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Abstract
The inversion of generative adversarial network
(GAN) is able to investigate rich semantics within
the generative models, thus receiving increasing
research efforts most recently. Existing GAN in-
version methods focus on reconstructing images,
with relatively less focus on improving the editing
realism, the most important criterion for evalu-
ating the semantics achieved by inversion. In
this paper, we systematically investigate the la-
tent generating space and prove that both the re-
alism of editing and accuracy of reconstruction
can be unified under the umbrella of the inversion
against manipulations. Motivated by this, we pro-
pose to establish the generating space as latent
probabilistic models, followed by the developed
statistical manifold to minimise the distribution
discrepancy. Based on the manifold, we further
propose an adversarial learning strategy to avoid
the excessive enumeration when calculating the
manipulation inversion metric. We may also need
to point out that the proposed method is univer-
sal to different architectures, as a novel plugin
inversion method. We comprehensively evaluate
our method across different types of network ar-
chitectures, comparing it against the state-of-the-
art inversion methods. The experimental results
demonstrate that our method is able to achieve
superior performances on both reconstruction ac-
curacy and realism of editing.

1. Introduction
Generative adversarial networks (GANs) have been playing
as the cutting-edge deep generative models for generating re-
alistic content (Sauer et al., 2022; Kang et al., 2023), which
also popularises its application to various tasks such as im-
age/video compression (Mentzer et al., 2020; 2022), super-
resolution (Wang et al., 2021; 2018), enhancement (Galteri
et al., 2019), to name but a few. Compared with existing
deep generative models, the merit of GANs arises from the
distinct intrinsic nature of directly generating highly realistic
images from low-dimensional random noise, thus capable of
depicting the complicated high-dimensional data from the

low-dimensional continuous latent generating space. This
merit also enables the latent generating space to possess rich
and precise semantics (Shen et al., 2020b; Härkönen et al.,
2020), as the potentially well-behaved proxy for represent-
ing the real-world scenarios.

Since almost all the existing GANs uni-directionally gener-
ate images from the latent space, the way to invert images
back into the latent generating space of GANs is the prereq-
uisite before we start to investigate the rich semantics from
real-world scenarios. This essentially requires carefully em-
bedding into the latent space to ensure both the accuracy of
reconstruction and realism of editing, which are oftentimes
trade-off with the other (Wang et al., 2022; Dinh et al., 2022;
Tov et al., 2021; Yao et al., 2022). Existing methods address
this trade-off by restoring the semantics in the latent space
and reconstructing the details in the middle-layer features,
given a pre-trained (or slightly fine-tuned) generator (Wang
et al., 2022; Dinh et al., 2022; Yao et al., 2022). However,
existing GAN inversion methods essentially focus on point-
wise estimation against the latent representation for both
inverting images and semantics, without considering the
characteristics of arising local curvature, thus suffering from
the incompleteness regarding editing based on the estimated
point. Thus, the improvement on the editing performance,
the key to depicting the latent space characteristics, is still
of an ad hoc manner (Xia et al., 2022).

Indeed, the preferred GAN inversion is able to embed ar-
bitrary realistic images into the latent space, followed by
accurate reconstruction based on the embedding; this is ex-
pected to still hold when embedding and restoring edited
images, given the fact that the realism of editing is another
criteria of inverting GANs. Therefore, the desirable em-
bedding is capable of accurately inverting both the original
image and its arbitrarily edited counterparts, which as shall
be proved in this paper, is equivalent to the capability of
precisely restoring the edited image back to the original
image; we name this operation as inverting manipulations
that essentially poses more stringent requirements against
inverting images and semantics of GANs. Unfortunately,
although the concept has been preliminarily mentioned in
a few works, by either evaluation metrics (Tov et al., 2021)
or auxiliary cycle consistency regularisation (Pehlivan et al.,
2023), inverting manipulations is still yet to be systemati-
cally investigated by far.
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(a) pSp (Richardson et al., 2021) (b) StyleRes (Pehlivan et al., 2023) (c) The proposed method
Figure 1. Illustration of our method and existing typical inversion methods. The pixel2Style2pixel (pSp) method focuses solely on the
image-domain reconstruction, while StyleRes method imposes additional regularisations in the latent space. Existing methods essentially
optimise point-wise error and thus fail to consider local curvature in the latent space, leading to the inaccurate reconstruction of edited
images and manipulation inversion. In contrast, our method optimises the inversion of manipulation based on establishing a statistical
manifold in the latent space, which is able to achieve superior performances on both reconstruction accuracy and editing realism. Please
note that Manip. inv. denotes the inversion of manipulation, while Edit Rec. denotes the reconstruction of the edited image.

