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Abstract

Decentralized learning enables training of deep learning models over large dis-
tributed datasets generated at different locations, without the need for a central
server. However, in practical scenarios, the data distribution across these devices
can be significantly different, leading to a degradation in model performance. In
this paper, we focus on designing a decentralized learning algorithm that is less sus-
ceptible to variations in data distribution across devices. We propose Global Update
Tracking (GUT), a novel tracking-based method that aims to mitigate the impact
of heterogeneous data in decentralized learning without introducing any commu-
nication overhead. We demonstrate the effectiveness of the proposed technique
through an exhaustive set of experiments on various Computer Vision datasets
(CIFAR-10, CIFAR-100, Fashion MNIST, and ImageNette), model architectures,
and network topologies. Our experiments show that the proposed method achieves
state-of-the-art performance for decentralized learning on heterogeneous data via a
1− 6% improvement in test accuracy compared to other existing techniques.

1 Introduction

Decentralized learning is a branch of distributed optimization which focuses on learning from data
distributed across multiple agents without a central server. It offers many advantages over the
traditional centralized approach in core aspects such as data privacy, fault tolerance, and scalability
[18]. It has been demonstrated that decentralized learning algorithms [15] can perform comparable
to centralized algorithms on benchmark vision datasets. Decentralized Parallel Stochastic Gradient
Descent (DSGD) presented in [15] combines SGD with a gossip averaging algorithm [26]. Further, the
authors analytically show that the convergence rate of DSGD is similar to its centralized counterpart
[5]. A momentum version of DSGD referred to as Decentralized Momentum Stochastic Gradient
Descent (DSGDm) was proposed in [3]. The authors in [2] introduce Stochastic Gradient Push
(SGP) which extends DSGD to directed and time-varying graphs. Recently, a unified framework for
analyzing gossip-based decentralized SGD methods and the best-known convergence guarantees was
presented in [11].

One of the key assumptions to achieve state-of-the-art performance by all the above-mentioned
decentralized algorithms is that the data is independently and identically distributed (IID) across the
agents. In particular, the data is assumed to be distributed in a uniform and random manner across the
agents. This assumption does not hold in most real-world settings where the data distributions across
the agents are significantly different (non-IID/heterogeneous) [9]. The effect of heterogeneous data in
a peer-to-peer decentralized setup is a relatively under-studied problem and an active area of research.

Recently, there have been few efforts to bridge the performance gap between IID and non-IID data
for a decentralized setup [16, 23, 19, 7, 1, 24]. Cross Gradient Aggregation [7] and Neighborhood
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Gradient Clustering [1] algorithms utilize the concept of cross-gradients to reduce the impact of
heterogeneous data and show significant improvement in performance (test accuracy). However,
these techniques incur 2× communication cost than the standard decentralized algorithms such as
DSGD. D2 algorithm proposed in [23] is shown to be agnostic to data heterogeneity and can be
employed in deep learning tasks. One of the major limitations of D2 is that its convergence requires
mixing topologies with negative eigenvalue bounded from below by − 1

3 . Additionally, it has been
shown that D2 performs worse than DSGD in some cases [16].

Tracking mechanisms such as Gradient Tracking (GT) [6, 19] and Momentum Tracking (MT) [22]
have been proposed to tackle heterogeneous data in decentralized settings. But these algorithms
improve the performance at the cost of 2× communication overhead. The authors in [16] intro-
duce Quasi-Global Momentum (QGM), a decentralized learning method that mimics the global
synchronization of momentum buffer to mitigate the difficulties of decentralized learning on hetero-
geneous data. Recently, RelaySGD was presented in [24] that replaces the gossip averaging step
with RelaySum. Since RelaySGD deals with the gossip averaging step, it is orthogonal to the afore-
mentioned algorithms and can be used in synergy with them. QG-DSGDm [16] which incorporates
QGM into DSGDm sets the current state-of-the-art for decentralized learning on heterogeneous data
without increasing the communication cost. This work investigates the following question: Can we
improve decentralized learning on heterogeneous data through a tracking mechanism without any
communication overhead?

To that effect, we present Global Update Tracking (GUT), a novel decentralized learning algorithm
designed to improve performance under heterogeneous data distribution. Motivated by, yet distinct
from, the gradient tracking mechanism, we propose to track the consensus model (x̄t) by tracking
global/average model updates, where xt

i is the model parameters on agent i at time step t and x̄ is
the averaged model parameters. In the traditional tracking-based methods [19, 22] that track average
gradients, each agent communicates both model parameters xt

i and the tracking variable yti with its
neighbors resulting in 2× communication overhead. The proposed GUT algorithm overcomes this
bottleneck by allowing agents to store a copy of their neighbors’ model parameters and then tracking
the model updates instead of the gradients. This results in communicating only the tracking variable
yti that yields the model update (xt

i − xt−1
i ). We demonstrate the effectiveness of the proposed

algorithm through an exhaustive set of experiments on various datasets, model architectures, and
graph topologies. We also provide a detailed convergence analysis showing that the convergence rate
of GUT algorithm is consistent with the state-of-the-art decentralized learning algorithms. Further,
we show that QG-GUTm - Global Update Tracking with Quasi-Global momentum beats the current
state-of-the-art decentralized learning algorithm (i.e., QG-DSGDm) on heterogeneous data under
iso-communication cost.

