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Abstract

We identify a novel pathology of multilingual vision-
language models (VLMs): adding an image to the input re-
duces the likelihood that the model will reply in the same
language as the query. We term this pathology Image-
induced Fidelity Loss (IFL), and study its prevalence, cause
and remedies in LLaVA-style VLMs. On prevalence, we
show that IFL occurs in four different LLaVA-style VLMs
across three sizes and fourteen languages. Systematic ex-
perimental ablation of the LLaVA design space shows that
among training data language, vision backbone and lan-
guage backbone, the choice language backbone has the
largest impact on IFL. This finding is supported by exam-
ination of the input embeddings at the point of multimodal
fusion, where visual inputs are encoded separately to tex-
tual ones, regardless of language. Finally, we show that
a lightweight intervention technique from the mechanistic
interpretability literature can reduce IFL. In sum, we for-
malize a novel challenge arising in multilingual multimodal
settings, and comprehensively analyze its prevalence and
causes in a popular class of VLMs.

1. Introduction

When generating text in response to a query, language fi-
delity refers to whether the returned text is in the same lan-
guage as the query. While a seemingly simple task for hu-
mans, researchers have found that large language models
(LLMs) with multilingual capabilities bias towards gener-
ating English text, regardless of the query language[10].

In this work, we identify a surprising parallel pathology:
adding an image to the prompt of a VLM increases the like-
lihood that it will reply in the ”wrong” language. In the first
part of this paper we formalize this pathology, and term it
Image-induced Fidelity Loss (IFL). In the subsequent sec-
tion, we study how commonly it occurs (prevalence) and
why it occurs (cause). Focusing on LLaVA-style VLMs
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[16], we measure prevalence across four variants and four-
teen languages, comprehensively ablate the design space to
identify the training choices that most contribute to IFL,
and use mechanistic interpretability (MI) to trace the mech-
anisms of IFL within the model.

On prevalence, experiments on 7740 evaluation tasks in
fourteen languages show the effect of adding an image to
the query on the probability of the response to be in the
correct language ranges from −0.06 to −0.53. Our experi-
ments indicate that IFL is primarily attributable to the lan-
guage backbone on the VLM. In order to estimate the effect
of three key design choices–training data language, vision
backbone and language backbone–we train separate LLaVA
models for every possible combination of these three fac-
tors. We then show that of the three factors, the choice
of language backbone has the greatest effect on IFL in the
downstream LLaVA model. These results are corroborated
by our examination of the internal representations in LLaVA
models. In particular, we find that we are able to mitigate
IFL by intervening on the residual stream in the language
model using a simple steering technique.

The final section discusses limitations and directions for
future work. We focus our analysis on LLaVA-style VLMs
for their ubiquity and popularity, and as a ”model organ-
ism” to conduct our in-depth analyses. We also make exten-
sive use of machine translation in order to construct paral-
lel training corpora, which we acknowledge introduces bias
into our analyses. Future work should extend this analysis
to other VLM types such as Flamingo [2].

Our contributions are:

• We formalize a novel pathology of multilingual VLMs.
• We demonstrate its prevalence in LLaVA-style VLMs.
• We identify that choice of language backbone has the

strongest design effect on IFL.
• We show that intervention on the residual stream can mit-

igate IFL.

2. Image-induced Fidelity Loss

Following the success of text-only foundation models [4,
5], researchers have extended foundation models to vi-
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sual modalities, creating large, pretrained models that can
process image and text inputs and generate text outputs
[12, 32]. Given the prohibitive costs of full pretraining,
researchers have developed frameworks for training VLMs
from partially frozen pretrained components [15, 19]. In
this work, we focus on LLaVA, a popular example of an
efficient framework for creating VLMs [16].

VLMs can take image and/or text as inputs, and generate
text in response. When the language of the input and output
are the same, we refer to this as having language fidelity.
The phenomenon of interest in this paper is the decrease in
fidelity associated with adding an image to the input of a
VLM, which we call Image-induced Fidelity Loss (IFL).

Definitions Given an input x (text and/or image), we de-
fine the function L(x) as returning the (natural) language
of the input. The fidelity of a given text-generating model
θ(·) and input x is defined as a binary indicator of whether
the language of the input L(x) equals the language of the
output L(θ(x)):

F (x) =

{
1 if L(x) = L(θ(x)),

0 otherwise
(1)

We investigate the impact of including an image on fi-
delity. We compare inputs containing an image (ximage)
against inputs where the image is replaced with a textual
description of the image’s content, xdescription. The ratio-
nale for substituting the image with a textual description of
the image’s content is to maintain the semantic value of the
input constant.

