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Abstract

Masked Image Modeling (MIM) has achieved promising progress with the advent of Masked
Autoencoders (MAE) and BEiT. However, subsequent works have complicated the frame-
work with new auxiliary tasks or extra pre-trained models, inevitably increasing computa-
tional overhead. This paper undertakes a fundamental analysis of MIM from the perspective
of pixel reconstruction, which examines the input image patches and reconstruction target,
and highlights two critical but previously overlooked bottlenecks. Based on this analysis,
we propose a remarkably simple and effective method, PixMIM, that entails two strategies:
1) filtering the high-frequency components from the reconstruction target to de-emphasize
the network’s focus on texture-rich details and 2) adopting a conservative data transform
strategy to alleviate the problem of missing foreground in MIM training. PixMIM can be
easily integrated into most existing pixel-based MIM approaches (i.e., using raw images
as reconstruction target) with negligible additional computation. Without bells and whis-
tles, our method consistently improves four MIM approaches, MAE, MFF, ConvMAE, and
LSMAE, across various downstream tasks. We believe this effective plug-and-play method
will serve as a strong baseline for self-supervised learning and provide insights for future
improvements of the MIM framework. Code and models will be available.

1 Introduction

Recent years have witnessed substantial progress in self-supervised learning (SSL). Inspired by the success of
masked language modeling (MLM) in language processing, masked image modeling (MIM) has been intro-
duced to computer vision, leading to rapid growth in SSL. Pioneering works such as BEiT (Bao et al., 2021)
and MAE (He et al., 2022) exploit Vision Transformers (ViT) to learn discriminative visual representations
from raw image data without manual annotations, and their transfer learning performance has outperformed
the supervised learning counterpart.
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Figure 1: Frequency analysis with an example image. (Top) Components belonging to different
frequency intervals for the input and MAE-reconstructed image. (Bottom) The peak signal-to-noise ratio
(PSNR) of the reconstruction for components of fine-grained frequency intervals. MAE tends to focus on
both the low and high-frequency components and reconstructs intricate details. We increased the image
brightness for better visualization.

Early MIM methods share a simple pipeline – a portion of non-overlapped image patches are randomly
masked, and the model learns to extract discriminative representations by reconstructing the pixel or fea-
ture values of the masked patches (Bao et al., 2021; He et al., 2022; Xie et al., 2022). To improve the
representation quality, some advanced MIM works (Huang et al., 2022; Zhou et al., 2022) incorporate extra
auxiliary tasks (e.g., contrastive learning) while some other efforts leverage powerful pre-trained models for
distillation (Hou et al., 2022; Peng et al., 2022a). However, these attempts either complicate the overall
framework or inevitably introduce non-negligible training costs.

Unlike recent works, this paper investigates the most fundamental but usually overlooked components in the
data reconstruction process of MIM, i.e., the input image patches and the reconstruction target, and proposes
a simple yet effective method that improves a wide range of existing MIM methods while introducing minimal
computation overhead. The core of the paper is a meticulous analysis based on the milestone algorithm –
MAE (He et al., 2022), which discloses critical but neglected bottlenecks of most pixel-based MIM methods.
The analysis yields two important observations:

(1). Reconstruction target: Since the advent of MAE, most MIM methods have adopted raw pixels as the
reconstruction target. The training objective requires perfect reconstruction of the masked patches, including
intricate details, e.g., textures. This perfect reconstruction target tends to waste the modeling capacity on
short-range dependencies and high-frequency details (see Figure 1), which has been pointed out by BEiT (Bao
et al., 2021) and also broadly studied in generative models (Ramesh et al., 2021; Rombach et al., 2022). In
addition, studies on the shape and texture bias (Geirhos et al., 2019; 2021) indicate that models relying
more on shape biases usually exhibit better transferability and robustness. However, reconstructing the
fine-grained details inevitably introduces biases toward textures, thus impairing the representation quality.
(2). Input patches: MAE employs the commonly used Random Resized Crop (RRC) for generating
augmented images. However, when coupling the RRC with an aggressive masking strategy (i.e., masking out
75% image patches), the visible patches in MAE’s input can only cover 17.1% of the key object on average
(see Figure 2 for examples and Section 3.2 for details). Semantic-rich foregrounds are vital for learning good
visual features (Touvron et al., 2022). The low foreground coverage during training likely hinders the model’s
ability to effectively capture the shape and semantic priors, thus limiting the quality of representation.

Guided by the analysis, we propose a method consisting of two simple yet effective modifications to the
MIM framework. Firstly, we apply an ideal low-pass filter to the raw images to produce the reconstruction
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targets, such that the representation learning prioritizes the low-frequency components (e.g., shapes and
global patterns). Secondly, we substitute the commonly used RRC with a more conservative image transform
operation, i.e., the Simple Resized Crop (SRC) employed by AlexNet (Krizhevsky et al., 2012), which helps to
preserve more foreground information in the inputs and encourages the model to learn more discriminative
representation. As our method operates directly on raw pixels of the input patches and reconstruction
targets to improve the MIM framework, we dub it PixMIM. Figure 4 illustrates the overall architecture of
our method.

PixMIM can be effortlessly integrated into most existing pixel-based MIM frameworks. We thoroughly evalu-
ate it with three well-established approaches, MAE (He et al., 2022), ConvMAE (Gao et al., 2022), MFF(Liu
et al., 2023), and LSMAE (Hu et al., 2022). The experimental results demonstrate that PixMIM consistently
enhances the performance of the baselines across various evaluation protocols, including the linear probing
and fine-tuning on ImageNet-1K (Deng et al., 2009), the semantic segmentation on ADE20K (Zhou et al.,
2018), and the object detection on COCO (Lin et al., 2014), without compromising training efficiency or
relying on additional pre-trained models. We additionally conduct experiments to assess the model’s robust-
ness against domain shift and exploit an off-the-shelf toolbox (Geirhos et al., 2021) to analyze the shape
bias of the model, which further highlights the strength of our method. In summary, our contributions are
three-fold:

• We carefully examine the reconstruction target and input patches of pixel-based MIM methods, which
reveals two important but previously overlooked bottlenecks.

