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Abstract

Uncertainty estimation is crucial in cost-sensitive areas, especially in the medical field,
where multimodal information is common and effective. Existing studies have found the
zero-confidence issue in unimodal settings, while the analysis in multimodal scenarios is
lacking. In this work, we introduce the confidence paradox, where unimodal uncertainty is
high but decreases after fusion, and present evidence of regularization to tackle this issue.
Initial results on the cubic and CT slice datasets show reduced root mean squared errors
and improved detection of out-of-distribution samples, improving predictive reliability and
training stability.
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1. Introduction

In medical image analysis, regression tasks predict continuous values y in Rd using input im-
ages or features X, crucial for applications like forensic age estimation (Halabi et al., 2019),
disease score regression (Stonnington et al., 2010), and image segmentation by identifying
boundaries (Yin et al., 2020). With the increasing prevalence of multimodal data in the
medical field and the necessity for reliable predictions, assessing the predictive uncertainty
in deep learning models for each data modality and the combined uncertainty following
multimodal data integration is of paramount importance (Ma et al., 2021).

Predictive uncertainty is divided into aleatoric (data variability) and epistemic (model
knowledge gaps). While Bayesian methods like dropout (Gal and Ghahramani, 2016) and
deep ensemble (Lakshminarayanan et al., 2017), infer the posterior distribution of parame-
ters or observed targets to estimate uncertainty, challenges like computational intensity and
disentanglement between these uncertainty types. Deep evidential regression (DER) (Amini
et al., 2020) and its multimodal version (Ma et al., 2021) have revolutionized uncertainty
estimation by probabilistically estimating target distribution parameters and enhancing the
separation of uncertainties but faced issues like zero-confidence in training. Specific acti-
vation functions were employed to ensure non-negative evidential distribution parameters,
which limits the models’ learning efficiency from training data (Pandey and Yu, 2023). To
bypass the need for selecting specific activation functions, dual activation function fusion
was introduced (Shao et al., 2024), yet the zero-confidence issue persists. The issue, iden-
tified in classification (Pandey and Yu, 2023) and regression (Ye et al., 2024), leads to the
cessation of model updates in zero-confidence areas during training. Although evidence reg-
ularization has successfully mitigated the zero-confidence issue in unimodal settings (Pandey
and Yu, 2023; Ye et al., 2024), multimodal regression’s complexities necessitate extending
this approach to improve training stability and uncertainty management.
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2. Confidence Paradox in Multimodal Scenario

Deep evidential regression (Amini et al., 2020) assumes that a target value y is i.i.d from
a Gaussian distribution N (µ, σ2). The unknown mean µ and variance σ are presumed
to follow a Normal Inverse-Gamma (NIG) distribution (µ, σ2) ∼ NIG(γ, v, α, β), where

µ ∼ N (γ, σ
2

v ) and σ2 ∼ Γ−1(α, β). Γ(·) is the gamma function. The parameters of NIG
m = (γ, ν, α, β) are determined by the neural network’s output o = (oγ , oν , oα, oβ) = f(X|θ)
with θ as the network’s trainable parameters. To enforce the constraints on m, a SoftPlus
activation function is used to generate (ν, α, β), with an additional increment of 1 for α,
and a linear activation function for γ ∈ R. For multimodal scenarios (Ma et al., 2021),
y ∼

∑M
m=1

1
MNIG(γm, νm, αm, βm). The parameters (γm, νm, αm, βm) are learned from

training data in m-th modality by fm(·). The summation of NIG distributions is

NIG(γ, ν, α, β) ≜ NIG (γ1, ν1, α1, β1)⊕NIG (γ2, ν2, α2, β2)⊕ · · · ⊕NIG (γM , νM , αM , βM )
(1)

where the summation ⊕ for any two NIG distributions is defined as

γ = (ν1 + ν2)
−1 (ν1γ1 + ν2γ2) , α = α1 + α2 +

1
2

ν = ν1 + ν2, β = β1 + β2 +
1
2ν1 (γ1 − γ)2 + 1

2ν2 (γ2 − γ)2
(2)

Based on NIG distribution, we use E[µ] = γ as the prediction, E
[
σ2
]
= β

(α−1) as the

aleatoric uncertainty, and Var[µ] = β
v(α−1) as the epistemic uncertainty.