1.1 Contributions

In summary, we make the following contributions.

• We propose Global Update Tracking (GUT), a novel tracking-based decentralized learning
algorithm to mitigate the impact of heterogeneous data distribution.

• We theoretically establish the non-asymptotic convergence rate of the proposed algorithm to
a first-order solution.

• Through an exhaustive set of experiments on various datasets, model architectures, and
graph topologies, we establish that the proposed Global Update Tracking with Quasi-Global
momentum (QG-GUTm) outperforms the current state-of-the-art decentralized learning
algorithm on a spectrum of heterogeneous data.

2 Background

In this section, we provide the background on the decentralized setup with peer-to-peer connections.

The main goal of decentralized machine learning is to learn a global model using the knowledge ex-
tracted from the locally stored data samples across n agents while maintaining privacy constraints. In
particular, we solve the optimization problem of minimizing the global loss function f(x) distributed
across n agents as given in (1). Note that Fi is a local loss function (for example, cross-entropy loss)
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defined in terms of the data (di) sampled from the local dataset Di at agent i.

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x),

where fi(x) = Edi∼Di
[Fi(x; di)], for all i.

(1)

The optimization problem is typically solved by combining stochastic gradient descent [4] with
global consensus-based gossip averaging [26]. The communication topology is modeled as a graph
G = ([N ], E) with edges {i, j} ∈ E if and only if agents i and j are connected by a communication
link exchanging the messages directly. We represent N (i) as the neighbors of agent i including itself.
It is assumed that the graph G is strongly connected with self-loops i.e., there is a path from every
agent to every other agent. The adjacency matrix of the graph G is referred to as a mixing matrix W
where wij is the weight associated with the edge {i, j}. Note that, weight 0 indicates the absence
of a direct edge between the agents, and the elements of the Identity matrix are represented by Iij .
Similar to the majority of previous works in decentralized learning, the mixing matrix is assumed to
be doubly stochastic. Further, the initial models and all the hyperparameters are synchronized at the
beginning of the training. The communication among the agents is assumed to be synchronous.

Traditional decentralized algorithms such as DSGD [15] assume the data across the agents to be
Independent and Identically Distributed (IID). In DSGD, each agent i maintains local parameters
xt
i ∈ Rd and updates them as follows.

DSGD: xt+1
i =

∑
j∈N (i)

wij(x
t
j − ηgtj); gti = ∇Fj(x

t
i, d

t
i). (2)

We focus on a decentralized setup with non-IID/heterogeneous data. In particular, the heterogeneity in
the data distribution comes in the form of skewed label partition similar to [9]. Decentralized learning
with the DSGD algorithm on heterogeneous data distribution results in performance degradation due
to huge variations in the local gradients across the agents. To tackle this, authors in [16] propose a
momentum-based optimization technique (QG-DSGDm) introducing Quasi-Global momentum as
shown in (3).

QG-DSGDm: xt+1
i =

∑
j∈N (i)

wij [x
t
j − η(gtj + βmt−1

j )]; mt
i = µmt−1

i + (1− µ)
xt−1
i − xt

i

η
.

(3)

QG-DSGDm improves the performance of decentralized learning on heterogeneous data without any
communication overhead and is used as a baseline for comparison in this work.

Gradient Tracking (GT) mechanisms [19, 22] are also known to improve decentralized learning on
heterogeneous data by reducing the variance between the local gradient and the averaged (global)
gradient. To achieve this, the gradient tracking algorithm introduces a tracking variable yti that
approximates the total gradient and is used to update the local parameters xt

i (refer to (4)).

GT: xt+1
i =

∑
j∈N (i)

wij(x
t
j − ηytj); yti =

∑
j∈N (i)

wijy
t−1
j − gt−1

i + gti . (4)

The update rule of tracking variable is such that it recursively adds a correction term(∑
j∈N (i) wijy

t−1
j − gt−1

i

)
to the local gradient gti , pushing yti to be closer to the global gradi-

ents ( 1
n

∑n
j=1 g

t
j). This requires each agent i to communicate two sets of parameters xt

i and yti with
its neighbors. Thus, the gradient tracking algorithm improves the decentralized learning on non-IID
data at the cost of 2× communication overhead.

3 Global Update Tracking

We present Global Update Tracking (GUT), a novel algorithm for decentralized deep learning on
non-IID data distribution. GUT is a communication-free tracking mechanism that aims to mitigate
the difficulties of decentralized training when the data distributed across the agents is heterogeneous.

In order to attain the benefits of gradient tracking without communication overhead, we propose to
apply the tracking mechanism with respect to the model updates xt

i − xt−1
i instead of the gradients
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Algorithm 1 Global Update Tracking (GUT)
Input: Each agent i ∈ [1, n] initializes model parameters x0

i and neighbors’ copy x̂0
j , step size η,

GUT scaling factor µ, mixing matrix W = [wij ]i,j∈[1,n], N (i) represents neighbors of i including
itself, and note x̂t

i = xt
i.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for t = 0, 1, . . . , T − 1 do
3. dti ∼ Di

4. gti = ∇xFi(
∑

j∈N (i) wij x̂
t
j ; d

t
i)

5. δti = gti − 1
η

∑
j∈N (i) wij(x̂

t
j − xt

i)