In this paper, we set out the first attempt to invert arbitrary
manipulations upon GANs, so as to optimise both the latent
representation and its corresponding local curvature, as il-
lustrated in Fig. 1. More specifically, we first systematically
analyse the characteristics of GANs, including in-depth
analysis on the local optimum and curvatures within the
generating space. In light of the analysis, we propose to
embed each inverting image into an individual distribution,
in which randomly sampling from the distribution operates
as variants within the same identity of images, including
semantic editing and non-semantic nuisance noise to reflect
the local curvature. We then establish the statistical mani-
fold for the GAN generating space based on the Cramer-Rao
metric, and optimisation on the manifold improves both the
image reconstruction and manipulation inversion.

Therefore, we propose to optimise the inversion of manipula-
tion based on the established manifold, the goal that cannot
be achieved by the de facto point-wise reconstruction by
almost all inversion methods. To further relieve the exces-
sive enumeration of random samples for inverting arbitrary
manipulations, we propose an adversarial strategy to effi-
ciently reduce the searching trials during the optimisation
procedure. This way, we are able to unify the optimisa-
tion of manipulation inversion problem, under an efficient
end-to-end distribution alignment within the latent space in
practice. Consequently, experimental results verify the su-
perior performance of our method in precisely inverting the
manipulation, as well as on the accuracy of reconstruction
and the quality of editing.

2. Related Works
Since the StyleGAN architecture has been exhibiting the
state-of-the-art generation performances in various scenar-
ios, existing GAN inversion methods mainly focus on the
StyleGAN architecture (Karras et al., 2019; 2020; 2021),
in which the images are generated sequentially from the

random noise z, the style code w and the transformed style
codes w+. We thus name the corresponding spaces as Z ,
W and W+, respectively.

Inversion on Images: Existing methods regarding inverting
StyleGANs can be generally categorised into three groups,
the optimisation-oriented, encoder-based, and hybrid meth-
ods. Based on either gradient descent solvers (Yeh et al.,
2017; Zhu et al., 2016; Fang & Schwing, 2019) or gradient-
free strategies (Huh et al., 2020; Abdal et al., 2019; 2020),
the optimisation-oriented methods exhaustively seek the
best latent representation for each image , at the cost of
heavy computational complexity . On the other hand, the
encoder-based methods focus on achieving universal inver-
sion, with the goal to learn general solutions regarding im-
age inversion. The hierarchical encoder architecture is typi-
cally employed to embed multiple scales into transformed
styles W+ (Richardson et al., 2021) . Advanced inversion
methods accommodate the reconstruction-editing trade-off
by a two-phase strategy, in which the first phase aims to
retain the editing ability in the W (or W+) space, and ad-
ditional modules are developed in the second phase so as
to compensate the reconstruction error (Wang et al., 2022;
Dinh et al., 2022; Li et al., 2023; Pehlivan et al., 2023) . The
above encoders can also be combined with the optimisation-
oriented methods, in which the encoders provide a well-
defined initialisation for the optimisation-oriented methods
(Zhu et al., 2016; Hussein et al., 2020; Roich et al., 2022;
Alaluf et al., 2022). However, all the above methods mainly
focus on inverting images, which fall short in retaining the
local curvature and thus inevitably exhibit deficiency on
inverting manipulations of StyleGANs.

Inversion on Latent Representations: Since the latent
spaces of StyleGANs including Z and W spaces have been
proved to possess rich semantics (Härkönen et al., 2020;
Shen et al., 2020b; Abdal et al., 2019), we also witnessed
several recent inversion methods that regularise the align-
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ment within the latent spaces (Tov et al., 2021; Bau et al.,
2019; Zhu et al., 2020; 2024). Latent space regularisa-
tion can find its roots in bi-direction generation of training
GANs, by either catering for theoretical completeness (Li
et al., 2022) or practice benefits (Ding et al., 2020; Dumoulin
et al., 2016). However, since their primary goal focuses on
the generation quality, these methods still suffer from inac-
curate restoration of semantics and reconstruction of images.
Regarding inversion based on pre-trained GANs, in addition
to reconstructing images by pixel-wise loss, the E4E method
(Tov et al., 2021) also develops a discriminator in the W
space, so as to regularise the latent representations from
the trained encoder to be similar to the original generating
space, and correspondingly proposed a metric called latent
editing consistency to measure the editing capability. On
the other hand, Bau et al. (Bau et al., 2019) proposed to pre-
train an encoder by inverting the randomly sampled latent
representation in Z space, which is then used for the follow-
ing layer-wise optimisation. Zhu et al. (Zhu et al., 2020)
further proposed an optimisation-oriented method, which
inverts images with the assistant of in-domain image prior
in the Z space. However, for the encoder-based methods, it
is obvious that without any additional constraints, the inver-
sion in the latent space is ill-posed, since the minimisation
of ||f(x)−f(g(f(x)))||22 can find its bad local minimum
at 0 for any surjection f(x) = c, where f is the encoder to
be optimised, x represents the input image, g denotes the
fixed generator and c is any constant. More importantly,
existing methods in the latent space are based on the point-
wise estimation. As shall be shown shortly, the point-wise
estimation, oftentimes taken for granted, is proved to be
insufficient in indicating the semantic discrepancy.