• Guided by our analysis, we develop a simple and effective plug-and-play method, PixMIM, which filters out
the high-frequency components from the reconstruction targets and employs a simpler data transformation
to maintain more object information in the inputs.

• Without bells and whistles, PixMIM consistently improves three recent MIM approaches on various
downstream tasks with minimal extra computation.

Figure 2: Visualization of MAE’s input patches. For each example, we show the original image, the
image after the Random Resized Crop (RRC), and the visible patches produced by MAE’s masking strategy
from left to right. The coupling of RRC and an aggressive masking strategy leads to low foreground coverage
in the inputs and potentially impairs the representation quality.

2 Related Works

Self-supervised Learning. Since the success of BERT (Devlin et al., 2019) and GPT series (Radford
et al., 2018; Brown et al., 2020) in natural language processing, self-supervised learning (SSL) has made rev-
olutionary progress in various areas and gradually replaced the conventional supervised learning paradigm.
One main-stream SSL framework in computer vision is contrastive learning, which has shown great effec-
tiveness in image (Chen et al., 2020b; He et al., 2020; Grill et al., 2020; Chen & He, 2021), video (Qian
et al., 2021; Feichtenhofer et al., 2021; Hu et al., 2021; Liu et al., 2022b), and multi-modal data (Radford
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et al., 2021; Jia et al., 2021; Chen et al., 2021; Li et al., 2021). The main philosophy of contrastive learning
is to enforce the model to pull augmented views of the same data samples together while pushing views of
different samples apart, such that the model learns to extract discriminative representations.

Masked Image Modeling. Compared to contrastive learning, masked image modeling is another
paradigm for self-supervised representation learning. It works by masking a portion of an image and enforc-
ing the model to reconstruct these masked regions. BEiT (Bao et al., 2021) masks 60% of an image and
reconstructs the features of these masked regions, output by DALL-E (Ramesh et al., 2021). Recently, there
are also some attempts (Peng et al., 2022a; Hou et al., 2022) to align these masked features with features
from a powerful pre-trained teacher model, e.g., CLIP (Radford et al., 2021). Since these target features
contain rich semantic information, the student model can achieve superior results on many downstream tasks.
Instead of reconstructing these high-level features, MAE (He et al., 2022) reconstructs these masked pixel
values. Besides, MAE only feeds these visible tokens into the encoder, which can speed up the pre-training
by 3.1×, compared to BEiT.

3 A Closer Look at Masked Image Modeling

In this section, we first revisit the general formulation of Masked Image Modeling (MIM) and describe
the fundamental components (Section 3.1). We then present a careful analysis with the milestone method,
MAE (He et al., 2022), to disclose two important but overlooked bottlenecks of most pixel-based MIM
approaches (Section 3.2), which guides the design of our method.

3.1 Preliminary: MIM Formulation

The MIM inherits the denoising autoencoder (Vincent et al., 2008) with a conceptually simple pipeline, which
takes the corrupted images and aims to recover the masked content. The overall framework typically consists
of 1) data augmentation & corruption operation, 2) the auto-encoder model, and 3) the target generator.
Table 1 compares representative MIM methods based on the three components. Formally, let I ∈ RH×W ×3

be the original image, and H, W are the height and width of the image, respectively. The corrupted image Î
is generated with augmentation A(·) and corruption M(·), as Î = M(A(I)). As in supervised learning, the
random resized crop (RRC) is the de facto operation for A(·) in MIM (He et al., 2022; Bao et al., 2021; Xie
et al., 2022). The corruption M(·) is instantiated by masking image patches with different ratios (e.g. 75%
in MAE (He et al., 2022) and 60% in SimMIM (Xie et al., 2022)).

Method aug&corruption auto-encoder target
BEiT (Bao et al., 2021) RRC+40% mask ViT+Linear DALLE
SimMIM (Xie et al., 2022) RRC+60% mask ViT+Linear RGB
MaskFeat (Wei et al., 2022) RRC+40% mask ViT+Linear HOG
ConvMAE (Gao et al., 2022) RRC+75% mask ConvViT+MSA RGB
MAE (He et al., 2022) RRC+75% mask ViT+MSA RGB

Table 1: Empirical decomposition of MIM approaches. aug: data augmentation. mask: mask ratio.
MSA: multi-head self-attention layer. RRC: random resized crop.

The reconstruction target Y is also a key component of MIM methods. We denote the target generator
function by T (·), and the target is produced by Y = T (A(I)). The community has explored various target
generation strategies T (·), which could be roughly divided into non-parametric strategies (e.g., identity
function for RGB, HOG) and parametric strategies (e.g., a pre-trained model like DALLE (Ramesh et al.,
2021) or CLIP (Radford et al., 2021)). Our analysis focuses on the non-parametric family, as it does not
rely on external pre-training data and is typically more computationally efficient.

Given the target Y, the autoencoder model G(·) takes the corrupted images Î as the input and generates the
prediction Ŷ. The model is then optimized by encouraging the prediction to match the pre-defined target
Y:

Ŷ = G(Î), L = D(Y, Ŷ) (1)
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Figure 3: Computation of object coverage percentage. In the above example, A1 is the foreground
area. A2 is the area of the yellow region. The blue rectangular is the cropped image produced by data
augmentation. The object coverage percentage is obtained by the ratio between A2 and A1.

The loss L is computed according to a distance measurement D(·) (e.g., L1 or L2 distance) between the
prediction and the target. In the following analysis, we investigate MAE (He et al., 2022) by diagnosing
its reconstruction target and input image patches, identifying two important but previously overlooked
bottlenecks that could have hurt the representation quality.

3.2 Empirical Analysis with MAE

Reconstruction target. MAE and most pixel-based MIM methods enforce the model to reconstruct
intricate details of raw images. These complicated details contain textures with repeated patterns and
belong to the high-frequency components in the frequency domain, which are usually independent of object
shapes or scene structures. However, MAE tends to make significant efforts in encoding and reconstructing
high-frequency details, as shown in Figure 1.