Thus, for each document (consisting of image and text
pair) in our evaluation dataset, we define the Image Fidelity
Loss (IFL) as:

IFL = F (xdescription)− F (ximage) (2)

representing the fidelity loss incurred by substituting a text
description of an image with the actual image.

Language Detection and Bias Correction We use the
GlotLID model [11] to predict the language of the model
output (L(x)). In order to correct for errors in the GlotLID
predictions, we use the bias-corrected estimators from
the design-based supervised learning [8, DSL] framework.
DSL leverages a small number of randomly sampled expert
annotations to correct for bias in downstream estimators.
We manually label a stratified random sample of 1000 ex-
amples to use as our gold standard. The debiased results
can be interpreted as being the results that would have been
obtained if we had used expert annotation for all datasets.
We provide details of the sampling weights and annotation
method in the supplementary materials.

Multilingual Multimodal Datasets These image-text
pairs are drawn from the three multilingual VQA bench-
marks: MaXM [6], PALO-LLaVAW [17, hereafter

LLaVAW] and ViSIT [3], and summarized in Table 4 in the
SI. These datasets all include a textual query referring to an
image, plus a textual description of the image. In the case of
ViSIT this description is generated conditional on the task
instruction and verified by human annotators. In total, for
each model we collect 15480 responses spanning fourteen
languages (7740 times 2 conditions; see Table 5 in the SI
for a breakdown).

Prevalence of IFL We apply the experimental de-
sign outline above to four popular LLaVA-style VLMs:
LLaVA-v1.5-7b, LLaVA-v1.5-13b [16], BakLLaVA [27]
and LLaVA-Gemma-2B [9].
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Figure 1. IFL prevalence among existing LLaVA models. Ef-
fect of adding image to query on response fidelity (IFL) with 95%
confidence intervals. All values are DSL bias-corrected estimates
of change in probability, aggregated over all languages.

Figure 1 shows the debiased estimated effect and 95%
confidence interval of adding an image on fidelity for each
model and benchmark, aggregated across languages.

The magnitude varies by model and benchmark. The sin-
gle largest drop is by LLaVA-Gemma-2b on ViSIT, where
the response is 52.9 percentage points more likely to be in
a different language than the query when an image is in-
cluded in the input. With the exception of BakLLaVA on
ViSIT, all effects are statistically significant at an alpha of
0.95. Because we use the DSL framework for estimation,
these claims are statistically robust to errors from the lan-
guage identification model.

Collectively, these results provide concrete evidence of a
systematic issue: LLaVA models are more likely to reply in
the wrong language when the user includes an image in the
query. The remainder of this paper explores the source of
this issue.

3. Effects of Design Choices

The LLaVA architecture combines a pretrained vision en-
coder and language model by using a small multi-layer per-
ceptron (MLP) to project the penultimate hidden states of
the vision encoder into the input embedding space of the



language model [16]. This architecture is fine-tuned with
two stages of training. First the vision and language mod-
els are frozen and the projection MLP is trained on 558k
image-caption pairs. Next the vision encoder is kept frozen
and the projection MLP and language model are trained on
665k visual instruction-following and examples [16].

Design Space The base LLaVA-1.5 model uses Vicuna-
v1.5-7b [33] as the language backbone, CLIP [24] as the vi-
sion encoder and English for more than 99% its training ex-
amples. There are a priori reasons to think that any of these
decisions could induce an “English bias” in the model. Vi-
cuna is published as an English-language LLM trained pri-
marily on English-language examples. The captions used
to train the CLIP vision encoder are filtered for non-English
texts [24, p.3], meaning that the representations produced
by CLIP may be “biased” towards English language repre-
sentations of visual data. Finetuning the model with primar-
ily English data may “teach” the language model to reply to
visual inputs from the vision encoder/MLP in English.

We ablate these design choices individually to disentan-
gle their effects. For our experiments, we focus on Chi-
nese and German because these are languages for which
there is an LLM at a similar size and architecture to Vicuna-
7b that is not directly finetuned from Vicuna-7b. For Chi-
nese, we use the Yi-6b-chat, a 6B-parameter LLM trained
from scratch on a bilingual Chinese-English data mixture
[1]. For German, we use LeoLM-7b-chat, a 7B-parameter
LLM finetuned from Llama-2 [30] on 65B German tokens
[22]. For the vision encoder, we test the effect of substitut-
ing CLIP for DINOv2 [21] because the latter is trained us-
ing a self-supervised training objective that does not incor-
porate language, while still using a ViT [7]. We use NLLB-
1.7-distilled [28] to machine translate all ∼1.2M training
observations used in the LLaVA training data into Chinese
and German. We provide estimates of the machine transla-
tion quality following techniques in [23] in the supplement.