6. yti = δti + µ
[ ∑
j∈N (i)

wij(y
t−1
j − 1

η (x̂
t
j − xt

i))− δt−1
i

]
7. SENDRECEIVE(yti )
8. xt+1

i = xt
i − ηyti

9. x̂t+1
j = x̂t

j − ηytj ∀ j ∈ N (i)\i
10. end
11. return 1

n

∑n
i=1 x

T
i

gti . Firstly, to design a tracking mechanism without additional communication cost, each agent i
communicates model updates instead of model parameters to its neighbors. An agent i stores a
copy of its neighbor’s parameters as x̂j and updates it using the received model updates to retrieve
the current version of the neighbor’s parameters as shown in line-9 of Algorithm 1. A memory-
efficient implementation of the algorithm (Algorithm 4 in Appendix B) requires each agent to
store si =

∑
j∈N (i) wij x̂j instead of storing each neighbor’s copy separately requiring only O(1)

additional memory [12].

Now, we define a variable δti on each agent i that accumulates the local gradient update gti and the
gossip averaging update

∑
j(wij − Iij)x̂

t
j as shown in line-5 of Algorithm 1. Note that we can

recover the DSGD update defined in (2) by using δti in the update rule i.e., xt+1
i = xt

i − ηδti . We
then proceed to compute the tracking variable yti , as described in line-6 of Algorithm 1, using the
combined model update (local gradient part and gossip averaging part) reflected by δti . The gossip
averaging part of the update for each agent i i.e.,

∑
j wij(x̂

t
j − xt

i) is computed with respect to its
own model weights. To account for this in the computation of tracking variable yti , the agents have to
adjust the information received from the neighbors (i.e., ytj’s) to change the reference to itself. This is
reflected as an additional term 1

η (x̂
t
j − xt

i) in the update rule given by line-6 of Algorithm 1. Further,
we scale the correction term of the tracking variable by a factor µ, a hyper-parameter, which is tuned
to extract the maximum benefits of the proposed algorithm.

In summary, the update scheme of GUT can be re-formulated in the following matrix form where
X = [x1, . . . , xn] ∈ Rd×n are the model parameters and G = [g1, . . . , gn] ∈ Rd×n are stochastic
gradients.

Xt+1 = Xt − ηY t,

Y t+1 = Gt+1 − 1

η
(W − I)Xt+1 + µ[WY t −Gt − 1

η
(W − I)(Xt+1 −Xt)].

(5)

Finally, we show that integrating the proposed GUT algorithm with Quasi-Global Momentum
improves the current state-of-the-art significantly without any communication overhead. The pseudo-
code for the momentum version of our algorithm (QG-GUTm) is presented in Appendix B.

4 Convergence Guarantees

This section provides the convergence analysis for the proposed GUT Algorithm. We assume that the
following standard assumptions hold:
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Assumption 1 (Lipschitz Gradients). Each function fi(x) is L-smooth i.e., ||∇fi(y)−∇fi(x)|| ≤
L||y − x||.
Assumption 2 (Bounded Variance). The stochastic gradients are unbiased and their variance is
assumed to be bounded.

Ed∼Di
||∇Fi(x; d)−∇fi(x)||2 ≤ σ2 ∀i ∈ [1, n], (6)

1

n

n∑
i=1

||∇fi(x)−∇f(x)||2 ≤ ζ2. (7)

Assumption 3 (Doubly Stochastic Mixing Matrix). The mixing matrix W is a real doubly stochastic
matrix with λ1(W ) = 1 and

max {|λ2(W )|, |λn(W )|} ≤ 1− ρ < 1, (8)

where λi(W ) is the ith largest eigenvalue of W and ρ is the spectral gap.

The above assumptions are commonly used in most decentralized learning setups. Theorem 1 presents
the convergence of the proposed GUT algorithm and the proof is detailed in Appendix A.
Theorem 1. (Convergence of GUT algorithm) Given Assumptions 1, 2, and 3 let step size η ≤ ρ

7L
and the scaling factor µ

1−µ ≤ ρ
42 . For all T ≥ 1, we have

1

T

T−1∑
t=0

E||∇f(x̄t)||2 ≤ 4

ηT
(f(x̄0)− f∗) + η

4Lσ2

n
+ η2

1248L2

ρ2
(ζ2 + σ2(2− µ)), (9)

where f(x̄0)− f∗ is the sub-optimality gap, x̄ is the average/consensus model parameters.

The result of the Theorem 1 shows that the averaged gradient of the averaged model is upper-
bounded by the sub-optimality gap (the difference between the initial objective function value and
the optimal value), the sampling variance (σ), and gradient variations across the agents representing
data heterogeneity (ζ). Further, we present a corollary to show the convergence rate of GUT in terms
of the number of iterations.

Corollary 1. Suppose that the step size satisfies η = O
(√

n
T

)
For a sufficiently large T we have,

1

T

T−1∑
t=0

E||∇f(x̄t)||2 ≤ O

(
1√
nT

+
1

T

)
. (10)

Corollary 1 indicates that the GUT algorithm achieves linear speedup with a convergence rate of
O( 1√

nT
) when T is sufficiently large and is independent of communication topology. In other words,

the communication complexity to find an ϵ-first order solution, i.e., E∥∇f(x̄)∥2 ≤ ϵ is O( σ2

nϵ2 ). This
convergence rate is similar to the well-known best result for decentralized SGD algorithms [15] in
the literature.