According to recent studies on shape and texture biases (Geirhos et al., 2021; 2019), vision models with
stronger shape biases behave more like human visual perception, demonstrating better robustness and per-
forming better when transferred to downstream tasks than those with stronger texture biases. Apparently,
the current reconstruction target has introduced non-negligible texture biases, which deviate from the insights
of previous works and might have hurt the representation quality. In Section 4.1, we provide a straightfor-
ward solution to de-emphasize the high-frequency components from the reconstruction target and justify its
effectiveness with a quantitative analysis in Figure 5.

Input patches. To better understand the inputs to MIM methods at training time, we quantitatively
measure how the input patches of MAE cover the foreground objects of raw images. Specifically, we adopt
the binary object masks of ImageNet-1K generated by PSSL (Li et al., 2022b) and propose an object coverage
percentage metric to evaluate an image processing operation F(·), denoted by J (F). As illustrated by
Figure 3, J (F) is defined as the ratio between areas A2 and A1. A1 and A2 are the areas of foreground
objects in the original image I and the processed image F(I), respectively. We then leverage the metric
to investigate how MAE’s choice of A(·) and M(·) have influenced the object coverage. As discussed in
Table 1, MAE employs the commonly used RRC for A(·) and a masking operation with 75% mask ratio for
M(·). We found that J (A) = 68.3%, but J (M ◦ A) sharply reduces to 17.1%, indicating a potential lack
of foreground information in the inputs of MAE.

As argued by DeiT III (Touvron et al., 2022), the foreground usually encodes more semantics than the
background, and a lack of foreground can result in sub-optimal optimization in supervised learning. In MIM,
the coupling of RRC and aggressive masking might have hindered representation learning. In Section 4.2, we
rigorously review various augmentation functions A(·) and propose a simple workaround to preserve more
foreground information in the input patches.

4 PixMIM

Based on the analysis, we develop a straightforward yet effective method, PixMIM, which addresses the two
identified bottlenecks discussed in Section 3. PixMIM includes two strategies: 1) generating low-frequency
reconstruction targets (Section 4.1), and 2) replacing the RRC with a more conservative augmentation
(Section 4.2). An overview of PixMIM is presented in Figure 4.
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Figure 4: The architecture of PixMIM. Guided by the analysis (Section 3), PixMIM consists of straight-
forward strategies: 1) generates low-frequency reconstruction targets to de-emphasize the texture-dominated
details and prioritize the learning of low-frequency patterns (Section 4.1), and 2) replace the commonly used
Random Resized Crop (RRC) with the less aggressive Simple Resized Crop (SRC) to alleviate the problem
of missing foreground in the input patches (Section 4.2).

4.1 Low-frequency Target Generation

To de-emphasize the model from reconstructing texture-dominated high-frequency details, we propose a
novel target generator G(·), in which we maintain the target in RGB format for efficiency but filter out the
high-frequency components. Specifically, we define the low-frequency target generation with the following
three steps: 1) domain conversion from spatial to frequency, 2) low-frequency components extraction, and
3) reconstruction target generation from frequency domain (see Figure 4 for an illustration).

Step-1: Domain conversion from spatial to frequency. We use the one-channel image Ii ∈ RH×W

to demonstrate our approach for notation simplicity. With 2D Discrete Fourier Transform (DFT) FDFT(·),
the frequency representation of the image could be derived by:

FDFT(Ii)(u, v) =
H−1∑
h=0

W −1∑
w=0

Ii(h, w)e−i2π( uh
H + vw

W ) (2)

Where (u, v) and (h, w) are the frequency spectrum and spatial space coordinates, respectively.
FDFT(Ii)(u, v) is the complex frequency value at (u, v). Ii(h, w) is the pixel value at the (h, w) and i
is the imaginary unit. Please refer to the Appendix for full details of the imaginary and real parts of
FDFT(Ii)(u, v).

Step-2: Low-frequency components extraction. To only retain the low frequency components of the
image Ii, we apply an ideal low-pass filter FLPF on the frequency spectrum FDFT(Ii). The ideal low-pass
filter is defined as:

FLPF(u, v) =
{

1,
√

((u − uc)2 + (v − vc)2) ≤ r,

0, otherwise.
(3)

Where vc and uc are the center coordinates of the frequency spectrum. r is the bandwidth of the circular
ideal low-pass filter to control how many high-frequency components will be filtered out from the spectrum,
and we have r ∈ [0, min( H

2 , W
2 )]. The extraction process is represented as FLPF(u, v) ⊗ FDFT(Ii)(u, v), and

⊗ is the element-wise multiplication.

Step-3: Reconstruction target generation. We then apply the inverse Discrete Fourier Transform
(IDFT) FIDFT on the filtered spectrum to generate the RGB image as the final reconstruction target:

Y = FIDFT(FLPF(u, v) ⊗ FDFT(Ii)(u, v)) (4)
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Figure 5: Frequency analysis of MAE and PixMIM. The PSNR of the reconstructed image for various
frequency intervals (similar to Figure 1), averaged across 50,000 images from ImageNet-1K’s validation set.
PixMIM shifts the model’s focus toward low-frequency components. Note that the figure illustrates the
frequency response of images from the validation set rather than the training set, and some high-frequency
components persist in the low-frequency region.

Both FDFT and FIDFT can be computed efficiently with Fast Fourier Transform (Brigham & Morrow, 1967).
The computation cost of the above three steps is negligible thanks to the highly optimized implementation
in PyTorch (Paszke et al., 2019).

To verify if our method successfully de-emphasizes the reconstruction of high-frequency components, Figure 5
presents a frequency analysis across 50,000 images from the validation set of ImageNet-1K, using r = 40.
Compared to the vanilla MAE, our method produces obviously lower reconstruction PSNR at high-frequency
intervals and slightly higher PSNR at low-frequency intervals, justifying the effectiveness of our method.

