounding embeddings for the
tokens of the trained model.

Our approach first aligns the model and embed-
dings vocabulary; Given a text ¢, we obtain two
ordered sequences of textual segments (tokens):
grounding embeddings tokens s, (¢) and model to-
kens sg(t). We obtain the model grounding embed-

12

dings €}, of each model segment s}, € sp(t) to each
grounding segment s.; € sg(t) by (i) assigning
the coverage intervals of t to each model and em-
bedding segment sy(t) and s.(t), and (ii) for each
model segment s}, € sq(t), searching for the seg-
ment s’ (t) with largest intersection of the covering
intervals |s§ N sl).

proc align_to_grounding(sgp, Se):
foreach i € 1..|sp| do
while \sé N sé| > best_cov do
pairs; < j
best_cov < |sh N sl
jj+1

| return pairs

Algorithm 1: Ability to pair each model to-
ken s}', with the best-matching grounding seg-
ment s allows us to use alignment grounded in
domain-agnostic representations. Relying on
the consistent ranking of the aligned sequences,
the grounding alignment algorithm requires at
most (|sg| + |se|) steps to finish.

E Detailed results of all objectives

Table 4 shows a comparison of all objectives over
all evaluated domains, providing a finer-grained
report of results presented in Table 2. Note that in
order to eliminate the effect of different scaling of
BLEU evaluations in character-segmented BLEU
results, we exclude the (en—zh) pair from the ab-
lations. The methodology of results collections is
described in Section 4.2. The discussion including
these results is present in Section 5.

F Training validation reports

We report and compare the change of validation
BLEU of our two main objectives, relative to the
MLE objective over the course of our experiments
and overview the results in Figures 5 and 6 for
SeqAlign and TokenAlign objective, respectively.
The plots aggregate 5 training logs and their cor-
responding out-of-domain logs into the in-domain
and out-of-domain reports, for easy comparabil-
ity with MLE, both in-domain and out-of-domain
BLEUs of MLE are averaged and paired with the
corresponding BLEUs of the inspected objective
over the shared evaluation domain. Finally, the
plots of the inspected objective consist of 50%
quantile intervals and the average of BLEU rel-



A BLEU Bible Opensubs Wiki MedicalEMEA Law/DGT
(de—en) (en—ukr) (en—cze) (est—en) (en—de)
50,000 pairs 80,000 pairs 100,000 pairs 300,000 pairs 5,100,000 pairs
Orig. BLEU 21.89 26.12 34.04 54.85 33.56
MLE ID - &% + 4% +9% +38% - 1%
00D —-53%+36% —15% + 9% —15% + 5% —35% + 10% —-19% + 11%
TokenAlign ID -21% + 8% +12% +45% + 1%
O0D - 2% +1% —1%+1% — 6%+6% —6%+7% + 6% £+ 20%
SeqAlign ID -23% - 8% + 8% +31% + 7%
O0OD — 1%+1% - 2% +3% —12% + 5% — 1% £+ 2% + 3% £ 13%
SRand ID -14% — ™% + 8% +34% — 7%
O0D — 8% +2% - 3% +3% - 9% +3% — 7% + 5% — 7% £+ 5%
SeqAlign-dec ID -26% +11% + 5% +35% + 2%
00D —13% +8% - 1%+ 1% —11%+19% —-12% + 7% + 4%+ 17%
SCE ID + 8% + 9% +11% + 1% -11%
O0OD —78% + 9% —-32% + 1% —12% + 5% — 1% +2% —14% + 13%

Table 4: Evaluation of adaptation quality and robustness over all designed objectives: A change of BLEU score
relative to the original model, when adapting pre-trained Transformer-base on selected domain, as measured on
a test set of the training domain (in-domain, ID) and out-of-domain (OOD). The aggregates over all domains are

listed in Table 2.

ative to both the MLE BLEU and initial model per-
formance. Note that while the relative distances of
MLE to the corresponding plots of the other objec-
tive always correspond, some training runs are ter-
minated in the course of the plotted steps, explain-
ing some sudden performance gains in the plot.

While the performance decay of MLE by the
time of early-stopping by in-domain BLEU is close-
to linear, TokenAlign in average maintains none,
or minimal decays of the out-of-domain perfor-
mance, although the variance of the initial decay
significantly varies over domains. This trend im-
plies that the early-stopping strategy based on in-
domain performance does not significantly decay
the robustness results and favours the deployment
of TokenAlign in situations where no validation
out-of-domain data is present.

The robustness of the model trained using Seg-
Align behaves differently and the initial robustness
decay is more significant. However, the decay soon
diverges from MLE and noticeably, after the 5,000-
th step all the robustness evaluations of SeqAlign
report robustness gains over MLE.

Although we restrain from drawing conclusions
based exclusively on these plots, the comparisons
suggest that while the decay of robustness of MLE
training is continuous, in the case of soft objectives,
the decay gradually slows, while the model incre-
mentally reaches potential in-domain gains similar
to MLE.
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Validation BLEUs of SeqAlign relative to ML, normalized by the initial model BLEU
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Figure 5: Comparison of validation BLEU of MLE and SeqAlign objective reported over the training on
5 different domains and 20 corresponding out-of-distribution domains until the in-domain early-stopping. For easier
comparison, both MLE logs are averaged and reported intervals correspond to the 50%-quantile of difference to the
MLE run on the corresponding evaluation domain. While the training with MLE objective consistently magnifies
the forgetting of adaptation, the soft objectives report a higher OOD score over all experiments while reaching
comparable adaptation gains on the in-domain. Note that the two major gains of SegAlign before steps 12,000
and 14,000 are attribute to early-stopping of specific runs at these points and hence, should be excluded from the
conclusions. See Appendix F for further description.

Validation BLEUs of TokenAlign relative to ML, normalized by the initial model BLEU
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Figure 6: Comparison of validation BLEU of MLE and TokenAlign objective as reported over the training on
5 different domains and 20 corresponding out-of-distribution domains until in-domain early-stopping. See Figure 5
and Appendix F for further description.
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