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ABSTRACT

Unsupervised constituency parsers organize phrases within a sentence into a tree-
shaped syntactic constituent structure that reflects the organization of sentence se-
mantics. However, the traditional objective of maximizing sentence log-likelihood
(LL) does not explicitly account for the close relationship between the constituent
structure and the semantics, resulting in a weak correlation between LL values
and parsing accuracy. In this paper, we introduce a novel objective that trains
parsers by maximizing SemInfo, the semantic information encoded in constituent
structures. We introduce a bag-of-substrings model to represent the semantics and
estimate the SemInfo value using the probability-weighted information metric.
We apply the SemInfo maximization objective to training Probabilistic Context-
Free Grammar (PCFG) parsers and develop a Tree Conditional Random Field
(TreeCRF)-based model to facilitate the training. Experiments show that SemInfo
correlates more strongly with parsing accuracy than LL, establishing SemInfo as
a better unsupervised parsing objective. As a result, our algorithm significantly
improves parsing accuracy by an average of 7.85 sentence-F1 scores across five
PCFG variants and in four languages, achieving state-of-the-art level results in
three of the four languages.

1 INTRODUCTION

Unsupervised constituency parsing is a syntactic task of organizing phrases of a sentence into a tree-
shaped constituent structure without relying on linguistic annotations (Klein & Manning, 2002).
The constituent structure is a fundamental tool in analyzing sentence semantics (i.e., the meaning)
(Carnie, 2007; Steedman, 2000). It can significantly improve performance for downstream Natural
Language Processing systems, such as natural language inference (He et al., 2020), machine trans-
lation (Xie & Xing, 2017) and semantic role labeling (Chen et al., 2022) systems. It guides the
progressive construction of the sentence semantics, as illustrated in Figure 1. Each constituent in
the structure corresponds to a meaningful substring, forming partial representations of the sentence
semantics. One can easily recover the full sentence semantics by gradually constructing the seman-
tic representation of those constituent substrings. Following the observation, we hypothesize that
constituent substrings in the sentence carry significant semantic information.

Maximizing sentence log-likelihood has traditionally been the primary training objective for training
unsupervised constituency parsers (Eisner, 2016; Kim et al., 2019a). However, the Log-Likelihood
(LL) function does not explicitly factor in the syntax-semantics alignment. This leads to a poor cor-
relation between the LL value and the parsing accuracy. We will further discuss this poor correlation
in Section 5.3. As pointed out in previous research, it is challenging to train a Probabilistic Context-
Free Grammar (PCFG) parser that outperforms trivial baselines with the LL maximization objective
(Carroll & Charniak, 1992; Kim et al., 2019a). Successful training commonly involves altering the
LL maximization objective, such as imposing sparsity constraints (Cohen et al., 2008; Johnson et al.,
2007) or heuristically estimating the LL value (Spitkovsky et al., 2010). Theses evidence suggests
that the LL function might not provide robust information to distinguish between constituents and
non-constituents, rendering LL an insufficient objective function for unsupervised parsing.
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John has been working on a theory until late night

John has been working on a theory until late night

has been working on a theory

has been working on a theory

a theory

until late night

until late night

(a theory)

Oh, we have
a theory

Oh, someone is
working on it

Oh, he is working
until late night

Oh, the man
is John

(has been working
on (a theory))

((has been working on (a
theory)) (until late night)

(John (has been working on
(a theory)) (until late night))

Sentence: 
John has been working on a theory until late night
Constituent tree in bracket form:
(John (has been working on (a theory)) (until late
night))

Figure 1: An illustration of the progressive semantics build-up in accordance with the constituent
structure. The tree structure in the top-right shows the simplified constituent structure for illustration
purposes. Constituent substrings are highlighted in blue.

In this paper, we propose a novel objective for training unsupervised parsers: maximizing SemInfo
(the semantic information encoded in constituent structures). Specifically, we introduce a bag-of-
substrings model to represent the sentence semantics with substring statistics, in parallel to how
bag-of-words models represent document topics with word statistics. Next, we estimate the semantic
information encoded in substrings (i.e., substring-semantic information) by applying the Probability-
Weighted Information (PWI) metric (Aizawa, 2003) developed for the bag-of-words model to our
bag-of-substrings model. Finally, we calculate the SemInfo value of a constituent structure by sum-
ming up the substring-semantic information associated with the structure. Experiments show a
much stronger correlation between SemInfo and parsing accuracy than the correlation between LL
and parsing accuracy. The improved correlation suggests SemInfo is an effective objective function
for unsupervised constituency parsing. In addition, we develop a Tree Conditional Random Field
(TreeCRF)-based model to apply the mean-field SemInfo maximization training to PCFG parsers
(the state-of-the-art non-ensemble method for unsupervised constituency parsing (Liu et al., 2023)).
Experiments demonstrate that the SemInfo maximization objective improves the PCFG’s parsing
accuracy by 7.85 sentence-F1 scores across five latest PCFG variants and in four languages.

Our main contributions are: (1) Proposing a novel method for estimating SemInfo, the semantic
information encoded in constituent structures. (2) Demonstrating a strong correlation between Sem-
Info values and parsing accuracy. (3) Developing a TreeCRF model to apply mean-field SemInfo
maximization training to PCFG parsers, significantly improving parsing accuracy and achieving
state-of-the-art level results as non-ensemble parsers.

2 BACKGROUND

The idea that constituent structures reflect the organization of sentence semantics is central to mod-
ern linguistic studies (Steedman, 2000; Pollard & Sag, 1987). A constituent is a substring s in
a sentence x that can function independently (Carnie, 2007) and carries self-contained meanings
(Heim & Kratzer, 1998). A collection of constituents forms a tree-shaped structure t, which we can
represent as a collection of its constituent substrings t = {s1, s2, ...}. For example, the constituent
structure in the top right of Figure 1 can be represented as {“a theory”, “until late night”,...}. Previ-
ous research (Shen et al., 2017; Yang et al., 2021b) measures the accuracy of the parsing prediction
by instance level sentence-F1 (SF1i) score. Aggregating the SF1i score over the corpus gives the
corpus-level sentence-F1 score (SF1c), which previous research used to evaluate the parser quality.
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In this paper, we will apply the Probability-Weighted Information (PWI) (Aizawa, 2003) designed
to measure word-topic information in bag-of-words models (Figure 2a) to measuring substring-
semantic information in our bag-of-substrings model. PWI is an information-theoretic interpretation
of the term frequency-inverse document frequency (tf-idf) statistic. The tf-idf statistic is an effective
feature in finding keywords in documents (Li et al., 2007) or in locating documents based on the
given keyword (Mishra & Vishwakarma, 2015). Let D denote a document corpus, di the i-th docu-
ment in the corpus, and wij the j-th word in di. The bag-of-words model represents the document
di as an unordered collection of words occurring in the document (i.e., di = {wi1, wi2, ...}). Tf-idf,
as shown in Equation 1, is the product of the term frequency F (wij , di) (i.e. the frequency of wij
occurring in di) and the inverse document frequency (i.e. the inverse log-frequency of documents
containing wij). PWI interprets the term frequency as the word generation probability and the in-
verse document frequency as the piecewise word-document information (Equation 2). The PWI
value estimates the information that wij carries with regard to di. A high value indicates that wij is
both frequent in di and strongly associated with di. In other words, wij is a keyword of di.

tf-idf(wij , di) = F (wij , di)︸ ︷︷ ︸
term frequency

× log
|D|

|d′ : d′ ∈ D ∧ wij ∈ d′|︸ ︷︷ ︸
inverse document frequency

(1)

≈ P (wij |di)︸ ︷︷ ︸
word generation probability

× log
P (di|wij)

P (di)︸ ︷︷ ︸
piecewise word-document information

(2)

= PWI(wij , di)

Our method is developed upon the finding of Chen et al. (2024): constituent structures can be
predicted by searching for frequent substrings among semantically similar paraphrases. We extend
their findings, interpreting the substring frequency statistic as a dominating term in our proposed
substring-semantics information metric and applying it to improve unsupervised PCFG training.
As we will see in Section 5.2, our method significantly outperforms theirs in three out of the four
languages tested.