3. Analysis on Latent Generating Space
Compared with existing GAN models, the StyleGAN archi-
tecture has achieved the state-of-the-art performance when
generating realistic and diversifying images (Karras et al.,
2020; Sauer et al., 2022); this essentially ensures the rich-
ness of semantics in the latent generating space (Abdal et al.,
2019; 2020). Therefore, we mainly focus on analysing the
latent space of StyleGAN, by revealing several important
findings and properties that motivate our follow-up method
for inverting the manipulations.

Finding 1: There exist multiple local domains in the latent
space that correspond to the same person identities.

We first analyse the correspondence between the latent space
and generated images, based on the StyleGAN model. More
specifically, our analysis is based on the officially released
model (Karras et al., 2020), which is adopted in almost all
inversion methods based on StyleGAN. By inspecting the
generator, we essentially find that the domains of w ∈ W
and w+ ∈ W+ obtained by sampling z from the standard
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(c) Inconsistent Variation
Figure 2. In-depth analysis on the lantent generating space of Style-
GAN. (a) represents multiple local domains corresponding to the
same person identities. (b) represents the anisotropy property
across different directions. (c) denotes the inconsistency between
the latent space and image space.

Gaussian distribution (named as the sampling domain) are
not well aligned with those obtained from inverting meth-
ods (named as the inverting domain). The average l2 norm
distance between those two domains is much larger than
that between the generated images from the two domains,
exhibiting that those two domains are well separated in the
latent space. More importantly, both of the two domains,
even with their interpolations, are able to reconstruct ex-
tremely similar images with the same person identity, as
illustrated in Fig. 2-(a). This reveals that the similarity of
two images may not be sufficient to guarantee the closeness
in the latent space. On the other hand, the similar images
across the interpolation indicate that certain direction in
the latent space cannot alter the image semantics, which is
further analysed by the following findings.

Finding 2: When manipulated by directions with the same
scale, the generated images exhibit distinct anisotropy
across semantics.

The rich semantics within the low-dimensional latent space
allow for flexible manipulations. We investigate the impact
of manipulations on the W space, the de facto choice for
the majority GAN inversion methods (Richardson et al.,
2021; Tov et al., 2021; Alaluf et al., 2022; Dinh et al., 2022;
Alaluf et al., 2021; Hu et al., 2022; Pehlivan et al., 2023;
Wang et al., 2022; Yao et al., 2022). We represent the
generation from the W space as {g(w) : w ∈ W}, and
analyse the manipulated generation g(w+v) for arbitrary v
that satisfies both ||v||22 = β and (w+v) ∈ W . Please note
that β is the constant that restricts the scale of manipulating
direction v to possess the same length of the l2-norm. We
then plot sets of g(w + v) and g(w) for different v in
Fig. 2-(b). From this figure, when manipulated by the
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same scale vector within the W space, we can conclude that
the variations of generated images are distinct, in which
certain random directions eventually anisotropically change
generated person identities. In other words, the variation
of an image within the same person identity essentially
corresponds to a curved latent space.

Finding 3: When sequentially edited by a fixed semantic di-
rection, the generated images exhibit inconsistent variation
against the unedited image.

Given the fact that GAN inversion searches for the best
representation in the latent space to minimise the discrep-
ancy between generated and input images, we then analyse
the relationship between the deviation in the latent space
and the variation of the corresponding generated images.
More specifically, we investigate the deviation on the W
space by directions with explicit semantics, which can be
obtained by InterfaceGAN (Shen et al., 2020a) for the face
images and GANSpace (Härkönen et al., 2020) for the car
and church images. Given a normalised semantic direction
{e : ||e||2 = 1}, we are able to calculate the variation of
generated images by ||g(w) − g(w + α · e)||22, in which
w ∈ W , α ∈ R1 denotes the deviation scale, g(·) denotes
the generation process and the variation is evaluated by the
MSE metric || · ||22. We illustrate in Fig. 2-(c) regarding
the MSE values between edited and unedited images, along
with the change of scale α in the latent space. From this fig-
ure, we can conclude that when increasing the scales given a
direction, the generated images, although still possessing the
same identity, exhibit inconsistent MSE values, sometimes
even have decreased MSE results. In other words, given
fixed (or slightly fine-tuned) generators, minimising MSE
on images may even result into the increase of deviation in
the latent space, thus preventing from finding the best latent
representation. In contrast, considering the curvature within
the latent space is beneficial to achieve the global optima.

4. Methodology
4.1. Latent Manipulation Inversion

Basically, GAN inversion seeks to accurately restore re-
alistic images, whereas Finding 1 indicates that directly
inverting images can result into sub-optimal results due to
multiple local domains in the latent space. Since the latent
space of StyleGAN possesses rich semantics, we propose
to restrict the inversion within the latent space to ensure the
consistency on semantics. Indeed, the inversion essentially
requires the bijection from the encoder to the generator for
real-world images, i.e., x = g(f(x)), which is equivalent
to the bijection from the generator to the encoder within a
certain local domain, namely, w = f(g(w)). Therefore,
performing the inversion within the latent space can also
contribute to improving the inversion for restored images.

