
MODELDIFF: A Framework for Comparing Learning Algorithms

Harshay Shah * 1 Sung Min Park * 1 Andrew Ilyas * 1 Aleksander Mądry 1

Abstract
We study the problem of (learning) algorithm
comparison, where the goal is to find differences
between models trained with two different learn-
ing algorithms. We begin by formalizing this goal
as one of finding distinguishing feature transfor-
mations, i.e., input transformations that change
the predictions of models trained with one learn-
ing algorithm but not the other. We then present
MODELDIFF, a framework that leverages data-
models (Ilyas et al., 2022) to compare learn-
ing algorithms based on how they use training
data. Finally, we use MODELDIFF to demon-
strate how training image classifiers with standard
data augmentation can amplify reliance on spe-
cific instances of co-occurence and texture biases.
A complete version of this paper can be found
at Shah et al. (2022).

1. Introduction
Building a machine learning model involves making a num-
ber of design choices. Indeed, even after choosing a dataset,
one must decide on a model architecture, an optimization
method, and a data augmentation pipeline. These design
choices together define a learning algorithm, the function
mapping training datasets to machine learning models.

One of the key reasons why these design choices matter to
us is that—even when they do not directly affect accuracy—
they determine the biases of the resulting models. For ex-
ample, Hermann et al. (2020) find significant variation in
shape bias (Geirhos et al., 2019) across a group of ImageNet
models that vary in accuracy by less than 1%. Similarly, Liu
et al. (2022) find that language models with the same loss
can have drastically different implicit biases and as a result,
different performances when used for transfer learning. Mo-
tivated by this, we develop a general algorithm comparison
framework that one can use to contrast any two algorithms

*Equal contribution 1Massachusetts Institute of Technology.
Correspondence to: Harshay Shah <harshay@mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

without a prior hypothesis on what the difference between
them is. Specifically, we make two main contributions:

(a) A precise, quantitative definition of the algorithm com-
parison problem. We introduce the problem of (feature-
based) comparisons between learning algorithms. Given
two learning algorithms, the goal is to find features used
by one but not by the other. We formalize this goal by
stating it as one of finding transformations in input space
that induce different behavior from models trained by the
two learning algorithms.

(b) A method for comparing any two algorithms. We pro-
pose a method, MODELDIFF, for comparing algorithms in
terms of how they use the training data. The key tool we
leverage here is datamodeling (Ilyas et al., 2022), which
allows us to quantify the impact of each training example
on a specific (single) model prediction. Intuitively, two
models that use different features to arrive at their pre-
dictions should differ in what training examples they rely
on. We translate this intuition into a method with formal
guarantees that outputs a set of distinguishing subpopu-
lations, groups of test examples for which the algorithms
systematically differ in how they make predictions.

We tie our method MODELDIFF back to our formal defini-
tion of algorithm comparison in two steps. We first identify
shared pattern(s) surfaced in each distinguishing subpopu-
lation and use it to design an input transformation. Then,
we verify the effect of this input transformation on model
predictions via counterfactual analysis.

Motivated by typical train-time design choices within ML
pipelines, we apply MODELDIFF to understand how stan-
dard data augmentation alters biases of image classifiers
(Section 4). Specifically, we compare models trained
with and without data augmentation on the LIVING17
dataset (Santurkar et al., 2021), and show that models
trained with data augmentation are more prone to picking
up specific instances of co-occurrence bias and texture bias
compared to models trained without data augmentation. In
Appendix C, we use MODELDIFF to further analyze how
ImageNet pre-training (C.1), SGD hyperparameters (C.2),
and horizontal flip augmentation (C.3) upweight or down-
weight specific instances of spurious model biases.

These case studies show that MODELDIFF surfaces fine-

MODELDIFF: A Framework for Comparing Learning Algorithms

grained differences between models trained with different
learning algorithms, enabling us to better understand how
train-time design choices shape model biases.

2. Preliminaries and Setup
2.1. Formalizing algorithm comparisons

The goal of the algorithm comparison problem is to under-
stand ways in which two learning algorithms (trained on the
same dataset) differ in terms of the model classes they yield.

Definition 2.1 (Induced model class). Given an input space
X , a label space Y , and a model space M ⊂ X → Y , a
learning algorithm A : (X × Y)∗ → M is a (potentially
random) function mapping a set of input-label pairs to a
model. Fixing a data distribution D, the model class in-
duced by algorithm A is the distribution over M that results
from applying A to randomly sampled datasets from D.

The perspective we adopt here is that model classes differ
insofar as they use different features to make predictions.
Thus, our goal when comparing two algorithms should be
to pinpoint features that one model class uses but the other
does not. Rather than try to precisely define “feature,” how-
ever, we make this notion precise via functions that we call
distinguishing (feature) transformations:

Definition 2.2 (Distinguishing transformation). Let A1,A2

denote learning algorithms, S a dataset of input-label pairs,
and L a loss function (e.g., correct-class margin). Suppose
M1 and M2 are models trained on dataset D using algo-
rithms A1 and A2 respectively. Then, a (ϵ, δ)-distinguishing
transformation of M1 with respect to M2 is a function
F : X → X such that for some label yc ∈ Y ,

Counterfactual effect of F on M1︷ ︸︸ ︷
E[L1(F (x), yc)− L1(x, yc)] ≥ δ and

Counterfactual effect of F on M2︷ ︸︸ ︷
E[L2(F (x), yc)− L2(x, yc)] ≤ ϵ,

where Li(x, y) = L(Mi(x), y) is the loss of a model trained
with algorithm Ai on the pair (x, y), and the expectations
are taken over inputs and randomness in the algorithm.

Intuitively, a distinguishing transformation, when applied
to test examples, significantly changes the predictions of
one model class, but not the other. Definition 2.2 also im-
mediately suggests a way to evaluate the effectiveness of a
“candidate” distinguishing transformation F . That is, given
a hypothesis about how two algorithms differ (e.g., differ-
ences in texture bias), one can design a corresponding trans-
formation F (e.g., style transfer in Geirhos et al. (2019)),
and compare its relative effect across model classes. Not
every distinguishing transformation sheds the same amount
of light on algorithm comparisons. For example, one could

craft a transformation that imperceptibly modifies inputs to
satisfy Definition 2.2 via adversarial perturbations. To quali-
tatively understand the differences in the biases of the model
classes, we look for informative distinguishing transforma-
tions (IDTs) that capture semantically meaningful features
that naturally arise in the data distribution.

2.2. Datamodel representations for comparison

A primer on datamodels. Let us fix a learning algorithm A
(i.e., a map from training datasets to models), a training set
S, and a specific test example x ∈ T . For any subset S′ ⊂ S
of the training set, we follow Ilyas et al. (2022) and define
the model output function f(x, S′) as the model output on
x after training a model on S′. Ilyas et al. (2022) show
that one can often approximate the (instance-wise) model
output function above with simpler surrogate models called
datamodels. For example, if the learning algorithm A is
training a neural network on a standard image classification
task and the output function f is the correct-class margin
of the classifier, a simple linear predictor suffices, i.e.,

E[f(x, S′)] ≈ θx · 1S′ , (1)

where θx is a parameter vector and 1S′ ∈ {0, 1}|S| is a
binary indicator vector of the set S′, encoding whether each
example in S is included in S′, i.e., (1S′)i = 1{xi ∈ S′}.

Datamodel representations. We view the datamodel θj for
example xj as an |S|-dimensional representation; two prop-
erties make them useful for algorithm comparison. First, the
i-th coordinate of a datamodel always corresponds to the
importance of the i-th training example, making datamodels
inherently aligned across different algorithms, even when
models lack internal representations (e.g., decision trees).
Second, systematic differences across datamodel represen-
tations correspond to a quantitative interpretation in terms
of model outputs. This is because datamodels predict the
effect of training set modifications on model outputs.

3. Comparing algorithms with MODELDIFF

Recall that we want to identify informative distinguishing
transformations (IDTs) that (a) induce different behavior
from the two learning algorithms, (b) capture a feature aris-
ing naturally in the data, and (c) are semantically mean-
ingful. The size of the transformation space and the sub-
jective notion of “semantically meaningful” make it futile
to search IDTs directly. Instead, our method MODELDIFF
first outputs a set of distinguishing subpopulations, groups
of examples on which models trained with different algo-
rithms exhibit different behavior, by contrasting how each
algorithm uses individual training examples:

Step 1: Compute datamodels for each algorithm. We
start by computing a datamodel representation (Ilyas et al.,

MODELDIFF: A Framework for Comparing Learning Algorithms

 !"(orange tint)

(1) Compute datamodel representations for algorithms and #1 #2 (2) Analyze residual datamodels
Train set space ℝN

Example x

θ(1)
x =

θ(2)
x =

 coordinate = dependence on training example jth jth

All training examples N

“Orange background” subpopulation

Compare with
models trained using algorithms and

Pr [y = plane |!"(orange tint)]
#1 #2

θ(1)
x

Run PCA on {θ(1∖2)
1 , . . . , θ(1∖2)

N }
θ(2)

x

θ(1∖2)
x

(4) Infer and test distinguishing feature(3) Principal components surface distinguishing subpopulations

%&'(θ(1∖2))

%&'(θ(2∖1))

Explained variance
on datamodels θ(1)

Ex
pl

ai
ne

d
va

ria
nc

e

on
 d

at
am

od
el

s

θ(2)

(i) Explained variance check (ii) Most aligned test examples

Figure 1: A visual summary of our approach. We first compute datamodels (Ilyas et al., 2022) for each algorithm. Then, we
compute residual datamodels to contrast both algorithms at the example level; running PCA on these residual datamodels
yields “distinguishing subpopulations.” on which algorithms exhibit different behavior. Finally, we turn this subpopulation
into a testable distinguishing transformation that we counterfactually verify with Definition 2.2.

2022) for each example in the test set T , and then divide
the datamodel by its ℓ2 norm. The resulting normalized
datamodel θi can be interpreted as a direction in train set
space R|S| that encodes how individual training examples
influence the prediction on example xi. In this step, we
compute two sets of datamodels—Θ(1),Θ(2) ∈ R|T |×|S|—
corresponding to learning algorithms A1 and A2.

Step 2: Compute residual datamodels. For each test ex-
ample xi, we compute a residual datamodel, the projection
of datamodel θ(1)i onto the null space of datamodel θ(2)i :
θ
(1\2)
i := θ

(1)
i − proj

θ
(2)
i

(
θ
(1)
i

)
. As shown in Figure 1, the

residual datamodels θ(1\2)i that contrast algorithm A1 from
A2 correspond to training directions that influence A1 after
“projecting away” the component that also influences A2.

Step 3(i): Run PCA on residual datamodels. We use PCA
to find the highest-variance directions among the residual
datamodels {θ(1\2)1 , . . . , θ

(1\2)
|T | }. Intuitively, the top ℓ princi-

pal components {u1, . . . uℓ}—which we call distinguishing
training directions—correspond to (weighted) combinations
of training examples that significantly influence models
trained with one algorithm but not the other.

How can we verify whether these distinguishing training
directions actually distinguish the two algorithms? Proposi-
tion 3.1 below leverages the predictiveness of datamodels
(see Section 2.2) to establish this connection. Specifically,
for a training direction to distinguish A1 from A2, it suf-
fices to explain a high (resp., low) amount of the variance in

datamodel representations of algorithm A1 (resp., A2).

Proposition 3.1 (Informal—see Appendix A for a formal
statement and proof). Assume for illustrative purposes
that Eq. (1) holds with equality (i.e., datamodels per-
fectly approximate model output). Let u ∈ R|S| be a
principal component, and define explained variance gap as:
∆(u) = ∥Θ(1)u∥2 − ∥Θ(2)u∥2. Then, up/down-weighting
the training set S (in a specific way) according to u will
change outputs of algorithm A1 by ∆(u) more than the
outputs of algorithm A2 on average.

Importantly, these conditions can be directly verified by
simply plotting the explained variances of distinguishing
training direction on datamodels corresponding to each
algorithm—see subplot 3(i) in Figure 1.

