
Published as a conference paper at ICLR 2022

CROWDPLAY: CROWDSOURCING HUMAN
DEMONSTRATIONS FOR OFFLINE LEARNING

Matthias Gerstgrasser, Rakshit Trivedi & David C. Parkes
School of Engineering and Applied Sciences
Harvard University
{matthias,rstrivedi,parkes}@seas.harvard.edu

ABSTRACT

Crowdsourcing has been instrumental for driving AI advances that rely on large-
scale data. At the same time, reinforcement learning has seen rapid progress
through benchmark environments that strike a balance between tractability and
real-world complexity, such as ALE and OpenAI Gym. In this paper, we aim to fill
a gap at the intersection of these two: The use of crowdsourcing to generate large-
scale human demonstration data in the support of advancing research into imita-
tion learning and offline learning. To this end, we present CrowdPlay, a complete
crowdsourcing pipeline for any standard RL environment including OpenAI Gym
(made available under an open-source license); a large-scale publicly available
crowdsourced dataset of human gameplay demonstrations in Atari 2600 games,
including multimodal behavior and human-human and human-AI multiagent data;
offline learning benchmarks with extensive human data evaluation; and a detailed
study of incentives, including real-time feedback to drive high quality data. We
hope that this will drive the improvement in design of algorithms that account for
the complexity of human, behavioral data and thereby enable a step forward in
direction of effective learning for real-world settings. Our code and dataset are
available at https://mgerstgrasser.github.io/crowdplay/.

1 INTRODUCTION

Crowdsourcing has been instrumental in many AI advances, especially recent rapid progress in deep
neural network models, which often rely on large training sets. For instance ImageNet (Deng et al.,
2009), a large database of annotated images, has enabled a number of breakthroughs in image clas-
sification (Krizhevsky et al., 2012). At the same time, reinforcement learning (RL) has seen rapid
progress in the last few years, fueled in part by the development of standard, easily accessible, bench-
mark environments like the Arcade Learning Environment (ALE) (Bellemare et al., 2013; Machado
et al., 2018) and OpenAI Gym (Brockman et al., 2016). What has been underexplored is the in-
tersection of the two: Using large-scale crowdsourced human data for offline learning, including
imitation learning and offline RL.

We present CrowdPlay, a framework, methodology, and dataset that we hope will do for offline
learning what ALE and OpenAI Gym did for online learning. CrowdPlay supports flexible and
scalable crowdsourcing that is geared towards multi-channel recruitment, and is able to interface
with any OpenAI Gym or Gym-like Markov decision process (MDP) environment. It supports real-
time feedback to participants that can be used to boost data quality, as well as both purely human
and mixed human-AI multiagent environments.

CrowdPlay is also the first dataset based on Atari 2600 games that features multimodal and multi-
agent behavior. It includes both data from normal gameplay as well as explicitly multimodal be-
havioral data, where players are given instructions to follow a specific behavior. In addition to
single-agent data, the dataset includes data from two-player, human-AI and human-human games,
and with both competitive and cooperative rewards. Participants were recruited through multiple
channels (under IRB, Harvard IRB18-0416) including Amazon Mechanical Turk, Lab in the Wild,
undergraduate students, and multiple social media channels. For some platforms we also include
data with a range of different incentive structures for participants. The Atari games were run using

1

https://mgerstgrasser.github.io/crowdplay/

Published as a conference paper at ICLR 2022

ALE and a multiagent version of OpenAI Gym, guaranteeing that transitions are identical to what
would be seen in standard Atari RL environments.

In this paper we focus on the use of CrowdPlay for Atari 2600 games, but a major advantage of the
approach is that it works for any Gym-like MDP environment. We believe that Atari 2600 games are
interesting for imitation learning (IL) and offline RL for the same reasons that they were seminal as
a challenge problem in the development of RL: they offer a balance between achievable short-term
research advances and sufficient complexity. More recent work in psychology has also shown them
to be of sufficient richness to support the study of human learning behavior (Tsividis et al., 2017).

Further, and despite the richness of the data, it is easy to collect at scale through the use of crowd-
sourcing and a web browser, and moreover, it can be used together with an established simulator for
evaluation purposes. The CrowdPlay pipeline directly interfaces with standard RL environments.
In particular this means that trajectories and transitions are guaranteed to be the same for human
data as they are for RL environments; that offline learning methods automatically have access to
a simulator; and that crowdsourcing with human players need not develop environments and tasks
from scratch, but can make use of AI agents that can interact with human agents in a benchmark
environment.

1.1 RELATED WORK

Crowdsourcing Previous platforms for crowdsourcing such as TurkServer (Mao et al., 2012) have
focused on supporting synchronous participation through Amazon Mechanical Turk participants and
used to study economic behavior in simple experimental environments (and not for the generation
of human behavioral data). Tylkin et al. (2021) use a combination of ALE and Javatari for crowd-
sourcing Atari data in the context of evaluating the performance of an AI agent in human-AI col-
laboration. They propose modifying two-player Space Invaders to make it cooperative, and to train
AI agents using randomized starting position, both of which we adopt in (some of) our multiagent
environments. Their crowdsourcing approach is Atari-specific and not publicly available. Much
work has been done on the study of incentives for participants in paid crowdsourcing studies, and
this is also part of the focus of our work. Prior work (Mao et al., 2013; Mason & Watts, 2009; Yin
et al., 2013; Harris, 2011; Shaw et al., 2011) has largely found that quality-dependent payments may
increase quantity of work more than quality of work, and has not looked at real-time feedback on
work quality.

Offline Learning. Much work has been done on offline learning (Rashidinejad et al., 2021), in-
cluding Behavior Cloning (BC) (Pomerleau, 1989), Batch Constrained Q-Learning (BCQ) (Fuji-
moto et al., 2019), Conservative Q-Learning (CQL) (Kumar et al., 2020), Implicit Quantile Net-
work (IQN) (Dabney et al., 2018), DQN (Mnih, 2015) and Off-policy version of Soft Actor-
Critic (Haarnoja et al., 2018). Aytar et al. (2018) demonstrate learning hard exploration games
from unaligned human demonstration videos. Recent work (Schrittwieser et al., 2021) shows a
sample-efficient model-based online and offline learning algorithm.

Specific to Atari, Kanervisto et al. (2020) benchmark behavioral cloning algorithms on existing
data from several video games, including Atari 2600 games. Laurens & Kazmi (2021) clone River
Raid agents using existing datasets, and develop evaluation metrics based on action distribution and
playstyle.

Datasets Atari Grand Challenge (AGC) (Kurin et al., 2017) is a dataset consisting of 45 hours
of standard gameplay from five Atari 2600 games. The authors also make their Atari-specific data
collection software available. They use a browser app running the Atari emulator in the browser
based on Javatari. It is unclear to us if this can be guaranteed to always have identical execution to
the ALE emulator.

Atari-Head (Zhang et al., 2020) features 117 hours of gameplay data and includes eye-tracking
data. This data was collected using ALE. However, the emulator was run in a semi-frame-by-frame
mode, advancing the emulator state only when a key was pressed, and at a maximum of 20 frames
per second. The focus of the study was on attention tracking, and is not intended to be representative
of natural human gameplay behavior.

2

Published as a conference paper at ICLR 2022

Database

Backend

Load
Balancer

Main Process

Environment Process

Gym Env

Offline Learning
Pipeline

Gym Env

Local Dataset
Package

Query access to metadata,
trajectory decompression

and deserialization

Main MDP Loop:
fetch user action
query AIs
call env.step()

calculate real-time statistics
observation, statistics to client

enqueue trajectory

async trajectory
compression & DB insert

Trajectory Blobs

Structured Metadata

Observations

Statistics

Keypresses
AI

• Client communication
• Process management
• Within-instance scaling
• User management and

API

?

Frontend

• User choice among available tasks
/ games (optional)

• Game UI with real-time incentives
• Post-game feedback (optional)

Figure 1: Key parts of the CrowdPlay software architecture. Arrows show the flow of keypresses,
observations and metadata between browser client, MDP environment, AI policies, and the database,
and the eventual flow to an offline learning pipeline. The backend, load balancer, and database are
hosted on cloud infrastructure.

D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre et al., 2020) both also provide datasets for
offline learning, but both focus on synthetic data.

2 CROWDPLAY: THE PIPELINE

2.1 OVERVIEW

The heart of our pipeline are the CrowdPlay backend and frontend, which is a client-server archi-
tecture that streams OpenAI Gym environments and similar MDP environments to web browser
clients. It is highly extensible, scalable to hundreds or thousands of concurrent users, and allows the
real-time capture of both trajectories as well as related statistics. It is geared toward multi-channel
recruitment of participants and strong incentives. As its most important feature, it interfaces directly
with OpenAI Gym and similar environments, thus opening up the entire array of standard RL envi-
ronments to rapid crowdsourcing of behavioral data into the support of research into IL and offline
RL. It also supports multi-agent environments, including mixed human-AI environments.