5 Experiments

In this section, we analyze the performance of the proposed GUT and QG-GUTm techniques and
compare them with the baseline DSGD algorithm [15] and the current state-of-the-art QG-DSGDm
[16] respectively. The source code is available at https://github.com/aparna-aketi/
global_update_tracking

5.1 Experimental Setup

The efficiency of the proposed method is demonstrated through our experiments on a diverse set
of datasets, model architectures, graph topologies, and graph sizes. We present the analysis on –
(a) Datasets: CIFAR-10, CIFAR-100, Fashion MNIST, and Imagenette. (b) Model architectures:
VGG-11, ResNet-20, LeNet-5 and, MobileNet-V2. All the models use Evonorm [17] as the activation-
normalization layer as it is shown to be better suited for decentralized learning on heterogeneous data.
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Figure 1: Ring Graph (left), Dyck Graph (center), and Torus Graph (right).

(c) Graph topologies: Ring graph with 2 peers per agent, Dyck graph with 3 peers per agent, and
Torus graph with 4 peers per agent (refer Figure 1). (d) Number of agents: 16-40 agents. We use the
Dirichlet distribution to generate disjoint non-IID data across the agents. The created data partition
across the agents is fixed, non-overlapping, and never shuffled across agents during the training. The
degree of heterogeneity is regulated by the value of α – the smaller the α the larger the non-IIDness
across the agents. We report the test accuracy of the consensus model averaged over three randomly
chosen seeds. The details of the decentralized setup and hyperparameters for all the experiments are
presented in Appendix C.

5.2 Average Consensus Task

We first consider an average consensus task that is isolated from the learning through stochastic
gradient descent. Here the aim is that all the agents should reach a consensus which is the average
value of the initial information each agent holds. The following equations show the simplified version
of GUT (11) and QG-GUTm (12) after removing the gradient update part.

Xt+1 = Xt + Y t; Y t = (W − I)Xt + µ[WY t−1 − (W − I)(Xt−1 −Xt)], (11)

Xt+1 = Xt + M̂ t; M t = βM t−1 + (1− β)(Xt −Xt−1)

M̂ t =βM t + (1− β)[(W − I)Xt + µ(WM̂ t−1 − (W − I)(Xt−1 −Xt))].
(12)

Note that setting the hyper-parameter µ as 0 in the (11), 12 gives simple gossip[26] and quasi-global
gossip [16] respectively and all the agents communicate Xt−Xt−1 at iteration t with their neighbors.

Figure.2 shows the average consensus error i.e., 1
n ||X

t − X̄||2F over time for the average consensus
task on the Ring topology with respect to various algorithms. We observe that the gossip averaging
with GUT converges faster than simple gossip averaging. Figure.2(c) illustrates that for graphs with
a smaller spectral gap (which corresponds to more agents), the proposed QG-GUTm can converge
faster than quasi-global gossip (gossip with QGM) resulting in better decentralized optimization.
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(b) 128 agents
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(c) 256 agents

Figure 2: Decentralized average consensus problem on an undirected ring topology

5.3 Decentralized Deep Learning Results

We evaluate the efficiency of GUT and its quasi-global momentum version QG-GUTm with the help
of an exhaustive set of experiments. We compare GUT with DSGD and the momentum version QG-
GUTm with QG-DSGDm to show that the proposed method outperforms the current state-of-the-art.
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Table. 1 shows the average test accuracy for training ResNet-20 and VGG-11 models on the CIFAR-10
dataset with varying degrees of non-IIDness over ring topology of 16 and 32 agents. We observe that
GUT consistently outperforms DSGD for all models, graph sizes, and degree of heterogeneity with
a significant performance gain varying from 1− 18%. The quasi-global momentum version of our
algorithm, QG-GUTm, beats QG-DSGDm with 1− 3.5% improvement in the case of the CIFAR-10
dataset partitioned with a higher degree of heterogeneity (α = 0.1, 0.01).

Table 1: Test accuracy of different decentralized algorithms evaluated on CIFAR-10, distributed with
different degrees of heterogeneity (non-IID) for various models over ring topologies. The results are
averaged over three seeds where the standard deviation is indicated. We also include the results of the
IID baseline as DSGDm (IID) where the local data is randomly partitioned independent of α.

Agents (n) Method ResNet-20
α = 1 α = 0.1 α = 0.01

16

DSGDm (IID) 89.75± 0.29
DSGD [15] 84.17± 0.32 72.21± 2.37 54.66± 4.74
GUT (ours) 84.72± 0.20 81.86± 1.99 70.16± 4.94
QG-DSGDm [16] 88.23± 0.51 84.21± 2.12 79.85± 2.11
QG-GUTm (ours) 88.22± 0.36 86.44± 0.36 81.04± 1.66

32

DSGDm (IID) 88.52± 0.23
DSGD [15] 78.25± 0.42 62.97± 1.90 42.58± 1.84
GUT (ours) 79.24± 0.33 76.07± 0.23 60.72± 1.03
QG-DSGDm [16] 87.15± 0.33 83.50± 1.04 69.99± 0.60
QG-GUTm (ours) 87.48± 0.33 84.94± 0.60 72.04± 3.18