The other important criteria of inversion is the quality of
semantics of the inverted latent feature, i.e., retaining the
realism of editing. Given the fact that the GAN inversion
restores realistic images, the preferred GAN inversion thus
has to restore arbitrarily edited images. When Assump-
tion 1 exists, Lemma 4.2 ensures the equivalence between
inverting arbitrarily edited images and inverting arbitrary
manipulation in the latent space, thus providing a new way
of improving the GAN inversion.

Assumption 4.1. The generator of StyleGAN is locally Lip-
schitz and operates as continuous mapping from the latent
space W to the image space (Arjovsky et al., 2017). More
importantly, there exists a local domain that the generation is
injective, which is also the prerequisite for GAN inversion.

Lemma 4.2. Let g(·) denote the pre-trained generator, and
f(·) to represent the inversion encoder. Given an arbitrary
latent feature w from an image w = f(x) and direction
v ∈ Bϵ(w), where Bϵ(w) represents an open ball of w
with radius ϵ, we represent the edited image by x̃ = g(w +
v). Then, the arbitrarily edited image x̃ can be precisely
inverted, i.e., x̃ = g(f(x̃)), if and only if we are able to
invert the manipulation, i.e., f(x̃)− v = f(x).

Proof. Please refer to the Appendix-C for the proof.

Besides performing the inversion for the latent features, we
thus propose to invert the manipulation within the latent
space, which basically calls for the consistency of local
curvature surrounding the inverted latent feature. Given
a style code w, manipulation inversion can be formally
achieved by minimising the follow objective:

min
f

Lr = min
f

∫
||f(g(w+β

v

||v||2
))−β v

||v||2
−w||22dv,

(1)
where v/||v||2 denotes unit manipulation and β denotes the
constant scale to retain within the same identity. In (1),
recall that g(·) denotes the fixed generator and f(·) repre-
sents the inversion encoder to be optimised. As proved by
Lemma 4.2, minimising (1) essentially ensures the ability
of restoring arbitrarily edited images.

4.2. Latent Statistical Manifold

We propose to align the distributions within the latent space,
named as distribution preserving embedding (DPE), as a
well-defined proxy of local curvature. This essentially re-
quires to establish the latent probabilistic model for w. As
analysed by Finding 2, the latent style features w exhibit
anisotropic property across image semantics, and we thus
cannot rely on the isotropic Gaussian assumption that is em-
ployed in typical settings. Correspondingly, we extend the
Gaussian model in (Wulff & Torralba, 2020) to the widely
applied factor model for latent codes, as follows,

w = STn+ ϵ+ c, (2)
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where c relates to the conditions given by the inversion
encoder f(x) and mapping network h(z), S is the projection
matrix, n and ϵ denote two independent random variables
that satisfy Gaussian distributions. Please note that h(z) is
fixed and f(x) is encouraged to approach h(z), such that the
manipulation inversion in the latent style code is optimised.

More importantly, since the style code feature w ∈ W pos-
sesses rich semantics as reflected by Findings 1&2&3, we
choose S as the semantic matrix, in which each column of
S represents one semantic direction. As proved in various
works (Shen et al., 2020b), all the latent vectors correspond-
ing to the same attribute of generated images should be
reachable through the direct path between them, and the
direct path is chosen as one semantic direction in S. In
this way, n ∼ N (0, I) and STn randomly combines vari-
ous semantic directions to generate the style code, which
also facilitates diverse and complete semantics of gener-
ated images. On the other hand, ϵ essentially represents the
nuisance noise that denotes the randomness of generated
images whilst not altering the semantics. This can be es-
tablished by ϵ = JTη, whereby η ∼ N (0, I) denotes the
random Gaussian noise on the image, and J is the Jacobian
matrix when generating images from w ∈ W , which maps
the nuisance noise at the image side to latent style codes.

Therefore, according to (2), we are able to model the
distributions output from the inversion encoder f(x) and
mapping network h(z), as N (f(x),STS + JTJ) and
N (h(z),STS+ JTJ), respectively. This way, we can min-
imise the distance between the two Gaussian distributions,
so as to accommodate the manipulation inversion in (1) by
random directions v/||v||. More importantly, f(x) and h(z)
now represent two distributions. In other words, given two
Gaussian distributions, the way to optimise f(x) shall fol-
low the shortest path given by the distribution discrepancy
between N (f(x),STS+ JTJ) and N (h(z),STS+ JTJ).
This naturally motivates us to establish the statistical mani-
fold Mw for two Gaussian distributions, by the Cramer-Rao
distance (Amari, 2016), in which the Riemannian metric is

ds2 = dwT (STS+ JTJ)−1dw (3)

More importantly, taking advantages of the equivalence
against the inner product of directional derivative on the
Riemannian manifold and within the Euclidean space (Ab-
sil et al., 2008), we are able to calculate the Riemannian
gradient on the established statistical manifold Mw. More
specifically, given any smooth loss function ϕ(w) and any
directional derivative dξ, we can calculate the gradient on
the Riemannian manifold, i.e., Riemannian manifold, by the
following equivalence