Complementing this is an engine to support the local download of the generated dataset, including
storage of metadata in a relational database for fast access, and compressed trajectories for storage
efficiency. The data download can be real-time and is incremental.

We give a short overview of the CrowdPlay architecture, and refer the reader to Appendix A.1 for
more information.

2.2 SOFTWARE ARCHITECTURE

CrowdPlay provides a highly extensible, high performance client-server architecture for streaming
MDP environments to remote web browser clients. The backend interfaces with OpenAI Gym and
similar MDP environments. Actions are collected as keypresses in the browser client, and sent to the
backend where they are fed into the MDP’s “step” function. The returned observation is sent back to
the browser client for display. This is repeated to generate an episode trajectory. The remainder of
the CrowdPlay software infrastructure is built to make this basic loop into a structure that is robust,
performant, extensible, user-friendly and scalable. Figure 1 shows the key parts of the CrowdPlay
architecture.

3

Published as a conference paper at ICLR 2022

Figure 2: Screenshots of the main screen of CrowdPlay (left) and an enlarged detail of the realtime
incentives (right).

Communication between the browser client and backend is through high-performance socket con-
nections. The backend is built to be scalable both within-instance, using multiple processes, as well
as across-instance using a load balancer and autoscaling instance groups. Trajectories are stored di-
rectly as compressed, serialized Python objects, allowing both very easy modification of data capture
as well as immediate decoding for use in existing Python-based learning pipelines.

CrowdPlay also supports multi-agent environments. It allows multiple human participants by rout-
ing multiple browser clients to a single MDP environment. Mixed human-AI environments are
supported through pre-trained neural network policies. For robustness, AI agents can also take over
control of a human agent on the fly, in the case that a human player disconnects from a multiagent
environment, allowing uninterrupted gameplay for the remaining human players.

A major focus in the design of CrowdPlay is providing the ease of access of the generated data in
downstream ML pipelines. We believe it is crucial for these pipelines to have access not only to the
same simulator as the crowdsourcing pipeline, but also to the same observation pre-processing tools
that are used in state-of-the-art RL methods on these simulators. Addressing these design goals,
CrowdPlay includes a local metadata search engine and a custom, Deepmind-style (Mnih et al.,
2015) observation processing function for offline data. We give more details in Appendix A.1.

CrowdPlay provides an extensible and easy-to-use framework for collecting structured metadata
and real-time statistics per user, session, episode, and individual steps. This is used for capturing
data quality information, as well as for driving real-time incentives for participants, depending on
recruitment platform. We discuss the platforms that we target in more detail in Appendix A.3, and
the various incentive designs and their effect on data in Section 4.

3 CROWDPLAY ATARI: THE DATASET

3.1 SCOPE AND MOTIVATION

Our main focus in creating the first CrowdPlay dataset has been on Atari 2600 games, as we believe
that human data for these environments can enable advances in IL and offline RL (just as they have
been in driving advances in online RL, and for the same reasons). In curating the dataset, we have
been especially motivated by diversity—we have used multiple recruitment channels, each with
different extrinsic and intrinsic user motivation and incentive models, and have reached over 800
users in 1300 sessions over a three week period in September 2021. The CrowdPlay Atari dataset
currently holds over 250 hours, or 54 million transitions, and was collected across six different
games. We have targeted not only implicitly multimodal behavior through recruiting different users
and through different channels, but also explicit multimodal behavior through explicit instructions
that are reinforced through tight incentives and real-time feedback. We include both single agent as
well as multi-agent data, with the latter reported for both human-human and human-AI gameplay,
and with both competitive as well as cooperative rewards. We believe this is the first multi-agent
human behavioral dataset, at the very least for Atari 2600 games.

4

Published as a conference paper at ICLR 2022

3.2 TASK DESIGN

We used the following Atari 2600 games for our dataset: Space Invaders, River Raid, Montezuma’s
Revenge, Q*bert, Breakout and Beamrider. Space Invaders makes up the largest part of our dataset.
We chose this game as a focus for several reasons: it is well-known and popular both among Atari
players as well as in the RL community, it was easy to come up with several specific and distinct
behaviors that are still compatible with progressing in the game, and it has a native two-player mode.
River Raid provides the second largest amount of data and was chosen for similar reasons, in that
it is accessible and well understood from a learning perspective, and has obvious opportunities to
promote multimodal behavior. The remaining games were chosen for diversity of game types and
their popularity in previous RL and IL work. Table 1 shows a list of available data by game and
recruitment channel.

Multimodal Behavior For Space Invaders and River Raid, in addition to standard gameplay, we
asked some participants to follow specific behavior in the game. We believe that this data will be
useful for multiple research strands. In imitation learning, this type of data can provide a testbed to
understand whether algorithms are robust to divergent expert behavior. In offline RL, this can allow
for controlled experiments with different reward functions in an otherwise identical environment.
For most of this data, we recruited participants via Mechanical Turk, and gave incentives via both a
minimum level of task adherence required to complete the HIT (unit of task), as well as an explicit
reward function tied to a bonus payment, and with real-time feedback on the same. The behavior
types we instructed participants to follow were to either stay on either half of the game screen (in
both Space Invaders and River Raid, or to shoot aliens in a particular order (row by row from the
bottom, column by column from the outside in, or column by column from the inside out; in Space
Invaders only.) We discuss these tasks in more detail in Appendix A.2.1

Multiplayer Games CrowdPlay also contains a set of trajectories from multi-agent environments.
For these, we used the two-player mode of Space Invaders. We include data from two variants: (1)
the standard two-player Space Invaders mode, and (2) a custom cooperative mode. In the latter, we
modify the original game in two ways. First, in the standard two-player mode there is a score bonus
if the other player loses a live. We removed this score bonus. Second, we gave both players the
sum of their individual scores. These modifications were done entirely in Python, in the case of the
score bonus detecting these events from emulator state. Participants were instructed to ignore the
score shown on the game screen, and were instead shown their “cooperative” score next to the game
screen. Most of our multiplayer data is from mTurk, and people were incentivized through bonus
payments to maximize this score. Further, we include data from games with two human players, as
well as games with one human and one AI player. We give details on this in Appendix A.2.6

3.3 DATA ANALYSIS

A unique feature of the CrowdPlay Atari dataset is its size and diversity. In addition to explicit
multimodal behavior, it also comprises data generated by participants recruited via multiple dif-
ferent channels, and different demographics. Figure 3 (left) shows a t-SNE embedding of action
distributions in episodes of standard Space Invaders gameplay. Episodes are colored according to
recruitment channel (MTurk, Email or social media). We notice that there is a clear divide between
action distributions of MTurk users and those of Email and social media users, which we take as
evidence that different demographics already lead to interesting diversity in the data.1 This shows
that different recruitment channels lead to diversity in the data, this already apparent in aggregate
statistics such as action distributions.

For multiagent data, Figure 3 (right) shows a t-SNE embedding for cooperative and standard human-
AI Space Invaders for MTurk users. We note several things. First, there is a clear distinction between
human and AI actions. Second, there are two clear clusters within the AI data that correspond to
cooperative and competitive behavior. Third, there is a clear relationship between cooperative and

1The mostly-orange (email users) cluster on the left corresponds to episodes where no key was pressed
at all, while the green (MTurk) cluster at the bottom right corresponds to episodes where the fire button was
held the entire episode (and no other key was pressed). The minimum requirement to complete the task for
each group had the same requirement of ten minutes of active playtime, which the no-keypress episodes in the
orange cluster would not contribute toward.

5

Published as a conference paper at ICLR 2022

Table 1: Dataset by game and recruitment channel

Task Data Collected (hours)

MTurk Social Email Total
Media Raffle

Beamrider 7.90 - - 7.90
Breakout 11.45 - - 11.45
Montezuma’s Revenge 16.70 3.75 5.19 25.65
Q*Bert 6.97 2.90 - 9.87
Riverraid 17.64 4.47 3.10 25.20
- of which multimodal 12.29 0.69 1.10 14.08
Space Invaders 196.09 18.34 7.10 221.53
- of which incentives 81.41 - - 81.41
- of which multimodal 101.46 0.52 1.12 103.09
Space Invaders (2P) 6.35 0.38 0.81 7.54
Space Invaders (2P w/AI) 54.98 2.54 1.41 58.93

Total 318.07 32.38 17.60 368.05

40 20 0 20 40 60 80
tsne-2d-one

30

20

10

0

10

20

30

40

ts
ne

-2
d-

tw
o

task
space_invaders_socialmedia
space_invaders_email
space_invaders_mturk

40 20 0 20 40
tsne-2d-one

40

20

0

20

40

ts
ne

-2
d-

tw
o

Agent Type
Coop Human
Coop AI
Competitive Human
Competitive AI

Figure 3: t-SNE embedding of action distributions of different (human) participant types in single-
agent games (left), and human and AI agents in cooperative and standard multiagent games (right).

standard settings and action distributions for human data and this is more complex than in the AI
data.