4.2 More Conservative Image Augmentation

Based on the analysis in Section 3, we would like to retain more foreground information in the input patches
to our model. As a high masking ratio is crucial for MIM to learn effective representations (He et al., 2022),
the most straightforward strategy is to keep the corruption M(·) unchanged but make the augmentation
function A(·) more conservative.

We extend our quantitative analysis of object coverage to get Figure 6, which compares RRC with two less
aggressive image augmentation operations. Simple Resized Crop (SRC) is the augmentation technique used
in AlexNet (Krizhevsky et al., 2012), which resizes the image by matching the smaller edge to the pre-defined
training resolution (e.g., 224), then applies a reflect padding of 4 pixels on both sides, and finally randomly
crops a square region of the specified training resolution to get the augmented image. Center Crop (CC)
always takes the fixed-size crop from the center of the image. The results show that the SRC has much
higher J (F) than RRC and CC. When the masking strategy of MAE is applied, SRC produces a J (F)
of 22.1%, which is very close to the upper bound (i.e., 25%). Therefore, we simply adopt the SRC as the
augmentation function A(·) and take the off-the-shelf implementation from (Touvron et al., 2022).

Note that when there is no image masking, the SRC raises the J (F) from the 68.3% of RRC to 88.2%,
indicating that it offers less diversity than RRC, which accounts for the performance degeneration in super-
vised image classification observed by DeiT III (Touvron et al., 2022). But unlike supervised learning, the
aggressive image masking in MIM already provides sufficient randomness, and the use of SRC will not hurt
the diversity as in supervised learning.

4.3 Plug into existing MIM Methods

Unlike recent approaches such as CAE (Chen et al., 2022), MILAN (Hou et al., 2022), or BEiTv2 (Peng
et al., 2022a), our method is lightweight and straightforward. It can easily be plugged into most existing
pixel-based MIM frameworks. To demonstrate its effectiveness and versatility, we apply our method to
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Figure 6: Object coverage analysis. SRC retains a higher proportion than RRC and CC, even under
the aggressive masking strategy of MAE. Note that the upper bound of the object coverage is 25% when
the masking strategy of MAE is applied. (RRC: random resized crop, SRC: simple resized crop, CC: center
crop)

MAE (He et al., 2022), MFF (Liu et al., 2023), ConvMAE (Gao et al., 2022), and LSMAE (Hu et al., 2022)
to obtain PixMIMMAE, PixMIMMFF, PixMIMConvMAE, and PixMIMLSMAE respectively. The experimental results
are presented in the next section.

5 Experiments

In Section 5.1, we describe the experimental settings for pre-training and evaluation. Then in Section 5.2, we
apply our method to four MIM baselines (i.e., MAE (He et al., 2022), MFF (Liu et al., 2023), ConvMAE (Gao
et al., 2022), and LSMAE (Hu et al., 2022)), compare the results with the state of the arts, and discuss
the sensitivity of the ImageNet fine-tuning protocol. To complement the ImageNet fine-tuning protocol,
Section 5.3 demonstrates additional analyses by checking the robustness of pre-trained models with out-of-
distribution (OOD) ImageNet variants and conducting a shape bias analysis. Finally, Section 5.4 provides
comprehensive ablation studies for our method.
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Figure 7: Performance vs. epoch plots. With different training epochs, PixMIM consistently brings
significant gains to the baseline MIM approaches across various evaluation protocols.

5.1 Experiment Settings

We evaluate our methods and validate our design components with extensive experiments over image clas-
sification on ImageNet-1K (Deng et al., 2009), object detection on COCO (Lin et al., 2014), and semantic
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Evaluation Protocol→ ImageNet COCO† ADE20K

Method Target Epoch ft(%) lin(%) APbox APmask mIoU
Supervised learning

DeiT III (Touvron et al., 2022) - 800 83.8 - - - 49.3
Masked Image Modeling w/ pre-trained target generator

BEiT (Bao et al., 2021) DALLE 800 83.2 56.7 - - 45.6
CAE (Chen et al., 2022) DALLE 800 83.8 68.6 49.8 43.9 49.7
MILAN (Hou et al., 2022) CLIP-B 400 85.4 78.9 52.6 45.5 52.7
BEiT-v2 (Peng et al., 2022a) VQ-KD 1600 85.5 80.1 - - 53.1
MaskDistill (Peng et al., 2022b) CLIP-B 800 85.5 - - - 54.3

Masked Image Modeling w/o pre-trained target generator
MaskFeat (Wei et al., 2022) HOG 1600 84.0 62.3 52.3 46.4 48.3
SemMAE (Li et al., 2022a) RGB 800 83.4 65.0 - - 46.3
SimMIM (Xie et al., 2022) RGB 800 83.8 56.7 - - -
MAE∗ (He et al., 2022) RGB 800 83.3 65.6 51.3 45.7 46.1
PixMIMMAE RGB 800 83.5 (+0.2) 67.2 (+1.6) 51.7 (+0.4) 46.1 (+0.4) 47.3 (+1.2)
MFF (Liu et al., 2023) RGB 800 83.6 67.0 51.8 46.1 47.9
PixMIMMFF RGB 800 83.5 (-0.1) 68.2 (+1.2) 52.3 (+0.5) 46.7 (+0.6) 48.6 (+0.7)
ConvMAE∗ (Gao et al., 2022) RGB 800 84.6 68.4 52.0 46.3 50.2
PixMIMConvMAE RGB 800 85.0 (+0.4) 70.5 (+2.1) 53.1 (+1.1) 47.0 (+0.7) 51.3 (+1.1)
LSMAE∗ (Hu et al., 2022) RGB 800 83.2 63.7 51.0 45.4 48.5
PixMIMLSMAE RGB 800 83.6 (+0.4) 66.7 (+3.0) 52.1 (+1.1) 46.3 (+0.9) 50.1 (+1.6)

Table 2: Performance comparison of MIM methods on various downstream tasks. We report the
results with fine-tuning (ft) and linear probing (lin) experiments on ImageNet-1K, objection detection on
COCO, and semantic segmentation on ADE20K. The backbone of all experiments is ViT-B (Dosovitskiy
et al., 2021). ∗: numbers are reported by running the official code release. †: As there is no uniform number
of fine-tuning epochs for MAE, MFF, ConvMAE, and LSMAE for object detection, we fine-tuned PixMIM
using the same number of epochs as each respective base method.

segmentation on ADE20K (Zhou et al., 2018). Unless otherwise specified, we report the performance with
ViT-B (Dosovitskiy et al., 2021).