PCFG is currently the state-of-the-art non-ensemble model for unsupervised constituency parsing
(Liu et al., 2023; Yang et al., 2021a). Previous research trains binary PCFG parsers on a text cor-
pus by maximizing the average LL of the corpus. PCFG is a generative model defined by a tuple
(NT, T,R, S, π), where NT is the set of non-terminal symbols, T is the set of terminal symbols, R
is the set of production rules, S is the start symbol, and π is the probability distribution over the rules.
The generation process starts with the start symbol S and iteratively applies non-terminal expansion
rules (A → BC : A,B,C ∈ NT ) or terminal rewriting rules (A → w : A ∈ NT,w ∈ T ) until it
produces a complete sentence x. We can represent the generation process with a tree-shaped struc-
ture t. The PCFG assigns a probability for each distinct way of generating x, defining a distribution
P (x, t). The Inside-Outside algorithm (Baker, 1979) provides an efficient solution for computing
the total sentence probability P (x) =

∑
t P (x, t). It constructs a β(s,A) table that records the total

probability of generating a substring s of x from the non-terminal A. The sentence probability can
be calculated as P (x) = β(x, S), the probability of x being generated from the start symbol S. The
β(x, S) quantity is commonly referred to as Z(X) (Eisner, 2016). Besides the total sentence proba-
bility, the β table can also be used to calculate the span-posterior probability of s being a constituent
(Eisner, 2016) (Equation 3).1

P (s is a constituent|x) =
∑

A∈NT

∂ logZ(x)

∂ log β(s,A)
(3)

Span-based TreeCRF model is widely adopted in constituency parsers (Kim et al., 2019b; Stern
et al., 2017). It models the parser distribution P (t|x), the probability of constituent structure t given
x. It determines the probability of t by evaluating whether all substrings involved in the structure
are constituents. It assigns a high score to a substring s in its potential function ϕ(s, x) if s is likely
a constituent and a low score if s is unlikely a constituent. Subsequently, It can represent the parser
distribution as P (t|x) ∝

∏
s∈t ϕ(s, x). In previous research, ϕ(s, x) has been parameterized differ-

ently, such as using the span posterior probability for decoding (ϕ(s, x) = P (s is a constituent|x))
(Yang et al., 2021b) or using the exponentiated output from Long-Short Term Memory model
(ϕ(s, x) = exp(LSTM(x, s))) (Kim et al., 2019b).

1We explain the derivation in more detail in Section A.2.
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Figure 2: Parallel structure between the traditional bag-of-words representation of topics and the
proposed bag-of-substrings representation of semantics.

3 SEMINFO: A METRIC OF SEMANTIC INFORMATION ENCODED IN
CONSTITUENT STRUCTURES

In this section, we introduce our estimation method of SemInfo, the semantic information encoded
in constituent structures. We first propose a bag-of-substrings model (Figure 2b), representing the
semantics of a sentence by examining how substrings in the sentence are regenerated during a para-
phrasing process. We assume the paraphrasing process is capable of generating natural language
paraphrases (i.e., the paraphrases should both be acceptable as natural language sentences and have
similar semantics to the original sentence). We use instruction-following large language models
(LLMs) for the paraphrasing model, exploiting their outstanding zero-shot learning capability (Chia
et al., 2023). Next, we apply the PWI metric (Aizawa, 2003) to measure the substring-semantics in-
formation, utilizing the parallel structure between the bag-of-words model and our bag-of-substrings
model (Figure 2). Finally, we estimate the SemInfo value for constituent structures by summing the
substring-semantics information associated with the structure.

3.1 DEFINING SUBSTRING-SEMANTIC INFORMATION USING BAG-OF-SUBSTRINGS MODEL

Our bag-of-substrings model shares a parallel structure with the traditional bag-of-words model. As
discussed in Section 2, the bag-of-words model can model the word-topic information using the PWI
metric. Exploiting the structural parallelism, we can apply the PWI metric to our bag-of-substrings
model to estimate the information between substrings and sentence semantics (Equation 4).

The bag-of-substrings model is based on the paraphrasing model P (xp|Sem(x)) shown in Fig-
ure 2b. The paraphrasing model takes a source sentence x as input, internally analyzes its semantics
Sem(x), and generates a paraphrase xp. We can repeatedly sample from the process, collecting a
paraphrase set Xp = {xp

1, x
p
2, ...}. We define the bag-of-substrings model by examining whether a

substring s of x appears in Xp. We consider the appearance of s in Xp as s being generated by the
bag-of-substrings model. The generation modeling establishes a relationship between the semantics
Sem(x) and the substring s, which we will use to estimate the substring-semantic information.

The PWI metric requires two components to calculate the substring-semantic information:
P (s|Sem(x)), the substring generation probability, and log P (Sem(x)|s)

P (Sem(x)) , the piecewise mutual in-
formation between s and Sem(x). Similar to the bag-of-words model, we will calculate the two
components using the frequency of s in Xp and the inverse frequency of s in the corpus D.

I(s, Sem(x)) = P (s|Sem(x)) log
P (Sem(x)|s)
P (Sem(x))

(4)

3.2 CALCULATING PWI USING MAXIMAL SUBSTRINGS

Naively measuring substring frequency among paraphrases Xp will yield a misleading estimate of
P (s|Sem(x)). The reason is that one substring can be nested in another substring. If a substring
s is generated to convey semantic information, we will observe an occurrence of s along with an
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occurrence of all its substrings. Hence, the naive substring frequency will wrongly count substring
occurrences caused by the generation of larger substrings as occurrences caused by P (s|Sem(x)).
Let us consider the example illustrated in Figure 3. All three substrings in the example have a
frequency of 2, yet only the first substring carries significant semantic information. This is because
the occurrence of the first substring causes the occurrence of the second and third substrings. The
true frequency of the second and third substrings should be 0 instead of 2.

John has been
working on a theory

John is working on a
theory

John was working on
a theory

Pa
ra

ph
ra

si
ng

Naive/Maximal
Substring Frequency

working on a theory: 2/2

working on: 2/0

on a: 2/0

Figure 3: An example for naive substring fre-
quency among paraphrases failing to estimate
P (s|Sem(x)).

We introduce the notion of maximal substring
to counter this problem. Given a source sen-
tence x and a paraphrase xp

i , the maximal sub-
string between the two is defined in Equation 5.
Intuitively, a maximal substring is the largest
substring that occurs in both x and xp

i . For-
mally, we denote the partial order relationship
of string α being a substring in string β by
α ≤ β, and denote the set of maximal sub-
strings by MS(x, xp

i ). Using maximal sub-
strings, we can avoid over-counting substring
occurrences caused by the generation of larger
substrings.

MS(x, xp
i ) := {α : α ≤ x ∧ α ≤ xp

i ∧ ∀α
′(α < α′ =⇒ ¬α′ ≤ x ∨ ¬α′ ≤ xp

i )} (5)

We are now ready to define P (s|Sem(x)) using the paraphrasing distribution P (xp|Sem(x)) and
the notion of maximal substrings. We define P (s|Sem(x)) to be proportional to s’s probability of
being generated as a maximal substring in paraphrases (Equation 6). The probability can then be
approximated using the maximal substring frequency F (s,Xp), as shown in Equation 7.

P (s|Sem(x)) ∝ E
x
p
i ∼P (xp|Sem(x))

1(s ∈MS(xp
i , x)) (6)

≈ F (s,Xp) (7)

Similarly, we define the inverse document frequency for maximal substrings (Equation 8). The
inverse document frequency can serve as an estimate of the piecewise substring-semantics informa-
tion, quantifying how useful a substring is to convey semantic information. A high inverse document
frequency implies that only a few Sem(x) in the corpus generate s as their maximal substring. In
other words, we can easily identify the target semantics by examining whether s appears as maximal
substrings.

log
P (Sem(x)|s)
P (Sem(x))

≈ log
|D|

|{x′ : x′ ∈ D ∧ s ∈MS(x, x′)}| (8)

3.3 ESTIMATING SEMINFO

A constituent structure t can be represented as a set of constituent substrings. We define SemInfo, the
information between t and Sem(x), as the cumulative substring-semantics information associated
with t (Equation 9). We estimate the substring-semantics information with the maximal substring
frequency-inverse document frequency developed in the above section.