Step 3(ii): From distinguishing directions to distinguish-
ing subpopulations. We now have a set of ℓ distinguishing
directions ui (i.e., principal components of the residual
datamodels) that we verify by measuring ∆(u) from Propo-
sition 3.1. The final step is to translate each direction ui

into a corresponding distinguishing subpopulation: the set
of test examples xj whose residual datamodels θ(1\2)j most
closely align with ui—see subplot 3(ii) in Figure 1.

MODELDIFF outputs a set of distinguishing subpopulations.
We connect these back to our formal definition of algorithm
comparisons (Definition 2.2) by inferring (and verifying)
a distinguishing transformation from each subpopulation.
For example, given the “orange background” subpopulation
in Figure 1, we can design a transformation that overlays

MODELDIFF: A Framework for Comparing Learning Algorithms

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Explained Variance under Algorithm A1 (%)

(With Augmentation)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tA

ug
m

en
ta

ti
on

)

AB

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y

A

B

Figure 2: Comparing LIVING17 models trained with
and without standard data augmentation. (Left) Each
green (resp., red) point is a training direction (i.e., a vector
v ∈ R|S| representing a weighted combination of training
examples) that distinguishes A1 from A2 (resp., A2 from
A1) as identified by MODELDIFF. The x and y coordi-
nates of each point represent the “importance” (as given by
Proposition 3.1) of the training direction to models trained
with A1 and A2 respectively. (Right) The distinguishing
subpopulations, corresponding to the distinguishing training
directions annotated A and B, highlight spiders on spider
webs and salamanders with yellow polka dots respectively.
Additional subpopulations shown in Appendix G.5.

an orange tint on inputs and measure its average effect on
models trained with algorithms A1 and A2.

4. Applying MODELDIFF

We apply MODELDIFF to a case study on data augmentation,
a key component of the standard computer vision training
pipeline. Still, while it often improves overall performance,
the effect of data augmentation on models’ learned features
remains elusive. Here, we study the effect of data aug-
mentation on classifiers trained for the ImageNet-derived
LIVING17 task (Santurkar et al., 2021). Specifically, we
compare two classes of ResNet-18 models trained with the
exact same settings (see Appendix B) modulo the use of data
augmentation. In algorithm A1, we train models with stan-
dard augmentation (horizontal flip and resized random crop)
that attain 89% test accuracy. In algorithm A2, we train
models without augmentation that attain 81% test accuracy.

Applying MODELDIFF to algorithms A1 and A2 gives a
set of distinguishing subpopulations, visualized in Figure
2 (right). On the left side of the same figure—inspired by
Proposition 3.1—we plot the variance explained by each
distinguishing training direction in the datamodels for both
A1 (x axis) and A2 (y axis). The training directions (in
green) distinguishing A1 from A2 indeed explain a signifi-
cant amount of variance in the datamodels of A1 but not in
those of A2. Conversely, for directions distinguishing (in
red) A2 from A1, the situation is reversed, as expected.

From subpopulations to IDTs. The subpopulations in
Figure 2 highlight two distinguishing transformations:

Perturb

δ = 0.3

Perturb

δ = 0.4

Perturb

δ = 0.5

0.4 0.5 0.6
Perturbation Intensity δ

0

2

4

6

8

10

12

14

16

Pe
rc

en
tI

nc
re

as
e

in
Pr

(s
pi

de
r)

Data Augmentation

With Without

Perturb

δ = 0.2

Perturb

δ = 0.3

Perturb

δ = 0.4

0.2 0.3 0.4
Perturbation Intensity δ

0

5

10

15

20

Pe
rc

en
tI

nc
re

as
e

in
Pr

(s
al

am
an

de
r)

Data Augmentation

With Without

Figure 3: Effect of data augmentation. Data augmenta-
tion amplifies specific instances of co-occurrence (top) and
texture (bottom) biases. The left side of each panel illus-
trates the distinguishing transformation at three different
intensities δ. The right subplot shows the effect of the trans-
formation on the average confidence of models trained with
and without data augmentation. In both cases, increasing the
intensity δ widens the gap between the two model classes.

• Spider web: Direction A surfaces images of spiders that,
unlike random spider images (see Appendix E), all contain
spider webs. So, we hypothesize that models trained with
data augmentation rely more on spider webs to predict the
class “spider.” To test this, we apply a transformation that
overlays a spider web pattern onto images (see fig. 3).

• Polka dots: Direction B surfaces images of salamanders
that, unlike random salamander images, all feature yellow-
black polka dots. This suggests that models trained with
data augmentation rely on the polka dot texture to predict
the class “salamander.” To test this, we apply a transfor-
mation that adds polka dots to the images (see fig 3).

Additional analysis in Appendix E support both hypotheses.

Findings. Fig. 3, which shows the effect of the transforma-
tions on models trained with and without data augmentation,

MODELDIFF: A Framework for Comparing Learning Algorithms

supports our hypotheses. Overlaying a spider web pattern
with 30% opacity increases P (“spider”)—average confi-
dence in the spider label—for models trained with (without)
augmentation by 11% (1%). Similarly, overlaying the polka
dot texture with 30% opacity increases P (“salamander”) by
14% (2%). These differences verify that the transformations
distinguish the algorithms as per def. 2.2.

Connection to related work. Our case study shows how
standard data augmentation can amplify specific instances
of co-occurrence bias (spider webs) and texture bias (polka
dots). These findings empirically support the view of data
augmentation as feature manipulation (Shen et al., 2022).
Both distinguishing transformations substantiate that data
augmentation can (a) introduce unwanted biases (Hermann
et al., 2020)) and (b) disparately impact performance across
classses (Balestriero et al., 2022). Due to space constraints,
we defer additional related work to Appendix H.

5. Discussion
We discuss some ways to extend and evaluate MODELDIFF.

Measuring overall similarity between two algorithms.
In Appendix D.1, we adapt MODELDIFF to quantify the
similarity between learning algorithms in aggregate. Specif-
ically, given example x, the cosine similarity between its
datamodels (one for each algorithm) measures how similarly
training examples influence the two model classes’ predic-
tions. Then, aggregating over all x gives a distribution that
quantifies the overall similarity of two learning algorithms.

Comparing learning algorithms at the prediction level.
One might ask whether simply analyzing differences in pre-
dictions across learning algorithms suffices to surface sim-
ilar distinguishing subpopulations. To investigate this, we
analyze whether filtering out examples on which predictions
differ across algorithms has an impact on the distinguishing
directions extracted via MODELDIFF. In Appendix G.4, we
find that even after controlling for prediction-level differ-
ences, MODELDIFF outputs similar distinguishing direc-
tions (and subpopulations). This suggests that MODELDIFF
finds differences finer-grained than at the prediction-level.

Evaluating MODELDIFF subpopulations. We also design
a controlled setting to directly evaluate MODELDIFF sub-
populations (i.e., without needing to infer a distinguishing
transformation). Specifically, we use spurious correlations
to plant a “ground-truth” distinguishing subpopulation on
which two algorithms learn different features to make simi-
lar predictions. In Appendix C.3, we show that MODELDIFF
fully recovers the planted distinguishing subpopulation.

Speeding up MODELDIFF. The computational cost of
our approach scales with the number of models trained to
compute datamodels. In Appendix G.2, we show that one
can extract similar distinguishing subpopulations even with

10× fewer models to estimate datamodels). Moreover, the
“black-box” usage of datamodels implies that any improve-
ments in the sample efficiency of datamodel estimation
would directly speed up MODELDIFF comparisons.

6. Conclusion
We introduce a framework for fine-grained comparison of
any two learning algorithms. We first formalize algorithm
comparison as the problem of finding informative distin-
guishing transformations (IDTs). Then, we present MOD-
ELDIFF, which compares models trained using two different
algorithms by contrasting how these models rely on training
data to make predictions. We showcase the utility of our
framework in pinpointing how data augmentation—a key
aspect of ML pipelines—can alter model biases. A complete
version of this paper can be found at Shah et al. (2022).

7. Acknowledgements
Work supported in part by the NSF grants CCF-1553428
and CNS-1815221, and Open Philanthropy. This material
is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
HR001120C0015.

Research was sponsored by the United States Air Force Re-
search Laboratory and the United States Air Force Artificial
Intelligence Accelerator and was accomplished under Coop-
erative Agreement Number FA8750-19-2-1000. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the United
States Air Force or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

MODELDIFF: A Framework for Comparing Learning Algorithms

References
Abid, A., Yuksekgonul, M., and Zou, J. Meaningfully de-

bugging model mistakes using conceptual counterfactual
explanations. In arXiv preprint arXiv:2106.12723, 2022.

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt,
M., and Kim, B. Sanity checks for saliency maps. In
Neural Information Processing Systems (NeurIPS), 2018.

Balestriero, R., Bottou, L., and LeCun, Y. The effects of
regularization and data augmentation are class dependent.
arXiv preprint arXiv:2204.03632, 2022.

Bansal, Y., Nakkiran, P., and Barak, B. Revisiting model
stitching to compare neural representations. In Neural
Information Processing Systems (NeurIPS), 2021.

Baradad Jurjo, M., Wulff, J., Wang, T., Isola, P., and Tor-
ralba, A. Learning to see by looking at noise. Advances in
Neural Information Processing Systems, 34:2556–2569,
2021.

Chen, Z., Lu, Y., Hu, J., Yang, W., Xuan, Q., Wang,
Z., and Yang, Z. Revisit similarity of neural network
representations from graph perspective. arXiv preprint
arXiv:2111.11165, 2021.

Csiszarik, A., Korosi-Szabo, P., Matszangosz, A., Papp, G.,
and Varga, D. Similarity and matching of neural net-
work representations. In Neural Information Processing
Systems (NeurIPS), 2021.

Cui, T., Kumar, Y., Marttinen, P., and Kaski, S. Decon-
founded representation similarity for comparison of neu-
ral networks. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022.

Dabkowski, P. and Gal, Y. Real time image saliency for
black box classifiers. In Neural Information Processing
Systems (NeurIPS), 2017.

Davari, M., Horoi, S., Natik, A., Lajoie, G., Wolf, G., and
Belilovsky, E. Reliability of cka as a similarity measure
in deep learning. arXiv preprint arXiv:2210.16156, 2022.

Denain, J.-S. and Steinhardt, J. Auditing visualizations:
Transparency methods struggle to detect anomalous be-
havior. arXiv preprint arXiv:2206.13498, 2022.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition (CVPR),
2009.

Ding, F., Denain, J.-S., and Steinhardt, J. Grounding repre-
sentation similarity with statistical testing. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Eyuboglu, S., Varma, M., Saab, K., Delbrouck, J.-B., Lee-
Messer, C., Dunnmon, J., Zou, J., and Ré, C. Domino:
Discovering systematic errors with cross-modal embed-
dings. arXiv preprint arXiv:2203.14960, 2022.

Feldman, V. and Zhang, C. What neural networks memorize
and why: Discovering the long tail via influence esti-
mation. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 2881–2891, 2020.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. Imagenet-trained CNNs are
biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on
Learning Representations (ICLR), 2019.

Ghorbani, A., Wexler, J., Zou, J., and Kim, B. Towards
automatic concept-based explanations. arXiv preprint
arXiv:1902.03129, 2019.

Ghosal, S. S., Ming, Y., and Li, Y. Are vision trans-
formers robust to spurious correlations? arXiv preprint
arXiv:2203.09125, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015.

Hermann, K., Chen, T., and Kornblith, S. The origins
and prevalence of texture bias in convolutional neural
networks. In Advances in Neural Information Processing
Systems, 2020.

Hoffer, E., Hubara, I., and Soudry, D. Train longer, general-
ize better: closing the generalization gap in large batch
training of neural networks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. A
benchmark for interpretability methods in deep neural
networks. arXiv preprint arXiv:1806.10758, 2018.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training
data. In International Conference on Machine Learning
(ICML), 2022.