3.4 CHALLENGES AND LIMITATIONS

We discuss here some challenges that we experienced in collecting this data and the corresponding
limitations in the dataset. One, our incentive design has continued to evolve, while a significant
amount of the data has been collected with suboptimal incentives. This is part of why we discuss
incentive design in the next section in detail, to allow other researchers to build on what we have
learned. Two, some of our dataset is unbalanced, especially for the different behavior types in the
multimodal Space Invaders data, where we have 2-3 times as much data for some behaviors as
for others. This is partly due to suboptimal incentives and some tasks being harder than we had
intended, and partly because we improved the way the pipeline assigned MTurk workers to tasks
over time. We have since then improved the automatic task assignment logic to more carefully take
into account the amount of data already collected. Three, we have found that collecting human-
human multiagent data is a difficult challenge; e.g., we expected that the ability to play with friends
would be a major draw in social media recruitment, but found that we had virtually zero uptake on
this. On the other hand, we have made significant advances in making multiplayer data collection
more feasible on MTurk. In particular, the use of fallback AI agents has solved many practical
problems with workers needing to depend on one another for successful task completion. Still, we
were able to collect much more single-player and human-AI data than human-human data.

6

Published as a conference paper at ICLR 2022

4 INCENTIVE DESIGN

4.1 INCENTIVE DESIGN AND RECRUITMENT

CrowdPlay has been designed with multichannel recruitment and strong participant incentives in
mind. It supports configuring multiple environments and “tasks” for participants to complete, in-
cluding different user instructions, incentives, and AI agent configuration. At the heart of its capa-
bilities is its ability to capture an extensible list of metadata live during gameplay, including data
such as playtime, score, and various in-game behavioral characteristics. On platforms where users
are paid for their participation, we use this data to define both a minimum acceptable effort by users
to get paid at all, as well as a dynamic bonus payment that can depend on a fine-grained analysis
of user effort. Both progress toward minimum required effort as well as bonus payments can be
displayed to users during live gameplay. On platforms where users are not compensated, we use
the same real-time statistics to reinforce intrinsic motivation through live “high score” pages and by
reframing non-standard gameplay tasks as “challenges.”

For instance, in one Space Invaders task we asked participants to shoot aliens in a specific order.
Our architecture is able to determine adherence to these instructions by evaluating emulator state at
every frame, detecting when an alien has been shot and which one, and keeping a running count of
aliens shot in and out of the prescribed order. Users were rewarded based on both the total number of
aliens they shot in the correct order, as well as the fraction of aliens that they shot correctly. Using
this framework, we can mimic the reward structure of an MDP through monetary incentives and
also make use of realtime feedback; and we can additionally shape incentives to achieve particular
modalities. Figure 2 (right) shows an example of this realtime feedback.

4.2 INCENTIVE MODELS

We provide various incentive models, as well as real-time feedback to participants. For social media
participants, this was feedback-only. For students we made use of a raffle, and required a minimum
time and effort, e.g. 80% of aliens shot in the correct order. For participants from Mechanical Turk,
we experimented with multiple models of incentives.

Experimental design Specifically, we report the results of an extensive experiment with the Space
Invaders “Inside-Out” task. In this, we gave participants identical instructions for the behavior they
were asked to follow, but adopted five different ways of remunerating them: (1) No incentives
(payment for everyone), (2) Active Time (payment subject to non-trivial behavior), (3) Minimum
Requirement (payment subject to minimum performance requirement), (4) Sliding Bonus (variable
payment depending on performance) and (5) All Incentives (sliding bonus contingent on meeting
minimum requirement). Appendix A.4 details these.

For both task requirements and bonus payments, participants were given real-time feedback. For
minimum requirements, this took the form of an itemized list of requirements and their performance,
e.g. “Correct aliens shot: 40 (required: 50).” For bonus payments, this took the form of a live
estimate of the expected payment, but did not include details on how the payment was computed.
Task instructions stated that the bonus payment would depend on both the number of aliens shot as
well as how many were shot in the correct order.

We also compare data from these treatments with data collected from social media users, as well
as students reached on campus via email. For email participants, we enforced a similar minimum
requirement as for the minimum requirement treatment on MTurk, with successful completion of
the requirement earning an entry into a raffle. For social media participants, we did not provide any
monetary incentives, and instead phrased the task as a “challenge.”

4.3 RESULTS

In regard to the structure of incentives and effect on data, we report several main findings. First,
among paid participants, data quality (measured as the fraction of data per participant meeting a
threshold of at least 80% of aliens shot in the specified order) was significantly higher when using
any kind of quality-based incentives, be it a minimum requirement tied to a fixed-amount payment
(“quality requirement”), a sliding bonus payment (“sliding bonus”), or a combination of both (p <

7

Published as a conference paper at ICLR 2022

No i
nc

en
tiv

es

Acti
ve

 Ti
me

Qua
lity

 R
eq

uir
em

en
t

Sca
lin

g B
on

us

All I
nc

en
tiv

es

Soc
ial

 M
ed

ia
Use

rs

Email
 R

aff
le

Treatment / User Group

0

200

400

600

800

1000

1200
To

ta
l a

m
ou

nt
 o

f g
oo

d
da

ta
 p

er
 p

ar
tic

ip
an

t (
s)

Measurement
Total
Fraction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

fra
ct

io
n

of
 g

oo
d

da
ta

 p
er

 p
ar

tic
ip

an
t

Figure 4: Data quality for different incentive treat-
ments and recruitment channels. Blue bars show
the total amount (in seconds) of “good data” col-
lected per user, where this is defined as episodes
with at least 80% task adherence. Orange bars
show the fraction of good data compared to the
total data collected per user.

BC BCQ CQL IQN DQN SAC

Algorithm

0

5

10

15

20

25

30

35

40

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Figure 5: Evaluation Performance of offline
RL algorithms across different tasks. The
bars indicate the median normalized score
across tasks, and the error bars show a boot-
strapped estimate of the [25, 75] percentile
interval for the median estimate. The score
normalization is computed using the best
score achieved by humans across each task.

.05 for any pair of treatments, comparing with either of “no incentives” or “active time”). See
Figure 4 (orange bars). Non-incentivized data was low quality even when enforcing that participants
actively play the game, thus preventing users from putting in no effort at all (e.g., by starting the
game and then switching to a different window).

Second, participants recruited via social media had the highest data quality (statistically significant
at p < .05 for pairwise comparison with any other treatment), but we also found this channel to be
the least scalable (see Appendix A.2.4). Users recruited via an email raffle had nearly as high data
quality, but here the difference against the quality-based incentive treatments is insignificant.

Third, among paid participants the incentive treatments led to a larger amount of good data being
collected per participant (p < .05 for any pair of treatments, comparing with either of “no incen-
tives” or “active time”). See Figure 4 (blue bars). The “quality requirement” and “all incentives”
treatments showed the highest amount of good data per participant, although the comparison with
“sliding bonus” is not significant (due to some outliers in both treatments).

5 BENCHMARK RESULTS

Our framework provides a variety of data compositions that exhibit real-world intricacies and di-
versities. We envision that this will help facilitate rapid progress for offline learning methods that
rely on learning from diverse data compositions without access to online exploration (Rashidinejad
et al., 2021). We therefore evaluate our datasets on recently proposed offline learning algorithms
and hope that it will inspire potential future directions in this area. As Atari is a discrete action
domain, we focus on algorithms that can handle discrete actions effectively. Specifically, our base-
line algorithms include Behavior Cloning (BC) (Pomerleau, 1989), Batch Constrained Q-Learning
(BCQ) (Fujimoto et al., 2019), Conservative Q-Learning (CQL) (Kumar et al., 2020), Implicit Quan-
tile Network (IQN) (Dabney et al., 2018), DQN (Mnih, 2015) and an offline version of Soft Actor-
Critic (Haarnoja et al., 2018). As we evaluate the algorithms on different tasks, in Figure 5, we
provide the normalized median performance across tasks (Agarwal et al., 2020) where the normal-
ization is done using the best performance achieve by humans on corresponding games.