Agents (n) Method VGG-11
α = 1 α = 0.1 α = 0.01

16

DSGDm (IID) 85.76± 0.28
DSGD [15] 81.78± 0.29 76.20± 0.81 68.93± 1.23
GUT (ours) 82.12± 0.09 81.24± 0.95 76.62± 1.37
QG-DSGDm [16] 84.23± 0.47 81.70± 0.79 77.08± 3.19
QG-GUTm (ours) 84.46± 0.33 83.05± 0.48 78.32± 1.03

32

DSGDm (IID) 84.75± 0.30
DSGD [15] 79.75± 0.56 73.37± 1.02 59.93± 1.60
GUT (ours) 80.37± 0.33 79.55± 1.00 73.59± 1.26
QG-DSGDm [16] 83.67± 0.28 80.82± 0.19 74.25± 2.02
QG-GUTm (ours) 84.32± 0.11 83.39± 0.38 77.41± 3.44

Table 2: Average test accuracy of different decentralized algorithms evaluated on CIFAR-10 dataset
trained on ResNet-20 over various graph topologies

Method Dyck Graph (32 agents) Torus (32 agents)
α = 0.1 α = 0.01 α = 0.1 α = 0.01

DSGDm [15] 77.31± 1.72 51.27± 2.51 75.37± 3.11 49.32± 2.88
QG-DSGDm [16] 86.49± 0.81 81.32± 1.50 86.88± 0.30 85.20± 0.56
QG-GUTm (ours) 86.93± 0.53 84.80± 0.47 87.75± 0.42 86.20± 0.82

Table 3: Average test accuracy of different decentralized algorithms evaluated on various datasets,
distributed with different degrees of heterogeneity over 16 agents ring topology

Method Fashion MNIST (LeNet-5) CIFAR-100 (ResNet-20) Imagenette (MobileNet-V2)
α = 0.1 α = 0.01 α = 0.1 α = 0.01 α = 0.1 α = 0.01

DSGDm [15] 86.59± 0.92 77.00± 3.53 47.93± 1.69 42.56± 2.71 66.02± 4.59 38.69± 11.8
QG-DSGDm [16] 89.94± 0.44 83.43± 0.94 53.19± 1.68 44.17± 3.64 63.60± 4.50 39.49± 4.57
QG-GUTm 90.11± 0.02 84.60± 1.00 53.40± 1.23 50.45± 1.30 66.52± 3.68 43.85± 8.24

We present the experimental results on various graph topologies and datasets to demonstrate the
scalability and generalizability of QG-GUTm. We train the CIFAR-10 dataset on ResNet-20 over the
Dyck graph and Torus graph to exemplify the impact of connectivity on the proposed technique. As
shown in Table. 2, we obtain 0.5−3.5% performance gains with varying connectivity (or spectral gap).
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Further, we evaluate QG-GUTm on various image datasets such as Fashion MNIST, and Imagenette
and on challenging datasets such as CIFAR-100. Table. 3 shows that QG-GUTm outperforms QG-
DSGDm by 0.2− 6.2% across various datasets. Therefore, in a decentralized deep learning setup, the
proposed GUT and QG-GUTm algorithms are more robust to heterogeneity in the data distribution
and can outperform all the comparison methods with an average improvement of 2%.

5.4 Ablation Study

First, we analyze different ways of utilizing or tracking model update information as shown in Table. 4.
We present two different update rules apart from GUT and DSGD[15] and also compare them with
gradient tracking [19]. Rule-a applies the proposed tracking mechanism on model updates but does
not change the reference of tracking variable yj received from the neighbors to itself (refer sec. 3
for details on changing the reference). In the case of Rule-b, each agent computes the difference
between the averaged neighborhood model update (W (Xt−Xt−1)) along with its own model update
(Xt −Xt−1) and adds the difference between the two as a bias correction. Table. 4 shows that such
naive ways of tracking or bias correction update rules (rule-a,b) do not improve the performance of
decentralized learning on heterogeneous data. This confirms our findings that the GUT technique is
an effective and provable way to track the consensus model and can outperform the gradient tracking
mechanism without any communication overhead.

Table 4: Analyzing the different variations of model updates. Evaluating test accuracy on CIFAR-10
dataset trained on ResNet-20 over a 16 agent ring topology with α = 0.1

Method Update Communication Test
Rule Parameters (Cost) accuracy

DSGD Xt+1=Xt−ηY t

Xt (1×) 72.21± 2.37
Y t =Gt− 1

η
(W−I)Xt

Rule-a Xt+1=Xt−ηY t

Y t (1×) 72.78± 0.80
Y t =Gt− 1

η
(W−I)Xt+µ[WY t−1−(Gt−1− 1

η
(W−I)Xt−1)]

Rule-b Xt+1=Xt−ηY t

Y t (1×) 72.62± 1.16
Y t =Gt− 1

η
(W−I)Xt+µ[− 1

η
(W−I)(Xt−Xt−1)]

GUT Xt+1=Xt−ηY t

Y t (1×) 81.86± 1.99
Y t =Gt− 1

η
(W−I)Xt+µ[WY t−1−Gt−1− 1

η
(W−I)(Xt−Xt−1)]

Gradient Xt+1=Xt−η[Y t− 1
η
(W−I)Xt]

Xt,Y t (2×) 80.61± 2.41
Tracking Y t =Gt+WY t−1−Gt−1

Table 5: Evaluating Global Update Tracking (GUT) with various versions of momentum using
CIFAR-10 dataset trained on ResNet-20 architecture over 16 agents ring topology