I(t, Sem(x)) =
∑
s∈t

I(s, Sem(x)) (9)

∝
∑
s∈t

F (s,Xp) log
|D|

|{x′ : x′ ∈ D ∧ s ∈MS(x, x′)}|︸ ︷︷ ︸
maximal substring frequency-inverse document frequency

(10)

4 SEMINFO MAXIMIZATION VIA TREECRF MODEL

We train our PCFG models on Equation 12 using the pipeline shown in Figure 4. The pipeline
consists of three steps: (1) We compute the log(Z(x)) by applying the inside algorithm on
the PCFG model. This step yields the leading log-likelihood term in Equation 12. More im-
portantly, it constructs the computation graph needed to calculate the span-posterior probabil-
ity P (s is a constituent|x). (2) We extract the span-posterior probability via back-propagating
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Figure 4: Pipeline of our SemInfo maximization training

log(Z(x)) and parameterize a TreeCRF model by setting ϕ(s, x) = P (s is a constituent|x) (Equa-
tion 11). This parametrization leads to a tree distribution PCRF (t|x) that functions as an one-step
Reinforcement Learning agent. (3) We train the PCFG model by applying the SemInfo maximization
on PCRF (t|x). This TreeCRF-based training method is equivalent to applying a mean-field SemInfo
maximization to the PCFG model. We choose the TreeCRF model because it enables efficient sam-
pling from PCRF (t|x) and entropy calculation for the distribution. As discussed in Appendix A.1,
the TreeCRF-based training method performs equivalently to applying SemInfo maximization on
the PCFG model directly. Yet, the TreeCRF-based method runs 4x faster and uses 1

6 the memory
compared to the direct PCFG optimization method.

We apply the REINFORCE algorithm with average baseline (Williams, 1992) to facilitate the train-
ing. We include the maximum entropy regularization (Ziebart et al., 2008) and the traditional LL
term logZ(x) in the training. Notably, the LL term significantly stabilizes the training process. This
stabilization effect may be related to the strong correlation between LL values and parsing accuracy
at the early training stage, as discussed in Section 5.3.2.

PCRF (t|x) ∝
∏
s∈t

P (s is a constituent|x)

=
∏
s∈t

∑
A∈NT

∂ logZ(x)

∂ log β(s,A)
(11)

J (D) = E
x∼D

[logZ(x) + E
t∼PCRF (t|x)

[ logPCRF (t|x)(I(t, Sem(x))−

E
t∼PCRF (t|x)

I(t, Sem(x)) + βH(P (t|x)))]]
(12)

5 EXPERIMENT

5.1 EXPERIMENT SETUP

We evaluate the effect of the SemInfo maximization objective on five latest PCFG variants: Neural-
PCFG (NPCFG), Compound-PCFG (CPCFG) (Kim et al., 2019a), TNPCFG (Yang et al., 2021b),
Simple-NPCFG (SNPCFG), and Simple-CPCFG (SCPCFG) (Liu et al., 2023).2 SNPCFG and
SCPCFG represent the current state-of-the-art for non-ensemble unsupervised constituency pars-
ing. We use 60 NTs for NPCFG and CPCFG, and 1024 NTs for TNPCFG, SNPCFG, and SCPCFG
in our experiment. We conduct the evaluations in three datasets and four languages, namely Penn
TreeBank (PTB) (Marcus et al., 1999) for English, Chinese Treebank 5.1 (CTB) (Palmer et al., 2005)
for Chinese, and SPMRL (Seddah et al., 2013) for German and French. We adopt the standard data
split for the PTB dataset (Sections 02-21 for training, Section 22 for validation, and Section 23 for
testing) (Kim et al., 2019a). We adopt the official data split for the CTB and SPMRL datasets.

Following Shen et al. (2017), we train the PCFG model on raw text without punctuations and eval-
uate its parsing performance using the SF1c scores. When computing the SF1c score, we aggregate
SF1i only for sentences longer than two words and drop trivial spans (i.e., sentence-level spans

2Our implementation is based on the source code of Yang et al. (2021b) and Liu et al. (2023)
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English Chinese French German
SemInfo (Ours) LL SemInfo LL SemInfo LL SemInfo LL

CPCFG 65.74±0.81 53.75±0.81 50.39±0.87 51.45±0.49 52.15±0.75 47.50±0.41 49.80±0.31 45.64±0.73
NPCFG 64.45±1.13 50.96±1.82 53.30±0.42 42.12±3.07 52.36±0.62 47.95±0.09 50.74±0.28 45.85±0.63
SCPCFG 67.27±1.08 49.42±2.42 51.76±0.54 46.20±3.65 52.79±0.80 45.03±0.42 47.97±0.76 45.50±0.71
SNPCFG 67.15±0.62 58.19±1.13 51.55±0.82 43.79±0.39 55.21±0.47 49.64±0.91 49.65±0.29 40.51±1.26
TNPCFG 66.55±0.96 53.37±4.28 51.79±0.83 45.14±3.05 54.11±0.66 39.97±4.10 49.26±0.64 44.94±1.34
Average ∆ +13.09 +6.02 +7.31 +4.92
MaxTreeDecoding 58.28 49.03 52.03 50.82
GPT4o-mini 36.16 11.82 30.01 33.56

Table 1: SF1c scores of five PCFG variants trained with SemInfo and LL. Each cell in the upper
section reports the mean SF1cscore and the standard deviation across three identical and indepen-
dently trained PCFG models. Average ∆ indicates average improvements in the SF1cscore when
training with SemInfo compared to LL. Improvements that are statistically significant (p < 0.05)
are highlighted in bold.

and spans with only one word). We use both the SF1c and SF1i scores to evaluate the correlation
between the SemInfo value and parsing accuracy.

We use the gpt-4o-mini-2024-07-18 model as our paraphrasing model and apply the same
word normalization techniques as in Chen et al. (2024). The average paraphrasing cost is about 5
USD using OpenAI’s batch API. We use eight semantic-preserving prompts for the paraphrasing
model.3 We apply the snowball stemmer (Bird & Loper, 2004) to normalize the source sentence
and its paraphrases before calculating the maximal substring frequency and the inverse document
frequency. We apply the log-normalization (Sparck Jones, 1972) to the maximal substring frequency
to avoid some high-frequency substrings dominating the SemInfo value. The log-normalization is
compatible with the PWI framework, which treats the normalization as an optional step to estimate
P (s|Sem(x)). In preliminary experiments, the log-normalization variant performs marginally but
consistently better than the unnormalized variant.

5.2 SEMINFO MAXIMIZATION SIGNIFICANTLY IMPROVES PARSING ACCURACY

Table 1 compares SemInfo-trained PCFGs and LL-trained PCFGs on five contemporary PCFG vari-
ants and four languages. For each variant, we independently train three PCFG models on the Sem-
Info and LL objectives and report the mean and standard deviation of their SF1cscores. We can
observe that most SemInfo-trained PCFGs achieve significantly higher parsing accuracy than their
LL-trained counterparts. The average improvements are 13.09, 6.02, 7.31, and 4.92 SF1c scores in
English, Chinese, French, and German, respectively. Two-tailed t-tests indicate the improvement
to be statistically significant (p<0.05) in 17 out of 20 combinations. Two of the three insignificant
results are due to the high score variance of the LL-trained PCFGs. The significant improvement
demonstrates the benefit of the SemInfo maximization objective in the unsupervised constituency
parsing task. The result also confirms the importance of semantic factors in identifying the syntactic
constituent structure.

Table 1 also compares the SemInfo trained PCFG with two baseline parsers: Maximum Tree De-
coding (MTD) parser, which predicts the structure with maximum SemInfo value, and GPT4o-mini
parser that asks the GPT4o-mini model to predict the structure in bracket form directly. Among the
two baselines, we see that the MTD parser has significantly higher SF1c scores than the GPT4o-mini
parser across the four languages. The accuracy gap indicates that SemInfo is discovering non-trivial
information about the constituent structure. Comparing the SemInfo-trained PCFG and the MTD
parser, we see that all SemInfo-trained PCFG variants outperform the MTD parser in English, Chi-
nese, and French. The accuracy improvement indicates that the constituent information provided
by the SemInfo value is noisy, and the grammar learns to mitigate the noises. We can again con-
firm PCFG’s de-noising effect in an experiment investigating how paraphrasing noise affects parsing
performance (Appendix A.5).

In German, SemInfo-trained PCFGs perform worse than the MTD parser. One possible reason is
that the German validation/testing set has a significantly different word vocabulary compared to
the training set, unlike the datasets in the other three languages. The out-of-vocabulary rate in
the German dataset is 14%, while the rate is 5%, 6%, and 7% in the English, Chinese, and French

3Detailed prompts are listed in Section A.8
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SemInfo-SF1i LL-SF1i SemInfo-LL
CPCFG 0.6518 0.0223 0.0196
NPCFG 0.6347 -0.0074 -0.0045
SCPCFG 0.6431 -0.0013 0.0505
SNPCFG 0.9289 0.0102 0.0182
TNPCFG 0.6449 0.1077 0.1426

Table 2: Spearman correlation coefficient
among (SemInfo, LL, SF1i), and LL over the
English validation set. Correlations are ag-
gregated at the corpus-level.