Jain, S., Lawrence, H., Moitra, A., and Madry, A. Distilling
model failures as directions in latent space. arXiv preprint
arXiv:2206.14754, 2022.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P. T. P. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. In Interna-
tional Conference on Learning Representations (ICLR),
2017.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. Interpretability beyond feature attribu-
tion: Quantitative testing with concept activation vectors

MODELDIFF: A Framework for Comparing Learning Algorithms

(tcav). In International conference on machine learning
(ICML), 2018.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International Conference
on Machine Learning, 2017.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Sim-
ilarity of neural network representations revisited. In
Proceedings of the 36th International Conference on Ma-
chine Learning (ICML), 2019.

Krizhevsky, A. Learning multiple layers of features from
tiny images. In Technical report, 2009.

Leclerc, G., Salman, H., Ilyas, A., Vemprala, S., Engstrom,
L., Vineet, V., Xiao, K., Zhang, P., Santurkar, S., Yang, G.,
et al. 3db: A framework for debugging computer vision
models. In arXiv preprint arXiv:2106.03805, 2021.

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman,
H., and Madry, A. ffcv. https://github.com/
libffcv/ffcv/, 2022.

Li, Y., Wei, C., and Ma, T. Towards explaining the regu-
larization effect of initial large learning rate in training
neural networks. In Neural Information Processing Sys-
tems (NeurIPS). 2019.

Liu, H., Xie, S. M., Li, Z., and Ma, T. Same pre-training loss,
better downstream: Implicit bias matters for language
models. In arXiv preprint arXiv:2210.14199, 2022.

Lundberg, S. and Lee, S.-I. A unified approach to interpret-
ing model predictions. In Neural Information Processing
Systems (NeurIPS), 2017.

Mania, H., Miller, J., Schmidt, L., Hardt, M., and Recht, B.
Model similarity mitigates test set overuse. In Advances
in Neural Information Processing Systems (NeurIPS), pp.
9993–10002, 2019.

Meding, K., Buschoff, L. M. S., Geirhos, R., and Wichmann,
F. A. Trivial or impossible — dichotomous data difficulty
masks model differences (on imagenet and beyond). In
International Conference on Learning Representations
(ICLR), 2022.

Miller, G. A. Wordnet: a lexical database for english. Com-
munications of the ACM, 1995.

Morcos, A., Raghu, M., and Bengio, S. Insights on repre-
sentational similarity in neural networks with canonical
correlation. Advances in Neural Information Processing
Systems, 31, 2018a.

Morcos, A. S., Barrett, D. G., Rabinowitz, N. C., and
Botvinick, M. On the importance of single directions
for generalization. In International Conference on Learn-
ing Representations (ICLR), 2018b.

Neyshabur, B., Sedghi, H., and Zhang, C. What is being
transferred in transfer learning? Advances in neural
information processing systems, 33:512–523, 2020.

Nguyen, T., Raghu, M., and Kornblith, S. Do wide and deep
networks learn the same things? uncovering how neural
network representations vary with width and depth. In
International Conference on Learning Representations
(ICLR), 2021.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., et al. Learning transferable visual models
from natural language supervision. In arXiv preprint
arXiv:2103.00020, 2021.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.
SVCCA: Singular vector canonical correlation analysis
for deep learning dynamics and interpretability. In Ad-
vances in Neural Information Processing Systems, 2017.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and
Dosovitskiy, A. Do vision transformers see like convolu-
tional neural networks? In Neural Information Process-
ing Systems (NeurIPS), 2021.

Ribeiro, M. T., Singh, S., and Guestrin, C. " why should i
trust you?" explaining the predictions of any classifier. In
International Conference on Knowledge Discovery and
Data Mining (KDD), 2016.

Ruiz, N., Bargal, S. A., Xie, C., Saenko, K., and Sclaroff, S.
Finding differences between transformers and convnets
using counterfactual simulation testing. arXiv preprint
arXiv:2211.16499, 2022.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gen-
eralization. In International Conference on Learning
Representations, 2020.

Salman, H., Jain, S., Ilyas, A., Engstrom, L., Wong, E., and
Madry, A. When does bias transfer in transfer learning?
In arXiv preprint arXiv:2207.02842, 2022.

Santurkar, S., Tsipras, D., and Madry, A. Breeds: Bench-
marks for subpopulation shift. In International Confer-
ence on Learning Representations (ICLR), 2021.

Shah, H., Jain, P., and Netrapalli, P. Do input gradients
highlight discriminative features? Advances in Neural
Information Processing Systems, 34, 2021.

Shah, H., Park, S. M., Ilyas, A., and Madry, A. Modeldiff:
A framework for comparing learning algorithms. In arXiv
preprint arXiv:2211.12491, 2022.

https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/

MODELDIFF: A Framework for Comparing Learning Algorithms

Shen, R., Bubeck, S., and Gunasekar, S. Data augmentation
as feature manipulation. In International Conference on
Machine Learning, pp. 19773–19808. PMLR, 2022.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Singla, S. and Feizi, S. Salient imagenet: How to discover
spurious features in deep learning? In International
Conference on Learning Representations, 2021.

Tu, L., Lalwani, G., Gella, S., and He, H. An empirical
study on robustness to spurious correlations using pre-
trained language models. Transactions of the Association
for Computational Linguistics, 8:621–633, 2020.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Wang, J., Wang, L., Zheng, Y., Yeh, C.-C. M., and andWei
Zhang, S. J. Learning-from-disagreement: A model com-
parison and visual analytics framework. arXiv preprint
arXiv:2201.07849, 2022.

Wen, Y., Luk, K., Gazeau, M., Zhang, G., Chan, H., and Ba,
J. An empirical study of large-batch stochastic gradient
descent with structured covariance noise. arXiv preprint
arXiv:1902.08234, 2019.

Wong, E., Santurkar, S., and Madry, A. Leveraging sparse
linear layers for debuggable deep networks. In Interna-
tional Conference on Machine Learning (ICML), 2021.

Wu, J., Belinkov, Y., Sajjad, H., Durrani, N., Dalvi, F., and
Glass, J. Similarity analysis of contextual word represen-
tation models. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020.

Xiao, K., Engstrom, L., Ilyas, A., and Madry, A. Noise or
signal: The role of image backgrounds in object recogni-
tion. arXiv preprint arXiv:2006.09994, 2020.

Yang, K., Yau, J. H., Fei-Fei, L., Deng, J., and Russakovsky,
O. A study of face obfuscation in imagenet. In Inter-
national Conference on Machine Learning, pp. 25313–
25330. PMLR, 2022.

Zhong, R., Ghosh, D., Klein, D., and Steinhardt, J. Are
larger pretrained language models uniformly better?
Comparing performance at the instance level. In Find-
ings of the Association for Computational Linguistics
(Findings of ACL), 2021.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Tor-
ralba, A. Places: A 10 million image database for scene
recognition. In IEEE transactions on pattern analysis
and machine intelligence, 2017.

MODELDIFF: A Framework for Comparing Learning Algorithms

Appendices

A Algorithm analysis 10

B Experiment Setup 11

B.1 Datasets . 11

B.2 Models, learning algorithms, and hyperparameters . 11

B.3 Datamodels . 12

B.4 Distinguishing feature transformations . 13

B.5 Training infrastructure . 13

C Additional case studies 14

C.1 ImageNet Pre-training . 14

C.2 SGD hyperparameters . 16

C.3 Synthetic spurious correlations . 18

D Extending MODELDIFF 20

D.1 Aggregate metric for algorithm comparison . 20

D.2 Leveraging CLIP to analyze distinguishing subpopulations . 21

E Additional analysis of distinguishing subpopulations 23

E.1 Case study: Standard data augmentation . 24

E.2 Case study: ImageNet pre-training . 25

E.3 Case study: SGD hyperparameters . 26

F Additional evaluation of distinguishing transformations 28

F.1 Case study: Standard data augmentation . 28

F.2 Case study: ImageNet pre-training . 29

F.3 Case study: SGD hyperparameters . 30

G Miscellaneous results 31

G.1 Explained variance of residual datamodel principal components . 31

G.2 Effect of sample size on datamodel estimation . 32

G.3 Algorithm comparisons with penultimate-layer representations . 34

G.4 Effect of prediction-level differences on distinguishing training directions 36

G.5 Top-k subpopulations surfaced by principal components of residual datamodels 37

H Related work 37

MODELDIFF: A Framework for Comparing Learning Algorithms

A. Algorithm analysis
Here, we give a more formal version of Proposition 3.1. First, we need to define the sense in which a given learning
algorithm is sensitive to up/down-weighting the training set according to a training direction u ∈ R|S|.

Sensitivity along a training direction. We consider the following probabilistic notion of sensitivity: we measure how
f(x, S′) varies in expectation, if relative to some base distribution D0 over S′, we up/down weight the probability of each
training example by its weight ui.

More specifically, for D0, we consider sampling S′ uniformly, i.e., by choosing each element of the full training set S with
probability 1/2. Then, we consider the perturbed distribution Du where xi is sampled with probability (1 + ui)/2. Finally,
we define the sensitivity of f(x, ·) along u (or u-sensitivity) as:

f(x, ·)|u = (ES′∼Du
f(x, S′)− ES′∼D0

f(x, S′))2

where we take the square as we are interested in the magnitude.

We now give the formal result connecting the explained variance gap in datamodels (which we empirically observed in our
case studies in Section 4) to the above definition of senstivity.

Theorem A.1 (Formal version of Proposition 3.1). Consider two learning algorithms A1 and A2 applied to a training set
S and evaluated on a test set T . Assume that their datamodels θ(1)x and θ

(2)
x perfectly approximate the respective model

outputs f (1)(x, ·) and f (2)(x, ·). Then, for a given training direction u ∈ R|S|, the explained variance gap

∆(u) = ∥Θ(1)u∥2 − ∥Θ(2)u∥2

is equal to the following quantity: ∑
x∈T

f (1)(x, ·)|u −
∑
x∈T

f (2)(x, ·)|u

which is the difference in u-sensitivity of model outputs of algorithms A1 and A2.

Proof. With our linear assumption and definition of sensitivity, the proof is almost immediate. First, under the linearity
assumption, the sensitivity f(xi, ·)|u just reduces to (θi · u)2. It follows that the total sensitivity,

∑
i f(xi, ·)|u is just∑

i(θi · u)2, from which the claim follows.

MODELDIFF: A Framework for Comparing Learning Algorithms

B. Experiment Setup
In this section, we outline the experimental setup—datasets, models, training algorithms, hyperparameters, and datmodels—
used for our case studies in Section 4.

B.1. Datasets

Living17. The Living17 dataset (Santurkar et al., 2021) is an ImageNet-derived dataset, where the task is to classify images
belonging to 17 types of living organisms (e.g., salamander, bear, fox). Each Living17 class corresponds to an ImageNet
superclass (i.e., a set of ImageNet classes aggregated using WordNet (Miller, 1995)). Santurkar et al. (2021) introduce
Living17 as one of four benchmark to evaluate model robustness to realistic subpopulation shifts. In our case study, we
study the effect of data augmentation using a variant of this dataset, wherein the training and test images belong to the same
set of subpopulations (i.e., no subpopulation shift).

Waterbirds. The Waterbirds dataset (Sagawa et al., 2020) consists of bird images taken from the CUB dataset (Wah et al.,
2011) and pasted on backgrounds from the Places dataset (Zhou et al., 2017). The task here is to classify “waterbirds” and
“landbirds” in the presence of spurious correlated “land” and “water” backgrounds in the training data. Sagawa et al. (2020)
introduce Waterbirds as a benchmark to evaluate models under subpopulation shifts induced by spurious correlations. In our
case study, we compare how models trained from scratch on Waterbirds data differ from ImageNet-pretrained models that
are fine-tuned on Waterbirds data.

CIFAR-10. We consider the standard CIFAR-10 (Krizhevsky, 2009) image classification dataset in order to study the effect
of two SGD hyperparameters: learning rate and batch size.

Summary statistics of the datasets described above are outlined in Table 1.