From the results, we observe that the recent advancements in offline reinforcement learning algo-
rithms contribute towards outperforming behavioral regularized algorithms. Further, we found that
the off-policy algorithm DQN serves as a strong baseline for offline RL albeit with a higher variance
across tasks and seeds. Overall, the results for all the algorithms demonstrate the open challenges
on learning from human demonstrations where the data is both limited and noisy which raises the
need for more robust and sample efficient methods. First, we contrast our results with benchmark

8

Published as a conference paper at ICLR 2022

60 40 20 0 20 40 60
tsne-2d-one

20

0

20

40

ts
ne

-2
d-

tw
o

task
space_invaders_left
space_invaders_right
space_invaders_insideout
space_invaders_outsidein
space_invaders_rowbyrow

20 10 0 10 20
tsne-2d-one

20

10

0

10

20

30

40

ts
ne

-2
d-

tw
o

task
BC_space_invaders_left
BC_space_invaders_right
BC_space_invaders_insideout
BC_space_invaders_outsidein
BC_space_invaders_rowbyrow

Figure 6: Separate t-SNE embeddings of action distributions and behavioral statistics in multimodal
behaviors for human participants (left) and BC agents (right).

results in the RL Unplugged paper (Gulcehre et al., 2020), where a subset of these algorithms were
evaluated on specific games we benchmark here but the demonstrations were collected using an on-
line DQN agent trained to maximize the game performance. Their results show that both in general
(Figure 6 therein) and on the specific games we benchmark here (Table 9 and Figure 7 therein),
the offline algorithms performed significantly and consistently better than the original policy perfor-
mance. In comparison, none of the algorithms in our experiments were able to achieve better than
around 45% of best human performance on average (with the exception of IQN on couple of tasks),
and all algorithms demonstrated high variance in performance across seeds and tasks. Second, con-
servative algorithms that constrain the policy to the dataset (e.g. BCQ) and are tailored to address
erroneous optimistic value function estimation in the presence of complex and multi-modal distri-
butions (e.g. CQL) do not perform well on data collected from human demonstrations. This is in
sharp contrast to their high performance reported on datasets collected using AI agents, as reported
in Fu et al. (2020). This demonstrates that human data poses an interesting and distinct challenge to
state-of-the-art offline learning algorithms compared with synthetic data.

Details on the experimental setup, performance of algorithms on a suite of robust metrics, individ-
ual normalized and unnormalized score for each task and algorithm, and task-specific performance
profile for each algorithm are provided in Appendix A.7.

Beyond performance comparisons, offline algorithms also struggle to qualitatively capture human
data. Figure 6 shows separate t-SNE embeddings of behavior of human participants (left) and AI
agents trained using BC (right) for the five explicit multimodal behavior types in Space Invaders.
We see that while human data is clustered in clearly distinguishable regions for the behavior types,
this is not the case for the BC agents. This shows that multimodal human data poses a challenge
for offline learning algorithms that aim to emulate human behavioral characteristics such as BC and
other imitation learning methods. See Appendix A.6 for details on t-SNE parameters and data.

6 DISCUSSION

We have presented CrowdPlay, a pipeline for crowdsourcing human demonstration data in standard
RL environments, and a first dataset together with benchmarks of offline RL algorithms on Atari
2600 games. A key advantage of CrowdPlay is that it allows easily accessible crowdsourcing for
any existing RL environment, and it can provide realtime feedback and incentives that mirror ar-
bitrary RL reward functions or other kinds of desired, complex behavior types. Further, by using
standard RL environments we can streamline the end-to-end crowdsourcing and learning pipeline:
CrowdPlay can use the same environment simulator that is used by an existing RL pipeline, enabling
for instance mixed human-AI environments that use the same algorithms already used to train AI
agents. We hope that this new framework and dataset will enable rapid progress in offline learning
on large-scale human demonstrations. Atari 2600 games were seminal in driving progress in online
RL, and we believe this dataset and pipeline can advance IL and offline RL research. Moreover,
this pipeline is not constrained to Atari games, and we hope that it will be utilized for other envi-
ronments. Beyond supporting progress in IL and offline RL, we also believe that CrowdPlay can
enable other novel applications, both in computer science (such as task classification), but also in
other fields such as psychology or behavioral economics.

9

Published as a conference paper at ICLR 2022

ETHICS STATEMENT

An ethical concern in regard to crowdsourcing is about fair compensation for participants.

The real-time feedback to participants on our platform is designed to help with this. It provides fine-
grained information on what is required to be compensated (Figure 2 right, for example) including
real-time information on progress and on the payments participants will receive. This removes in-
formation asymmetry, helping to avoid submissions that appear low-effort due to misunderstanding,
and also supporting informed decisions about continued participation. Further, it creates account-
ability: we commit to a compensation scheme that is visible to participants and promise payments
that are communicated in real time.

With one exception, where a task was harder than we expected and we later lowered the require-
ments, we did not receive significant negative feedback from mTurkers regarding the task. Of those
that submitted a HIT, the feedback was overwhelmingly positive and often described the task as
“fun” or similar. Still, we want to highlight that care should be taken in designing compensation
requirements. An unintentional mistake we made in the “minimum requirement” treatment in the
incentives experiment was to not provide a base payment for participation, coupling this with what
we thought was a very low task requirement that would only act to filter out spam. We later noticed
a number of workers dropping the task, and leaving without payment. We do not know for sure
why this is — it is possible workers got bored, but it is also possible that some workers struggled to
meet the minimal requirements, despite our intention of setting a very low bar. We did not include
data from these users in the published dataset. For future studies we recommend care in deciding on
minimum requirements, and the use of a small base payment that rewards active playtime. In a small
number of cases, a worker contacted us about a task they were unable to complete (for instance due
to technical issues or difficulty). We always opted to compensate workers in such cases.

The above is largely relevant for recruitment channels where there is some form of compensation
(e.g., monetary compensation such as on MTurk, or a raffle among participants). For the specific
Atari dataset we collected, because these videogames are inherently “fun”, we also worked with
unpaid participants recruited from social media. We took care to target potential participants who
were already looking for videogames to play online (for instance, by posting in a community dis-
cussing “web games” on the social media site Reddit). Further, we took care in selecting the specific
experiments offered to these participants. Specifically we offered the standard gameplay variants,
with no minimum time limits or any other restrictions. We offered one of the multimodal behaviors
as a “challenge”. We specifically chose the “inside-out” behavior type in Space Invaders for this
experiment: while doing so is challenging, it is still possible to progress in the game while following
the behavioral instructions. We also did not enforce any adherence to this behavior type. Behavior
types that are incompatible with game progress might be frustrating for users, and we consider those
inappropriate for unpaid participants. Similarly for domains other than videogames, researchers
should carefully consider whether an experiment is appropriate for unpaid participants.

Our data collection underwent IRB review at our institution (Harvard IRB18-0416), which included
recruitment and compensation details.

REPRODUCIBILITY STATEMENT

Our entire framework and current version of the dataset are available publicly at https://
mgerstgrasser.github.io/crowdplay/ under an open-source license and we have pro-
vided the links to the implementations used to produce the benchmark results in Appendix A.7.

ACKNOWLEDGEMENTS

We thank Francisco Ramos for his help in implementing the CrowdPlay software, especially on
the frontend. We would like to thank anonymous reviewers at ICLR 2022 for their constructive
feedback and discussions. This research is funded in part by Defense Advanced Research Projects
Agency under Cooperative Agreement HR00111920029. The content of the information does not
necessarily reflect the position or the policy of the Government, and no official endorsement should
be inferred. This is approved for public release; distribution is unlimited.

10

https://mgerstgrasser.github.io/crowdplay/
https://mgerstgrasser.github.io/crowdplay/

Published as a conference paper at ICLR 2022

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning, 2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In NeurIPS, 2021.

Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching youtube. arXiv preprint arXiv:1805.11592, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A collection of benchmarks for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Christopher Harris. You’re hired! an examination of crowdsourcing incentive models in human
resource tasks. In Proceedings of the Workshop on Crowdsourcing for Search and Data Mining
(CSDM) at the Fourth ACM International Conference on Web Search and Data Mining (WSDM),
pp. 15–18. Hong Kong, China, 2011.

Anssi Kanervisto, Joonas Pussinen, and Ville Hautamäki. Benchmarking end-to-end behavioural
cloning on video games. In 2020 IEEE Conference on Games (CoG), pp. 558–565. IEEE, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, 2020.

Vitaly Kurin, Sebastian Nowozin, Katja Hofmann, Lucas Beyer, and Bastian Leibe. The atari grand
challenge dataset. arXiv preprint arXiv:1705.10998, 2017.

Diels Laurens and Hussain Syed Kazmi. Behaviourally cloning river raid agents. In AAAI-21
Workshop on Reinforcement Learning in Games, Location: Virtual conference, 2021.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International Conference on Machine Learning, pp. 3053–3062. PMLR, 2018.

11

Published as a conference paper at ICLR 2022

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Andrew Mao, Yiling Chen, Krzysztof Z Gajos, David C Parkes, Ariel D Procaccia, and Haoqi
Zhang. Turkserver: Enabling synchronous and longitudinal online experiments. In Workshops at
the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

Andrew Mao, Ece Kamar, Yiling Chen, Eric Horvitz, Megan E Schwamb, Chris J Lintott, and
Arfon M Smith. Volunteering versus work for pay: Incentives and tradeoffs in crowdsourcing. In
First AAAI conference on human computation and crowdsourcing, 2013.

Winter Mason and Duncan J Watts. Financial incentives and the” performance of crowds”. In
Proceedings of the ACM SIGKDD workshop on human computation, pp. 77–85, 2009.