Language Vision EN ZH DE

Vicuna-v1.5-7b CLIP ✓ ✓ ✓
DINOv2 ✓ ✓ ✓

Yi-6b-chat CLIP ✓ ✓ –
DINOv2 ✓ ✓ –

Leo-7b-chat CLIP ✓ – ✓
DINOv2 ✓ – ✓

Table 1. Supported configurations of language backbone, vision
backbone and training data language.

This design yields a total of fourteen combinations (Ta-
ble 1). All designs used the same training parameters as the
original LLaVA-v1.5-7B model. We provide further train-
ing details in the supplementary materials.

Model IFL Accuracy

Chinese
LLM 0.17 [0.15, 0.19] 0.21 [-0.07, 0.50]
VE -0.20 [-0.22, -0.18] 0.15 [-0.13, 0.43]

Data -0.16 [-0.17, -0.14] 0.01 [-0.27, 0.30]

German
LLM 0.07 [0.04, 0.10] 0.28 [-0.35, 0.91]
VE -0.11 [-0.15, -0.08] -0.10 [-0.73, 0.53]

Data -0.37 [-0.40, -0.33] -0.24 [-0.87, 0.40]

Table 2. Point estimate and 95% confidence interval of the effect
of changing the design feature (LLM, vision encoder or training
data language, corresponding to β2, β3 and β4 in equation 3) on
IFL (left-hand column) and accuracy (right-hand column). Chi-
nese and German are reported top and bottom respectively.

Design Effects For each set of experiments (Yi/Chinese
and Leo/German), we measure the effect of training choices
on IFL using the following regression model with first-order
interactions:

Fidelity = β0 + β1Image

+ β2Image × LLM

+ β3Image × VE

+ β4Image × Data + ϵ

(3)

where:
• Fidelity is a binary indicator for whether a completion has

fidelity (Equation 1).
• β2Image × LLM is change in IFL when the LLM is

changed from from Vicuna to Yi or Leo
• β3Image×VE is change in IFL when the vision backbone

is changed from CLIP to DINOv2
• β4Image × Data is change in IFL when the training lan-

guage is changed from English to Chinese or German
• β0, β1 and ϵ are not relevant to the analysis

Coefficients β2, β3 and β4 with the corresponding 95%
confidence interval are reported in the left-hand side of Ta-
ble 2. We see similar patterns for both languages. Changing
the language model from Vicuna to Yi/Leo improved the
performance of the model, reducing IFL by 17 and 7 pp for
Chinese and German respectively. Changing the vision en-
coder from CLIP to DinoV2 worsened IFL, increasing it by
20 and 11 pp respectively. Changing the training data lan-
guage worsened IFL considerably, increasing it by 16 and
37 pp respectively. We discuss the effects on accuracy in
the supplement.

4. Locating the Cause of IFL
Embeddings Analysis To understand the interaction be-
tween image and text embeddings in the input space, we
employ Uniform Manifold Approximation and Projection
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Figure 2. Centered Kernel Alignment (CKA) heatmap showing
the similarity of vision embeddings across two differently trained
language models. Linear kernel CKA is shown in the lower trian-
gle; RBF kernel CKA is shown in the upper triangle.

(UMAP) for dimensionality reduction [18], a non-linear di-
mensionality reduction technique that preserves global data
structure. Figure 3 (SI) illustrates that image embeddings
cluster distinctly from text, demonstrating a demarcated
separation in the latent space. This segregation suggests
image embeddings occupy a unique region of the embed-
ding space, indicating they are not directly embedding in
the same area as any particular language.

To further understand the image embeddings, we use
Centered Kernel Alignment (CKA) to measure the simi-
larity of internal representations across differently trained
models [13]. CKA measures the similarity between two sets
of data by comparing kernel matrices, which transform data
into a high-dimensional space. A CKA score close to 1 in-
dicates high similarity between datasets, while a score near
0 suggests low similarity. We measure how the vision em-
beddings compare between two separately trained VLMs:
LLaVA-Yi trained in Chinese and LLaVA-Leo in German.

Figure 2 shows that vision embeddings maintain a con-
sistent structure in the latent space across various models,
regardless of the language backbone or the training data
specifics. This supports the finding in the UMAP visualiza-
tion that image embeddings are in their own region of the
input space. This suggests that the language model is “re-
sponsible” for interpreting out-of-distribution embeddings,
and the MLP adaptor is not placing the image embeddings
closer to a particular language.

Mechanistic Intervention Drawing from recent work in
Mechanistic Interpretability, we propose a simple training-
free intervention for improving fidelity that uses just one
text example per language.