Table 1: Summary statistics of datasets

Dataset Classes Size (Train/Test) Input Dimensions

Living17 17 88,400/3,400 3× 224× 224
Waterbirds 2 4,795/5,794 3× 224× 224
CIFAR-10 10 50,000/10,000 3× 32× 32

B.2. Models, learning algorithms, and hyperparameters

Living17. We use the standard ResNet18 architecture (He et al., 2015) from the torchvision library. We train models for
25 epochs using SGD with the following configuration: initial learning rate 0.6, batch size 1024, cyclic learning rate schedule
(with peak at epoch 12), momentum 0.9, weight decay 0.0005, and label smoothing (with smoothing hyperparameter 0.1).
To study the effect of data augmentation, we train models with the following algorithms:

• Algorithm A1 (with data augmentation): Models are trained with standard data augmentation: random resized cropping
(with default torchvision hyperparamters) and random horizontal flips. On average, models attain 89.2% average
test accuracy.

• Algorithm A2 (without data augmentation): Models are trained without data augmentation. On average, models attain
81.9% average test accuracy.

Waterbirds. We use the standard ResNet50 architecture from the torchvision library. We train models using SGD with
momentum 0.9 and weight decay 0.0001 for a maximum of 50 epochs (and stop early if the training loss drops below 0.01).
For model selection, we choose the model checkpoint that has the maximum average accuracy on the validation dataset.
As in Sagawa et al. (2020), we do not use data augmentation. In our case study on pre-training, we consider ImageNet
pre-trained models from torchvision. We consider models trained using the following algorithms:

• Algorithm A1 (ImageNet pre-training): Models pre-trained on ImageNet are fully fine-tuned on Waterbirds data with a
fixed SGD learning rate 0.005 and batch size 64. On average, models attain 89.1% (non-adjusted) average test accuracy
and 63.9% worst-group test accuracy.

MODELDIFF: A Framework for Comparing Learning Algorithms

• Algorithm A2 (Training from scratch): Models are trained from scratch (i.e., random initialization) on Waterbirds data
with SGD: initial learning rate 0.01, batch size 64, and a linear learning rate schedule (0.2× every 15 epochs). On average,
models attain 63.6% average test accuracy and 5.7% worst-group test accuracy.

CIFAR-10. We use the ResNet9 architecture from Kakao Brain1, which is optimized for fast training. We train models
using SGD with momentum 0.9 and weight decay 0.0005 for a maximum of 100 epochs (and stop early if the training loss
drops below 0.01). We augment training data with a standard data augmentation scheme: random resized cropping with 4px
padding and random horizontal flips. To study the effect of SGD noise in our case study, we vary learning rate and batch
size. Specifically, we compare models trained with the following algorithms:

• Algorithm A1 (high SGD noise): Models are trained with SGD using a large initial learning rate (0.1), small batch size
(256), and a linear learning rate schedule (0.5× every 20 epochs). On average, models attain 93.3% test accuracy.

• Algorithm A2 (low SGD noise): Models are trained with SGD using a small fixed learning rate (0.02) and large batch
size (1024). On average, models attain 89.5% test accuracy.

B.3. Datamodels

Now, we provide additional details on datamodels which, we recall, are computed in the first step of our algorithm
comparison framework.

Estimating linear datamodels. Recall that the datamodel vector for example xj , θ(i)j ∈ R|S|, encodes the importance
of individual training examples S to model’s loss at example xj when trained with algorithm Ai. Concretely, given test
example xj and training set S = {x1, . . . , xd}, the datamodel θj is a sparse linear model (or surrogate function) trained on
the following regression task: For a training subset S′ ⊂ S, can we predict the correct-class margin fA(xj ;S

′) of a model
trained on S′ with algorithm A? This task can be naturally formulated as the following supervised learning problem: Given
a training set {(Si, fA(x;Si))}mi=1 of size m, the datamodel θj (for example xj) is the solution to the following problem:

θj = min
w∈R|S|

1

m

m∑
i=1

(
w⊤1Si

− fA(xj ;Si)
)2

+ λ∥w∥1, (2)

where 1Si
is a boolean vector that indicates whether examples in the training dataset x ∈ S belong to the training subset Si.

Note that each datamodel training point (Si, fA(xj , Si)) is obtained by (a) training a model f (e.g., ResNet9) on a subset of
data Si (e.g., randomly subsampled CIFAR data) and (b) evaluating the trained model’s output on example xj .

Datamodel estimation hyperparameters. Recall that our algorithm comparison framework in Section 3 involves estimating
two sets of datamodels {θ(1)} and {θ(2)} for learning algorithms A1 and A2 respectively. In our case studies, we estimate
two datamodels, θ(1)i and θ

(2)
i for every example xi in the test dataset. Estimating these datamodels entail three design

choices:

• Sampling scheme for train subsets: Like in Ilyas et al. (2022), we use α-random subsets of the training data, where
α denotes the subsampling fraction; we set α = 50% as it maximizes sample efficiency (or model reuse) for empirical
influence estimation (Feldman & Zhang, 2020), which is equivalent to a variant of linear datamodels (Ilyas et al., 2022).

• Sample size for datamodel estimation: Recall that a datamodel training set of size m corresponds to training m models
(e.g., m ResNet18 models on CIFAR-10) on independently sampled train subsets (or masks). We estimate datamodels
on LIVING17, WATERBIRDS, and CIFAR-10 using 120k, 50k, and 50k samples (or models) per learning algorithm
respectively; we make a 90− 10% train-validation split.

• ℓ1 sparsity regularization: We use cross-validation to select the sparsity regularization parameter λ. Specifically, for
each datamodel, we evaluate the MSE on a validation split to search over k = 50 logarithmically spaced values for λ
along the regularization path. As in (Ilyas et al., 2022), we then re-compute the datamodel on the entire dataset with the
optimal λ value and all m training examples.

1https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

MODELDIFF: A Framework for Comparing Learning Algorithms

B.4. Distinguishing feature transformations

We counterfactually verify distinguishing feature transformations (inferred from distinguishing subpopulations) by evalu-
ating whether the corresponding transformations change model behavior as hypothesized. Here, we describe the feature
transformations used in Section 4 in more detail2.

Designing feature transformations. We design feature transformations that modify examples by adding a specific patch or
perturbation. We vary the intensity of patch-based and perturbation-based transformations via patch size k and perturbation
intensity δ respectively. Additional details specific to each case study:

• Pre-training. We use patch-based transformations in this case. For the yellow color feature, we add a k× k square yellow
patch to the input. For the human face feature, we add a k× k image of a human face to the input. To avoid occlusion with
objects in the image foreground, we add the human face patch to the background. We make a bank of roughly 300 human
faces using ImageNet face annotations (Yang et al., 2022) by (a) cropping out human faces from ImageNet validation
examples and (b) manually removing mislabeled, low-resolution, and unclear human face images.

• Data augmentation. We design perturbation-based transformations to verify the identified distinguishing features: spider
web and polka dots. In both cases, we δ-perturb each input with a random crop of a fixed grayscale spider web or yellow
polka dot pattern.

• SGD hyperparameters. We use patch-based transformations in this case study. For the black-white texture feature, we
add a k-sized patch that loosely resembles a black-white dog nose. Similarly, for the rectangular shape feature, we add a
k-sized patch that loosely resembles windows.

Evaluating feature transformations. As shown in Section 4, given two learning algorithms A1 and A2, we evaluate
whether a feature transformation F changes predictions of models trained with A1 and A2 as hypothesized. To evaluate the
counterfactual effect of transformation F on model M , we evaluate the extent to which applying F to input examples x
increases the confidence of models in a particular class y. In our experiments, we estimate this counterfactual effect by
averaging over all test examples and over 500 models trained with each learning algorithm.

B.5. Training infrastructure

Data loading. We use FFCV3 (Leclerc et al., 2022), which removes the data loading bottleneck for smaller models, gives a
3-4× improvement in throughput (i.e., number of models a day per GPU).

Datamodels regression. In addition to FFCV, we use the fast-l1 package—a SAGA-based GPU solver for ℓ1-regularized
regression—to parallelize datamodel estimation.

Computing resources.

We train our models on a cluster of machines, each with 9 NVIDIA A100 or V100 GPUs and 96 CPU cores. We also use
half-precision to increase training speed.

2The code for these feature transformations is available at anonymized.
3Webpage: http://ffcv.io

anonymized
http://ffcv.io

MODELDIFF: A Framework for Comparing Learning Algorithms

C. Additional case studies
C.1. ImageNet Pre-training

Pre-training on large datasets is a standard approach to improve performance on downstream tasks with limited training
data. Here, we study the effect of ImageNet pre-training (Deng et al., 2009) on models trained for the WATERBIRDS task
of classifying images of birds as “waterbird” or “landbird” (Sagawa et al., 2020). We compare two classes of ResNet-50
models trained with the exact same settings (see Appendix B) modulo the use of ImageNet pre-training:

• Algorithm A1: ImageNet pre-trained models fine-tuned on WATERBIRDS. Models attain 89.1% accuracy.

• Algorithm A2: Training directly on WATERBIRDS. Models attain 63.9% average accuracy.

Identifying IDTs with MODELDIFF. We apply MODELDIFF and the subpopulations surface two distinguishing transfor-
mations:

• Yellow color: Subpopulation A comprises test images of yellow birds belonging to class “landbird.” This leads us to
hypothesize that models trained from scratch spuriously rely on the color yellow to predict the class “landbird,” whereas
ImageNet pre-trained models do not. To test this hypothesis, we design a transformation that adds a yellow square patch
to images (see Figure 4).

• Human face: Subpopulation B comprises “landbird” images with human faces in the background, suggesting that
ImageNet pre-training introduces a spurious dependence on faces to predict the label “landbird.” We test this hypothesis
with a transformation that adds human faces to the background of WATERBIRDS images (see Figure 4).

Analysis in Appendix E further supports both hypotheses.

Findings. In Figure 4, we evaluate the effect of the above distinguishing transformations on models trained with and without
ImageNet pre-training. The results confirm both hypotheses. Adding a small (40px) yellow square patch to test images
increased P (“landbird”) by 12% for models trained from scratch but decreased P (“landbird”) for models pre-trained on
ImageNet. Similarly, adding a human face patch4 to image backgrounds increased P (“landbird”) by up to 4% for pre-trained
models, but did not significantly affect models trained from scratch. Once again, increasing the intensity (i.e., patch size) of
these transformations further widens the gap in sensitivity between the model classes.
Streamlining the verification step with CLIP. So far, we have shown that manual inspection of distinguishing subpop-
ulations suffices to infer (and verify) distinguishing transformations (IDTs). Nevertheless, depending on the dataset and
modality, one can also domain-specific tools to infer IDTs from subpopulations in a streamlined manner. For example,
in Appendix D.2, we use CLIP embeddings (Radford et al., 2021) in order to search over natural language descriptions (or
captions) that best contrast distinguishing subpopulations from the entire dataset. In this case, for subpopulations A and B,
our CLIP-based approach in Appendix D.2 generates candidate hypotheses {“yellow”, “canary”, “lemon”} and {“florists”,
“florist”, “faces”} respectively.

Connections to prior work. Our results show that ImageNet pre-training reduces dependence on specific spurious
correlations (e.g., yellow color → landbird) but also introduces new ones (e.g., human face → landbird). These findings
connect to two (seemingly contradictory) phenomena where pre-training improves robustness to spurious features (Ghosal
et al., 2022; Tu et al., 2020) while also transferring over spurious correlations (Salman et al., 2022; Neyshabur et al., 2020)
from the pre-training dataset.

4We extract human face patches from ImageNet examples using face annotations from Yang et al. (2022) (see Appendix B.4).

MODELDIFF: A Framework for Comparing Learning Algorithms

Add Patch

Size 20px

Add Patch

Size 30px

Add Patch

Size 40px

20 30 40
Patch Size

−4

−2

0

2

4

6

8

10

12

Pe
rc

en
tI

nc
re

as
e

in
Pr

(l
an

db
ir

d)

ImageNet Pre-training

With Without

Add Patch

Size 80px

Add Patch

Size 100px

Add Patch

Size 120px

80 100 120
Patch Size

−1

0

1

2

3

4

Pe
rc

en
tI

nc
re

as
e

in
Pr

(l
an

db
ir

d)

ImageNet Pre-training

With Without

Figure 4: Effect of ImageNet pre-training on WATERBIRDS classification. Analogously to Figure 3, we use our
framework to identify spurious correlations that are either suppressed or amplified by ImageNet pre-training. (Left) Adding
a yellow patch to images makes models trained without (with) pre-training, on average, 9% more (2% less) confident in
predicting the label “landbird.” (Right) Adding human faces to image backgrounds makes models trained with (without)
pre-training, on average, 3% (0%) more confident in predicting the label “landbird.” Again, in both cases, increasing the
intensity of feature transformations widens the gap in treatment effect between the two model classes.