ImageNet-1K (Deng et al., 2009) ImageNet-1K consists of 1.3M images of 1k categories and is split
into the training and validation sets. When applying our methods to MAE (He et al., 2022), MFF (Liu
et al., 2023), ConvMAE (Gao et al., 2022), and LSMAE (Hu et al., 2022), we strictly follow their original
pre-training and evaluation settings on ImageNet-1K to guarantee the fairness of experiments, including the
pre-training schedule, network architecture, learning rate setup, and fine-tuning protocols, etc. The only
exception is that we increase the batch size of ConvMAE from 1024 to 4096 to accelerate the pre-training,
while this change does not affect the performance according to our observations. We provide complete
implementation details in the Appendix.

ADE20K (Zhou et al., 2018) For the semantic segmentation experiments on ADE20K, we follow the
basic off-the-shelf settings from MAE (He et al., 2022). A UperNet (Xiao et al., 2018) is fine-tuned for 160k
iterations with a batch size of 16. In addition, we also turn on the relative position bias and initialize them
with zero. We report the Mean Intersection over Union (mIoU) results averaged over two runs for a robust
comparison. The full details can be found in the Appendix.

COCO (Lin et al., 2014) For object detection experiments on COCO, we adopt the Mask R-CNN
approach (He et al., 2017) that produces bounding boxes and instance masks simultaneously, with the ViT
as the backbone. Similar to MAE, we employ the box and mask AP as the metrics. For MAE and LSMAE,
we use the official implementation of ViTDet (Li et al., 2022c). For ConvMAE, we use its released official
repository. More detailed settings can be found in the Appendix.
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Method Target Bakcbone ft lin seg
LSMAE (Hu et al., 2022) RGB ViT-B 83.2 63.7 48.5
MAE (He et al., 2022) RGB ViT-B 83.3 65.6 46.1
PixMIMMAE RGB ViT-B 83.5 67.2 47.8
PixMIMMFF RGB ViT-B 83.5 68.2 48.6
PixMIMLSMAE RGB ViT-B 83.6 66.7 50.1
SimMIM (Xie et al., 2022) RGB ViT-B 83.8 56.7 -
MaskFeat (Wei et al., 2022) HOG ViT-B 84.0 62.3 48.3

Table 3: Investigating the ImageNet fine-tuning protocol. Six MIM approaches are sorted based
on their ImageNet fine-tuning (ft) performance. The fine-tuning result alone hardly distinguishes different
approaches with the same backbone and not using an extra pre-trained model for generating training targets,
and it does not necessarily correlate with other evaluation protocols. Best viewed in color.

Ablation studies All ablation studies are based on the MAE settings. Following the common practice of
previous MIM works (Liu et al., 2022a; Chen et al., 2022; Gao et al., 2022), we pre-train all model variants on
ImageNet-1K for 300 epochs and comprehensively compare their performance on linear probing, fine-tuning,
and semantic segmentation. All other settings are the same as those discussed above.

5.2 Main Results

In Table 2, we show the results of applying our simple method to MAE (He et al., 2022), MFF Liu et al.
(2023), ConvMAE (Gao et al., 2022), and LSMAE (Hu et al., 2022), and compare these results with the
state-of-the-art MIM approaches. Without extra computational cost, we consistently improve the original
MAE, ConvMAE, MFF, and LSMAE across all downstream tasks. The margins on linear probing, object
detection, and semantic segmentation are remarkable. Specifically, PixMIMLSMAE significantly improves the
original LSMAE on linear probing and semantic segmentation by 3.0% and 1.6%, respectively. To further
demonstrate the effectiveness of our method across various pre-training schedules, we plot the performance
vs. epoch curves in Figure 7. The curves of PixMIMMAE, PixMIMConvMAE, PixMIMMFF, and PixMIMLSMAE
consistently remain above the corresponding base methods by clear gaps. All these results demonstrate the
universality and scalability of our methods. Additionally, we present the outcomes of applying PixMIM to
backbones of varying scales, such as ViT-S and ViT-L. Please refer to Table 16 for further details.

Methods with pre-trained target generator. Although the methods with a powerful pre-trained target
generator (Hou et al., 2022; Peng et al., 2022a) achieve the best results in Table 2, they rely on extra pre-
training data and bring significant computational overhead to MIM when generating targets dynamically.
In contrast, our improvements come with negligible cost and take a step towards closing the gap between
pixel-based approaches and those relying on pre-trained target generators.

Remarks on the ImageNet fine-tuning protocol. According to Table 2, the improvements brought by
our method on the ImageNet fine-tuning protocol are less obvious than those on the other three protocols.
Table 3 investigates the correlation between the evaluation protocols by sorting six MIM approaches based
on the ImageNet-finetuning performance, and we have the following observations:

• With the same network backbone and not using extra pre-trained models for generating training targets,
the ImageNet fine-tuning performances of various methods always show marginal gaps.

• Better result on ImageNet fine-tuning does not necessarily mean better performance on linear probing or
semantic segmentation. This is also shown by the curves of LSMAE in Figure 7.

Hence, we argue that ImageNet fine-tuning is not a sensitive metric, and we should include more protocols
for comprehensively evaluating the representation quality. A potential explanation provided by CAE (Chen
et al., 2022) is that the pre-training and fine-tuning data follow the same distribution and can narrow the
gap among different methods. We provide additional analyses in the next subsection to complement the
ImageNet fine-tuning protocol.