∇rϕ(w)T (STS+ JTJ)−1dξ = ∇eϕ(w)T dξ, (4)

where ∇rϕ(w) denotes the Riemannian gradient on Mw

and ∇eϕ(w) is the Euclidean gradient. As (4) holds for

arbitrary directional derivative, we can choose linear inde-
pendent directional derivatives dξ to compose a full-rank
matrix Λ. Then, we have

∇rϕ(w)T (STS+ JTJ)−1Λ = ∇rϕ(w)TΛ, (5)

such that the Riemannian gradient is obtained by

∇rϕ(w) = ∇eϕ(w)T (STS+ JTJ). (6)

In practice, we follow (Shen et al., 2020b) to calculate the
semantic matrix S and (Ramesh et al., 2018) to calculate
the Jacobian matrix J.

Figure 3. The pipeline of the proposed method. The projector
first embeds existing images into a well-behaved local domain, in
which the manipulation inversion is optimised based on (8). Please
note that the inverter is to be optimised, whereas the generator and
projector are fixed.

4.3. Adversarial Learning to Invert Manipulation

The remaining task is to invert the manipulation by min-
imising (1), based on the established manifold Mw. More
importantly, the inversion of manipulation requires the ex-
cessive numeration on the manipulation direction v to calcu-
late the integration. This, however, is intractable in practice.
Although matching the distributions in the latent style code
space can contribute to the manipulation inversion, an accu-
rate inversion still requires to enumerate v based on (1). To
relieve this issue, we propose to use the adversarial learning
to choose the “best” direction that maximises (1), namely,

L∗
r = max

v
||f(g(w + β

v

||v||2
))− β

v

||v||2
−w||22. (7)

The adversarial learning L∗
r essentially operates as an upper

bound of (1). This way, minimising L∗
r can ensure the

minimisation of (1) to retain the manipulation inversion.

To achieve the adversarial learning, we formulate the prop-
erties of the loss function ψ, which is represented as:

ψ(w,v) = ||f(g(w + β
v

||v||2
))− β

v

||v||2
−w||22 (8)
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Table 1. Evaluation against the manipulation inversion among ours and existing state-of-the-art methods, on the human face, church and
car scenarios. The best performance is highlighted in red and the second-best performance in blue.

Human Face Church Cars
Method

MSE ↓ LPIPS ↓ SSIM ↑ MS-SSIM ↑ MSE ↓ LPIPS ↓ SSIM ↑ MS-SSIM ↑ MSE ↓ LPIPS ↓ SSIM ↑ MS-SSIM ↑

pSp (Richardson et al., 2021) 0.0500 0.3656 0.5875 0.7196 0.1103 0.8279 0.3879 0.4226 0.7339 1.6028 0.2148 0.0564
E4E (Tov et al., 2021) 0.0665 0.4299 0.5668 0.6795 0.1713 1.0159 0.3604 0.3085 0.5290 1.2436 0.2394 0.0591

ReStylepSp (Alaluf et al., 2021) 0.0402 0.2701 0.6057 0.7608 0.1822 0.7230 0.3589 0.4177 0.1493 0.6181 0.4922 0.5770
ReStyleE4E (Alaluf et al., 2021) 0.0602 0.3961 0.5698 0.7022 0.2593 1.0308 0.3053 0.2636 0.2922 0.8751 0.4372 0.4539
HyperInverter (Dinh et al., 2022) 0.0262 0.1645 0.6594 0.8190 0.0921 0.3815 0.4248 0.6034 - - - -

HFGI (Wang et al., 2022) 0.0446 0.3198 0.5817 0.7481 0.1566 0.9032 0.3642 0.3811 - - - -
FSE (Yao et al., 2022) 0.0223 0.1839 0.7115 0.8625 0.0573 0.3275 0.4883 0.7236 0.0772 0.3617 0.5399 0.7092

E2Style (Wei et al., 2022) 0.0481 0.4148 0.6253 0.7590 0.0554 0.3097 0.5244 0.7538 - - - -
StyleRes (Pehlivan et al., 2023) 0.0366 0.5707 0.6440 0.7205 - - - - - - - -

Ours 0.0139 0.1263 0.7414 0.8931 0.0458 0.2691 0.5437 0.7847 0.0486 0.3001 0.5987 0.7726

Then, we define the distance D(w,v) = ||ψ(w,v) −
ψ(w,0)||22, and approximate this using a Taylor expan-
sion. The virtual editing reaches a maximum v∗ through the
power iteration method applied to the principal eigenvector
of the Hessian (Golub & der Vorst, 2000).