MODELDIFF: A Framework for Comparing Learning Algorithms

C.2. SGD hyperparameters

The choices of optimizer and corresponding hyperparameters can affect both the trainability and the generalization of
resulting models (Hoffer et al., 2017; Keskar et al., 2017). In this case study, we study the effect of two hyperparameters—
learning rate and batch size—that control the effective scale of the noise in stochastic gradient descent (SGD). We study the
effect of these hyperparameters in the context of CIFAR-10 (Krizhevsky, 2009) classifiers by comparing the following two
learning algorithms:

• Algorithm A1: Training with high SGD noise, i.e., large learning rate (0.1) and small batch size (256). Models attain
93% average test accuracy.

• Algorithm A2: Training with low SGD noise, i.e., small large rate (0.02) and large batch size (1024). Models attain 89%
average test accuracy.

Identifying IDTs with MODELDIFF. We apply MODELDIFF, with results shown in Figure 5.

• Black-and-white texture: Subpopulation A contains two-colored dogs (Figure 5, top right). The low-resolution nature of
CIFAR-10 makes it difficult to identify a single distinguishing feature from this subpopulation. Additional analysis using
datamodels (Appendix E), however, reveals a set of black-and-white training images from other classes that influence
predictions on subpopulation A only when models are trained with low SGD noise (algorithm A2). We thus hypothesize
that models trained with low SGD noise rely more on black-and-white textural features to predict the class “dog.” To test
this hypothesis, we design a transformation that adds a small black-and-white patch to a given image (see Figure 6a).

• Rectangular shape: Direction B surfaces a subpopulation of front-facing trucks (Figure 5, bottom right) that all have a
similar rectangularly-shaped cabin and cargo area. The same style of additional analysis (see Appendix E) supports this
observation, and suggests that models trained with low SGD noise (i.e., with A2) rely on rectangular-shaped patterns
to predict the class “truck”. To test this hypothesis, we design a feature transformation that modifies a given image
with a patch of two high-contrast rectangles, loosely resembling the cabin/cargo shape of trucks in the subpopulation B
(see Figure 6b).

In Figure 6, we compare the effect of the above feature transformations on models trained with high and low SGD noise.
The results again confirm both hypotheses. Adding a small (6px) black-and-white patch to test images increased P (“dog”)
by 14% (9%) for models trained with low (high) SGD noise. Similarly, applying a small (8px) rectangular-shape patch
increased P (“truck”) by 7% (2%) for models trained with low (high) SGD noise. Increasing the intensity (i.e., patch size)
of the transformations again widens the gap in sensitivity between the two model classes.

Connections to prior work. This case study shows how reducing the scale of SGD noise can increase reliance on certain
low-level features (e.g., rectangular shape → trucks). While prior works show that lower SGD noise worsens aggregate
model performance (Keskar et al., 2017; Wen et al., 2019), our methodology identifies specific features that are amplified
due to low SGD noise. Furthermore, the simplistic nature of the identified features corroborate the theoretical explanation
put forth in Li et al. (2019): learning rate scale determines the extent to which models memorize patterns that are easy-to-fit
but hard-to-generalize. More broadly, our framework motivates a closer look at how features amplified via low SGD noise
alter aggregate model performance.

MODELDIFF: A Framework for Comparing Learning Algorithms

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Explained Variance under Algorithm A1 (%)

(High SGD Noise)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(L
ow

SG
D

N
oi

se
)

A

B

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y A

B

Figure 5: Comparing CIFAR-10 models trained with high and low SGD noise. An analog to Figure 2 for our third case
study. Here, subpopulation A seems to correspond to dogs with a particular texture, and subpopulation B to front-facing
trucks with a prominent rectangular shape.

Add Patch

Size 4px

Add Patch

Size 5px

Add Patch

Size 6px

4 5 6
Patch Size

0

2

4

6

8

10

12

14

Pe
rc

en
tI

nc
re

as
e

in
Pr

(d
og

)

SGD Noise

High Low

(a) “Black-and-white texture” feature

Add Patch

Size 6px

Add Patch

Size 7px

Add Patch

Size 8px

6 7 8
Patch Size

0

1

2

3

4

5

6

7
Pe

rc
en

tI
nc

re
as

e
in

Pr
(t

ru
ck

)

SGD Noise

High Low

(b) “Rectangular shape” feature

Figure 6: Effect of SGD hyperparameters on CIFAR-10 models. Analogously to Figures 3 and 4, we use our framework
to identify features that distinguish models trained with lower SGD noise from models trained with higher SGD noise. (Left)
Adding a black-and-white patch to images makes models trained with low (high) SGD noise, on average, 11% (8%) more
confident in predicting the label “dog.” (Right) Adding high-contrast rectangles to images makes models trained with low
(high) SGD noise, on average, 5.5% (1.5%) more confident in predicting the label “truck.” In both cases, increasing the
intensity of feature transformations widens the gap in treatment effect between the two model classes.

MODELDIFF: A Framework for Comparing Learning Algorithms

C.3. Synthetic spurious correlations

Recall that our algorithm comparison objective (Definition 2.2) counterfactually evaluates distinguishing transformations
that we infer via MODELDIFF subpopulations. In this case study, we introduce a semi-synthetic controlled setting in
order to directly evaluate MODELDIFF subpopulations (i.e., without needing to infer a distinguishing transformation).
In particular, we leverage synthetic spurious correlations to plant a “ground-truth” distinguishing subpopulation, which
comprises examples on which two algorithms make similar predictions but differ in terms of the underlying learned features.
Then, we apply MODELDIFF to this case study, and evaluate the extent to which MODELDIFF recovers the “ground-truth”
distinguishing subpopulation.

Dataset. We consider the CIFAR dataset (Krizhevsky, 2009) to construct a binary classification task between CIFAR
examples belonging to classes “cat” and “dog”. Additionally, as shown in Figure 7, we add a small red square patch to 5%
of the examples in the training and test datasets. In particular, 5% of “cat” examples have a red patch in the top left corner,
and 5% of “dog” examples have a red patch in the top right corner. In other words, the location of the patch—top left corner
or top right corner—is fully predictive of the labels “cat” and “dog” respectively.

Learning algorithms. We consider ResNet-9 models trained on the dataset described above with the following algorithms:

• Algorithm A1 (models rely on patch): Models are trained without any data augmentation and attain 81% average test
accuracy. These models latch onto the planted red patch, attaining 100% accuracy on examples containing the patch and
0% when the patch is “flipped” to the other location.

• Algorithm A2 (models do not rely on patch): Models are trained with horizontal flip data augmentation and also
attain 81% average test accuracy. Importantly, the horizontal flip augmentation makes the location of the red patch a
non-discriminative feature. As a result, these models do not rely on the planted red patch to make predictions. Given an
example x, adding a red patch to x on either location (i.e., top left or top right) does not change model predictions on x.

Note that algorithms A1 and A2 share the same configuration modulo the use of horizontal flips as data augmentation. While
models trained with both algorithms attain similar test accuracies, they differ in terms of their reliance on the planted spurious
correlation. In particular, on examples containing the red square patch, both model classes make similar predictions, but
rely on different “features”—algorithm A1 outputs models reliant on the patch, whereas A2 outputs models invariant to the
patch. As a result, the set of examples containing the patch correspond to the “ground-truth” distinguishing subpopulation.

Class 0: CIFAR cats Class 1: CIFAR dogs

Figure 7: Dataset. Binary classification task between CIFAR “cat” examples (class 0) and CIFAR “dog” examples (class 1).
Additionally, 5% of “cat” examples have a (discriminative) red patch in the top left corner, and 5% of “dog” examples have
the same patch in the top right corner.

Applying MODELDIFF. Like in previous case studies (Section 4), we apply MODELDIFF to algorithms A1 and A2

and first obtain a set of distinguishing training directions. In Figure 8, we plot the variance explained by the top few
distinguishing training directions in the datamodels for both A1 (x axis) and A2 (y axis). In this case, the distinguishing
direction corresponding to the “ground-truth” subpopulation should have high explained variance in the datamodels for A1

and low explained variance in the datamodels for A2. In Figure 8, we show that the distinguishing subpopulation surfaced
by one such distinguishing direction (annotated A in Figure 8) surfaces the set of CIFAR examples containing the patch.

Evaluating MODELDIFF subpopulations. Now, we quantitatively assess the extent to which the MODELDIFF subpop-
ulation surfaced via direction A (depicted in Figure 8) recovers the “ground-truth” distinguishing subpopulation. More
concretely, we compare the similarity between (a) the set of examples containing the patch and (b) the set of top-k examples
whose residual datamodels θ

(1\2)
i most closely aligned with direction A. We find that the fraction of top-k examples

“retrieved” via MODELDIFF that are in the ground-truth subpopulation equals 1 for all values of k less than the number
of examples containing the patch. That is, distinguishing direction A (found via MODELDIFF) perfectly recovers the
ground-truth distinguishing subpopulation.

MODELDIFF: A Framework for Comparing Learning Algorithms

A

Figure 8: Applying ModelDiff. Comparing algorithms A1 (models sensitive to patch; no data augmentation) and A2

(models invariant to patch; horizontal flip augmentation) (Left) Each green (resp., red) point is a training direction (i.e.,
a vector v ∈ R|S| representing a weighted combination of training examples) that distinguishes A1 from A2 (resp., A2

from A1) as identified by MODELDIFF. The x and y coordinates of each point represent the “importance” (as given
by Proposition 3.1) of the training direction to models trained with A1 and A2 respectively. (Right) The distinguishing
subpopulation corresponding to the distinguishing direction A. This subpopulation (extracted via MODELDIFF extracts all
examples (with patch) in the “ground-truth’ distinguishing subpopulation.

MODELDIFF: A Framework for Comparing Learning Algorithms

D. Extending MODELDIFF

D.1. Aggregate metric for algorithm comparison

We can repurpose our framework as a similarity metric that quantifies the similarity of models trained with different learning
algorithms in a more global manner. A straightforward approach to output a similarity score (or distribution) is to compute
the cosine similarity of datamodel vectors. More concretely, let θ(1)i and θ

(2)
i denote the datamodels of example xi with

respect to models trained using learning algorithms A1 and A2. Then, the cosine similarity between θ
(1)
i and θ

(2)
i measures

the extent to which models trained with A1 and A2 depend on the same set of training examples to make predictions on
example xi.

We apply this metric to two case studies—pre-training (WATERBIRDS) and SGD noise (CIFAR-10)—in Figure 9. Specifi-
cally, Figure 9 plots the distribution of cosine similarity of datamodels for multiple learning algorithms over all test examples.
The left subplot shows that on WATERBIRDS, ImageNet-pretrained ResNet50 models are, on average, more similar to
ImageNet-pretrained ResNet18 models than to ResNet50 models pre-trained on synthetically generated data (Baradad Jurjo
et al., 2021) and models trained from scratch. The right subplot shows that on CIFAR-10, ResNet9 models trained with
high SGD noise are more similar to smaller-width ResNet9 models trained with high SGD noise than to ResNet9 models
trained with low SGD noise.