Figure 5: Spearman rank analysis of (SemInfo,
LL, SF1i) pairs obtained from eight independently
trained NPCFG models. The values are measured on
two sentences in the English dataset. Please refer to
Figure 8 for more examples.

datasets. This shift in word distribution might be a significant factor in German PCFGs’ poor parsing
accuracy.

5.3 SEMINFO STRONGLY CORRELATES WITH PARSING ACCURACY

In this section, we investigate how the SemInfo and LL functions contribute to obtaining high-quality
PCFG parsers from two aspects: (1) Whether the function can accurately evaluate the model’s pre-
diction (measured by SF1i). (2) Whether the function can approximately rank PCFG parsers in
accordance with parsing performance (measured by SF1c). Our experiments indicate that SemInfo
can serve as an accurate estimate of parsing accuracy and that SemInfo is a better training objec-
tive for unsupervised parsers than LL. We evaluate the two aspects using the Spearman correlation
(Spearman, 1904) between the SemInfo/LL values and the SF1i/SF1cscores. We refer to the cor-
relation analysis using the SF1i score sentence-level analysis and the analysis using the SF1c score
corpus-level analysis.

5.3.1 SEMINFO ESTIMATES PARSING ACCURACY

The sentence-level analysis assesses the SemInfo/LL’s capability to evaluate the model prediction
accurately. We independently train eight identical PCFG models using the LL maximization objec-
tive. Each model is trained with a unique random seed for 30k steps. These eight models produce
eight (SF1i, SemInfo, LL) tuples for any given sentence, which we use to calculate the sentence-
level Spearman correlation coefficient.

Figure 5 illustrates the correlation gap between SemInfo-SF1i and LL-SF1i pairs using two sen-
tences in the English validation set. Between the two sentences, the SemInfo-SF1i pairs exhibit
positive correlations while the LL-SF1i pairs exhibit no apparent correlations. Table 2 confirms
the correlation gap using the correlation coefficient aggregated in the corpus level. We perform
mean-aggregation using Fisher’s Z transformation (Fisher, 1915). The transformation converts the
coefficient to a uni-variance distribution and reduces the negative impact of the aggregation caused
by the coefficient’s skewed distribution (Silver & Dunlap, 1987). In the table, we observe that the
aggregated coefficients for the SemInfo-SF1i pairs range from 0.6-0.9, whereas the aggregated coef-
ficients for the LL-SF1i correlation center around 0. We can also consistently observe the correlation
gap across multiple training stages, as further discussed in Appendix A.3. The consistent correlation
gap, on the one hand, suggests that SemInfo can serve as an accurate estimate of parsing accuracy
and that SemInfo is a better training objective for unsupervised parsers than LL. On the other hand,
it highlights SemInfo’s ability to capture constituent information, reaffirming a close relationship
between constituent structure and sentence semantics.

5.3.2 SEMINFO RANKS PCFG MODELS BETTER THAN LL

The corpus-level analysis evaluates the SemInfo/LL’s capability to rank PCFG parsers by their pars-
ing performance. We examine the correlation using model checkpoints collected over different
training stages of the above eight PCFG models. Each stage is represented by a window over the
amount of training steps. For example, a stage [1k, 10k] contains checkpoints from 1k to 10k steps.
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English Chinese French German
NPCFG (60NT) 63.62±1.07 53.92±0.48 51.88±0.73 47.77±0.26
SCPCFG (1024NT) 66.92±0.76 52.26±0.41 52.29±0.53 45.32±0.67
SNPCFG (1024NT) 66.84±0.53 52.04±0.93 54.37±0.10 47.27±0.16

Spanoverlap (Chen et al., 2024) 52.9 48.7 48.5 49.5
SCPCFG (2048NT) (Liu et al., 2023) 60.6 42.9 49.9 49.1
SNPCFG (4096NT) (Liu et al., 2023) 65.1 39.9 38 46.7
URNNG (Kim et al., 2019b) 40.7 29.1 - -
NBL-PCFG (Yang et al., 2021a) 60.4 - - -
S-DIORA (Xu et al., 2021) 57.6 - - -
Constituency Test (Cao et al., 2020) 62.8 - - -

Table 3: SF1con English, Chinese, French, and German test sets. The top section shows the score
for SemInfo-trained PCFGs while the bottom section shows the result from previous work.

These checkpoints produce a set of (SF1c, corpus-averaged SemInfo, corpus-averaged LL) tuples,
which we use to calculate the corpus-level coefficient at that training stage.

Figure 6: Spearman ρ with SF1c in different
training stages of NPCFG.

Figure 6 illustrates the SemInfo-SF1c and LL-SF1c

correlation curves for NPCFG.4 We can observe that
LL does have a strong corpus-level correlation with
SF1c at the early stage of training despite having a
near-non-existent sentence-level correlation. How-
ever, LL’s coefficient quickly diminishes as training
progresses, dropping below 0.4 at the late training
stage. This result indicates that LL identifies a rea-
sonable PCFG parser among a set of poorly perform-
ing parsers in the early training stage, explaining
why the LL-training can result in non-trivial PCFG
parsers despite having negligible correlation in the
sentence-level analysis. Yet, this ability quickly de-
grades as the training progresses. In comparison,
SemInfo maintains a strong correlation across the
whole training process, which indicates SemInfo’s
superior capability in ranking PCFG parsers by their
performance.

5.4 COMPARING WITH STATE-OF-THE-ARTS

Table 3 compares three SemInfo-trained PCFG variants with the state-of-the-art non-ensemble meth-
ods for unsupervised constituency parsing. The SemInfo-trained PCFGs achieved state-of-the-art
level parsing accuracy in English, Chinese, and French, outperforming the second-best algorithm by
1.82, 11.02, and 4.47 SF1cscores, respectively. The SemInfo-trained PCFGs, while using less than
half the parameters, perform on par or significantly better than the larger SCPCFG and SNPCFG re-
ported by Liu et al. (2023). The comparison showcases the strong parsing accuracy of the SemInfo-
trained PCFGs, confirming the usefulness of semantic information in discovering the constituent
structure.

6 RELATED WORKS

Parsing with PCFG Unsupervised PCFG training is a long-established (Klein & Manning, 2002)
and state-of-the-art (Liu et al., 2023) approach for non-ensemble unsupervised constituency parsing.
Much research has been dedicated to improving PCFG training from the model perspective, such
as scaling up the PCFG model (Yang et al., 2021b; Liu et al., 2023), integrating lexical information
(Yang et al., 2021a), and allowing PCFG rule probabilities to condition on sentence embeddings
through variational inference (Kim et al., 2019a). Our improvement is from the model optimization
perspective and can be combined with the above efforts. Our experiments validate the effectiveness

4We include the correlation curve for the other four PCFG variants in Appendix A.4.
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of the SemInfo maximization objective in improving unlexicalized PCFGs. The SemInfo maximiza-
tion objective is also applicable to lexicalized PCFGs, which we leave to future work.

Parsing with Semantics Zhao & Titov (2020) and Zhang et al. (2021) have sought to improve
PCFG training by learning to identify visual features, maximizing the association between con-
stituent structures and these visual features. If we consider the visual features as semantic rep-
resentations, their approach is effectively maximizing the semantic information of the constituent
structure. In comparison, our method shares the same underlying principle but represents the se-
mantics with textual features. Our method leverages large language models as semantic processors,
utilizing their outstanding semantic processing capabilities (Minaee et al., 2024). We believe that
combining both textual and visual semantic representations presents a significant research direction
for unsupervised parsing tasks.

Improving Parsing with Ensemble Models Ensembling unsupervised parsers (Shayegh et al.,
2024) significantly improves accuracy for unsupervised parsing by aggregating predictions from
various base parsers. They show that those base parsers predict the constituent structure differently
and utilize the difference to obtain a more accurate parsing result. Our method can be combined
with the ensemble method for better parsing accuracy. We conduct a parser agreement analysis
in Appendix A.6 to show the potential. The agreement analysis shows an agreement score of 80
among our SemInfo-trained PCFG parsers using various paraphrasing models. The agreement score
is similar to that of homogeneous parsers reported in Shayegh et al. (2024). The analysis also shows
that our parsers have an agreement score of 50 with other base parsers, similar to the reported score
between heterogeneous parsers. The similarity in agreement score suggests that our parsers should
be able to serve as a useful component in the ensemble method.