In practice, to optimise the manipulation inversion within
a well-behaved latent space, we employ a fixed encoder as
the projector to generate w, as illustrated in Fig. 3. We then
calculate ψ and update w. After obtaining w′ = w + v∗,
we optimise the inverter by minimizing the objective in (1),
ultimately generating the final images. Therefore, our final
loss becomes

L = Lr + λ1Lj + λ2Ls + λ3Lori (9)

where λ1, λ2 and λ3 are hyperparameters and are empiri-
cally set to 1.0, 0.8 and 3.0, respectively, while Lori rep-
resents the original inversion loss, i.e., Lori = Lmse +
λo1Llpips + λo2Lid.

5. Experiment
5.1. Experimental Settings

Dataset: Our experimental evaluations were performed
based on various scenarios. For the widely tested human
face scenarios, we employed the high-quality face dataset,
i.e., Flickr-Faces-HQ Dataset (FFHQ) (Karras et al., 2019)
dataset for training, and evaluated based on the CelebA-
HQ (Karras et al., 2018) dataset for the inversion. Both
resolution for the FFHQ and CelebA-HQ datasets is 1024×
1024. We also evaluated our method for the car scenario,
based on the 512 × 512 images within the Stanford Cars
(Krause et al., 2013) to serve for training and evaluation
with the official split. We further evaluated the challenging
scenery images by the church scenario, including 256×256
images within the LSUN Church dataset (Yu et al., 2015)
and also followed the official data splitting strategy.

Baselines We compared our method with state-of-the-art
image inversion methods, including classical methods such

as pixel2style2pixel (pSp) (Richardson et al., 2021) and
encoder for editing (E4E) (Tov et al., 2021), and most re-
cent methods such as residual-based StyleGAN (ReStyle)
(Alaluf et al., 2021) and E2Style (Wei et al., 2022), HFGI
(Wang et al., 2022), HyperInverter (Dinh et al., 2022), Fea-
tureStyleEncoder (FSE) (Yao et al., 2022) and StyleRes
(Pehlivan et al., 2023), which benefit from multi-stage and
multi-level information. Literately, we used the official pre-
trained weights and configurations released by the authors
to perform our evaluation experiments. For the Stanford Car
dataset and LSUN Church dataset, several methods are omit-
ted from comparisons when the models were not released.
When evaluating the editing and manipulation, another im-
portant criterion for GAN inversion, we run extensive exper-
iments leveraging InterfaceGAN (Shen et al., 2020a) for the
human face images and GANSpace (Härkönen et al., 2020)
for the car and church images to ensure diverse editing direc-
tions. More specifically, for the face images, we adopted the
edit direction from the previous method (Yao et al., 2022),
using the smiling, eyeglasses and heavy makeup boundaries
trained by InterFaceGAN. For the car and church images, we
computed PCA directions following the official GANSpace
implementation (Härkönen et al., 2020).

Implementation details In our experiments, the pretrained
StyleGAN generator was directly sourced from the Style-
GAN2 repository (Karras et al., 2020). We then employed
the same pretrained encoder as a fixed component for im-
plementing the projector. We adopted the backbone de-
sign from FSE (Yao et al., 2022). Then, we followed the
previous encoder-based methods (Richardson et al., 2021;
Tov et al., 2021; Alaluf et al., 2021), with the Ranger opti-
mizer, which combined the Lookahead (Zhang et al., 2019)
and the Rectified Adam (Liu et al., 2019) optimizer for
training. we set the learning rate and other parameters as
lr = 0.0001, β1 = 0.95, β2 = 0.999. To guarantee the
image domain not varying a lot for some special point, we
set the λo1 = 0.8 and λo2 = 0.1 for the image domain loss.
All evaluation experiments were conducted using a single
NVIDIA GeForce RTX 4090 GPU.
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Figure 4. Results of manipulation inversion across multiple editing directions on human faces. The notations including ± indicates that the
image is first edited by the manipulation in the latent generating space, followed by the inversion to restore the original input.

5.2. Comparisons on Manipulation Inversion

As mentioned in this paper, the inversion of manipulation
can well reflect the realism of inversion. We first com-
pared our method for the manipulation inversion and the
results are reported in Table 1. As can be seen from this ta-
ble, our method significantly outperforms other approaches
in terms of manipulation inversion across both domains,
demonstrating substantial improvements in all evaluation
metrics. Additional comparisons on editing realism are pro-
vided in Appendix-A. We further show subjective results in
Fig. 4, whereas our method exhibits superior performances
during manipulation inversion and achieves the best manip-
ulation inversion accuracy. Additional qualitative results
can be found in Appendix-B.

5.3. Comparisons on Reconstruction Accuracy

As proved in the Sec. 4.1, the manipulation inversion op-
timises both the reconstruction and editing aspects. We
thus systematically conduct a series of experiments to un-
derscore the alignment between manipulation inversion and
existing evaluation metrics of GAN inversion, substantiating
their compatibility and effectiveness. More specifically, we
conducted experiments on different challenging scenarios
which are the de facto choice to evaluate the performances
for GAN inversion tasks. Fig. 6 illustrates the samples of
our reconstruction results and the comparison with existing
baseline methods is provided in Table 2. Again, our method
outperforms other encoder-based methods for reconstruc-
tion accuracy in all scenarios, exhibiting the superior perfor-

Table 2. Evaluations on the reconstruction accuracy. The best per-
formance is highlighted in red and the second-best in blue.