0.0 0.2 0.4 0.6 0.8
Cosine similarity between datamodel vectors

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n

Cosine similarity w.r.t ImageNet-pretrained ResNet50
Learning algorithms (average cosine similarity)

ResNet18 pretrained on ImageNet (0.56)
ResNet50 pretrained on synthetic data [Baradad et al., 2021] (0.25)
ResNet50 trained from scratch (0.12)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine similarity between datamodel vectors

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
ac

tio
n

Cosine similarity w.r.t ResNet9 w/ high SGD noise
Learning algorithms (average cosine similarity)

Width-0.5x ResNet9 w/ high SGD noise (0.76)
ResNet9 w/ low SGD noise (0.59)

Figure 9: Datamodel cosine similarity. We use cosine similarity between two datamodel vectors as an aggregate metric
to quantify the similarity of models trained with different learning algorithms. (Left) On WATERBIRDS data, datamodels
of ImageNet-pretrained ResNet50 and ResNet18 models are more similar to each other than to models pre-trained on
synthetically generated data and models trained from scratch. (Right) On CIFAR-10 data, ResNet models trained with high
SGD noise are more similar to each other to ResNet models trained with low SGD noise.

MODELDIFF: A Framework for Comparing Learning Algorithms

D.2. Leveraging CLIP to analyze distinguishing subpopulations

As discussed in Section 3 and Appendix E, we infer distinguishing features candidates through manual inspection of
distinguishing subpopulations. In this section, we demonstrate that for image classifiers, shared vision-language models
such as CLIP (Radford et al., 2021) provide a streamlined alternative to manual inspection of distinguishing subpopulations.

Approach. Before we describe our approach, note that CLIP is a contrastive learning method that embeds text and natural
language into a shared embedding space. Our approach leverages CLIP embeddings to identify multiple distinguishing
captions—representative descriptions that best contrast a given subpopulation of images from a set of images sampled from
the same distribution. In the context of our framework, the CLIP-based approach takes as inputs a distinguishing training
direction v, a set of images D, and a set of captions S5, and outputs a set of distinguishing captions S ′ ∈ S in four steps:

• Pre-compute image and text embeddings. Use the image encoder of a CLIP model to compute a set of normalized
embeddings for all images in D. Analogously, use the text encoder of a CLIP model to compute a set of normalized
embeddings for all captions in S .

• Record image-text pairwise cosine similarity. Let vector Ci ∈ R|S| denote the pairwise cosine similarity between the
embedding of image i ∈ D and all captions j ∈ S.

• Compute mean cosine similarity over dataset and top-k subpopulation. Compute the mean cosine similarity vector
C̄ = 1

n

∑
i∈D Ci over all images in D. Similarly, given distinguishing training direction v, compute the mean cosine

similarity vector C(v) over the top-k images whose residual datamodel vectors are most aligned with v.

• Extract distinguishing captions S ′. Use cosine similarity vectors C̄ and C(v) to extract captions in S that have the
maximum difference between C

(v)
i and C̄i.

Intuitively, the set of distinguishing captions S ′ correspond to representative captions (or, descriptions) that best contrast the
top-k images surfaced by distinguishing direction v from the dataset.

Results. We now apply this approach to our case study on ImageNet pre-training, where we compare WATERBIRDS models
trained with and without ImageNet pre-training (see Section 4). Specifically, we evaluate whether the CLIP-based approach
surfaces distinguishing captions that are similar to distinguishing features “yellow color” (direction A) and “human face”
(direction B) inferred via manual inspection. Figure 10 illustrates that for direction A), the CLIP-based approach highlights
distinguishing captions such as yellow, lemon, and sulphur, all of which are similar to the “yellow color” feature that
we infer via manual inspection. Similarly, Figure 11 shows that the distinguishing captions for direction B (e.g., florist,
faces, counselors) are similar to the identified “human face” feature.

To summarize, we show how the verification step can be easily specialized to comparisons of vision classifiers trained on
ImageNet-like data via vision-language embeddings such as CLIP.

5We use a filtered list of roughly 20,000 most common English words in order of frequency, taken from https://github.com/
first20hours/google-10000-english.

https://github.com/first20hours/google-10000-english
https://github.com/first20hours/google-10000-english

MODELDIFF: A Framework for Comparing Learning Algorithms

Figure 10: Direction A. The CLIP-based approach extracts distinguishing captions such as yellow, lemon, and
sulphur, all of which contrast the residual subpopulation on the left to a set of random images from the WATERBIRDS
dataset on the right. These distinguishing captions match the “yellow color” feature that we infer via manual inspection of
the distinguishing subpopulation in Appendix C.1.

Figure 11: Direction B. The CLIP-based approach extracts distinguishing captions such as florists, faces, and
counselors, all of which contrast the residual subpopulation (left) of images with human faces in the background to a
set of random images (right) from the WATERBIRDS dataset. These distinguishing captions match the “human face” feature
that we infer and counterfactually verify via manual inspection of the distinguishing subpopulation in Appendix C.1.

MODELDIFF: A Framework for Comparing Learning Algorithms

E. Additional analysis of distinguishing subpopulations
As outlined in Section 3, we analyze distinguishing subpopulations to infer (and test) distinguishing feature transformations.
In this section, we present additional analysis in order to substantiate the distinguishing features inferred in each case study.

First, we describe two additional tools that we use to analyze subpopulations surfaced by principal components (PCs) of
residual datamodels.

• Class-specific visual inspection. As shown in Section 4, the subpopulation of test examples whose datamodels have
maximum projection onto PCs of residual datamodels largely belong to same class; these subpopulation mostly surface
images from the same class. So, a simple-yet-effective way to identify subpopulation-specific distinguishing feature(s) is
to just visually contrast the surfaced subpopulation from a set of randomly sampled examples that belong to the same
class.

• Relative influence of training examples. Given a subset of test examples S′ ⊂ S, can we identify a set of training
examples T ′ ⊂ T that strongly influence predictions on S′ when models are trained with algorithm A1 but not when
trained with A2? Given datamodel representations {θ(1)i } for A1 and {θ(1)i } for A2, we apply a two-step (heuristic)
approach identify training examples with high influence on A1 relative to A2:

– First, given learning algorithm Ai and test subset S′, we estimate the aggregate (positive or negative) influence of
training example xk on subset S by taking the absolute sum over the corresponding datamodel weights:

∑
j∈S′ |θ(i)jk |.

– Then, we take the absolute difference between the aggregate influence estimates of training example xk using θ(1) and
θ(2). This difference measures the relative influence of training example xk on predictions of test subset S when models
are trained with algorithm A1 instead of algorithm A2.

In our analysis, we (a) identify training examples that have top-most relative influence estimates and then (b) visually
contrast the subsets of test examples (one for each learning algorithm) that are most influenced by these training examples.

MODELDIFF: A Framework for Comparing Learning Algorithms

E.1. Case study: Standard data augmentation

Our case study on LIVING17 data shows that standard data augmentation can amplify co-occurrence bias (spider web) and
texture bias (polka dots). We further substantiate these findings with relative influence analysis (Figure 12) and class-specific
visual inspection (Figure 15).

Subset of examples in training data

0.00 0.05 0.10 0.15 0.20
Algorithm A1

0.00

0.05

0.10

0.15

0.20

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(a) “Spider web” feature
Subset of examples in training data

0.0 0.1 0.2 0.3 0.4 0.5
Algorithm A1

0.0

0.1

0.2

0.3

0.4

0.5

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(b) “Polka dots” feature

Figure 12: Relative influence of training data on LIVING17 subpopulations. Panel (a): Training images that contain
web-like patterns have high relative influence on the “spider web” test subpopulation (see Figure 2). These images strongly
influence model predictions on test images that contain spider webs (in bottom row) only when models are trained with
augmentation (algorithm A1). Panel (b): Training images that contain yellow-black texture have high relative influence on
the “polka dots” test subpopulation (see Figure 2). These images strongly influence model predictions on test images of
salamanders with yellow polka dots (in bottom row) only when models are trained with augmentation (algorithm A1).

MODELDIFF: A Framework for Comparing Learning Algorithms

E.2. Case study: ImageNet pre-training

Our case study on WATERBIRDS data shows that ImageNet pre-training reduces dependence on the “yellow color” feature,
but introduces dependence the “human face” feature. We support these findings with relative influence analysis in Figure 13
and additional inspection in Figure 16.

Subset of examples in training data

0.0 0.2 0.4 0.6 0.8 1.0
Algorithm A1

0.0

0.2

0.4

0.6

0.8

1.0

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(a) “Yellow color” feature
Subset of examples in training data

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Algorithm A1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(b) “Human face” feature

Figure 13: Relative influence of training data on WATERBIRDS subpopulations. Panel (a): Training images with yellow
objects in the background have high relative influence on the “yellow color” test subpopulation. These images strongly
influence model predictions on test images that have yellow birds / objects (bottom row) only when models are trained from
scratch (algorithm A2). Panel (b): Training images that contain human faces in the background have high relative influence
on the “human face” test subpopulation. These images strongly influence model predictions on test images (in bottom row)
with human face(s) only when models are pre-trained on ImageNet (algorithm A1).

MODELDIFF: A Framework for Comparing Learning Algorithms

E.3. Case study: SGD hyperparameters

We analyze relative influence (Figure 14), and class-specific subpopulations (Figure 17) to hone in on two instances of
distinguishing features–black-and-white texture and rectangular shape— in CIFAR-10 data that are amplified by low SGD
noise.

Subset of examples in training data

0.00 0.02 0.04 0.06 0.08
Algorithm A1

0.00

0.02

0.04

0.06

0.08

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(a) “Black-white texture“ bias
Subset of examples in training data

0.00 0.02 0.04 0.06 0.08 0.10
Algorithm A1

0.00

0.02

0.04

0.06

0.08

0.10

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(b) “Rectangular shape“ bias

Figure 14: Relative influence of training data on CIFAR-10 subpopulations. Panel (a): Training images with black-white
objects have high relative influence on the “black-white” dog subpopulation (see Figure 5). These images influence model
predictions on test images of black-white dogs (in bottom row) only when models are trained with low SGD noise (alg. A2).
Panel (b): Training images with high-contrast rectangular components in the background have high relative influence on
the “rectangular shape” truck subpopulation (see Figure 5). These images influence model predictions on test images of
front-facing trucks with prominent rectangular components (in bottom row) only when models are trained with low SGD
noise (alg. A2).

MODELDIFF: A Framework for Comparing Learning Algorithms

Subpopulation surfaced via direction A (spider web) Random sample of spider images in test data

Subpopulation surfaced via direction B (polka dot texture) Random sample of salamander images in test data

Figure 15: Class-specific visual inspection of LIVING17 subpopulations. (Top) In contrast to random LIVING17 images of
spiders, the “spider web” subpopulation surfaces spiders with a prominent spider web in the background. (Bottom) Unlike
random LIVING17 images of salamanders, the “polka dots” subpopulation surfaces salamanders that have a yellow-black
polka dot texture.

Subpopulation surfaced via direction A (human face) Random sample of test images in class landbird

Subpopulation surfaced via direction B (yellow color) Random sample of test images in class landbird

Figure 16: Class-specific visual inspection of WATERBIRDS subpopulations. (Top) In contrast to random “landbird”
images, the “human face” subpopulation surfaces landbirds with human face(s) in the background. (Bottom) Unlike random
“landbird” images, the “yellow color” subpopulation surfaces images with yellow birds or yellow objects in the background.

Subpopulation surfaced via direction A (black-white texture) Random sample of dog images in test data

Subpopulation surfaced via direction B (rectangular shape) Random sample of truck images in test data

Figure 17: Class-specific visual inspection of CIFAR-10 subpopulations. In contrast to random images of dogs (top)
and trucks (bottom), the “black-white” and “rectangular shape” subpopulations surface images of black-white dogs and
front-facing trucks with multiple rectangular components respectively.

MODELDIFF: A Framework for Comparing Learning Algorithms

F. Additional evaluation of distinguishing transformations
Distinguishing feature transformations, which we recall from Section 3, are functions that, when applied to data points,
change the predictions of one model class—but not the other—in a consistent way. In our case studies, we design
distinguishing feature transformations that counterfactually verify features inferred from distinguishing subpopulations. Our
findings in Section 4 use feature transformations to quantitatively measure the relative effect of the identified features on
models trained with different learning algorithms. In this section, we present additional findings on feature transformations
for each case study:

F.1. Case study: Standard data augmentation

In Section 4, we showed that standard data augmentation—horizontal flips and random crops—amplifies LIVING17 models’
reliance on “spider web” and “polka dots” to predict spiders and salamanders respectively. Figure 18 verifies our findings
over a larger range of perturbation intensity δ values. We also observe that decreasing the minimum allowable crop size in
RandomResizedCrop from 1.0 (i.e., no random cropping) to 0.08 (default torchvision hyperparameter) increases
models’ sensitivity to both feature transformations.