10



Published in Transactions on Machine Learning Research (01/2024)

Method IN-C↓ IN-A IN-R IN-S
LSMAE 48.8 34.2 50.3 36.2
PixMIMLSMAE 48.0 (-0.8) 36.1 (+1.9) 50.8 (+0.5) 37.1 (+0.9)
MAE 51.7 35.9 48.3 34.5
PixMIMMAE 49.9 (-1.8) 37.1 (+1.2) 49.6 (+1.3) 35.9 (+1.4)
ConvMAE 45.5 50.8 54.6 41.1
PixMIMConvMAE 45.3 (-0.2) 52.5 (+1.7) 55.3 (+0.7) 41.8 (+0.7)
MFF 49.0 37.2 51.0 36.8
PixMIMMFF 48.5 (-0.5) 40.1 (+2.9) 51.6 (+0.6) 37.8 (+1.0)

Table 4: Robustness evaluation on ImageNet variants. To complement the less sensitive ImageNet fine-
tuning protocol, we further evaluate the fine-tuned models from the main table on four ImageNet variants.
Results are reported in top-1 accuracy, except for IN-C which uses the mean corruption error.
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Figure 8: Shape bias analysis. PixMIM consistently improves the shape bias of the baselines. Each
vertical line is the weighted average of all 16 categories.

5.3 Additional Analyses

Two additional experiments are presented to complement the less sensitive ImageNet fine-tuning protocol
and further validate the effectiveness of our method.

Robustness checking. we compare the pre-trained models on four out-of-distribution ImageNet vari-
ants: ImageNet-Corruption (Hendrycks & Dietterich, 2019), ImageNet-Adversarial (Hendrycks et al., 2021b),
ImageNet-Rendition (Hendrycks et al., 2021a), and ImageNet-Sketch (Wang et al., 2019). These datasets
introduce various domain shifts to the original ImageNet-1K and are widely used to assess a model’s robust-
ness and generalization ability. Table 4 shows that PixMIMMAE, PixMIMConvMAE, PixMIMLSMAE, and PixMIMMFF
consistently outperform their baselines, and the margins of improvement are much more pronounced than
those on the validation set of Imagenet-1K. The better robustness against domain shifts strengthens the
value of our simple yet effective method.

Shape bias analysis. We take the off-the-shelf shape bias toolbox (Geirhos et al., 2021) to analyze our
pre-trained models. Shape bias measures how much the model relies on shapes to extract the semantic
representation of the image, quantified as the fraction of correct decisions based on object shape. Figure 8
shows that PixMIMMAE, PixMIMConvMAE, and PixMIMLSMAE improve the shape bias of their baselines, confirming
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that our methods prevent the model from being excessively texture-biased by filtering out the high-frequency
components of the target image. The colored lines denote the weighted average of shape bias across different
categories for different methods.

r ft lin seg
baseline82.8 61.5 43.9

30 82.9 62.5 44.6
35 82.9 62.6 44.8
40 82.8 62.7 45.3
45 82.7 62.2 45.1
50 82.8 61.8 44.8

(a) The bandwidth(r) of the low-
pass filter. r = 40 yields the op-
timal result.

aug ft lin seg
RRC 82.8 61.5 43.9
SRC 82.9 62.5 44.3
CC 82.8 62.2 44.1
BG 82.5 59.5 43.4

Resize 82.6 58.2 42.1

(b) The data augmentation.
BG: background-focused random
cropping, see text for details.
Resize: resize the image, no
random cropping.

LF SRC ft lin seg
- - 82.8 61.5 43.9
✓ - 82.8 62.7 45.3
- ✓ 82.9 62.5 44.3
✓ ✓ 83.2 63.3 46.2

(c) The combination of the low-
frequency target (LF) and simple
resized crop (SRC).

Table 5: The ablation studies with ViT-B/16 pre-trained on ImageNet-1K for 300 epochs. We report
fine-tuning (ft), linear probing (lin), and semantic segmentation (seg) results. Our final settings are marked
in gray .

5.4 Ablation Studies

We further conduct ablation studies for our key design components: the filtering of the high-frequency
components of the target image and the use of the Simple Resized Crop.

The bandwidth of the low-pass filter. Table 5a investigates how varying the bandwidth r influences
the vanilla MAE. All model variants in the table are trained for 300 epochs following the training recipes of
MAE. The optimal bandwidth is 40, and it improves the baseline significantly (i.e., +1.2% on linear probing
and +1.7% on semantic segmentation). A narrow bandwidth could discard important information about the
image (e.g. edges of objects), leading to a performance drop. In comparison, a too-large bandwidth fails to
remove unessential textures effectively.

Replace RRC with SRC. Table 5b compares different data augmentations. The simple resized crop
(SRC) brings non-trivial improvement to the original random resized crop (RRC) used by MAE on both
linear probing and semantic segmentation. However, recall in DeiT III (Touvron et al., 2022), replacing RRC
with SRC degrades the performance as it decreases the cropped image’s diversity and impairs the model’s
generalization ability. The opposite results we obtain in MIM here suggest that the RRC could have led to
the severe issue of missing foreground, which is further confirmed by the fact that even the simple center
crop can outperform RRC in linear probing and semantic segmentation.

To better support our analysis on the input patches of MAE, we conduct reverse engineering of SRC, which
crops mostly the background region instead of the foreground (i.e., the BG entry in Table 5b). Please check
the Appendix for implementation details and visualizations. The results demonstrate that the absence of
foreground information can significantly impair the representation quality, further confirming our analysis
regarding the input patches.

Table 5c further verifies that the gains brought by the two components of PixMIM effectively accumulate over
all three evaluation protocols. We also extend Table 5b to a non-object-centric dataset, Place365 (López-
Cifuentes et al., 2020). Table 6 shows that SRC still brings non-negligible improvements over RRC when
pre-trained on scene-scale images, suggesting that the lacking foreground issue in pixel-based MIM is universal
and not specific to object-centric datasets (e.g., ImageNet).
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Method RRC SRC ft lin seg
MAE ✓ 82.1 48.4 45.8
MAE ✓ 82.4 (+0.3) 48.9 (+0.5) 46.8 (+1.0)

Table 6: Extension of Table 5b, pre-trained on the non-object-centric dataset Place365 (López-Cifuentes
et al., 2020). The lacking foreground issue is not unique to MIM training on single-object datasets like
ImageNet.