Method MSE ↓ LPIPS ↓ SSIM ↑ MS-SSIM ↑

pSp (Richardson et al., 2021) 0.0497 0.2790 0.6218 0.7208
E4E (Tov et al., 2021) 0.0663 0.3510 0.5985 0.6812

ReStylepSp (Alaluf et al., 2021) 0.0401 0.2050 0.6394 0.7613
ReStyleE4E (Alaluf et al., 2021) 0.0600 0.3232 0.6015 0.7032
HyperInverter (Dinh et al., 2022) 0.0256 0.1481 0.6722 0.8105

HFGI (Wang et al., 2022) 0.0445 0.1803 0.6937 0.7495
FSE (Yao et al., 2022) 0.0215 0.0990 0.7550 0.8678

E2Style (Wei et al., 2022) 0.0481 0.3037 0.6595 0.7591

Ours 0.0133 0.0810 0.7670 0.8971

mances of our method that focuses on aligning distributions
in the latent space to invert the arbitrary manipulation.

5.4. Ablation Study

To demonstrate the impact of each component in our method,
we conducted step-by-step experiments to validate the ef-
fectiveness of the additional metrics and operations within
the latent space. The MSE constraint on the latent space is
referred to as the latent restriction. We denote Σ = JTJ
as the Jacobian component and Σ = STS as the semantic
component. The term Adversarial learning refers to the ad-
versarial training proposed in Sec. 4.3. We report the results
in Table 3. Notably, the latent restriction alone significantly
improves the manipulation inversion results, as evidenced
by the LPIPS metric and other metrics. Furthermore, the
Jacobian component introduces additional constraints, effec-
tively aligning transformations in both the image and latent
domains. This alignment leads to substantial improvement
in the metrics, indicating enhanced consistency and accu-
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Figure 5. Comparisons between existing typical architectures and those enhanced by our method, including pSp (Richardson et al., 2021),
HFGI (Wang et al., 2022), E2Style (Wei et al., 2022), and FSE (Yao et al., 2022). For each architecture, we show the input image, the
manipulated image, and the inversion result. The enhanced versions demonstrate the improvements achieved by integrating our method.
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Figure 6. Illustration on the reconstruction accuracy of our method
for GAN inversion.

racy in the inversion process. Our method, by sequentially
incorporating all the components, consistently improves
the inversion accuracy of manipulation, thus proving the
effectiveness of each component.

Table 3. Ablation study evaluations on manipulation inversion
against latent restriction, Jacobian component, semantic compo-
nent and adversarial learning, which are 4 key components in the
proposed method.

MSE ↓ LPIPS ↓ SSIM ↑ MS-SSIM ↑

Baseline 0.0223 0.1839 0.7115 0.8625
+ Latent restriction 0.0212 0.1491 0.7217 0.8678
+ Jacobian component 0.0154 0.1277 0.7354 0.8694
+ Semantic component 0.0144 0.1265 0.7403 0.8926
+ Adversarial learning 0.0139 0.1263 0.7414 0.8931

5.5. Compatibility on Different Architectures

To demonstrate the universal property of our method, es-
pecially for the applicability across various encoder-based
methods, we integrated different encoder types into our ex-
periments, including a simple latent encoder (i.e., pSp), a
two-phase encoder utilizing the shallow feature (i.e., HFGI),
a multi-stage method incorporating the shallow feature (i.e.,
E2Style) and the state-of-the-art result (i.e., FSE). Our distri-

Table 4. The results of existing architectures enhanced by our
method. The best results are highlighted in Bold.

MSE ↓ LPIPS ↓ SSIM ↑ MS-SSIM ↑

pSp (Richardson et al., 2021) 0.0500 0.3656 0.5875 0.7196
Enhanced pSp 0.0478 0.3473 0.5934 0.7290

HFGI (Wang et al., 2022) 0.0446 0.3198 0.5817 0.7481
Enhanced HFGI 0.0315 0.2618 0.6201 0.7905

E2Style (Tov et al., 2021) 0.0481 0.4148 0.6253 0.7590
Enhanced E2Style 0.0453 0.3497 0.6271 0.7650

FSE (Yao et al., 2022) 0.0223 0.1839 0.7115 0.8625
Enhanced FSE 0.0139 0.1263 0.7414 0.8931

bution estimation training was systematically applied to re-
align the latent code within their respective latent spaces. All
the training strategies were the same, with the exception of
HFGI. Given the fact that HFGI refines images exclusively
in the second stage, we adapt its methodology by initially
training an E4E encoder, followed by training the second-
stage consultation encoder using the default procedure of
HFGI. The results are reported in Table 4, which exhibits the
consistent improvements when using our method. Addition-
ally, subjective results in Fig. 5 illustrate the effectiveness
of integrating our method across different architectures.