(1., 1.) [No cropping] (0.9, 1.) (0.6, 1.) (0.3, 1.) (0.08,1.) [Default]
RandomResizedCrop scale hyperparameter

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe
rc

en
t I

nc
re

as
e

in
 P

r(s
pi

de
r)

Effect of spider web feature transformation on Living17 models

Perturbation Intensity
0.1
0.2
0.3
0.4
0.5
0.6

(a) “Spider web” feature

(1., 1.) [No cropping] (0.9, 1.) (0.6, 1.) (0.3, 1.) (0.08,1.) [Default]
RandomResizedCrop scale hyperparameter

0

5

10

15

20

Pe
rc

en
t I

nc
re

as
e

in
 P

r(s
al

am
an

de
r)

Effect of polka dot feature transformation on Living17 models

Perturbation Intensity
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

(b) “Polka dots” feature

Figure 18: Additional evaluation of LIVING17 feature transformations. The top and bottom row evaluate the effect
of “spider web” and “polka dot” feature transformations on models trained with different data augmentation schemes.
Increasing the intensity of the transformations and the minimum crop size of RandomResizedCrop augmentation (via
scale hyperparameter) increases the sensitivity of models to both feature transformations in a consistent manner.

MODELDIFF: A Framework for Comparing Learning Algorithms

F.2. Case study: ImageNet pre-training

In Appendix C.1, we showed that fine-tuning ImageNet-pretrained ResNet50 models on WATERBIRDS data instead of
training from scratch alters the relative importance of two spurious features: “yellow color” and “human face”. In Figure 19,
we show that both feature transformations alter the predictions of ImageNet-pretrained ResNet18 and ImageNet-pretrained
ResNet50 models in a similar way.

10.0 20.0 30.0 40.0
Patch Size

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Pe
rc

en
t I

nc
re

as
e

in
 P

r(l
an

db
ird

)

Effect of yellow color feature transformation on Waterbirds models

Learning Algorithm
ImageNet-pretrained ResNet18
ImageNet-pretrained ResNet50
Randomly initialized ResNet50

(a) “Yellow color” feature

80 100 120
Patch Size

0

2

4

6

Pe
rc

en
t I

nc
re

as
e

in
 P

r(l
an

db
ird

)

Effect of human face feature transformation on Waterbirds models

Learning Algorithm
ImageNet-pretrained ResNet18
ImageNet-pretrained ResNet50
Randomly initialized ResNet50

(b) “Human face” feature

Figure 19: Additional evaluation of WATERBIRDS feature transformations. The top and bottom row evaluate the effect
of “yellow color” and “human face” feature transformations on models trained with and without ImageNet pre-training.
In both cases, unlike ResNet50 models trained from scratch, ImageNet-pretrained ResNet18 and ResNet50 models are
sensitive to the “human face” transformation but not to the “yellow color” transformation.

MODELDIFF: A Framework for Comparing Learning Algorithms

F.3. Case study: SGD hyperparameters

In Appendix C.2, we showed that reducing SGD noise results in CIFAR-10 models that are more sensitive to certain
features, such as rectangular shape bias and black-white texture to predict trucks and dogs. In Figure 20, we evaluate how
feature transformations change class-wise predictions of models trained with different SGD learning rate and batch size
hyperparameters.

frog cat ship airplane automobile horse truck dog deer bird
class

0

10

20

30

40

Pe
rc

en
t I

nc
re

as
e

in
 P

r(d
og

)

Class-wise effect of black-white texture feature transformation on CIFAR10 models

SGD hyperparameters
LR:0.1, BS:128
LR:0.05, BS:512
LR:0.02, BS:1024

(a) “Black-white texture” feature

bird airplane horse truck automobile deer dog cat frog ship
class

2

0

2

4

6

8

Pe
rc

en
t I

nc
re

as
e

in
 P

r(t
ru

ck
)

Class-wise effect of rectangular shape feature transformation on CIFAR10 models

SGD Hyperparameters
LR:0.1, BS:128
LR:0.05, BS:512
LR:0.02, BS:1024

(b) “Rectangular shape” feature

Figure 20: Additional evaluation of CIFAR-10 feature transformations. The top and bottom row evaluate the effect of
“black-white texture” and “rectangular shape” feature transformations on CIFAR-10 models trained with high (light blue),
medium, and low (dark blue) SGD noise. In both cases, models trained with higher SGD noise are, on average, more sensitive
to these transformations across all classes. Furthermore, the effect of the transformations are class-dependent—model
predictions on transformed examples from semantically similar classes differ to a greater extent.

MODELDIFF: A Framework for Comparing Learning Algorithms

G. Miscellaneous results
G.1. Explained variance of residual datamodel principal components

Recall from Section 3 that the fraction of variance in datamodel representations {θ(i)x } explained by training direction
v signifies the importance of the direction (or, combination of training examples) to predictions of models trained with
algorithm Ai. Through our case studies in Section 4, we show that the top 5− 6 principal components (PCs) of residual
datamodels θ(1\2) correspond to training directions that have high explained w.r.t. datamodels of algorithm A1 but not A2,
and vice versa. Figure 21 shows that the top-100 PCs of residual datamodel θ(1\2) (resp., θ(2\1)) have more (resp., less)
explained variance on datamodel θ(1) than on datamodel θ(2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Explained Variance under Algorithm A1 (%)

(With Augmentation)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tA

ug
m

en
ta

ti
on

)

Living17 / Data augmentation

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y

0 1 2 3 4 5 6
Explained Variance under Algorithm A1 (%)

(With ImageNet Pre-training)

0

1

2

3

4

5

6

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tP

re
-t

ra
in

in
g)

Waterbirds / Pretraining

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Explained Variance under Algorithm A1 (%)

(High SGD Noise)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(L
ow

SG
D

N
oi

se
)

CIFAR10 / SGD hyperparameters

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y

Figure 21: Explained variance of residual datamodels’ principal components. Highlighted in green (resp. red), the
top-100 PCs of residual datamodel θ(1\2) (resp. θ(2\1)) explain a larger (resp. smaller) fraction of datamodel variance under
algorithm A1 than under algorithm A2 across all three case studies.

MODELDIFF: A Framework for Comparing Learning Algorithms

G.2. Effect of sample size on datamodel estimation

In this section, we analyze the effect of sample size on datamodel estimation.

Setup. Recall from Appendix B.3 that a datamodel training set of size m corresponds to training m models on independently
sampled training data subsets. For our case study on ImageNet pre-training in Appendix C.1, we estimate datamodels
on WATERBIRDS data with 50, 000 samples (i.e., m ResNet50 models trained on random subsets of the WATERBIRDS
training dataset). In this experiment, we analyze how the estimated datamodels vary as a function of sample size m ∈
{5000, 10000, 25000, 50000}.

Cosine similarity between datamodels. Our algorithm comparisons framework uses normalized datamodel representations
to compute distinguishing training directions in the first step. So, we first analyze the alignment between datamodel
representations that are estimated with different sample sizes. Specifically, we evaluate the cosine similarity between θ

(m1)
x

and θ
(m2)
x , where vector θ(m)

x ∈ R|S| corresponds to the linear datamodel for example x estimated with m samples. As
shown in Figure 22, the average cosine similarity between datamodels is greater than 0.9 even when the sample size is
reduced by a factor of 10, from 50000 to 5000.

Explained variance of principal components. As discussed in Section 4, for a given training direction v, the fraction
of variance that v explains in datamodel representations {θ(i)x } captures the importance of direction v (i.e., weighted
combination of training examples) to the predictions of models trained using algorithm Ai. Here, we show that principal
components of datamodel representations trained with smaller sample size (e.g., m = 5000) have similar explained variance
on datamodel representations estimated with larger sample size, and vice-versa. As shown in Figure 23, the explained
variance of the top-10 principal components of datamodels estimated with m ∈ {5000, 50000} have similar explained
variance on datamodels estimated with m ∈ {5000, 10000, 25000, 50000}.

MODELDIFF: A Framework for Comparing Learning Algorithms

0.75 0.80 0.85 0.90 0.95 1.00
Cosine similarity between datamodel vectors

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Fr
ac

tio
n

Cosine similarity w.r.t datamodels estimated with 50000 samples
Sample size

m=5000 (0.1x), mean: 0.92
m=10000 (0.2x), mean: 0.95
m=25000 (0.5x), mean: 0.98

Figure 22: Histogram over cosine similarity between datamodels θ(m1)
x and θ

(m2)
x , where vector θ(m)

x ∈ R|S| corresponds
to the linear datamodel for example x estimated with m ∈ {5000, 10000, 25000, 5000} samples.

0 1 2 3 4 5 6 7 8 9
kth principal component

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fr
ac

tio
n

of
 e

xp
la

in
ed

 v
ar

ia
nc

e

PCs of datamodels estimated with 5000 samples
Sample size m

5000
10000

25000
50000

0 1 2 3 4 5 6 7 8 9
kth principal component

PCs of datamodels estimated with 50000 samples
Sample size m

5000
10000

25000
50000

m
5000
10000
25000
50000

Figure 23: Explained variance of the top-10 principal components of datamodels estimated with m ∈ {5000, 50000} have
similar explained variance on datamodels estimated with sample size m ∈ {5000, 10000, 25000, 50000}.

MODELDIFF: A Framework for Comparing Learning Algorithms

G.3. Algorithm comparisons with penultimate-layer representations

In this section, we contrast our algorithm comparisons framework to comparisons based on model predictions and
penultimate-layer representations. Note that there are no existing methods that can be directly reused for comparing
learning algorithms to the best of our knowledge. Therefore, we design experiments to evaluate whether model predictions
and penultimate-layer representations can identify distinguishing training directions surfaced using our framework.

Model predictions. Through this experiment, we show that example-level differences in predictions (Zhong et al., 2021;
Meding et al., 2022) of models trained with different algorithms are not necessary to identify subpopulations analysed in
our case studies. First, we re-run the first stage of our framework only on test examples on which models trained with
different algorithm have the same prediction on average. Then, we compare distinguishing training directions (i.e., output of
the first stage) before and after controlling for prediction-level agreement. Our results in Table 1 show that for each case
study, our framework identifies similar training directions (i.e., high cosine similarity) even after removing test examples on
which model predictions differ. This experiment shows that our framework can identify fine-grained differences between
learning algorithms that persist even after controlling for prediction-level disagreement across models trained with different
algorithms.

Dataset / Case study Direction (Absolute) Cosine Similarity

Living17 / Data augmentation A (Spider web) 0.999
B (Polka dots) 0.998

Waterbirds / ImageNet pre-training A (Yellow color) 0.977
B (Human face) 0.740

CIFAR-10 / SGD hyperparameters A (Black-white texture) 0.998
B (Rectangular shape) 0.999

Table 2: Distinguishing training directions before and after filtering out high-disagreement test examples exhibit high cosine
similarity and surface subpopulations of images that share the same distinguishing feature.

Penultimate-layer representations. Representation-based comparisons (Raghu et al., 2017; Morcos et al., 2018b; Kornblith
et al., 2019) measure the degree to which different models’ representation can be aligned. Unlike datamodel representations,
penultimate-layer representations are not aligned—coordinates of penultimate-layer representations do not share a consistent
interpretation across different models. So, we first introduce a variant based on penultimate-layer representations that has a
consistent basis. Specifically, similar to how the datamodel weight θij denotes the influence of training example j over
the prediction on test example i, we set θ(r)ij to equal the cosine similarity between the penultimate-layer representation of
test example i and train example j. We then compare two properties of datamodel representations and penultimate-layer
representations:

• Effective dimensionality of representations: We first compare the effective dimensionality (i.e., cumulative fraction
of variance explained by top-k components) of datamodel representations θ and penultimate-layer representations θ(r).
Figure 24 shows that for all datasets and learning algorithms, datamodel representations have significantly higher effective
dimensionality than the penultimate-layer alternative. For example, on CIFAR-10 data, more than 99% of the variation in
penultimate-layer representations is captured by the first 10 components.