Method Local Nesterov Quasi-Global Global Update Test Accuracy
Momentum Momentum Tracking α = 0.1

DSGD x x x x 72.21± 2.37
DSGDm ✓ x x x 79.87± 1.73
DSGDm-N ✓ ✓ x x 81.31± 0.51
QG-DSGDm x x ✓ x 84.21± 2.12
QG-DSGDm-N x ✓ ✓ x 85.12± 1.11
GUT x x x ✓ 81.86± 1.99
GUTm ✓ x x ✓ 79.95± 1.67
GUTm-N ✓ ✓ x ✓ 82.08± 1.74
QG-GUTm x x ✓ ✓ 86.44± 0.36
QG-GUTm-N x ✓ ✓ ✓ 86.55± 0.49

We then proceed to investigate the effect of different variants of momentum with GUT. From Table. 5
(refer to Appendix D for more results), we can conclude that the quasi-global variant of Global
Update Tracking always surpasses the other methods. This indicates that the proposed GUT algorithm
accelerates decentralized optimization and can be used in synergy with quasi-global momentum to
achieve maximal performance gains.

Furthermore, Figure 3(a) illustrates the effect of scaling µ on the test accuracy with QG-GUTm and
note that µ = 0 shows the test accuracy for QG-DSGDm. Figure 3(b), 3(c) showcase the scalability
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of QG-GUTm on different graph sizes and model sizes. QG-GUTm outperforms QG-DSGDm by
∼ 1.7% over different graph sizes and ∼ 1.4% over different model sizes.
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(c) α = 0.1, n = 16

Figure 3: Ablation study on the hyper-parameter µ, number of agents n and model size. The test
accuracy is reported for the CIFAR-10 dataset trained on ResNet architecture over ring topology.

6 Discussion and Limitations

We demonstrated the superiority of the Global Update Tracking (GUT) algorithm through an elaborate
set of experiments and ablation studies. In our experiments, we focused on doubly-stochastic and
symmetric graph structures. The proposed GUT algorithm can be easily extended to directed and
time-varying graphs by combining it with stochastic gradient push (SGP) [2]. Further, the additional
terms added by GUT can also be interpreted as a bias correction mechanism where the added bias
pushes the local model towards the consensus (averaged) model. The matrix representation of this
interpretation of GUT is given by (13). and analyzed in Lemma 1.

Xt+1 = WXt − η(Gt + µBt); Bt+1 = −1

η
[(2W − I)(Xt+1 −Xt) + ηGt]. (13)

Lemma 1. Given assumptions 3, we define b̄t = Bt 1
n11

T , where 1 is a vector of all ones. For all t,
we have: b̄t = µb̄t−1.

A complete proof for Lemma 1 can be found in Appendix A.2. Lemma 1 highlights that the average
bias added by GUT is zero as b̄0 is zero. Hence, the GUT algorithm crucially preserves the average
value of the decentralized system. A feature we leverage to establish Theorem 1.

There are two potential limitations of the GUT algorithm - a) memory overhead and b) introduction
of an additional hyper-parameter. GUT requires the agents to keep a copy of the averaged model
parameters of their neighbors which adds an extra memory buffer of the size of model parameters.
The storage of the tracking variable also adds to the memory overhead, requiring additional memory
equivalent to the size of model parameters. We also introduce a new hyper-parameter µ which has to be
tuned similarly to the learning rate or momentum coefficient tuning. Besides, the theoretical analysis
presented for the GUT algorithm does not consider momentum and assumes the communication to be
synchronous. We leave the theoretical analysis of QG-GUTm and formulation of the asynchronous
version of GUT as a future research direction.

7 Conclusion

Decentralized learning on heterogeneous data is the key to launching ML training on edge devices
and thereby efficiently leveraging the humongous amounts of user-generated private data. In this
paper, we propose Global Update Tracking (GUT), a novel decentralized algorithm designed to
improve learning over heterogeneous data distributions. The convergence analysis presented in the
paper shows that the proposed algorithm matches the best-known rate for decentralized algorithms.
Additionally, the paper introduces a quasi-global momentum version of the algorithm, QG-GUTm, to
further enhance the performance gains. The empirical evidence from experiments on different model
architectures, datasets, and topologies demonstrates the superior performance of both algorithms.
In summary, the proposed algorithm and its quasi-global momentum version have the potential to
facilitate more scalable and efficient decentralized learning on edge devices.
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A Convergence Rate Proof

In this work, we solve the optimization problem of minimizing global loss function f(x) distributed
across n agents as given below. Note that Fi is a local loss function (for example, cross-entropy loss)
defined in terms of the data sampled (di) from the local dataset Di at agent i.

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x),

and fi(x) = Edi∈Di [Fi(x; di)] ∀i.

We reiterate the update scheme of GUT presented in Algorithm. 1 in a matrix form:

Xt+1 = Xt − ηY t

Y t = ∆t + µ[WY t−1 − 1

η
(W − I)Xt −∆t−1]

∆t = Gt − 1

η
(W − I)Xt,

(14)

where W is the mixing matrix, I is the identity matrix, X = [x1, x2, . . . , xn] ∈ Rd×n is the matrix
containing model parameters, xi ∈ Rd is model parameters of agent i, Y = [y1, y2, . . . , yn] ∈ Rd×n

is the matrix containing tracking variables, G = [g1, g2, . . . , gn] ∈ Rd×n is the matrix containing
local gradients, µ is the GUT scaling factor, η is the learning rate. Now, we rewrite the above equation
in the form of a bias correction update,

Xt+1 = WXt − η(Gt + µBt)

Bt = −1

η
[(2W − I)(Xt −Xt−1) + ηGt−1].