Kavukcuoglu K. Silver D. et al. Mnih, V. Human-level control through deep reinforcement learning,
2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems, 1989.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism, 2021.

Katharina Reinecke and Krzysztof Z Gajos. Labinthewild: Conducting large-scale online experi-
ments with uncompensated samples. In Proceedings of the 18th ACM conference on computer
supported cooperative work & social computing, pp. 1364–1378, 2015.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. arXiv preprint arXiv:2104.06294, 2021.

Aaron D Shaw, John J Horton, and Daniel L Chen. Designing incentives for inexpert human raters.
In Proceedings of the ACM 2011 conference on Computer supported cooperative work, pp. 275–
284, 2011.

Justin K Terry, Benjamin Black, and Luis Santos. Multiplayer support for the arcade learning envi-
ronment. arXiv preprint arXiv:2009.09341, 2020.

Pedro A Tsividis, Thomas Pouncy, Jaqueline L Xu, Joshua B Tenenbaum, and Samuel J Gershman.
Human learning in atari. In 2017 AAAI Spring Symposium Series, 2017.

Paul Tylkin, Goran Radanovic, and David C Parkes. Learning robust helpful behaviors in two-
player cooperative atari environments. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 1686–1688, 2021.

Ming Yin, Yiling Chen, and Yu-An Sun. The effects of performance-contingent financial incentives
in online labor markets. In Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

Ruohan Zhang, Calen Walshe, Zhuode Liu, Lin Guan, Karl Muller, Jake Whritner, Luxin Zhang,
Mary Hayhoe, and Dana Ballard. Atari-head: Atari human eye-tracking and demonstration
dataset. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 6811–
6820, 2020.

12

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 TECHNICAL DETAILS

Architecture Overview CrowdPlay uses a client-server architecture, where an MDP environment
is run in a simulator and its output streamed to a web browser client. The browser client collects
user keypresses which are streamed to the server, where they are decoded into actions which are fed
into the MDP simulator. The backend hosts the MDP simulator, records trajectories into a database,
and provides additional functionality. Communication uses a http API for management tasks such
as establishing a connection, and a websockets for streaming keypresses and observations for better
performance. The backend can optionally interface with an external load balancer and MySQL
instance for scalability.

Backend Architecture The backend is written in Python for best compatibility with existing
Python-based RL simulators and easy data interchange with offline learning pipelines. It is highly
parallelized across multiple processes: A main process handles http requests to the API, routes
websockets communications, and manages the multiple concurrent MDP environments. Each en-
vironment simulator is run in its own process dedicated in essence to just the main “fetch action -
environment step - get observation” MDP loop. Once an episode is complete, the entire trajectory
is asynchronously serialized using Pickle and compressed using Bzip2 in a separate process and
inserted into a database.

MDP simulator interface CrowdPlay interfaces with standard MDP simulators such as OpenAI
Gym environments, but also similar interfaces. For our current set of experiments, we use a Gym-
like interface implemented using RLLib’s multiagent environment definition, and built on a mul-
tiagent version of ALE Terry et al. (2020). We use this even in single-agent games, although this
is for convenience and not due to an architectural limitation. The main requirements for the MDP
simulator are that it provides a reset () and a step (action) function.

Frontend The CrowdPlay frontend is written in React for a modern UI experience. Its main task
is to receive image observations and associated metadata (such as real-time task progress, estimated
bonus payment and other statistics) and display them to the user. Optionally users can choose the
task / game they wish to play in a library-style user interface; users can be shown a post-game
“high score” page which shows performance and other game statistics relative to other participants;
and users can report technical problems and leave feedback. For multiplayer games, the frontend
supports waiting rooms and can notify players who joined early once enough other players have
joined to start the game.

Environment and task definitions CrowdPlay supports multiple environments and environment
variations concurrently. Each variation or “task” can include a different base environment (e.g. a
different Atari game, or a different MDP simulator altogether), different instructions for the user,
different incentives and statistics (see below), different configurations of human and AI players in
multiplayer games (see below) etc. For instance, one task could be a two-player Space Invaders game
with one human player and one AI agent, with the user instructed to follow a particular behavior in
game, and a minimum effort requirement and bonus payment tied to their adherence to that behavior
(for deployment to paid participants); while another task could be a two-player Space Invaders
game with two human players and no incentives (for deployment to unpaid participants). Users can
be assigned to a task through a URL parameter. Tasks can also be grouped into task groups. Users
can then either select a task of their choice among a task group; or the backend can automatically
assign a task. This automatic assignment can take into account the amount of high-quality data
already collected for each task, and can either aim to collected a minimum amount for each task
before assigning incoming users to the next task, or to collect an equal amount of data for each
task. Quality is determined by episode and session-level realtime statistics (see below). If any tasks
in a task group are multiplayer tasks, the scheduler will first try to assign users to any already-
instantiated environments that are waiting for additional human players, before considering creating
a new environment.

13

Published as a conference paper at ICLR 2022

AI agents Because CrowdPlay uses standard MDP interfaces also used in established RL meth-
ods, it can support AI agents trained with those methods. We currently have an implementation for
policies trained with RLLib, which would be easy to extend to other existing libraries like OpenAI
Baselines. CrowdPlay includes a custom image preprocessor that replicates the behavior of stan-
dard “DeepMind” wrappers such as those included in OpenAI Gym, but without having to wrap
around the MDP environment. This allows us to provide AI agents with a standard “four frames
stacked, each four frames apart” observation, while providing human players with an unprocessed
observation every frame.

Multi-player Multi-agent environments are supported with both multiple human players as well
as mixed human-AI games. For human players, the frontend routes multiple users’ websocket con-
nections to the same environment process. AI agents are implemented as above. As a key robustness
feature, AI agent can take over on-the-fly if a human player disconnects, which enables the remain-
ing human players to continue playing. This is important on platforms such as Amazon Mechanical
Turk, so that one participant disconnecting does not leave another participant unable to complete
their task through no fault of their own. In such environments, we create fallback AI policies for
all agents when the environment is started, to avoid an interruption during gameplay (instantiating
the policy takes a few seconds). However we only start observation preprocessing and querying
the AI policy for actions for each agent only if and once the human player controlling that player
disconnects.

Real-time statistics engine CrowdPlay can calculate and record gameplay statistics and other
metadata using an extensible real-time statistics engine. The information to be recorded can be
configured for each task. CrowdPlay ships with several generic statistics collectors such as for score
and active playtime, and several game-specific collectors such as the player’s x-position in Space
Invaders and River Raid, and the order in which aliens have been hit in Space Invaders. These can
be used to determine how closely the player’s gameplay behavior matches a given target behavior.
In turn, CrowdPlay supports minimum effort requirements to consider a task “complete” as well
as sliding bonus payments based on the statistics. For each statistic defined for a task, per-step
information is saved as part of the trajectory in a compressed binary blob, while episode-level and
session-level aggregate statistics are saved as structured metadata in a relational database to allow for
fast filtering of individual trajectories in downstream offline learning pipelines. Statistic collectors
are implemented as functions or Python callables that take as input the trajectory information at each
step, including actions, observations and emulator state. Because all of this information is saved,
statistic collectors can also be run offline against already recorded trajectories should requirements
change later.

Deployment and Scalability The CrowdPlay backend is fully containerized using Docker and
can be deployed on any compatible platform. Within-instance scaling to multiple processor cores is
handled within the backend. CrowdPlay also includes configuration options for deployment using
Amazon Elastic Beanstalk (EB). When deploying on EB, a load-balancer can be used, which enables
auto-scaling across instances (additional server instances will be started automatically depending on
load). This enables CrowdPlay to scale to hundreds or thousands of simultaneous users. EB can also
be configured to use AWS Spot Instances for significantly reduced operating cost.

Latency CrowdPlay records at every keypress event the sequence number of the frame shown on
screen at the time of the keypress. This allows us to measure end-to-end latency of the system as the
difference between the current frame sequence number in the back end when the keypress is received
there, and the sequence number of the frame shown to the user when the key was pressed. Across
our current Atari dataset, we measured a median latency of 7 frames or 116ms, and downstream
learning pipelines could filter for acceptable levels of latency should this be a concern.

Dataset Engine Recorded trajectories and metadata can be downloaded into a locally installable
Python package providing user-friendly metadata search and trajectory loading functionality. Down-
load from the backend MySQL database can be online and incremental. Metadata is saved locally in
a SQLite database, and is mapped into Python classes by the dataset package. This allows filtering
episodes by metadata using either SQL queries, or native Python techniques (e.g. list comprehen-
sion) according on user preference. Trajectories can be stored in the bzip2-compressed format used

14

Published as a conference paper at ICLR 2022

by the backend, or expanded into uncompressed pickle files for much faster loading at the expense
of storage efficiency.