7 CONCLUSION

In this paper, we proposed and validated SemInfo maximization as a novel objective for unsuper-
vised constituency parsing. We developed a bag-of-substrings model to represent the sentence
semantics and applied the probability-weighted information metric to estimate the SemInfo. We
applied the SemInfo maximization objective to training PCFG parsers. Experiments showed that
SemInfo has a strong sentence-level correlation with parsing accuracy and that SemInfo maintains a
consistent corpus-level correlation throughout the PCFG training process. These correlation analy-
ses indicate that SemInfo is an accurate estimate of parsing accuracy and that it is a reliable training
objective for unsupervised parsers. As a result, SemInfo-trained PCFGs significantly outperformed
LL-trained PCFGs across four languages, achieving state-of-the-art level performance in three of
them. Our findings highlight the effectiveness of leveraging semantic information in unsupervised
constituency parsing, paving the way for semantically-informed unsupervised parsing methods.

8 REPRODUCIBILITY

We provide detailed explanation of our method in Sections 3 and 4. We outline further im-
plementation details, such as the data source, model architecture, and hyper-parameter settings,
in Section 5.1. We release the source code at https://github.com/junjiechen-chris/Improving-
Unsupervised-Constituency-Parsing-via-Maximizing-Semantic-Information.git.

9 ACKNOWLEDGMENT

This research was funded by the Japan Society for the Promotion of Science through the Research
Fellowships for Young Scientists (Grant No. JP23KJ0565) and by the KAKEN project (Grant No.
24H00087). We sincerely thank them for their financial support of the research. We also appreciate
the reviewer’s thorough evaluation and valuable suggestions during the review process.

REFERENCES

Akiko Aizawa. An information-theoretic perspective of tf–idf measures. Information Pro-
cessing & Management, 39(1):45–65, January 2003. ISSN 03064573. doi: 10.1016/

10

https://github.com/junjiechen-chris/Improving-Unsupervised-Constituency-Parsing-via-Maximizing-Semantic-Information.git
https://github.com/junjiechen-chris/Improving-Unsupervised-Constituency-Parsing-via-Maximizing-Semantic-Information.git


Published as a conference paper at ICLR 2025

S0306-4573(02)00021-3. URL https://linkinghub.elsevier.com/retrieve/
pii/S0306457302000213.

J. K. Baker. Trainable grammars for speech recognition. The Journal of the Acoustical Soci-
ety of America, 65(S1):S132–S132, June 1979. ISSN 0001-4966, 1520-8524. doi: 10.1121/
1.2017061. URL https://pubs.aip.org/jasa/article/65/S1/S132/739840/
Trainable-grammars-for-speech-recognition.

Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceedings of the ACL
Interactive Poster and Demonstration Sessions, pp. 214–217, Barcelona, Spain, July 2004. URL
P04-3031.

Steven Cao, Nikita Kitaev, and Dan Klein. Unsupervised parsing via constituency tests. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 4798–4808, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.389.
URL https://aclanthology.org/2020.emnlp-main.389.

Andrew Carnie. Syntax: a generative introduction. Introducing linguistics. Blackwell Pub, Malden,
MA, 2nd ed edition, 2007. ISBN 9781405133845.

Glenn Carroll and Eugene Charniak. Two experiments on learning probabilistic dependency gram-
mars from corpora. Technical report, Brown University, USA, 1992.

Junjie Chen, Xiangheng He, and Yusuke Miyao. Modeling syntactic-semantic dependency corre-
lations in semantic role labeling using mixture models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7959–7969, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.548. URL
https://aclanthology.org/2022.acl-long.548.

Junjie Chen, Xiangheng He, Danushka Bollegala, and Yusuke Miyao. Unsupervised parsing by
searching for frequent word sequences among sentences with equivalent predicate-argument
structures. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association
for Computational Linguistics ACL 2024, pp. 3760–3772, Bangkok, Thailand and virtual meeting,
August 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.findings-acl.225.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. INSTRUCTEVAL: towards holis-
tic evaluation of instruction-tuned large language models. CoRR, abs/2306.04757, 2023. doi: 10.
48550/ARXIV.2306.04757. URL https://doi.org/10.48550/arXiv.2306.04757.

Shay Cohen, Kevin Gimpel, and Noah A Smith. Logistic normal priors for unsupervised prob-
abilistic grammar induction. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.),
Advances in Neural Information Processing Systems, volume 21. Curran Associates, Inc.,
2008. URL https://proceedings.neurips.cc/paper_files/paper/2008/
file/f11bec1411101c743f64df596773d0b2-Paper.pdf.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network
grammars. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 199–209, San Diego, California, June 2016. doi: 10.18653/
v1/N16-1024. URL N16-1024.

Jason Eisner. Inside-outside and forward-backward algorithms are just backprop (tutorial paper).
In Kai-Wei Chang, Ming-Wei Chang, Alexander Rush, and Vivek Srikumar (eds.), Proceedings
of the Workshop on Structured Prediction for NLP, pp. 1–17, Austin, TX, November 2016. doi:
10.18653/v1/W16-5901. URL W16-5901.

R. A. Fisher. Frequency distribution of the values of the correlation coefficient in samples from an
indefinitely large population. Biometrika, 10(4):507, May 1915. ISSN 00063444. doi: 10.2307/
2331838. URL https://www.jstor.org/stable/2331838?origin=crossref.

11

https://linkinghub.elsevier.com/retrieve/pii/S0306457302000213
https://linkinghub.elsevier.com/retrieve/pii/S0306457302000213
https://pubs.aip.org/jasa/article/65/S1/S132/739840/Trainable-grammars-for-speech-recognition
https://pubs.aip.org/jasa/article/65/S1/S132/739840/Trainable-grammars-for-speech-recognition
P04-3031
https://aclanthology.org/2020.emnlp-main.389
https://aclanthology.org/2022.acl-long.548
https://aclanthology.org/2024.findings-acl.225
https://aclanthology.org/2024.findings-acl.225
https://doi.org/10.48550/arXiv.2306.04757
https://proceedings.neurips.cc/paper_files/paper/2008/file/f11bec1411101c743f64df596773d0b2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/f11bec1411101c743f64df596773d0b2-Paper.pdf
N16-1024
W16-5901
https://www.jstor.org/stable/2331838?origin=crossref


Published as a conference paper at ICLR 2025

Qi He, Han Wang, and Yue Zhang. Enhancing generalization in natural language inference by
syntax. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 4973–4978, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.447. URL https:
//aclanthology.org/2020.findings-emnlp.447.

Irene Heim and Angelika Kratzer. Semantics in generative grammar. Blackwell textbooks in lin-
guistics. Blackwell, Malden, MA, 1998. ISBN 9780631197126.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesian inference for PCFGs via Markov
chain Monte Carlo. In Candace Sidner, Tanja Schultz, Matthew Stone, and ChengXiang Zhai
(eds.), Human Language Technologies 2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Proceedings of the Main Conference, pp. 139–
146, Rochester, New York, April 2007. URL N07-1018.

Yoon Kim, Chris Dyer, and Alexander Rush. Compound probabilistic context-free grammars for
grammar induction. In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings
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Strategy RL Baseline Sampling distribution Learning Strategy
Action-V V-function Action distribution SemInfo maximization
Posterior-V V-function Tree posterior distribution SemInfo maximization
Posterior-Avg Sample average Tree posterior distribution SemInfo maximization
Supervised - - Supervised learning
LL - - Likelihood maximization

Table 4: Lookup table for optimization strategies and detailed descriptions

Algorithm 1 TreeCRF Sampler
1: function CRF-Sampler(i, j, x)
2: if j = i+ 1 then
3: Return leaf node (i, j)
4: else
5: Sample split index k ∼ πCRF (k | (i, j)) following Equation 14 Johnson et al. (2007)
6: Tleft ← CRF-Sampler(i, k, x)
7: Tright ← CRF-Sampler(k, j, x)
8: Return node (i, j) with children Tleft and Tright
9: end if

10: end function

A APPENDIX

A.1 ADVANCED SEMINFO MAXIMIZATION

In Section 4, we presented a SemInfo maximization method that performs mean-field optimization
through a TreeCRF model. This method parameterizes a TreeCRF model using the span-posterior
probability and maximizes the expected SemInfo value of the TreeCRF distribution. While our
study demonstrated significant accuracy improvement by the TreeCRF-based SemInfo maximiza-
tion training, it raises a new question: What is the advantage of optimizing the PCFG parameters
through the TreeCRF model compared to optimizing those parameters directly? In the experiment
presented in this section, we found no significant difference between the TreeCRF-based and PCFG-
based optimizations. It shows that the demonstrated accuracy improvement does not depend on par-
ticular optimization methods, highlighting the contribution of the SemInfo maximization objective
to accurate unsupervised parsing. In addition, we found that the TreeCRF-based optimization is
more time and space-efficient than the PCFG-based optimization, which makes the TreeCRF-based
optimization preferable.