Our steering mechanism works by computing a language
attribute alang in an intermediate layer, then applying that
attribute to every generated token, following ActAdd[31].
The attribute is computed as follows:

alang = LLMl(xlang)− LLMl(xen) (4)

Model IFL IFL +
Remedy Diff. Relative

Increase

llava7b -0.085 -0.030 0.055 65%
llava13b -0.175 -0.103 0.073 42%
bakllava -0.073 0.098 0.170 233%
llava-
gemma2b -0.681 -0.513 0.168 25%

Table 3. Fidelity improvements by using mechanistic intervention
(Remedy). Across all pretrained models, we find significant re-
duction in IFL by interventing on the LLM’s intermediate layer.

where LLMl represents the output at layer l, xen is the sen-
tence “Describe this image in detail.”, and xlang is the trans-
lated version of that sentence.

During inference, this direction is added to the output
of layer l, effectively steering the model’s behavior towards
the desired language:

LLM∗l = LLMl(ol−1) + alang (5)

where ol−1 is the output of the previous layer and LLM∗l
is the new, intervened layer. For our experiments layer l
is selected to be partway through computation at one third
depth (e.g., layer 10 out of 30).

We find large relative reductions in the prevalence of IFL
across the board, which we report in table 3. While this
strategy requires knowledge about which language attribute
to select, it provides strong evidence supporting the hypoth-
esis that the LLM is responsible for IFL. Moreover, the suc-
cessful application of a targeted mechanistic intervention
highlights the potential of this approach to mitigate issues
related to IFL, an area of research we will explore further.

5. Limitations and Conclusion

Our work has several limitations. First, we focus on a single
VLM “type”–future work will extend the investigation to
other kinds of VLMs. Second, our estimates of fidelity are
based on a silver-standard language identification model.
We account for this by mixing in gold-standard annotations
using DSL. Third, we use machine translation to construct
parallel training and evaluation corpora, which may intro-
duce noise into our results.

Nevertheless, our paper provides strong evidence of
three results: 1) IFL is prevalent across LLaVA-style
VLMs, 2) the mechanism for IFL occurs in the language
backbone and 3) IFL may be mitigated with a simple steer-
ing technique involving inference-time intervention on the
language backbone residual stream. We hope that our work
will draw attention to the unique challenges of developing
multilingual multimodal foundation models, and the scien-
tific opportunities for systematic inquiry that these provide.
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A. Figures and Tables Referenced in Article

Dataset MM #Langs. Size

PALO-LLaVAW yes 10 600
MaXM yes 7 2142
ViSIT yes 10 5740
MultiQ no 119 27400

Table 4. Overview of employed datasets, indicating multimodality
(MM), number of languages (#Langs.), and total observations.

Language N Language N

Chinese (zh) 862 Japanese (ja) 585
Hindi (hi) 845 Spanish (es) 585
English (en) 842 German (de) 525
Hebrew (he) 805 French (fr) 324
Thai (th) 793 Romanian (ro) 284
Arabic (ar) 585 Russian (ru) 60
Bengali (bn) 585 Urdu (ur) 60

Table 5. Number of tasks per language in the datasets we study.

Figure 3. UMAP visualization of image and text embeddings from
a multimodal language model. Image embeddings are shown clus-
tering distinctly from text embeddings, indicating a unique sepa-
ration in the latent space.

B. Additional Analysis: Effect on Accuracy

Although the above section provides insights into reducing
IFL, how do these design decisions affect the factual accu-
racy of responses? To measure this, we used GPT-4o [20]
to generate zero-shot predictions of the accuracy. Our GPT-
4o prompt gave the question, dataset ground truth (where

available) and model completion and asked if the comple-
tion is correct given the question and ground truth label. We
then used the DSL procedure to debias these evaluations,
whereby the authors manually annotated 1000 observations
to provide a gold standard.

We use the same regression setup as Equation 3, sub-
stituting the outcome Fidelity for Accuracy, a binary vari-
able indicating whether a given response is correct given
the question and dataset ground truth. The right-hand col-
umn of table 2 displays the effect of each design decision
on the accuracy of responses in the target language.

We find no evidence for a systematic effect of any of the
design decisions on accuracy. All estimated coefficients are
statistically indistinguishable from 0, meaning our data does
not support the hypothesis that changing the LLM, vision
encoder or training data in the way described has a system-
atic effect on the accuracy of the response.

C. Computational Experiments
Computational Budget The training experiments for this
paper were conducted on an internal cluster using nodes
with 8 × A6000 Nvidia 48GB GPUs. In total, we trained
32 distinct configurations (not all of which were ultimately
used). A single end-to-end training run with a 7-billion pa-
rameter LLM backbone takes 25 hours, meaning roughly
800 GPU hours were used for training. Inference exper-
iments were run on a mixture of RTX3090 24GB cards,
A6000 24GB cards and A6000 48GB cards. These required
roughly an additional 900 GPU hours. Data analysis uti-
lized CPU. The only sizable compute consisted of applying
the DSL estimator to large datasets, which required on the
order of ∼ 500 CPU hours. Finally, the GPT-4o annota-
tion for the roughly 730k completions in our experiments
required roughly USD 2k worth of completion calls.