Observation Processing Most Atari RL pipelines use some variation of “Deepmind”-style obser-
vation preprocessing as pioneered in Mnih et al. (2015). This includes taking the pixel-wise max-
imum of two consecutive frames, skipping several frames between observation, rescaling images
to 84x84 grayscale, and stacking four such consecutive observations. Frameskipping in particular
is a challenge in our context as it effectively reduces the time-resolution of the environment by a
factor of four (one observation given for every step in the Atari emulator), which we do not want
to do for human players, but still need to do for AI players in mixed human-AI multiplayer games.
Similarly, all these processing steps are usually implemented as environment wrappers, which aren’t
directly applicable to offline data. We therefore include a custom implementation of the above.
This is implemented through a custom frame buffer that replaces the usual “Deepmind” wrappers.
Our implementation keeps a buffer of the latest several raw observations and can generate a max-
and-skipped, rescaled, framestacked observation on the fly. The implementation is verified to give
the same output frame-by-frame and pixel-by-pixel as standard implementations such as those in
OpenAI Gym, and can be applied post-hoc to already recorded trajectories. This same observation
processing is also used for the AI agents that we bring into mixed human-AI environments.

A.2 DATASET DETAILS

A.2.1 GAME VARIANTS

We instructed participants to follow these five behavior types:

Left-side-only In both Space Invaders and River Raid, we instructed participants to score as high
as possible in the game, while staying only on the left half of the game screen.

Right-side-only As above, but staying on the right side of the game screen.

Row-by-row In Space Invaders we instructed participants to maximize game score while aiming
to shoot aliens row by row from the bottom; i.e., participants were asked to completely clear the
bottom-most row of aliens, then the second-from-the-bottom row, etc.

Outside-in In Space Invaders, we instructed participants to maximize game score while aiming
to shoot aliens column by column from the outside in; i.e., participants should completely clear the
two outermost columns, before moving on to the next two columns, etc

Inside-out In Space Invaders, we asked participants to shoot aliens column by column, from the
inside out; i.e., participants should completely clear the center two columns (column 3 and 4), then
the next two columns from the center (columns 2 and 5), and finally the two outermost columns (1
and 6).

A.2.2 FULL LIST OF INCLUDED DATA

Table 2 shows a detailed list of available data by game, game variant, and recruitment channel.

A.2.3 DATA EVALUATION

The dataset contains rich metadata accessible through both SQL queries as well as Python classes.
Metadata includes universal attributes like total episode score and length, but also task-specific at-
tributes like total and fraction of aliens shot in the correct order in the above Space Invaders tasks.
This allows fine-grained filtering of available trajectories according to specified criteria. We propose
that “data quality” should be thought of as multidimensional. For instance, we saw in our multimodal
task data both trajectories with moderately high task adherence (as fraction of aliens shot in correct
order) and very high overall performance and length, and vice versa trajectories of moderately high
performance and very high task adherence. Our dataset allows filtering for minimum levels of both
attributes, as well as others. Further, any metadata not saved explicitly as such could be recovered
from the trajectories themselves, as the full emulator RAM is stored in addition to observations.

15

Published as a conference paper at ICLR 2022

Table 2: List of all tasks in the dataset

Task Data Collected (hours)

MTurk Social Email Total
Media Raffle

Beamrider 7.90 - - 7.90
Breakout 11.45 - - 11.45
Montezuma’s Revenge 16.70 3.75 5.19 25.65
Q*Bert 6.97 2.90 - 9.87
Riverraid 17.64 4.47 3.10 25.20
- plain 5.35 3.78 2.00 11.12
- left 6.78 0.45 0.70 7.94
- right 5.51 0.23 0.40 6.14
Space Invaders 196.09 18.34 7.10 221.53
- plain 13.22 17.83 5.98 37.03
- left 18.80 - - 18.80
- right 36.35 - - 36.35
- insideout 16.49 0.42 1.12 18.03
- outsidein 13.44 - - 13.44
- rowbyrow 16.38 0.09 - 16.47
- incentives (insideout) 81.41 - - 81.41
Space Invaders (2P) 6.35 0.38 0.81 7.54
- competitive 2.60 - 0.42 3.02
- cooperative 3.75 0.38 0.39 4.53
Space Invaders (2P w/AI) 54.98 2.54 1.41 58.93
- competitive 45.10 1.80 1.06 47.95
- cooperative 9.88 0.74 0.35 10.97

Total 318.07 32.38 17.60 368.05

A.2.4 RECRUITMENT

We recruited participants through Amazon Mechanical Turk; emails to undergraduate students; and
several social media platforms. Participants recruited via MTurk were paid a variable payment de-
pending on their performance. Participants recruited via email were entered into a raffle for Amazon
gift cards for each task they successfully completed. Social media users were not compensated for
their time.

Recruitment on MTurk was the most scalable (in terms of ease of collecting large amounts of data),
and recruitment via social media the least. For social media, the amount of data collected per
participant was the lowest of all channels. The total number of users from social media and email
was also lower than those from MTurk, and it would easily be possible to recruit more MTurk users.
Furthermore, a large fraction of our social media data came from a single post on Reddit, and even
with this relatively few social media recruits opted to pursue tasks other than standard gameplay.

A.2.5 EXAMPLE PARTICIPANT INSTRUCTIONS

Standard Gameplay For standard gameplay, we provided participants with instructions on how to
play the game, technical information and platform-dependent information on payment. For instance,
for Space Invaders, our instructions to participants recruited via social media read as follows:

In this experiment you will play the game Space Invaders. Your goal is to shoot
as many of the alien invaders shown on the screen as possible. You control the
small cannon at the bottom of the screen. Use your keyboard’s arrow keys to
move your cannon left and right, and use the spacebar key to fire. The aliens will

16

Published as a conference paper at ICLR 2022

fire at you too. If you are hit by alien fire three times, the game ends. The game
will also end if the alien invaders reach the bottom of the screen. A new game
will then start automatically, but you can end the experiment clicking the Finish
Experiment button on the top right. You can end the experiment at any time, but
we encourage you to play at least a few games.

For participants recruited via MTurk, the instructions read:

In this experiment you will play the game Space Invaders. Your goal is to shoot as
many of the alien invaders shown on the screen as possible. You control the small
cannon at the bottom of the screen. Use your keyboard’s arrow keys to move your
cannon left and right, and use the spacebar key to fire. The aliens will fire at you
too. If you are hit by alien fire three times, the game ends. The game will also end
if the alien invaders reach the bottom of the screen. A new game will then start
automatically. You must play for at least 10 minutes and show some effort in the
form of a minimum score to complete this task. Your bonus payment will depend
entirely on your score.

Multimodal Behavior For specific multimodal behavior we showed specific instructions:

In this task you will play the game Space Invaders. Please shoot aliens in order
”inside out” starting with the inner-most columns (columns 3 and 4), then the
second two columns from the inside (columns 2 and 5), then finally the outermost
two columns (columns 1 and 6). Do not shoot aliens except in this order.
User your keyboard’s arrow keys and space bar to interact with the game. It is up
to you to follow the instructions above, please follow them carefully.

Multiplayer Games For multiplayer games, we provided these instructions:

In this task you will play the game Space Invaders. This game is cooperative - you
and the other player both get points if either of you hits an alien. Please IGNORE
THE SCORE SHOWN ON THE GAME SCREEN, and try to maximise the score
shown in the text box to the right of the game screen. This score is shared between
you and the other player. You may want to cooperate with the other player.

In all cases, specific instructions were followed with these generic instructions:

User your keyboard’s arrow keys and space bar to interact with the game. It is up
to you to follow the instructions above, please follow them carefully.
Please do not open multiple tabs or windows of this link at the same time. In a
two-player task, if you are not being connected to another human player, or there
appear to be issues (e.g. other player is not moving at all), please click ‘Reload’
in your browser window and tell the other player to do the same.

Instructions for other games and tasks were similar.

A.2.6 MULTIAGENT DATA

Game Variants The CrowdPlay Atari dataset contains data from both standard two-player Space
Invaders as well as a custom cooperative mode. These differ in two ways: Firstly, in the standard
variant there is a bonus score when the other player gets hit by alien fire. We remove this score bonus
in the cooperative variant, in order to remove incentives to hurt the other player. Secondly, we give
both players the average of their clipped rewards instead of the usual rewards. For instance if one
player hits an alien and gets an unclipped reward of 15, while the other player does not get a reward
in the frame, we first clip the rewards (from 15 and 0 to 1 and 0, respectively), and then average
the clipped rewards to give each agent a reward of 0.5. In the standard non-cooperative variant, the
players would receive rewards of 1 and 0, respectively.

Fallback AI Agents AI agents were also used in nominally human-human environments with
MTurk participants, in two circumstances. First, if one human player disconnected, an AI agent

17

Published as a conference paper at ICLR 2022

Figure 7: Screenshots of the “game choice” (left) and “high score” (right) screens of CrowdPlay.

took over control. This is to allow the remaining MTurk worker to complete their task. Similarly,
if an MTurk worker was waiting for 15 minutes without a second human player connecting, a game
would start with an AI agent controlling the other player. The dataset includes a record of what type
of agent was controlling each player at every frame.