As shown in Table 4, we compare three SemInfo maximization strategies combined with two op-
timization methods (TreeCRF-based and PCFG-based methods). We include an LL-trained parser
and a supervised parser as baselines. The two baselines serve as the lower and upper bounds for the
comparison, respectively.

A.1.1 TREE POSTERIOR AND SAMPLING DISTRIBUTIONS

Both the TreeCRF-based and PCFG-based optimizations aim to maximize the expected SemInfo
with on-policy Reinforcement Learning (RL), but they operate on two policy distributions: the
TreeCRF-based posterior distribution PCRF (t|x) (Equation 11) and the PCFG-based posterior dis-
tribution PPCFG(t|x) (Equation 13). Sampling from both distributions involves multiple span-
splitting steps (Algorithm 1 for the TreeCRF model and Algorithm 2 for the PCFG model). The
sampler starts with the sentence-level span ((1, n) for the TreeCRF model; (S, 1, n) for the PCFG
model) and recursively makes splitting decisions ((i, j) → (i, k)(k, j) for the TreeCRF model;
(A, i, j) → (B, i, k)(C, k, j) for the PCFG model). The sampler repeats this span-splitting process
until it reaches single-word spans (j = i+ 1).

PPCFG(t|x) = P (x, t)∑
t P (x, t)

(13)
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Algorithm 2 PCFG Sampler
1: function PCFG-Sampler(A, i, j, x)
2: if j = i+ 1 then
3: Return leaf node (A, i, j)
4: else
5: Sample split index B,C, k ∼ πPCFG(B,C, k | (A, i, j)) following Equation 15
6: Tleft ← PCFG-Sampler(B, i, k, x)
7: Tright ← PCFG-Sampler(C, k, j, x)
8: Return node (A, i, j) with children Tleft and Tright
9: end if

10: end function

πCRF (k|(i, j)) =
exp(

∑
s≤(i,k) logP (s is a const.|x) +

∑
s≤(k,j) logP (s is a const.|x))∑

k exp(
∑

s≤(i,k) logP (s is a const.|x) +
∑

s≤(k,j) logP (s is a const.|x)) (14)

πPCFG(B,C, k|(A, i, j)) =
P (A→ BC)β(B, i, k)β(C, k, j)

β(A, i, j)
(15)

A.1.2 THREE SEMINFO MAXIMIZATION STRATEGIES

In this subsection, we introduce two RL optimization methods: posterior and action optimizations.
We further combine the optimization methods with two RL baseline estimations: average baseline
and V -function baselines. Since the average baseline cannot be applied to the action optimization,
the combination of the optimizations and baselines gives three optimization strategies (Table 4).

The posterior optimization is similar to the method explained in the main text: (1) sampling tree
from either PCRF (t|x) or PPCFG(t|x); and (2) perform policy gradient optimization in accordance
with Equation 12. In contrast, the action optimization considers the tree sampling process as an RL
trajectory and applies the SemInfo maximization through πCRF or πPCFG. The two optimizations
differ in how the RL agent is defined. The posterior optimization defines the RL agent as a one-
step agent and seeks to maximize the SemInfo values for the parser-predicted trees. The action
optimization defines the RL agent as a span-splitting agent and seeks to maximize the SemInfo for
the tree resulting from the span-splitting decision.

A.1.3 V -FUNCTION COMPUTATION

In the PCFG setting, the V -function can be computed precisely and efficiently using dynamic pro-
gramming. The V -function estimates the expected return of visiting a state s (s = (i, j) for the
TreeCRF model and s = (A, i, j) for the PCFG model) using a policy π (Equation 16). It enables
the estimation of the advantage function A(s, a), which evaluates how effective a is in maximiz-
ing the SemInfo value of the sampled tree (Equation 17). Algorithm 3 and Algorithm 4 details the
V -function computation for both the TreeCRF and PCFG-based optimizations. The two algorithms
share the same backbone but differ in the span-splitting agent π.

V (s) = E
(s0,a0,s1,a1,... )∼π

 ∑
(si,ai)

r(si, ai)

 (16)

A(s, a) = r(s, a) + V (s′)− V (s) (17)

A.1.4 TREECRF-BASED OPTIMIZATIONS

Equation 18 (restatement of Equation 12), 19, and 20 details the training objective for the TreeCRF-
based Posterior-Avg, Posterior-V, and Action-V strategies, respectively. Comparing Equation 18 and
Equation 19, the Posterior-V improves over the Posterior-Avg by substituting the sample-average
baseline with the V -function baseline. Our preliminary experiments indicate that the substitution
results in faster convergence and slightly higher parsing accuracy. The Action-V strategy directly
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Algorithm 3 TreeCRF-based V-Function Computation

Require: Subtree-selection agent πCRF (i, j) governing all possible split decisions of span (i, j) →
(i, k)(k, j).

Require: SemInfo function r(i, j) = I(xi:j , Sem(x)).
Ensure: V (i, j) for all spans.
1: Initialize V (i, j) = 0 for all spans (i, j).
2: w ← 2
3: repeat
4: for each span s of length w do

5: V (s)←


0 w = 1

r(i, j) w = 2

EπCRF (k|s) [(V (i, k) + V (k, j))] + r(i, j) w > 2

6: end for
7: w ← w + 1
8: until w = n
9: return V

Algorithm 4 PCFG-based V-Function Computation

Require: Subtree-selection agent πPCFG(A, i, j) governing all possible split decisions of span (A, i, j) →
(B, i, k)(C, k, j).

Require: SemInfo function r(A, i, j) = I(xi:j , Sem(x)).
Ensure: V (A, i, j).
1: Initialize V (A, i, j) = 0 for all (A, i, j).
2: w ← 2
3: repeat
4: for each span s of length w do

5: V (s)←


0 w = 1

r(A, i, j) w = 2

EπPCFG(B,C,k|A,i,j) [(V (B, i, k) + V (C, k, j))] + r(A, i, j) w > 2

6: end for
7: w ← w + 1
8: until w = n
9: return V

optimizes πCRF using the advantage function A, which we further augment with the Generalized
Advantage Estimation Schulman et al. (2016).

J (D) = E
x∼D

[logZ(x) + E
t∼PCRF (t|x)

[ logPCRF (t|x)(I(t, Sem(x))−

E
t∼PCRF (t|x)

I(t, Sem(x)) + βH(P (t|x)))]]
(18)

J (D) = E
x∼D

[logZ(x) + E
t∼PCRF (t|x)

[ logPCRF (t|x)(I(t, Sem(x))−

Vx(1, n) + βH(PCRF (t|x)))]]
(19)

J (D) = E
x∼D

[logZ(x) + E
((1,n),k,... )∼πCRF

[
∑

(i,j),k

log πCRF (k|i, j)(A(i, j, k)

+ βH(πCRF (k|i, j)))]]
(20)

A.1.5 PCFG-BASED OPTIMIZATIONS

Equation 21, 22, and 23 details the training objective for the PCFG-based Posterior-Avg, Posterior-
V, and Action-V strategies, respectively. These strategies are defined similarly to the TreeCRF-based
strategies but replace the TreeCRF-based distributions with the PCFG-based distributions.
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NPCFG SNPCFG
TreeCRF PCFG TreeCRF PCFG

Action-V 65.16±1.15 62.66±1.76 67.21±0.33 66.04±0.38
Posterior-V 66.82±0.32 66.37±1.71 67.87±0.54 66.32±1.39
Posterior-Avg 65.55±0.75 65.64±1.34 66.77±0.14 66.85±0.32
Supervised 69.05±0.55 73.54±0.11 71.83±0.21 74.78±0.23
LL 53.34±0.59 57.84±2.61

Table 5: SF1c scores of two PCFG variants trained combined with three SemInfo maximization
strategies. We retrained the TreeCRF-based Posterior-Avg model and the LL model in this experi-
ment.