D. Expert Annotation
Sampling Weights We stratified on evaluation bench-
mark (i.e. we weighted the probability by the inverse pro-
portion of the originating benchmark to the full dataset)
and then upweighted German by a factor of 4, Chinese
and Hindi by 2, and downweighted Romanian, Russian and
Urdu by a factor of 2. We sampled a total of 1000 observa-
tions (without replacement) using these weights.

Annotation Procedure The 1000 observations were up-
loaded into spreadsheets for the authors to manually anno-
tate. Where possible, annotations were matched to authors
who could read the language used in the query. The annota-
tion consisted of three questions: what language is the an-
swer, does the model completion match the gold standard,
and is the answer correct. The latter two questions were
restricted to three categories: true, false and NA. NA was
used where the model did not provide coherent output.



E. Automated Evaluation

GlotLID We use the GlotLID v3 [11] model for auto-
mated language identification. We take the most-likely lan-
guage as predicted by GlotLID, and then manually process
the label to collapse what we thought were common mis-
classifications by the model, such as classifying Mandarin
Chinese into various languages and dialects using the sim-
plfied Chinese script when the outputs contained a mix of
non-Chinese punctuation characters and Chinese glyphs.

The full parsing rule is as follows:

def parse_glotlid(lang: str) -> str:
iso, script = tuple(lang.split("_"))
match script:

case "Hani":
return "chinese"

case "Jpan":
return "japanese"

case "Deva":
return "hindi"

case "Beng":
return "bengali"

case "Hebr":
return "hebrew"

case "Thai":
return "thai"

case "Cyrl":
return "russian"

case "Zzzz":
return "none"

case "Arab":
match iso:

case "urd":
return "urdu"

case _:
return "arabic"

case "Latn":
match iso:

case "deu":
return "german"

case "eng":
return "english"

case "spa":
return "spanish"

case "ron":
return "romanian"

case "fra":
return "french"

case _:
return "other_latin"

case _:
return "other"

F. Datasets Used

Here we provide an overview on the datasets we employ in
our study.

MaXM was introduced by Changpinyo et al. [6] and is
a VQA dataset comprising seven languages in five scripts.
In MaXM, the questions and their respective answers are
in the same language. Moreover, in MaXM, the images
are a subset of the XM3600 [29] dataset and are chosen to
match a region where the language of the question-answer
pair is spoken. To increase the cultural diversity, the im-
ages selected to match the region where the language of the
question-answer pair is spoken.

VisIT-Bench stands for Visual Instruction Tuning
Benchmark [3]. The dataset consists of 592 vision-
language tasks written by human researchers, with GPT-
4-generated responses and dense instruction-conditioned
captions of the image that are rated by human coders. The
562 images are taken from the OpenImages [14] v7 dataset.
In this work we use 525 examples where the GPT-4 gen-
erated responses are rated as correct by human annotators.
We machine translate these examples into Arabic, Bengali,
Chinese, German, Hebrew, Hindi, Japanese, Spanish and
Thai using the Azure Translation API.

To check the translation quality, we inspected 25 ran-
domly sampled translations in Chinese, Hindi, Hebrew,
German, Japanese and Spanish (languages where the au-
thors had access to native speakers). Among these, the ma-
jority (19 out of 25) of translations were deemed to not sig-
nificantly change the meaning of the original. In the remain-
der, issues observed included omitting details (such as not
mentioning an object or descriptor), or constructing words
that were understandable but not “natural” in the target lan-
guage. In general the question/instruction was correctly
translated, but the translation of the gold standard varied
in quality. This presents a limitation for this research, but
one that cannot be overcome without greater resources for
expert/higher quality translation.

PALO-LLaVA-Bench-In-The-Wild dataset is a multi-
lingual VQA dataset created by the PALO authors [17]
by machine translating the original LLaVA-Bench-In-The-
Wild [16] in 10 languages using a fine-tuned GPT-3.5 in-
stance. The dataset comprises of 60 questions per language
considering 24 diverse images with a caption describing the
visual content.

MultiQ is an evaluation dataset for open-ended question
answering covering 137 typologically diverse languages. It
is specifically constructed to only contain questions that are
simple, factual, and target common knowledge to only test
the multilingual capabilities of language models, and no
complex reasoning [10].



F.1. Machine Translation of Training Data

As noted in the main body, we machine translate (MT) the
LLaVA training data into Chinese and German using the
NLLB-1.7-distilled model [28]. The choice of this model
was primarily motivated by resource availability for trans-
lating 1.2M texts into two languages.