(15)

A.1 Assumptions

We assume that the following statements hold:

Assumption 1 - Lipschitz Gradients: Each function fi(x) is L-smooth i.e., ||∇fi(y)−∇fi(x)|| ≤
L||y − x||. Equivalently,

fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩+ L

2
||y − x||2 (16)

Assumption 2 - Bounded Variance: The variance of the stochastic gradients is assumed to be
bounded.

Ed∼Di
||∇Fi(x; d)−∇fi(x)||2 ≤ σ2 ∀i ∈ [1, n]

1

n

n∑
i=1

||∇fi(x)−∇f(x)||2 ≤ ζ2

Assumption 3 - Doubly Stochastic Mixing Matrix: The mixing matrix W is a real doubly stochastic
matrix with λ1(W ) = 1 and

max{|λ2(W )|, |λn(W )|} ≤ 1− ρ < 1

where λi(W ) is the ith largest eigenvalue of W and ρ is the spectral gap. The mixing matrix satisfies
EW ||ZW − Z̄||2F ≤ (1 − ρ)||ZW − Z̄||2F , where Z̄ = Z 1

n11
T . We also have W1 = 1 and

WT
1 = 1.

Further, we define the average gradients ḡt = 1
n

∑n
i=1 ∇Fi(x

t
i, d

t
i) where dti is sampled mini-batch

of data on node i

12



A.2 Proof of Lemma 1

Lemma 1: Given assumptions 3, we define b̄t = Bt 1
n11

T , where 1 is a vector of all ones. For all t,
we have: b̄t = µb̄t−1.

Proof. Starting from the definition of Bt

Bt = −1

η
[(2W − I)(Xt −Xt−1) + ηGt−1]

multiply
1

n
11

T on both sides

b̄t = −1

η
[x̄t − x̄t−1 + ηḡt−1] (∵ (2W − I)1 = 1)

now, multiplying
1

n
11

T to Xt+1 = WXt − η(Gt + µBt)

x̄t+1 = x̄t − ηḡt − ηµb̄t =⇒ x̄t − x̄t−1 + ηḡt−1 = −ηµb̄t−1

=⇒ b̄t = µb̄t−1

Given that b̄0 = 0, the average bias is zero at each iteration. This indicates that the proposed algorithm
GUT preserves the average of the system in an average consensus task.

A.3 Proof of Theorem 1

This section presents the detailed proof of the convergence bounds of GUT algorithm given by
Theorem 1. Firstly, we analyze the one-step progress of the averaged model parameters x̄. Note that,
X̄t = [x̄t, x̄t, . . . , x̄t] ∈ Rd×n and x̄t = 1

n

∑n
i=1 x

t
i

Lemma 2. Given assumptions 1-3 and η ≤ 1
4L , we have

Ef(x̄t+1) ≤ Ef(x̄t)− η
4E||∇f(x̄t)||2 − η

4E||
1
n

∑n
i=1 ∇f(xt

i)||2 +
Lη2σ2

n + 3Lη2

n ||Xt − X̄t||2F .

Proof. From the definition of Xt+1, we have

Xt+1 = WXt − η[Gt + µBt]

=⇒ x̄t+1 = x̄t − ηḡt (∵ b̄t = 0from Lemma 1)

using L-smoothness assumption given by (16)

Ef(x̄t+1) ≤ Ef(x̄t) + E⟨∇f(x̄t), x̄t+1 − x̄t⟩+ L

2
E||x̄t+1 − x̄t||2

= Ef(x̄t) + E⟨∇f(x̄t),−ηḡt⟩+ Lη2

2
E||ḡt||2

= Ef(x̄t)− ηE⟨∇f(x̄t),E[ḡt]⟩+ Lη2

2
E|| 1

n

n∑
i=1

∇Fi(x
t
i)||2

= Ef(x̄t)− η
1

n

n∑
i=1

E⟨∇f(x̄t),∇fi(x
t
i)⟩+

Lη2

2
E|| 1

n

n∑
i=1

(∇Fi(x
t
i)±∇fi(x

t
i))||2

(a)

≤ Ef(x̄t)− ηE⟨∇f(x̄t),
1

n

n∑
i=1

∇fi(x
t
i)⟩+

Lη2

2
E|| 1

n

n∑
i=1

∇fi(x
t
i)||2 +

Lη2σ2

n

(b)
= Ef(x̄t) +

Lη2σ2

n
+

Lη2

2
E|| 1

n

n∑
i=1

∇fi(x
t
i)||2 −

η

2
E||∇f(x̄t)||2

− η

2
E|| 1

n

n∑
i=1

∇fi(x
t
i)||2 +

η

2
E|| 1

n

n∑
i=1

(∇fi(x
t
i)−∇f(x̄t))||2
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(c)

≤ Ef(x̄t) +
Lη2σ2

n
+ (

Lη2

2
− η

2
)E|| 1

n

n∑
i=1

∇fi(x
t
i)||2 −

η

2
E||∇f(x̄t)||2

+
η

2n

n∑
i=1

E||∇fi(x
t
i)−∇f(x̄t)||2

(d)