J (D) = E
x∼D

[logZ(x) + E
t∼PPCFG(t|x)

[ logPPCFG(t|x)(I(t, Sem(x))−

E
t∼PPCFG(t|x)

I(t, Sem(x)))]]
(21)

J (D) = E
x∼D

[logZ(x) + E
t∼PPCFG(t|x)

[ logPPCFG(t|x)(I(t, Sem(x))− Vx(S, 1, n))]] (22)

J (D) = E
x∼D

[ logZ(x) + E
((A,1,n),(B,C,k),... )∼πPCFG

[∑
(A,i,j),(B,C,k)

log πPCFG(B,C, k|A, i, j)A(A, i, j, B,C, k)]]
(23)

A.1.6 RESULT

Table 5 evaluates the TreeCRF and PCFG-based optimization methods using two PCFG variants.
Both methods yield parsers of similar performance. The TreeCRF-based method yields higher mean
parsing accuracy than the PCFG-based method, yet the difference is within the margin of error. All
combinations yield parsers with 65 67SF1c scores, except for the NPCFG+Action-V+PCFG-based
optimization combination. This combination results in parsers with 62.66 mean SF1c score, mas-
sively underperforming other combinations. The underperformance might be related to the low
model capacity of the PCFG model, as we did not observe similar performance degradation in the
SNPCFG model and other high-capacity models tested in our preliminary experiment. Overall, the
comparison disentangled the high accuracy of the SemInfo-trained PCFGs from specific optimiza-
tion algorithms. It highlights the contribution of the SemInfo maximization objective to accurate
unsupervised parsing.

In comparison with the supervised baseline, all combinations yield parsers with accuracy within 8
SF1c scores from the supervised baseline. The small gap, on the one hand, showcases the strong
performance of the SemInfo-trained PCFG parsers. On the other hand, it indicates that the PCFG
model might limit further development of semantic-aware unsupervised parsers. A more expressive
parsing model (e.g., the Recurrent Neural Network Model Dyer et al. (2016)) might be necessary in
future studies.

While the TreeCRF-based and PCFG-based methods yield parsers of similar accuracies, we found
the TreeCRF-based optimization more time and space-efficient than the PCFG-based optimization.
The TreeCRF-based optimization trains NPCFG parsers at 4x the speed and uses only 1

6 the memory.
It also trains SNPCFG parsers at 8x the speed and uses 1

8 the memory. The improved training
efficiency enables the further scaling of the PCFG model.

A.2 COMPUTING SPAN-POSTERIOR PROBABILITY VIA BACK-PROPAGATION

This section explains how the span-posterior probability P (s is a constituent|x) is computed using
back-propagation.

P (s is a constituent|x) =
∑

A∈NT

∂ logZ(x)

∂ log β(s,A)
(24)
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Figure 7: Sentence-level Spearman correlations for models trained for 10k steps, 20k steps, and 30k
steps.

Proof. Firstly, we define the span-posterior probability as Equation 25. Here s is a substring of x,
spanning from the i-th word to the j-th word (i.e., s := (xi, ..., xj)). Intuitively, s is a constituent if
there exists a non-terminal A that expands into s.

P (s is a constituent|x) =
∑

A∈NT P (S → x ∧A → si,j)

P (x)
(25)

We split P (S → x ∧ A → si,j) into two parts in Equation 26: P (S → x1, ..., xi−1, A, xj+1, ...),
the probability of generating words outside s, and P (A → s), the probability generating words
inside s. The outside probability can be computed using back-propagation (Eisner, 2016). The
inside probability is already computed by the β table. Exploiting algebraic transformations shown
in Equation 28, we can derive the formula shown in Equation 24.

P (s is a constituent|x) = 1

Z(x)

∑
A∈NT

P (S → x1, ..., xi−1, A, xj+1, ...)P (A → s) (26)

=
1

Z(x)

∑
A∈NT

∂Z(x)

∂β(s,A)
β(s,A) (27)

=
1

Z(x)

∑
A∈NT

Z(x)
∂ logZ(x)

∂ log β(s,A)

1

β(s,A)
β(s,A) (28)

=
∑

A∈NT

∂ logZ(X)

∂ log β(s,A)
(29)

A.3 SENTENCE-LEVEL CORRELATION IN DIFFERENT TRAINING STAGES

In Table 2, we showed a strong sentence-level correlation between SemInfo and SF1i but a weak
correlation between LL and SF1i. Nevertheless, it remains unclear whether the correlation gap is
related to the number of training steps Figure 7 excludes the number of training steps as a factor in
the correlation gap. In this experiment, we calculate the correlation coefficient for models trained
for 10k steps, 20k steps, and 30k steps. We can observe that, for all PCFG variants, the correlation
coefficients for (SemInfo, SF1i) are consistently over 0.6, while the coefficients for (LL, SF1i) are
consistently below 0.1. This result underscores our conclusion that SemInfo can serve as an accurate
estimate of parsing accuracy.

19



Published as a conference paper at ICLR 2025

Figure 8: Sentence-level correlation on six random sentences.

Figure 9: Corpus-level Spearman correlation in different training stages.

A.4 MORE DETAILED ANALYSIS FOR CORPUS-LEVEL CORRELATION

Figure 9 shows the corpus-level correlation in different training stages for all five PCFG variants.
We observe the same phenomenon explained in Section 5.3.2 for CPCFG, NPCFG, SNPCFG, and
TNPCFG. The correlation coefficients for (SemInfo, SF1c) are consistently above 0.75, whereas the
coefficients for (LL, SF1c) drop quickly as the training progresses. We can observe the stronger
correlation between SemInfo and SF1cin Figure 10. The figure plots the training curves of the
corpus-level SF1cscore, the average SemInfo value, and the average LL value over the English
validation set. For example, we can see that SemInfo ranks the NPCFG models represented by the
green and grey lines as the lowest and those represented by the purple and blue lines as the highest.
This largely agrees with the SF1cscores, where the NPCFG models represented by the green and
grey lines are among the bottom three worst-performing models, and the models represented by
the blue and purple lines are among the top three best-performing models. In comparison, we see
that all models have similar LL scores, which indicates LL’s inability to rank models in accordance
with their parsing performance. These results underscore our conclusion that SemInfo ranks PCFG
models better than LL.

In Figure 9, we observe that the correlation strength for (SemInfo, SF1c) also drops as training
progresses in SCPCFG. One reason is that SCPCFG fails to explore constituent structures with high
SemInfo values. As shown in Figure 10, the average SemInfo value across the eight models is
around 42 for SCPCFG, while the average SemInfo value is greater or equal to 45 for the other
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Paraphrasing Model Variations
Large Models Medium Models Small Models

gpt35 gpt4o gpt4omini llama3.2-3b qwen2.5-3b llama3.2 1b qwen2.5-0.5b
SemInfo-NPCFG 66.85±0.25 65.19±0.54 64.45±1.13 63.78±0.55 63.58±0.13 63.10±0.70 59.01±0.24
SemInfo-MTD 55.56 59.45 58.28 55.17 55.03 48.5 43.3
LL-NPCFG 50.96±1.82
Right Branching 38.4

Table 6: SF1c of the NPCFG and MaxTreeDecoding (MTD) parsers using SemInfo values obtained
from seven paraphrasing models. LL-NPCFG indicates the SF1c score of the LL-trained NPCFG
parser.

four PCFG variants. This result indicates that the constituent information provided in low SemInfo
regions might contain more noise than the information provided in high SemInfo regions.

A.5 ROBUSTNESS AGAINST PARAPHRASING NOISES

Table 6 compares the parsing accuracy of NPCFG models trained using seven paraphrasing mod-
els. These models are split into three groups: large models (gpt4o, gpt-4o-mini, gpt-3.5),
medium models (llama3.2-3b and qwen2.5-3b), and small models (llama3.2-1b and
qwen2.5-0.5b), each representing paraphrasing models with different levels of noises. The table
also includes a MaximumTreeDecoding (MTD) parser, an LL-trained NPCFG parser, and a trivial
right-branching parser for reference. We use the MTD parser to reflect the paraphrasing quality
because its parsing accuracy depends solely on the paraphrasing quality.