AI Agent Training AI agents were trained in two-agent environments with two separate A2C
policies. We used RLLib’s implementation of A2C (Mnih et al., 2016; Liang et al., 2018) for 40
million timesteps, using standard Deepmind-style observation processing. We used Ray / RLLib
version 1.4.0, and used the default hyperparameters for A2C therein. The only hyperparameters we
explicitly set is the learning rate schedule: 0.0007 at training start, 1e-12 at training end, linear in
between. We trained separate agents for the standard and cooperative variants as described above.
Table 7 (last section) shows the hyperparameters used.

Following findings in (Tylkin et al., 2021) we trained AI agents using randomized starting positions
each episode for better exploration of the states likely encountered in human-AI environments.

A.2.7 DATASET ERRATA

In a number of space invaders right trajectories, we had initially set a requirement of at least 90%
time spent on the right side of the screen. This proved too hard for some MTurkers, and we thus
lowered the requirement to 80%. This is not distinguished through a separate task ID. MTurkers
were compensated for their time in these instances.

A.3 RECRUITMENT AND PLATFORM INTEGRATIONS

We currently target and explicitly support the following platforms.

Amazon Mechanical Turk CrowdPlay can capture and store worker IDs and other metadata for
payment processing. Participants are paid a fixed sum for their participation subject to minimum
requirements, as well as a variable bonus payment depending on their performance. As above, these
are shown to users in real-time, and stored for simple payment processing. In multi-player envi-
ronments, AI agents can take over if one user disconnects, to allow remaining users to successfully
complete their tasks. Participants can be assigned to tasks automatically based on previous partici-
pant’s performance in a way that aims to balance the amount of high-quality data recorded for each
task against defined targets.

Direct User Payments and Raffles Our architecture is able to capture user data like email ad-
dresses to contact them for payment or to enter them into a raffle. Task-specific minimum time and
effort requirements can be enforced similarly to MTurk.

18

Published as a conference paper at ICLR 2022

Lab in the Wild (Reinecke & Gajos, 2015) is a platform for recruiting diverse participants for
online experiments. Participants are not monetarily compensated, but are instead motivated through
gaining insights about themselves through the experiments. Experiments are thus required to give
users feedback with interesting conclusions about the user’s performance and behavior. CrowdPlay
supports this through its real-time statistics engine, which is used to show users a feedback page after
they finish the experiment. Users are shown a variety of statistics about their gameplay behavior
beyond score, e.g. shot accuracy, including a comparison with the experiment cohort. Figure 7
(right) shows a screenshot of this.

Social Media Similarly to Lab in the Wild, participants recruited from social media platforms
are not compensated for their time but intrinsically motivated. CrowdPlay supports user choice of
individual games and tasks through a modern UI resembling a “game library”, and uses real-time
statistics to restate task instructions as “challenges.” Figure 7 (left) shows a screenshot of the “game
library” feature.

A.4 INCENTIVE EXPERIMENT TREATMENTS

We list here with more detail the five different treatments we used in the experiment in Section 4.

1. No incentives: In this treatment, we paid participants a lump sum after 5 minutes of time
of running the game, irrespective of their actions or performance in the game.

2. Active Time: As above, however we only count time if there was at least one user keypress
in the last 30 seconds, and at least one non-zero game reward in the last 60 seconds.

3. Minimum Requirement: In addition to 5 minutes of play time, we require that participants
follow instructions to at least some minimal degree. We require they shoot a minimum of
50 aliens in the correct order, and that at least 80% of aliens shot were in the correct order
(i.e. from the innermost columns that still had any aliens present).

4. Sliding Bonus: We pay participants a much smaller lump sum “base payment” after 5
minutes of active playtime and a bonus payment that reaches a maximum if participants
shot at least 200 aliens in the correct order, and 100% of aliens short were in the correct
order. The base and full bonus payment were chosen to equal the lump sum payment of
the previous incentive regimes. The bonus payment p scaled linearly in both the number of
aliens shot in the correct order ncorrect, as well as the fraction of aliens shot in the correct
order above one-half, i.e. ncorrect/ntotal − 0.5:

p = pmax ×max(1,
ncorrect

500
)×min(0, 2(

ncorrect

ntotal
− 0.5)). (1)

5. All Incentives: We pay a small lump sum subject to the conditions in the minimum require-
ments regime and a bonus as in the sliding bonus regime.

In addition, we compared to students recruited by email, who were able to enter a raffle subject to
a minimum performance requirement as in the treatment above; and to social media users, who we
did not incentivize externally. Instead, the task was described as a “challenge” to social media users.

A.5 INCENTIVE EXPERIMENT DATA ANALYSIS

Table 3 and Table 4 show the p values for the hypothesis that the mean of the corresponding two
distributions on total and fraction of high-quality data differs for each treatment pair in the incentives
experiment. We denote in bold any p value below .05. A value of 0.000 denotes a p value below
.0005.

A.6 T-SNE EMBEDDINGS

For the analysis performed in this paper, the t-SNE embeddings were generated using scikit-learn
version 1.0.1, with PCA initialization, and all other parameters left at default. Table 7 shows the
parameters used.

For the embeddings in Section 3, data was not filtered for quality, and the features used for the t-SNE
algorithm were the frequency of each action per episode (six features in total).

19

Published as a conference paper at ICLR 2022

Table 3: p values for “total” measurements in incentive experiment

vs Email
Raffle

Social
Media
Users

All In-
centives

Scaling
Bonus

Quality
Re-
quire-
ment

Active
Time

No incentives 0.000 0.600 0.000 0.001 0.006 0.621
Active Time 0.000 0.362 0.000 0.000 0.006
Quality Requirement 0.738 0.368 0.811 0.105
Scaling Bonus 0.341 0.256 0.021
All Incentives 0.658 0.135
Social Media Users 0.002

Table 4: p values for “fraction” measurements in incentive experiment

vs Email
Raffle

Social
Media
Users

All In-
centives

Scaling
Bonus

Quality
Re-
quire-
ment

Active
Time

No incentives 0.001 0.000 0.000 0.001 0.000 0.440
Active Time 0.000 0.000 0.000 0.000 0.000
Quality Requirement 0.152 0.039 0.433 0.035
Scaling Bonus 0.086 0.031 0.006
All Incentives 0.123 0.016
Social Media Users 0.318

For the embeddings in Section 5, the human data was filtered for quality using a condition of at least
80% of time spent on correct side of screen, respectively 80% of aliens shot in correct order. For
the AI data, BC agents were trained using the hyperparameters described in the following section;
four agents were trained using different random seeds; and each agent was used to generate 20
trajectories. The features used were action distribution as well as five features of behavioral statistics
relevant to the multimodal behavior types (fraction of time spent on left / right side of screen and
fraction of aliens shot in inside-out / outside-in / row-by-row order).

All t-SNE figures Section 3 and Section 5 were done using separate t-SNE embeddings for each
figure. For Figure 6, it is also possible to compute a single joint t-SNE embedding for both human
and BC agents. We show this in Figure 8. The separate embeddings in the main text show that t-
SNE picks out different (non-“modality of behavior”) features for BC data than it does for the clearly
behaviorally clustered human data. On the other hand, a joint embedding shows that BC behavior is
still somewhat similar (mapped to similar regions) as human behavior, albeit still significantly less
clearly clustered.

40 20 0 20 40 60
tsne-2d-one

40

20

0

20

40

ts
ne

-2
d-

tw
o

task
space_invaders_left
space_invaders_right
space_invaders_insideout
space_invaders_outsidein
space_invaders_rowbyrow

40 20 0 20 40 60
tsne-2d-one

40

20

0

20

40

ts
ne

-2
d-

tw
o

task
BC_space_invaders_left
BC_space_invaders_right
BC_space_invaders_insideout
BC_space_invaders_outsidein
BC_space_invaders_rowbyrow

Figure 8: Joint t-SNE embedding of action distributions and behavioral statistics in multimodal
behaviors for human participants (left) and BC agents (right).