In the zero-confidence area, characterized by the parameter α = 1, both the aleatoric
and epistemic uncertainties diverge to infinity due to the term α−1 = 0 in the denominator.
Consequently, SoftPlus(oα) = 0 and ∂α

∂oα
= 0. Therefore, the gradient of loss ∂L

∂oα
= ∂L

∂α
∂α
∂oα

is
also zero. The model would stick in the zero-confidence area once it falls into it, leading to
infinite values for both aleatoric and epistemic uncertainties in unimodality. However, this
scenario presents a paradox where the aggregation of two highly uncertain NIG distributions
results in a significant reduction of the overall uncertainty, which contradicts intuition,
shown in Table 1.

Table 1: An Numeric Example of Confidence
Paradox

NIG(γ, ν, α, β) AU EU

Mod 1 NIG(0, 1, 1, 1) Inf. Inf.
Mod 2 NIG(1, 1, 1, 1) Inf. Inf.

Sum NIG(0.5, 2, 2.5, 2.25) 1.5 0.75

Commonly, we would anticipate that
incorporating more comprehensive multi-
modal data would reduce uncertainty. How-
ever, deriving a certain decision based on
completely uncertain evidence from each
modality is illogical and highlights a critical
flaw in the uncertainty modeling approach.
Traditional regularization on predictive-level
fused α cannot propagate to every sub-
modality.

3. Evidence Regularization for Multimodal DER (ER-MDER)

Similar to (Ma et al., 2021), the overall loss function for multimodal learning is the sum of
losses of multiple modalities (m denotes the m-th modality), the pseudo modality (obtained
by features concatenation or concatenation after representation learning, denoted by P ), and
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the predictive-level fused distribution (denoted by F ), L =
∑M

m=1 Lm(w)+LP (w)+LF (w).
To avoid the confidence paradox, we put constraints directly on oα for each modality.

L(w) = LNLL(w) + λ1LR(w) + λ2LO(w)

=
1

2
log
(π
v

)
− α log(Ω) +

(
α+

1

2

)
log
(
(yi − γ)2 v +Ω

)
+ log

(
Γ(α)

Γ
(
α+ 1

2

))
+ λ1 (|y − γ| · (2ν + α))− λ2 (|y − γ| · oα)

(3)

where Ω = 2β(1 + ν). While there is no oα for the fused distribution, LF (w) only contains
two items LNLL(w) + λ1LR(w).

4. Experiments

Figure 1: Prediction, uncertainty estimation and
error evolution in MDER and ER-
MDER. The blue shade represents pre-
diction uncertainty.

Cubic Regression We evaluate our
proposed ER-MDER in comparison
with the multimodal DER (MDER)
on the cubic regression dataset, par-
ticularly within zero-confidence areas.
Following (Amini et al., 2020), mod-
els were trained on y = x3 + ϵ with
ϵ ∼ N (0, 3) over the interval x ∈
[−4, 4] and tested in the range x ∈
[−6,−4) ∪ (4, 6]. The m-th modal-
ity input xm equals to x + ϵx, ϵx ∼
N (0, 0.01). After evidential regular-
ization, our model can update faster
than the original one within the zero-
confidence area and generate more re-
liable predictions, shown in Figure 1.

Table 2: Results of prediction and OOD detection
in CT Slices.

RMSE(↓) AUROC(↑)
MDER 0.79 0.615

ER-MDER (Ours) 0.67 0.956

CT Slices Location We evalu-
ated our methods on CT slices
dataset (Graf et al., 2011). Each im-
age includes two modalities: one with
240 attributes for bone structure and
another with 144 attributes for air in-
clusions. The objective is to predict
the image’s axial axis position, rang-
ing from 0 to 180. Similar settings
were used as (Ma et al., 2021). We introduce noise (ϵ = 0.1) to half of the test sam-
ples to create out-of-distribution (OOD) samples and distinguish them using uncertainty.
According to Table 2, our method achieves lower Root Mean Squared Error (RMSE) and
enhanced performance in OOD detection, as indicated by a higher AUROC score.

Future work will focus on more experiments on public medical image datasets, and
application to in-house data.
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