We apply two automated translation quality checks for
the training data based on the MT checks in Qiu et al. [23].
The first is the token-type-ratio (TTR) of each of the lan-
guages. A value close to 0 indicates a high degree of repeti-
tion, which is an observed pathology of neural MT models.
The second is the BLEU score between the source and MT
texts. A BLEU score close to 1 indicates the presence of
copied English text.

The highest BLEU score for source to target across all
translated examples is 1.6e − 231, indicating that copying
did not occur. Figure 4 shows the values for the TTR check.
We find that in both cases our MT data has a higher cumu-
lative TTR curve than the English data; this indicates less
token repetition. It is hard to directly interpret this value,
given that baseline TTR should vary between languages, but
the lack of an obvious negative pattern is reassuring.

G. Models Used

Here we provide an overview of the models we employed
in our study.

OpenAI/CLIP is a jointly optimized vision and text fea-
ture extractor trained using large-scale image-caption pairs
[24]. CLIP is focused on learning image representations
from scratch that are trivially transferable to many down-
stream tasks without the need for domain specific training.

DINOv2 is a series of image encoders trained on curated
data using unsupervised learning [21]. Through an im-
proved training recipe and larger dataset, followed by a dis-
tillation process of larger to smaller models, DINOv2 is po-
sitioned as a ViT-based general-purpose image encoder that
surpasses OpenAI/CLIP on most benchmarks.

LLaVA-v1.5 is a large multimodal model trained end-to-
end with visual instruction following [16]. The model com-
bines a vision model — OpenAI/CLIP — with a large lan-
guage model — Vicuna-v1.5 — achieving impressive vi-
sual and language understanding results that were state-of-
the-art at its release. In this work we used the 7b and 13b
variants of the model.

BakLLaVA is a large multimodal model based on the
LLaVA-v1.5 architecture using Mistral-7b as the base LLM
[27]. The model utilizes training data from LLaVA-v1.5 as
well as additional sources including ShareGPT and private
data with a permissive license.

Yi-6b-chat is a large language model trained from scratch
on English and Chinese corpora [1]. In this work, we use the
6b variant that has been extended with chat-style training.

Leo-7b-chat is a large language model that extends
Llama-2 into German through continued training on a large
German corpus [22].

GlotLID v3 is a language identification model that
coveres 2102 languages. The data used to train this model
was sourced from Wikipedia, news sites, translation cor-
pora, religious text, and storybooks.

NLLB-1.7-distilled is translation model that support di-
rect translation between 200 languages, including many
low-resource languages [28]. The datasets used to train
NLLB (No Language Left Behind) were sourced from pro-
fessionally translated sentences in the Wikipedia domain in
addition to publicly available translation datasets.

GPT-4o is a commercial large language model provided
from OpenAI.

H. Technical Explainers
H.1. Primer on LLaVA
What is LLaVA? Our study analyzes LLaVA, a multi-
modal model (VLM) that integrates a pretrained vision en-
coder, denoted as EV , with a large language model (LLM),
using a connecting multilayer perceptron (MLP). The pro-
cess is defined in two main training stages: pretraining of
the MLP and joint finetuning of the MLP with the LLM.

Model Architecture The VLM comprises the following
components:

Vision Encoder: The vision encoder EV processes the
visual input Xv to produce a set of embeddings EV (Xv).

MLP Connector: A connecting MLP, defined as F ,
transforms the output of EV into the dimenstionality of the
LLM. This transformation is represented as F (EV (Xv)).

LLM: The LLM processes both textual query Xq

and the transformed vision embeddings. The com-
bined input to the LLM is given by concatenating the
embeddings from the MLP with text embeddings, i.e.,
LLM([F (EV (Xv));EL(Xq)]), where EL denotes

The VLM is defined as a function that takes an image
input Xv and a textual question Xq , and processes these
through the vision encoder, MLP connector F , and LLM to
produce an output Xa, which is the model’s answer to the
question based on the visual context. Formally, the VLM
can be expressed as:

V LM(Xv, Xq) = LLM ([F(EV (Xv));EL(Xq)]) , (6)

where EV (Xv) is the output of the vision encoder for the
input image, F(EV (Xv)) is the transformed visual embed-
ding suitable for the LLM, and EL(Xq) represents the em-
bedded form of the textual question. The final output Xa
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Figure 4. Token-type ratio (TTR) for pretraining (left) and finetuning training datasets.

is generated by the LLM, which synthesizes and integrates
both the visual and textual information to produce a contex-
tually appropriate answer.