6 Limitation and Future Works

Currently, our experiments are based on ViT-B (Dosovitskiy et al., 2021), which is also the common practice
by some other works (Xie et al., 2022; Li et al., 2022a). Some studies, like (He et al., 2022), suggest that after
extending experiments to larger models, e.g., ViT-L or ViT-H, the same method can still get equivalent gains,
but evaluating the scalability of our methods on larger models is also expected. In addition, the bandwidth
r is designed as a hyper-parameter and may vary across different datasets or input resolutions. So a self-
adaptive bandwidth is also expected. Finally, self-supervised pre-training has been criticized for consuming
many computational resources. Even though our method brings negligible computation overhead, making
the entire pre-training pipeline more efficient should be one of the directions for future research.

7 Conclusion

In this paper, we first provide an empirical analysis of the milestone algorithm, MAE, from the perspective of
input patches and reconstruction targets, identifying the potential bottlenecks of existing pixel-based MIM
approaches. Based on the analysis, we propose a simple yet effective method, PixMIM, without introducing
extra computation overhead or complicating the pre-training pipeline. When applied to three representative
pixel-based MIM approaches, PixMIM brings consistent performance boosts across various downstream tasks
and improves the model’s robustness, demonstrating its effectiveness and universality.
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Appendix

A Discrete Fourier Transform

FDFT(Ii)(u, v) in Section 4.1 of the main paper can be decomposed into real and imaginary parts:

FDFT(Ii)(u, v) = R(Ii)(u, v) + I(Ii)(u, v)i (5)

Both R(Ii)(u, v) and I(Ii)(u, v) are real numbers, and i is the imaginary unit. The amplitude and phase of
FDFT(Ii)(u, v) can be obtained using the following formulas:

A(Ii)(u, v) = (R(Ii)(u, v)2 + I(Ii)(u, v)2) 1
2 (6)

P(Ii)(u, v) = arctan(R(Ii)(u, v)
I(Ii)(u, v) ) (7)

B Full Implementation Details

B.1 Pre-training

We show the detailed implementation settings for the pre-training of PixMIMMAE, PixMIMConvMAE, PixMIMMFF
and PixMIMLSMAE in the following tables. While for the result for LSMAE (Hu et al., 2022) in Table 2 of the
main paper, except for that we decrease the batch size from 4096 to 2048 due to the limited computational
resources, other settings are kept the same.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 (Chen et al., 2020a)
batch size 4096
learning rate schedule cosine decay (Loshchilov & Hutter, 2017)
warmup epochs (Goyal et al., 2017) 40
augmentation SimpleResizedCrop

Table 7: Pre-training setting of PixMIMMAE, PixMIMMFF, and PixMIMConvMAE.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 (Chen et al., 2020a)
batch size 2048
learning rate schedule cosine decay (Loshchilov & Hutter, 2017)
warmup epochs (Goyal et al., 2017) 40
augmentation SimpleResizedCrop

Table 8: Pre-training setting of PixMIMLSMAE.

B.2 ImageNet Fine-tuning

The implementation details for the fine-tuning of PixMIMMAE, PixMIMConvMAE, and PixMIMLSMAE are shown
in Table 9, which strictly follow that of MAE (He et al., 2022).
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config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay (Clark et al.,
2020; Bao et al., 2021)

0.75

batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100
augmentation RandAug (9, 0.5) (Cubuk et al., 2020)
label smoothing (Szegedy et al.,
2016)

0.1

mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0
drop path (Huang et al., 2016) 0.1

Table 9: End-to-end fine-tuning setting of PixMIMMAE, PixMIMConvMAE, PixMIMMFF, and PixMIMLSMAE.

B.3 ImageNet Linear Probing

The implementation details for PixMIMMAE and PixMIMLSMAE are shown in Table 10, which also follow that
of MAE (He et al., 2022). For PixMIMConvMAE, we decrease the batch size from 16384 to 4096, following the
official setting.

config value
optimizer LARS (You et al., 2017)
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 10: Linear probing setting of PixMIMMAE, PixMIMMFF, and PixMIMLSMAE.

config value
optimizer LARS (You et al., 2017)
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 4096
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 11: Linear probing setting of PixMIMConvMAE.

B.4 ADE20K Semantic Segmentation

The implementation details for PixMIMMAE and PixMIMLSMAE are shown in Table 12, and those for
PixMIMConvMAE are in Table 13.
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config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 2e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay (Clark et al., 2020; Bao
et al., 2021)

0.75

batch size 16
learning rate schedule cosine decay
warmup iters 1500
training iters 160000
drop path (Huang et al., 2016) 0.1

Table 12: End-to-end semantic segmentation setting of PixMIMMAE, PixMIMMFF, and PixMIMLSMAE.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 3e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay (Clark et al., 2020; Bao
et al., 2021)

0.75

batch size 16
learning rate schedule cosine decay
warmup iters 1500
training iters 160000
drop path (Huang et al., 2016) 0.1

Table 13: End-to-end semantic segmentation setting of PixMIMConvMAE.

B.5 COCO Object Detection

For PixMIMMAE, we follow the official release in Detectron2 (Wu et al., 2019), which fine-tunes the pre-
trained model end to end for 100 epochs. While for PixMIMLSMAE and PixMIMConvMAE, we follow the official
pre-training epochs, which are 50 and 25 epochs, respectively. Other key hyper-parameters are in Table 14
and Table 15.

C Additional Results

Pre-training for 1600 epochs. Table 17 provides the results of pre-training PixMIM for 1600 epochs and
compares it against the corresponding base methods. PixMIM can still bring non-trivial improvements over
base methods on various downstream tasks, which verifies the scalability of our method across pre-training
epochs.