6. Conclusion
In this paper, we have systematically analysed the latent
generating space of generative adversial network (GAN),
by realising that the local curvature exists when inverting
images. Motivated by this, we have proposed a new strat-
egy, namely, inverting manipulations, instead of inverting
images, by modelling the latent space as probabilistic mod-
els, and corespondingly establishing the statistical manifold.
We then further proposed an adversarial training method to
achieve efficient optimisation on calculating the manipula-
tion inversion loss. The proposed method can flexibly act
as plugin method to improve the inversion performances on
different architectures. Experimental results have demon-
strated superior performances on both reconstruction accu-
racy and editing realism.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Manipulation Inversion by Adversarial Learning on Latent Statistical Manifold

Broader Impact
The proposed method bridges GAN inversion and statistical
manifold theory to unify reconstruction accuracy and edit-
ing realism, offering a novel perspective for high-fidelity
image manipulation. By establishing a latent statistical man-
ifold and adversarial optimization, our framework serves
as a universal plugin for diverse GAN architectures, en-
abling seamless integration into applications such as med-
ical imaging restoration, artistic content generation, and
video compression. This universality reduces the need for
architecture-specific adaptations, broadening its adoption in
cross-domain tasks.

Furthermore, our adversarial strategy for minimizing ma-
nipulation inversion metrics introduces a computationally
efficient paradigm for latent space optimization. This could
inspire future research in unsupervised representation learn-
ing, particularly in scenarios requiring robustness to seman-
tic perturbations, such as domain adaptation or anomaly
detection.

However, enhanced editing realism may lower the barrier for
generating deceptive content (e.g., deepfakes). To mitigate
misuse risks, we advocate for ethical guidelines and detec-
tion frameworks to accompany such advancements. Future
work should explore embedding traceability mechanisms
within the latent space and fostering public awareness of
synthetic media risks. By balancing innovation and respon-
sibility, our method aims to advance generative technologies
while safeguarding societal trust.
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A. Edit Realism Result
Our experimental evaluations were performed based on various scenarios. For the widely tested human face scenarios, we
evaluated based on the CelebA-HQ (Karras et al., 2018) dataset for the inversion. We also evaluated our method for the car
scenario, based on the 512× 512 images within the Stanford Cars (Krause et al., 2013) to serve for training and evaluation
with the official split.
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Figure 7. Samples of edit results in face domain on the CelebA-HQ (Karras et al., 2018) dataset.
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Figure 8. Samples of edit results in car domain on the Stanford Cars (Krause et al., 2013) dataset.

As proved in the paper, the manipulation inversion optimises both the reconstruction and editing aspects. The inversion
of manipulation can well reflect the realism of inversion. We first exhibiting the comparisons on editing realism result.
The editing realism result are shown in the Fig. 7 and 8. We show two edit directions of each image domain. For the face
domain, we use the editing direction from InterfaceGAN (Shen et al., 2020b), for the car domain, we adapt the direction
from GANSpace (Härkönen et al., 2020).
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Manipulation Inversion by Adversarial Learning on Latent Statistical Manifold

B. Manipulation Inversion Result
We further show subjective results in Fig. 9, where our method exhibits superior stability during manipulation inversion and
achieves the best reconstruction.

Input + Grass ± Grass Input + Sunset ± Sunset

Input +Blue Sky ±Blue Sky Input +Sunlight ±Sunlight

Figure 9. Manipulation inversion results in car domain on the Stanford Cars (Krause et al., 2013) dataset.

C. Proof of Lemma 4.2
The proof of the Lemma 4.2 is listed below.

Lemma C.1 (Lemma 4.2). Let g(·) denote the pre-trained generator, and f(·) to represent the inversion encoder. Given an
arbitrary latent feature w from an image w = f(x) and direction v ∈ Bϵ(w), where Bϵ(w) represents an open ball of
w with radius ϵ, we represent the edited image by x̃ = g(w + v). Then, the arbitrarily edited image x̃ can be precisely
inverted, i.e., x̃ = g(f(x̃)), if and only if we are able to invert the manipulation, i.e., f(x̃)− v = f(x).

Proof. We can prove the equivalence between inverting arbitrarily edited images and inverting manipulation, through
sufficiency and necessity.

• Sufficiency: If any edited images can be inverted, we have x̃ = g(f(x̃)) for any v ∈ Bϵ(w). On the other hand, x̃ is
generated by x̃ = g(w + v). Then, we arrive at

g(f(x̃)) = x̃ = g(w + v).

As the generator g is continuous and acts as injection mapping, we can safely remove g(·) and thus have

f(x̃) = w + v

Therefore, we prove the sufficiency f(x) = w = f(x̃)− v for any v ∈ Bϵ(w).

• Necessity: Given f(x̃)− v = f(x) for any v ∈ Bϵ(w), we thus have

x̃ = g(f(x̃)) = g(f(x) + v)

which obtains x̃ = g(w + v). This proves that any edited image can be precisely inverted.

This completes the proof.
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