Training Procedure The training of the VLM is struc-
tured into two distinct stages: pretraining and finetuning.
During the pretraining stage, the MLP is trained while keep-
ing EV and the LLM frozen. The objective is to optimize
the MLP to map the vision encoder outputs to a representa-
tion that is effectively integrable with the LLM. The training
uses a custom dataset of 595k samples filtered from CC3M
[26]:

LMLP =
∑

(Xv,Xc)∈D

LCE(V LM(Xv, Xq)), (7)

where Xc represents the captions associated with Xv , and
D denotes the dataset.

Finetuning In the finetuning stage, the MLP and the LLM
are jointly trained with a larger, diverse dataset of 665k mul-
timodal instruction tuning examples, integrating both syn-
thetic and established vision-language training sets. The en-
tire conversation C = (Xq, Xa) is fed into the LLM, with
autoregressive masking applied to focus training on the an-
swers using supervised cross-entropy loss LCE :

LVLM =
∑
C∈C

LCE(V LM(Xv, Xq)), (8)

where C represents the conversation dataset, and training
focuses exclusively on the answer parts Xa, leveraging the
context provided by the entire conversation but training only
through the answer segments.

llava7b

dataset Lang. IFL
IFL +

Remedy Diff.

llavaw ar -0.250 -0.083 0.167
bn -0.117 -0.050 0.067
zh -0.233 -0.017 0.217
fr -0.183 0.000 0.183
hi -0.133 -0.033 0.100
ja -0.117 -0.050 0.067
ru -0.233 -0.017 0.217
es -0.200 -0.050 0.150
ur -0.050 0.083 0.133

maxm zh 0.004 0.000 -0.004
fr 0.004 -0.011 -0.015
he -0.132 -0.125 0.007
hi -0.042 -0.035 0.008
ro 0.000 -0.014 -0.014
th -0.007 -0.011 -0.004

visitazure ar -0.038 -0.047 -0.009
bn -0.084 -0.038 0.045
zh -0.026 -0.047 -0.021
de -0.054 -0.037 0.017
he -0.038 -0.037 0.002
hi -0.026 -0.009 0.017
ja -0.021 -0.051 -0.030
es -0.024 -0.042 -0.017
th -0.045 -0.010 0.035

average - -0.085 -0.030 0.055

Table 6. mechint raw llava7b scores.
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llava13b

dataset Lang. IFL
IFL +

Remedy Diff.

llavaw ar -0.183 -0.033 0.150
bn -0.233 -0.083 0.150
zh -0.133 -0.033 0.100
fr -0.200 -0.100 0.100
hi -0.317 -0.200 0.117
ja -0.183 -0.117 0.067
ru -0.433 -0.317 0.117
es -0.233 -0.183 0.050
ur -0.550 -0.267 0.283

maxm zh -0.025 -0.007 0.018
fr -0.008 -0.045 -0.038
he -0.175 -0.121 0.054
hi -0.042 -0.035 0.008
ro -0.106 -0.085 0.021
th -0.157 -0.093 0.063

visitazure ar -0.174 -0.066 0.108
bn -0.244 -0.136 0.108
zh -0.071 -0.031 0.040
de -0.105 -0.094 0.010
he -0.125 -0.082 0.044
hi -0.136 -0.096 0.040
ja -0.056 -0.044 0.012
es -0.057 -0.042 0.016
th -0.258 -0.155 0.103

average - -0.175 -0.103 0.073

Table 7. Mechanistic intervention complete llava13b scores.

bakllava

dataset Lang. IFL
IFL +

Remedy Diff.

llavaw ar 0.000 0.350 0.350
bn -0.050 0.217 0.267
zh -0.033 -0.067 -0.033
fr -0.117 0.000 0.117
hi 0.000 0.050 0.050
ja -0.017 -0.067 -0.050
ru 0.000 0.000 0.000
es -0.117 0.217 0.333
ur -0.017 0.183 0.200

maxm zh -0.018 0.014 0.032
fr -0.318 -0.223 0.095
he 0.000 0.029 0.029
hi 0.000 0.135 0.135
ro -0.567 -0.299 0.268
th -0.119 -0.078 0.041

visitazure ar -0.010 0.608 0.618
bn -0.012 0.557 0.570
zh -0.007 0.019 0.026
de -0.136 -0.108 0.028
he 0.000 0.078 0.078
hi -0.007 0.113 0.120
ja -0.014 0.026 0.040
es -0.183 0.291 0.474
th -0.007 0.294 0.301

average - -0.073 0.098 0.170

Table 8. Mechanistic intervention complete bakllava scores.



llavagemma2b

dataset Lang. IFL
IFL +

Remedy Diff.