20

Published as a conference paper at ICLR 2022

A.7 BENCHMARK EXPERIMENT DETAILS

We performed all the experiments using the open source implementations of the algorithms that
are provided as part of d3rlpy2 library. We run each algorithm for 1M iterations before reporting
the score. For all algorithms, we set hyper-param n frames = 4 to match the framestacking of 4
frames and scaler to ’pixel’. To match the speed of evaluation environment, we downsampled the
collected data to only consider every 4th transitions from the collected transitions. This is same as
the standardized frame skipping operation done with Atari datasets. To avoid unfair disadvantage
to offline RL algorithms due to removal of three quarters of data as a result of this downsampling,
we also implemented a data augmentation technique. Here, we downsampled the data 4 times by
offsetting transitions by 1 step. We used all four trajectories generated in this way for each original
trajectory, thereby maintaining the total number of transitions in the original dataset. We trained
each algorithm for 4 seeds and all algorithms were trained using Adam optimizer. Table 7 out-
lines other algorithm-specific hyper-parameter values. We used the same set of hyper-parameters
as described in Gulcehre et al. (2020) to pursue a fair comparison between the performance of
algorithms on human data in our paper with the performance on synthetic data reported in their
paper. For metrics, we used td error scorer provided by the library. We used ’mean’, ’qr’ and
’iqn’ as q func factory for BCQ, CQL and IQN algorithms respectively. For the normalized score,
we consider best score as the one obtained by a human on the particular task. Random score is
the average over 5 runs of random policy for each task and we compute the normalized score as:
Normalized Score = 100 ∗ AlgoScore−RandomScore

BestHumanScore−RandomScore . Table 5 and 6 provide individual un-
normalized returns and normalized scores for individual tasks and algorithms. Figure 10 provide
in-depth performance comparisons between algorithms across a suite of robust metrics. Here, Inter
Quartile Mean, a statistically efficient alternative to median, discards the bottom and top 25% of the
runs and calculates the mean score of the remaining 50% runs and interpolates between mean and
median across runs. Optimality gap, a robust alternative to mean, represents the amount by which
the algorithm fails to meet a minimum score of a threshold (1.0 in case of human performance),
beyond which improvements are not very important. Agarwal et al. (2021) discusses these metrics
in great details. Figure 9 displays performance profiles of each algorithm on individual tasks. The
results demonstrate that IQN exhibits an overall higher performance consistently compared to other
algorithms but fails to outperform humans in most tasks with couple of exceptions. DQN is comes
out as a strong offline baseline while conservative approaches such as BCQ and CQL does not per-
form well on our dataset. The results demonstrate the difficulties for offline learning algorithms
to cope with the variations in the human demonstrations and opens avenues for progress in offline
learning algorithms.

Table 5: Mean Unnormalized return for offline RL algorithms. SI - Space Invaders and RR - River
Raid. Scores are obtained via online evaluation. Numbers in parenthesis correspond to the best
reward achieved by human for the respective task.

Tasks BC BCQ CQL IQN DQN SAC

SI Left (1010.00) 296.00 418.88 549.5 584.25 607.88 507.63
SI Right (1980.00) 381.88 342.00 363 642.50 582.13 573.00
SI insideout (695.00) 381.88 406.38 314.5 576.75 524.00 589.50
SI outsidein (995.00) 278.00 304.63 282.38 662.25 543.88 557.75
SI rowbyrow (570.00) 277.13 305.5 168.13 582.88 527.13 501.88
SI vanilla (1230.00) 294.13 375.75 395.75 616.75 601.75 516.00
RR left (5130.00) 1306.75 1406.25 2454.5 1572.00 1704.00 1058.50
RR right (2070.00) 1208.00 1410.75 1869.5 2054.50 1695.00 1171.25
RR vanilla (3880.00) 1372.75 1507.75 2550 1810.25 1900.25 1378.25
Q*Bert (14950.0) 0.00 168.75 403.75 1721.25 835.63 2196.25
BeamRider (3932.0) 560.00 618.6 712.75 1006.70 847.30 900.20

2https://github.com/takuseno/d3rlpy, commit hash: e89445956d8570102a8ca3b34bf0db4538b3b43e

21

https://github.com/takuseno/d3rlpy

Published as a conference paper at ICLR 2022

SI Left
SI Right

SI insideout

SI outsid
ein

SI rowbyrow
SI vanilla

RR Left
RR Right

RR vanilla Qbert

Beam Rider

Task

0

10

20

30

40

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SI Left
SI Right

SI insideout

SI outsid
ein

SI rowbyrow
SI vanilla

RR Left
RR Right

RR vanilla Qbert

Beam Rider

Task

0

10

20

30

40

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SI Left
SI Right

SI insideout

SI outsid
ein

SI rowbyrow
SI vanilla

RR Left
RR Right

RR vanilla Qbert

Beam Rider

Task

0

20

40

60

80

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SI Left
SI Right

SI insideout

SI outsid
ein

SI rowbyrow
SI vanilla

RR Left
RR Right

RR vanilla Qbert

Beam Rider

Task

0

20

40

60

80

100

120

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SI Left
SI Right

SI insideout

SI outsid
ein

SI rowbyrow
SI vanilla

RR Left
RR Right

RR vanilla Qbert

Beam Rider

Task

0

20

40

60

80

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SI Left
SI Right

SI insideout

SI outsid
ein

SI rowbyrow
SI vanilla

RR Left
RR Right

RR vanilla Qbert

Beam Rider

Task

0

20

40

60

80

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Figure 9: Task specific performance profiles for offline RL algorithms on human demonstrations.
(Top-left) Performance for BC, (Top-Right) Performance for BCQ; (Center-Left) Performance for
CQL, (Center-Right) Performance for IQN; (Bottom-Left) Performance for DQN, (Bottom-Right)
Performance for SAC. The bars indicate the mean normalized score across seeds, and the error bars
show a bootstrapped estimate of the [25, 75] percentile interval for the mean estimate.

22

Published as a conference paper at ICLR 2022

15 30 45

BC

BCQ

CQL

IQN

DQN

SAC

Median

10 20 30 40

IQM

15 30 45

Mean

0.0 0.8 1.6 2.4

Optimality Gap

Normalized Performance

Al
go

rit
hm

s

Figure 10: Aggregate metrics for offline RL algorithms on human demonstrations.).

Table 6: Mean Normalized scores for offline RL algorithms. SI - Space Invaders and RR - River
Raid. Human performance score used to compute the normalized scores is available in parenthesis
in Table 3. Random policy returns used to compute normalized scores are: 165.00 (shared across SI
tasks), 1220.00 (shared across RR tasks), 35.00 (Qbert) and 470.40 (Beam Rider).

Tasks BC BCQ CQL IQN DQN SAC

SI Left 15.50 30.04 45.50 49.62 52.41 40.55
SI Right 11.94 9.75 10.91 26.30 22.98 22.48
SI insideout 41.67 45.54 28.21 77.69 67.74 80.09
SI outsidein 13.61 16.82 14.14 59.90 45.65 47.32
SI rowbyrow 27.69 34.69 0.77 103.17 89.41 83.18
SI vanilla 12.12 19.79 21.67 42.42 41.01 32.96
RR left 2.22 4.76 31.57 9.00 12.38 -4.13
RR right -1.41 22.44 76.41 98.18 55.88 -5.74
RR vanilla 5.74 10.82 50.00 22.19 25.57 5.95
Q*Bert -0.23 0.90 2.47 11.31 5.37 14.49
BeamRider 2.59 4.28 7.00 15.49 10.89 12.42

23

Published as a conference paper at ICLR 2022

Table 7: Hyper-Parameter Configuration Table

DiscreteBC
HyperParameters Value HyperParameters Value
learning rate 1e-3 beta 0.5
batch size 100

DiscreteBCQ
learning rate 6.25e-5 batch size 32
gamma 0.99 n critics 1
target reduction type ”min” action flexibility 0.3
beta 0.5 target update interval 8000

DiscreteCQL & DiscreteIQN
learning rate 6.25e-5 batch size 32
gamma 0.99 n critics 1
target reduction type ”min” alpha 1.0
target update interval 8000

DQN
learning rate 6.25e-5 batch size 32
gamma 0.99 n critics 1
target reduction type ”min” target update interval 8000

DiscreteSAC
actor lr 3e-4 critic lr 3e-4
temp lr 3e-4 batch size 64
gamma 0.99 n critics 2
initial temperature 1.0 target update interval 8000

t-SNE embeddings
n components 2 perplexity 30.0
early exaggeration 12.0 learning rate 200.0
n iter 1000 n iter without progress 300
min grad norm 1e-7 metric euclidian
init pca method barnes hut
angle 0.5

A2C for AI agent training
gamma 0.99 start lr 0.0007
end lr 1e-12 learning rate schedule linear
num worker threads 33 batch size 200
rollout fragment length 20 gradient clip 40
value function loss coeff 0.5 entropy coeff 0.01
gae true lambda 1

24

	Introduction
	Related Work

	CrowdPlay: The Pipeline
	Overview
	Software Architecture

	CrowdPlay Atari: The Dataset
	Scope and Motivation
	Task Design
	Data Analysis
	Challenges and Limitations

	Incentive Design
	Incentive Design and Recruitment
	Incentive Models
	Results

	Benchmark Results
	Discussion
	Appendix
	Technical Details
	Dataset Details
	Game Variants
	Full List of Included Data
	Data Evaluation
	Recruitment
	Example Participant Instructions
	Multiagent Data
	Dataset errata

	Recruitment and Platform Integrations
	Incentive Experiment Treatments
	Incentive experiment data analysis
	t-SNE embeddings
	Benchmark Experiment Details