• Explained variance of distinguishing training directions: We now re-run the first stage of our framework to compare
distinguishing directions obtained via datamodel representations θ and penultimate-layer representations θ(r). Here, we
evaluate the extent to which these training directions distinguish models trained with different algorithms. Specifically, as
shown in Figure 25, we compare the difference in the cumulative fraction of variance explained by the top-k training
directions across representations corresponding to algorithms A1 and A2 (higher the better). Figure 25 shows that (a)
training directions obtained from datamodel representations have significantly higher gap in explained variance across
learning algorithms and (b) directions obtained from penultimate-layer representations can have close to zero or negative
gap in explained variance across learning algorithms.

MODELDIFF: A Framework for Comparing Learning Algorithms

0 100 200 300 400 500
Top-k principal components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
fra

c.

Dataset: CIFAR-10

Penultimate rep.: High SGD noise
Penultimate rep.: Low SGD noise
Datamodels: High SGD noise
Datamodels: Low SGD noise

0 100 200 300 400 500
Top-k principal components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
fra

c.

Dataset: Living17

Penultimate rep.: With aug.
Penultimate rep.: Without aug.
Datamodels: With aug.
Datamodels: Without aug.

0 100 200 300 400 500
Top-k principal components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
fra

c.

Dataset: Waterbirds

Penultimate rep.: ImageNet pre-training
Penultimate rep.: Trained from scratch
Datamodels: ImageNet pre-training
Datamodels: Trained from scratch

Effective dimensionality of {datamodel, penultimate-layer} representations

Figure 24: Effective dimensionality (i.e., cumulative fraction of variance explained by top-k components) of datamodel
representations is significantly more than that of penultimate-layer representations across all datasets and learning algorithms
considered in Section 4.

Figure 25: Difference in the cumulative fraction of variance explained by the top-k training directions across (datamodel or
penultimate-layer) representations corresponding to learning algorithms A1 and A2; higher the better. Top-k distinguishing
training directions obtained from datamodel representations have significantly higher gap in explained variance across
learning algorithms (e.g., CIFAR-10, WATERBIRDS) and (b) directions obtained from penultimate-layer representations can
have close to zero (e.g., WATERBIRDS) or negative gap (e.g., CIFAR-10, LIVING17) in explained variance across learning
algorithms.

MODELDIFF: A Framework for Comparing Learning Algorithms

G.4. Effect of prediction-level differences on distinguishing training directions

In this section, evaluate whether differences between algorithms at the model prediction level have a significant effect on the
distinguishing training directions surfaced using our framework. For context, we note that there are no existing methods that
analyze prediction-level differences for algorithm comparisons.

We design an experiment to show that example-level differences in predictions of models trained with different algorithms
are not necessary to identify subpopulations analysed in our case studies. The first step of this experiment is to re-run our
framework (a) on all test examples and (b) only on test examples on which models trained with different algorithm have
the same prediction “mode” (taken over multiple runs). In the second step, we directly compare the alignment between
distinguishing training directions before and after controlling for prediction-level differences.

Our results in Table 1 show that for each case study, our framework identifies similar training directions (i.e., high cosine
similarity) even after removing test examples on which model predictions differ on average. This experiment shows that
our framework can identify fine-grained differences between learning algorithms that persist even after controlling for
prediction-level disagreement across models trained with different algorithms.

Dataset / Case study Direction (Absolute) Cosine Similarity

Living17 / Data augmentation A (Spider web) 0.999
B (Polka dots) 0.998

Waterbirds / ImageNet pre-training A (Yellow color) 0.977
B (Human face) 0.740

CIFAR-10 / SGD hyperparameters A (Black-white texture) 0.998
B (Rectangular shape) 0.999

Table 3: Distinguishing training directions obtained before and after filtering out high-disagreement test examples (a) exhibit
high cosine similarity and (b) surface subpopulations of images that share the same distinguishing feature.

MODELDIFF: A Framework for Comparing Learning Algorithms

G.5. Top-k subpopulations surfaced by principal components of residual datamodels

Recall that our framework identifies distinguishing subpopulations via principal components (PCs) of residual datamodels.
Specifically, these subpopulations correspond to test examples whose residual datamodel representations have the most
positive (top-k) and most negative (bottom-k) projection onto a given PC. Here, we show that the top-k and bottom-k
subpopulations corresponding to the top few PCs of residual datamodels considered in Section 4 surface test examples with
qualitatively similar properties.

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Principal component #5 | Top-k subpopulation Principal component #5 | Bottom-k subpopulation

Figure 26: Top five PC subpopulations of LIVING17 residual datamodel θ(1\2), where learning algorithms A1 and A2

correspond to training models with and without standard data augmentation respectively.

H. Related work
Representation-based comparison. A popular approach in deep learning is to compare two fixed models using their internal
representations. Unlike datamodels, these representations lack a consistent interpretation across models (see Section 2.2).

MODELDIFF: A Framework for Comparing Learning Algorithms

Consequently, representation-based comparisons typically quantify the degree to which different models’ representations
can be aligned (Raghu et al., 2017; Kornblith et al., 2019; Bansal et al., 2021; Chen et al., 2021). For example, prior works
use these methods to compare architectures (Raghu et al., 2021; Nguyen et al., 2021) and language models (Wu et al.,
2020). More recently, however, Ding et al. (2021) and Davari et al. (2022) show that these methods are not reliable for
testing functional differences between models. Our approach to algorithm comparison differs from representation-based
comparison methods (Raghu et al., 2017; Morcos et al., 2018a; Kornblith et al., 2019; Bansal et al., 2021; Csiszarik et al.,
2021; Chen et al., 2021; Cui et al., 2022) in both objective and implementation:

• Learning algorithms rather than fixed models: Rather than focusing on a single fixed model, our goal in this paper is to
compare the classes of models that result from a given learning algorithm. In particular, we aim to find only differences
that arise from algorithmic design choices, and not those that arise from the (sometimes significant) variability in training
across random seeds (Zhong et al., 2021). Furthermore, since models exhibit significant variability in their predictions
when varying only the random seeds (Zhong et al., 2021), our framework ensures that the differences we pinpoint are only
those arising from the choice of the learning algorithm (and are not due to just randomness in training).

• Feature-based rather than similarity-based: Methods such as CCA and CKA focus on outputting a single score that reflects
the overall similarity between two models. On the other hand, the goal of our framework is to find fine-grained differences
in model behavior. Still, in Appendix D.1 we show that we can also use our method for more global comparisons, for
instance by computing the average cosine similarity of the datamodel vectors.

• Model-agnostic: Our framework is agnostic to type of model used and thus allows one to easily compare models across
learning algorithms—our method extends even to learning algorithms that do not have explicit representations (e.g.,
decision trees and kernel methods).

Comparing feature attributions. Another line of work compares models in terms of how they use features at test time. In
the presence of a known set of features, one can compute feature importances (e.g., via SHAP (Lundberg & Lee, 2017)) and
compare them across models (Wang et al., 2022). In the absence of known features, one can potentially use instance-level
explanation methods such as saliency maps. Furthermore, common explanation methods (a) generally do not help at
distinguishing models (Denain & Steinhardt, 2022) and (b) often fail at accurately highlighting features learned by the
model (Adebayo et al., 2018; Hooker et al., 2018; Shah et al., 2021).

Example-level comparisons. An alternative method for comparing models is to compare their predictions directly. Zhong
et al. (2021) compare predictions of small and large language models on a per-example level to find that larger models
are not uniformly better across examples. Similarly, Mania et al. (2019) study the agreement between models, i.e., how
often they output the same prediction on a per-example level. Meding et al. (2022) show that filtering out “impossible” and
“trivial” test examples amplifies prediction-level variations between models. In contrast, MODELDIFF leverages datamodels
to trace example-level predictions back to training data and subsequently identify IDTs.

Interpretability, explainability, and debugging. Our method hinges on the interpretability of the extracted subpopulation.
A long line of prior work propose different interpretability and explainability methods for models. Local explanation
methods include saliency maps (Simonyan et al., 2013; Dabkowski & Gal, 2017; Adebayo et al., 2018), surrogate models
such as LIME (Ribeiro et al., 2016), and Shapley values (Lundberg & Lee, 2017). Our method is similar to per-example
based interpretability methods such as influence functions (Koh & Liang, 2017) in that our interpretation is based on
data; however, our analysis differs from these priors methods in that it looks at entire subpopulations of inputs. Global
interpretability and debugging methods often leverage the rich latent space of neural networks in order to identify meaningful
subpopulations or biases more automatically. Concept activation vectors and its variants (Kim et al., 2018; Abid et al.,
2022; Ghorbani et al., 2019) help decompose model predictions into a set of concepts. Other recent works (Eyuboglu et al.,
2022; Jain et al., 2022) leverage the recent cross-model representations along with simple models—mixture models and
SVMs, respectively—to identify coherent subpopulations or slices. Other methods (Wong et al., 2021; Singla & Feizi, 2021)
analyze the neurons of the penultimate layer of (adversarially robust) models to identify spurious features. Our framework
can be viewed as leveraging a different embedding space, that of datamodel representations, to analyze model predictions.

Robustness to specific biases. In applying our framework across the three case studies, we identify a number of both known
and unknown biases. A large body of previous work aims at finding and debugging these biases: Priors works investigate
specific biases such as the role of texture (Geirhos et al., 2019) or backgrounds (Xiao et al., 2020) by constructing new

MODELDIFF: A Framework for Comparing Learning Algorithms

datasets. Leclerc et al. (2021) automate many of these studies in the context of vision models with a render-based framework.
Relatedly, Ruiz et al. (2022) develop a simulation-based testing environment to compare predictions of vision transformers
and convolutional networks under naturalistic scene variations such as object pose and camera viewpoint. In contrast to our
approach, these works rely on having control over data generation and having candidate biases ahead of time.

MODELDIFF: A Framework for Comparing Learning Algorithms

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 27: Top four PC subpopulations of CIFAR-10 residual datamodel θ(2\1), where learning algorithms A1 and A2

correspond to training models with high and low SGD noise respectively. Our case study in Appendix C.2 analyzes PC #1
(direction A) and PC #2 (direction B).

MODELDIFF: A Framework for Comparing Learning Algorithms

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 28: Top four PC subpopulations of WATERBIRDS residual datamodel θ(1\2), where learning algorithms A1 and A2

correspond to training models with and without ImageNet pre-training respectively.

MODELDIFF: A Framework for Comparing Learning Algorithms

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 29: Top four PC subpopulations of WATERBIRDS residual datamodel θ(2\1), where learning algorithms A1 and A2

correspond to training models with and without ImageNet pre-training respectively.

	Introduction
	Preliminaries and Setup
	Formalizing algorithm comparisons
	Datamodel representations for comparison

	Comparing algorithms with ModelDiff
	Applying ModelDiff
	Discussion
	Conclusion
	Acknowledgements
	Appendices
	Algorithm analysis
	Experiment Setup
	Datasets
	Models, learning algorithms, and hyperparameters
	Datamodels
	Distinguishing feature transformations
	Training infrastructure

	Additional case studies
	ImageNet Pre-training
	SGD hyperparameters
	Synthetic spurious correlations

	Extending ModelDiff
	Aggregate metric for algorithm comparison
	Leveraging CLIP to analyze distinguishing subpopulations

	Additional analysis of distinguishing subpopulations
	Case study: Standard data augmentation
	Case study: ImageNet pre-training
	Case study: SGD hyperparameters

	Additional evaluation of distinguishing transformations
	Case study: Standard data augmentation
	Case study: ImageNet pre-training
	Case study: SGD hyperparameters

	Miscellaneous results
	Explained variance of residual datamodel principal components
	Effect of sample size on datamodel estimation
	Algorithm comparisons with penultimate-layer representations
	Effect of prediction-level differences on distinguishing training directions
	Top-k subpopulations surfaced by principal components of residual datamodels

	Related work