We can observe that the SemInfo-trained NPCFG parsers are robust against paraphrasing noises.
The accuracy gap between the best (gpt4o) and the worst (qwen2.5-0.5b) performing MTD
parser is 16.15 SF1c score. In comparison, the gap between the best and worst performing SemInfo-
trained NPCFG parser is 7.84 SF1c score, less than half of the gap in the MTD parser. In addition,
we can observe that the PCFG parser can benefit from the SemInfo maximization training, even
when using noisy paraphrases. All SemInfo-trained PCFG parsers significantly outperform their
LL-trained counterparts by a large margin. When trained with the most noisy paraphrasing model
(qwen2.5-0.5b), the SemInfo-trained PCFG parser outperforms its LL-trained counterpart by
9 points. The result suggests that the PCFG model effectively suppresses the paraphrasing noise,
leading to robust PCFG parsers.

A.6 POTENTIAL FOR ENSEMBLING

Figure 12, and Figure 13 suggests that the SemInfo-trained PCFG would benefit from parser ensem-
bling (Shayegh et al., 2024). Shayegh et al. (2024) shows that homogeneous unsupervised parsers
(same parser model, different initializations) make mildly distinctive predictions, and heterogeneous
parsers (different parser models) make considerably distinctive predictions. Ensembling the parsing
results from those parsers effectively suppresses parsing errors made by individual parsers, leading
to significant accuracy improvement.

In this section, we evaluate whether our SemInfo-trained PCFGs can benefit from parser ensembling
by examining the parser agreement scores for our parser and comparing the score with those reported
in Shayegh et al. (2024). If our parser exhibits similar agreement scores, we can consider that our
parser would benefit from the parser ensembling. We evaluate the agreement score of our parser and
six previous heterogeneous parsers (CPCFG, Constest, ContextDistort, DIORA, NPCFG,
and SDIORA).

Figure 12 illustrates the agreement score among parsers using different paraphrasing models. The
agreement scores (70-83) are similar to the reported score between homogeneous parsers (74-75
(Shayegh et al., 2024)). This similarity in score suggests that the SemInfo-trained PCFG parsers
would benefit from ensembling parsers using various paraphrasing models.

Figure 13 illustrates the agreement score among SemInfo-trained PCFG parsers and previous het-
erogeneous parsers. We can observe that the agreement score between our SemInfo-trained PCFG
parsers and previous parsers ranges from 54-58 (shown in the top-right corner of Figure 13). The
score falls in the same range as the score among those previous parsers (46-61, shown in the top-left
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Figure 10: Training curves of SemInfo, LL, and SF1c. Each line represents the curve for a single
PCFG model.
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(a) NPCFG (b) SNPCFG (c) CPCFG

(d) SCPCFG (e) TNPCFG

Figure 11: PCFG agreements between independent training runs.

Figure 12: NPCFG parser agreement when trained with different paraphrasing models

corner of Figure 13). Both scores are similar to the reported heterogeneous agreement score (55-63
(Shayegh et al., 2024)). This similarity in score suggests that the SemInfo-trained PCFG parsers
would benefit from being ensembled with previous heterogeneous parsers.

A.7 RECALL ON SIX MOST-FREQUENT CONSTITUENT TYPES

Table 7 shows the recall of the six most frequent constituent types on the English test set, following
Yang et al. (2021b). We see that PCFGs trained with SemInfo achieve significant improvement in
Noun Phrases (NP), Verb Phrases (VP), and Subordinate Clauses (SBAR). These three constituents
are the most typical constituents that carry semantic information. The significant improvement
underscores the importance of semantic information in identifying the constituent structure.

23



Published as a conference paper at ICLR 2025

CPCFG NPCFG SCPCFG SNPCFG TNPCFG
∆ by TypeSemInfo (Ours) LL SemInfo LL SemInfo LL SemInfo LL SemInfo LL

NP 88.88±0.06 79.77±1.58 88.98±0.34 80.63±2.10 87.45±1.16 79.41±1.47 86.51±0.18 70.95±1.64 87.89±1.23 77.73±5.72 +10.90
VP 71.19±1.10 40.79±1.49 65.69±2.06 28.29±3.24 73.80±1.65 28.53±1.15 76.35±2.18 80.21±0.51 72.23±2.19 45.82±7.52 +26.65
PP 68.22±5.68 72.27±0.47 70.15±5.42 75.15±0.83 79.75±0.57 73.83±8.94 80.26±1.45 78.85±0.98 78.51±0.83 71.07±8.49 +2.09
SBAR 80.99±1.40 52.18±2.15 80.37±3.48 56.32±6.03 84.16±0.56 40.81±12.99 82.17±0.91 81.28±1.06 82.45±1.55 54.46±4.92 +22.67
ADVP 91.87±0.56 88.38±0.97 91.48±0.61 89.78±1.17 92.22±1.01 88.57±4.53 92.11±0.74 89.67±0.93 90.93±1.59 88.07±0.71 +4.48
ADJP 71.82±1.43 63.08±1.90 75.18±2.85 61.66±9.97 78.39±1.78 60.40±8.03 75.77±3.74 75.55±2.18 72.90±4.19 65.40±6.60 +7.93
∆ by Model +12.42 +13.05 +20.14 +3.90 +12.76

Table 7: Recall on six most frequent constituent types. The recall data is calculated over the English
test set. ∆ by Type indicates the average recall improvement for the constituent type. ∆ by Model
indicates the average recall improvement for the PCFG variant.

A.8 PARAPHRASING PROMPTS

We use the below prompts to generate paraphrases from the gpt-4o-mini-2024-07-18model.
{lang} is a placeholder for languages. For example, we set {lang}=“English” when collecting En-
glish paraphrases.

• Create grammatical sentences by shuffling the phrases in the below sentence. The generated
sentences must be in {lang}. Use the same word as in the original sentence

• Create grammatical sentences by changing the tense in the below sentence. The generated
sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical sentences by restating the below sentences in passive voice. The gen-
erated sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical sentences by restating the below sentences in active voice. The gener-
ated sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical clefting sentences based on the below sentence. The generated sen-
tences must be in {lang}. Use the same word as in the original sentence.

• Create pairs of interrogative and its answers based on the below sentence. The generated
sentences must be grammatically correct and be explicit. The sentences must be in {lang}.
Use the same word as in the original sentence. The answer to the questions should be a
substring of the given sentence.

• Create pairs of confirmatory questions and its answers based on the below sentence. The
generated sentences must be grammatically correct and textually diverse. The sentences
must be in {lang}. Use the same word as in the original sentence. The answer to the
questions should be a substring of the given sentence.

• Create grammatical sentences by performing the topicalization transformation to the below
sentence. The sentences must be in {lang}. Use the same word as in the original sentence.

• Create grammatical sentences by performing the heavy NP shift transformation to the be-
low sentence. The sentences must be in {lang}. Use the same word as in the original
sentence.

A.9 EXAMPLES OF THE COLLECTED PARAPHRASES

The below list contains examples of our collected paraphrases for Such agency ‘ self-help ’ borrow-
ing is unauthorized and expensive , far more expensive than direct Treasury borrowing , said Rep.
Fortney Stark -LRB- D. , Calif. -RRB- , the bill ’s chief sponsor ..

• ’Self-help’ borrowing by such agency is unauthorized and expensive, far more expensive
than direct Treasury borrowing,’ said Rep. Fortney Stark -LRB- D., Calif. -RRB-, the bill’s
chief sponsor.

• Far more expensive than direct Treasury borrowing is such agency ’ self-help ’ borrowing,
unauthorized and expensive, said Rep. Fortney Stark -LRB- D., Calif. -RRB-, the bill ’s
chief sponsor.

• Yes, he said it is far more expensive than direct Treasury borrowing.
• What is unauthorized and expensive is such agency ’self-help’ borrowing, far more expen-

sive than direct Treasury borrowing, according to Rep. Fortney Stark.
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• ’Self-help’ borrowing by such agency is considered unauthorized and is regarded as expen-
sive, far more expensive than direct Treasury borrowing,” said Rep. Fortney Stark -LRB-
D., Calif. -RRB-, who is the chief sponsor of the bill.

• According to Rep. Fortney Stark -LRB- D. , Calif. -RRB- , the bill ’s chief sponsor , such
agency ’self-help’ borrowing is unauthorized and far more expensive than direct Treasury
borrowing.
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Figure 13: Agreement between heterogeneous parsers
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