llavaw ar -0.583 -0.533 0.050
bn -0.483 -0.483 0.000
zh -0.733 -0.567 0.167
fr -0.800 -0.433 0.367
hi -0.500 -0.317 0.183
ja -0.600 -0.650 -0.050
ru -0.883 -0.650 0.233
es -0.900 -0.700 0.200
ur -0.517 -0.483 0.033

maxm zh -0.852 -0.762 0.090
fr -0.905 -0.652 0.254
he -0.768 -0.482 0.286
hi -0.731 -0.546 0.185
ro -0.810 -0.637 0.173
th -0.646 -0.455 0.190

visitazure ar -0.718 -0.578 0.139
bn -0.483 -0.420 0.063
zh -0.672 -0.552 0.120
de -0.688 -0.258 0.430
he -0.617 -0.280 0.336
hi -0.589 -0.375 0.214
ja -0.526 -0.509 0.017
es -0.793 -0.608 0.185
th -0.538 -0.373 0.166

average - -0.681 -0.513 0.168

Table 9. Mechanistic intervention complete LLaVA-Gemma-2b
scores.

I. Training
I.1. Hyperparameters
All models were trained using the same hyperparameters
as the original LLaVA-v1.5-7b model. This training takes
place in two stages, as described above.

In the first (“pretraining”) stage, we trained with a global
batch size of 256 and a learning rate of 1e−3. In the second
(“finetuning”) stage, we used a global batch size of 128 and
a learning rate of 2e − 5. For both stages we trained for
a single epoch, with a warmup ratio of 0.03 and a cosine
annealed learning rate scheduler.

I.2. Convergence
In order to ensure comparability across experiments, we
trained every model the same amount (one epoch). How-
ever, as a hedge against random failures during training,
we monitored the training loss curves. All checkpoints
saw similar proportional decrease in training loss from their
tenth to final training step, ranging from a 38.9% to 65.8%

decrease in training loss. Figure 6 shows the loss curves for
each model.

J. Accuracy
J.1. Accuracy of Baseline LLaVA Models
The accuracy of the base LLaVA models is not very high for
the languages and benchmarks considered. Table 10 pro-
vides a breakdown of accuracy by each of the languages in
the benchmarks. We see that the 7B and 13B models fail to
exceed even 40 and 50 percent accuracy respectively. These
results are consistent with concurrent findings in Schneider
and Sitaram [25]. We do not see these results as problem-
atic for our research, as we want to emphasize the goals of
fidelity and (factual) accuracy as being independently pur-
suable.

Query Language LLaVA 7B LLaVA 13B

English 0.372 0.392
French 0.340 0.417
Urdu 0.317 0.317
Russian 0.183 0.233
Bengali 0.161 0.222
Spanish 0.099 0.162
Japanese 0.115 0.130
Chinese 0.129 0.160
German 0.107 0.154
Romanian 0.025 0.271
Hindi 0.099 0.128
Thai 0.108 0.091
Arabic 0.080 0.087
Hebrew 0.063 0.080

Table 10. Performance of LLaVA Models Across Different Lan-
guages

J.2. Accuracy-Fidelity Trade-off
In addition to the findings in the main body of this paper,
further experiments indicate weak evidence in support of
there being a trade-off between optimizing accuracy and fi-
delity. Table 11 provides the Pearson correlation coefficient
between accuracy and fidelity for each of the models in-
cluded in our analysis. We find that for only five out of
26 models is there a significant correlation, with the value
ranging from −0.514 to 0.541. We do not find any pat-
tern from these results to suggest a systematic finding for a
trade-off.

K. Use of AI Tools
The authors of this paper used Github Co-pilot for coding
assistance for this research.
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vicuna13b dino en -0.514 0.006
yi6b dino en -0.432 0.025
yi6b clip en -0.413 0.032
yi6b dino en -0.413 0.032
yi6b clip en -0.386 0.047
leo dino en -0.284 0.151
leo dino de -0.239 0.231
leo dino en -0.218 0.274
vicuna13b clip zh -0.175 0.382
leo clip en -0.152 0.448
leo clip de -0.131 0.515
vicuna13b clip de -0.112 0.579
vicuna13b dino zh -0.060 0.768
yi6b dino zh -0.057 0.776
yi6b dino zh -0.054 0.788
yi6b clip zh -0.050 0.804
vicuna7b dino zh -0.035 0.862
vicuna7b dino en -0.034 0.865
leo7b clip en -0.029 0.885
yi6b clip zh -0.023 0.908
vicuna13b dino de 0.023 0.909
vicuna7b clip zh 0.069 0.731
vicuna7b clip de 0.088 0.664
vicuna7b dino de 0.099 0.624
leo dino de 0.192 0.338
leo clip de 0.225 0.258

Table 11. Correlation between accuracy and fidelity by model.
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