Pre-training with other model variants In this section, we provide addition results about ViT-S and
ViT-L, and pre-train the models fro 1600 epochs. The detailed results are shown in Table 16, and PixMIM
still bring consistent improvement over other model variants.

The 2× object detection protocol. We also provide the results with the 2× settings of object detection
for PixMIMMAE in Table 18.

Few-shot fine-tuning. Table 19 presents the results of few-shot fine-tuning, which uses 1% and 10% of
ImageNet-1K training data to pre-train the model.

Pre-train MAE with background-focused image crops. We provide the implementation details for
the background-focused random cropping in Table 5b of the main paper. To crop the background, we use
the ImageNet-1K binary mask from PSSL (Li et al., 2022b) in the RRC (implementedy by PyTorch (Paszke
et al., 2019)) to check whether the cropped image contains less than 20% of the object in the original image.
If the condition is satisfied, we return the cropped image. Otherwise, we crop another region of the image.

20



Published in Transactions on Machine Learning Research (01/2024)

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 8e-5
weight decay 0.1
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay (Clark et al., 2020; Bao
et al., 2021)

0.75

batch size 64
learning rate schedule cosine decay
training epochs 100/50
drop path (Huang et al., 2016) 0.1

Table 14: End-to-end object detection setting of PixMIMMAE, PixMIMMFF, and PixMIMLSMAE.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)
base learning rate 1e-4
weight decay 0.1
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay (Clark et al., 2020; Bao
et al., 2021)

0.85

batch size 16
learning rate schedule cosine decay
training epochs 25
drop path (Huang et al., 2016) 0.1

Table 15: End-to-end object detection setting of PixMIMConvMAE.

Figure 9: Pre-train MAE with background cropped images. Instead of cropping the foreground
region in each image, we attempt to input the background into the model. The original image is depicted
on the left of each pair, while the cropped background can be seen on the right.

We repeat the above procedure 50 times until the condition is satisfied; otherwise, we use the original RRC.
Some visualizations of this augmentation strategy can be viewed in Figure 9.

Applying PixMIM on methods using high-semantic features as targets. The primary objective of
PixMIM is to address the inherent bias of pixel-based MIM approaches, which tend to excessively prioritize
low-level details. As a result, PixMIM has limited impact on methods that utilize high-semantic features as
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Method Epoch Model LIN SEG FT
MAE 1600 ViT-S 51.1 42.3 79.5
PixMIMMAE 1600 ViT-S 53.2(+2.1) 44.1(+1.9) 80.4(0.9)
MAE 1600 ViT-L 76.0 53.6 85.9
PixMIMMAE 1600 ViT-L 77.1(+1.1) 54.4(+0.8) 86.1(+0.2)

Table 16: Performance of applying PixMIM to other model variants.

Method Epoch LIN SEG DET FT
MAE 1600 67.8 48.1 51.4 83.5
PixMIMMAE 1600 69.3(+1.5) 48.7(+0.6) 52.1(+0.7) 83.6
ConvMAE 1600 70.9 51.7 53.6 85.0
PixMIMConvMAE 1600 72.0(+1.1) 52.2(+0.5) 53.8(+0.2) 85.2
MFF 1600 69.6 48.9 52.3 83.6
PixMIMMFF 1600 71.1(+1.5) 49.4(+0.5) 52.7(+0.4) 83.8
LSMAE 1600 63.8 49.3 51.6 83.2
PixMIMLSMAE 1600 68.1(+4.3) 50.7(+1.4) 53.0(+1.4) 83.5

Table 17: Performance Comparison by pre-training models for 1600 epochs.

Method Epoch APbox APmask

MAE 800 47.3 42.3
PixMIMMAE 800 47.8 (+0.5) 42.8 (+0.5)
MAE 1600 48.6 43.5
PixMIMMAE 1600 49.3 (+0.7) 44.0 (+0.5)

Table 18: Results of 2× settings for object detection.

Method Epoch 1% 10%
MAE 800 45.4 71.2
PixMIMMAE 800 47.9 (+2.5) 72.2 (+1.0)

Table 19: Few-shot fine-tuning with 1% and 10% of ImageNet-1K training data.

targets, such as MILAN, MaskDistill, and EVA. To validate this assertion, we applied PixMIM to MILAN,
and the results are presented in Table 20.

Using an adaptive filtering threshold. Rather than manually determining an optimal threshold
through a hand-crafted ablation study, we also tried an adaptive filtering threshold (r) that can dynam-
ically adapt within the range of 20 to 60 as a trainable parameter. As presented in Table 21, employing such
a dynamic filtering threshold yields comparable results to using the current manually selected threshold.

Suppressing the low-frequency components. The low-frequency components are highly semantic,
playing a crucial role in understanding the key information present in the image Bao et al. (2021); Ramesh
et al. (2021); Rombach et al. (2022). Removing this type of information can have catastrophic consequences
on the model’s performance. To verify this, we conducted an additional ablation experiment where we
removed all components below r=40. The results are presented in Table 22. As depicted in the table, the
model’s performance significantly deteriorates upon the removal of these low-frequency components from the
image.
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Method Epoch Model LIN SEG FT
MILAN 400 ViT-B 79.9 52.7 85.4
PixMIMMILAN 400 ViT-B 79.7 52.7 85.5

Table 20: Performance of applying PixMIM to MILAN.

Method Epoch Model LIN SEG FT
Fix(r=40) 800 ViT-B 65.6 46.1 83.3
Adaptive 800 ViT-B 65.6 46.3 83.4

Table 21: Using an adaptive filtering threshold yields similar performance to the current manually selected
threshold.

Method Epoch Model LIN SEG FT
MAE 800 ViT-B 65.6 46.1 83.3
Removing Low-freq 800 ViT-B 12.1 8.6 30.2

Table 22: Suppressing the low-frequency components in the training images can significantly hurt the per-
formance of MAE.
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