≤ Ef(x̄t) +
Lη2σ2

n
+ (

Lη2

2
− η

2
)E|| 1

n

n∑
i=1

∇fi(x
t
i)||2 −

η

2
E||∇f(x̄t)||2

+
L2η

2n

n∑
i=1

E||xt
i − x̄t||2

(e)

≤ Ef(x̄t)− η

4
E|| 1

n

n∑
i=1

∇fi(x
t
i)||2 −

η

4
E||∇f(x̄t)||2 + Lη2σ2

n

+
3L2η

n

n∑
i=1

E||Xt − X̄t||2F

(a) uses assumption-2 ((6)). (b) uses the fact that −2⟨a, b⟩ = −||a||2 − ||b||2 + ||a − b||2. (c)
uses Jensen’s inequality. (d) uses L-smoothness condition. (e) follows from the assumption that
η ≤ 1

4L .

Now, we proceed to bound the consensus error through Lemma 3.
Lemma 3. Given assumptions 1-3 and η ≤ ρ

7L , we have
1
nE||X

t+1 − X̄t+1||2F ≤ 1−ρ/4
n E||Xt − X̄t||2F + 12η2ζ2

ρ + 4η2σ2 + 6η2µ2

ρn E||Bt||2F .

Proof. Starting from the update step 15
1

n
E||Xt+1 − X̄t+1||2F =

1

n
E||WXt − η[Gt + µBt]− (X̄t − ηḠt)||2F

=
1

n
E||WXt − X̄t − η(Gt − Ḡt)− ηµBt||2F

≤ 1

n
E||WXt − X̄t − η(E[Gt]− E[Ḡt])− ηµBt||2F + 4η2σ2

(a)

≤ 1 + ρ/2

n
E||WXt − X̄t||2F +

η2(1 + 2/ρ)

n
E||E[Gt]− E[Ḡt]− µBt||2F

+ 4η2σ2

(b)

≤ (1− ρ)(1 + ρ/2)

n
E||Xt − X̄t||2F +

3η2

nρ
E||E[Gt]− E[Ḡt]− µBt||2F

+ 4η2σ2

≤ (1− ρ)(1 + ρ/2)

n
E||Xt − X̄t||2F + 4η2σ2 +

6η2

nρ
E||E[Gt]− E[Ḡt]||2F

+
6η2µ2

nρ
E||Bt||2F

≤ (1− ρ/2)

n
E||Xt − X̄t||2F + 4η2σ2 +

6η2

nρ
E||E[Gt]−∇f(x̄t)||2F

+
6η2µ2

nρ
E||Bt||2F

≤ (1− ρ/2)

n
E||Xt − X̄t||2F + 4η2σ2 +

6η2µ2

nρ
E||Bt||2F

+
6η2

nρ

n∑
i=1

E||∇fi(x
t
i)±∇fi(x̄

t)−∇f(x̄t)||2F
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(c)

≤ (1− ρ/2)

n
E||Xt − X̄t||2F + 4η2σ2 +

12η2ζ2

ρ
+

6η2µ2

nρ
E||Bt||2F

+
12η2

nρ

n∑
i=1

E||∇fi(x
t
i)−∇fi(x̄

t)||2F

(d)

≤ (1− ρ/2)

n
E||Xt − X̄t||2F + 4η2σ2 +

12η2ζ2

ρ
+

6η2µ2

nρ
E||Bt||2F

+
12η2L2

nρ

n∑
i=1

E||xt
i − x̄t||2F

=
(1− ρ/2

n
+

12η2L2

nρ

)
E||Xt − X̄t||2F + 4η2σ2 +

12η2ζ2

ρ

+
6η2µ2

nρ
E||Bt||2F

(e)

≤ 1− ρ/4

n
E||Xt − X̄t||2F + 4η2σ2 +

12η2ζ2

ρ
+

6η2µ2

nρ
E||Bt||2F

(a) follows from the fact that ||a+ b||2 ≤ (1 + α)||a||2 + (1 + 1
α )||b||

2 ∀α > 0 and let α = ρ
2 . (b)

uses EW ||ZW − Z̄||2F ≤ (1− ρ)||ZW − Z̄||2F and 1 + 2
ρ ≤ 3

ρ . (c) uses assumption-2 (7). (d) uses
L-smoothness condition. (e) follows from the assumption that η ≤ ρ

7L

The next step is to find an upper bound for the bias term E||Bt||2F .
Lemma 4. Given assumptions 1-3 and µ

1−µ ≤ ρ
42 , we have

6η2µ2

ρn(1−µ)E||B
t+1||2F ≤

(
6η2µ2

ρn(1−µ) −
6η2µ2

ρn

)
E||Bt||2F + ρ

8nE||X
t − X̄t||2F + η2ζ2ρ

8 + η2σ2ρ(1−µ)
8 .

Proof. starting from the update step 15

Bt+1 =− 1

η
[(2W − I)(Xt+1 −Xt) + ηGt]

=− 1

η
[(2W − I)(WXt − ηGt − ηµBt −Xt) + ηGt]

=− 1

η
[W (2W − I)− I]Xt + 2(W − I)Gt + µ(2W − I)Bt.

Now,
1

n
E||Bt+1||2F =

1

n
E|| − 1

η
(W (2W − I)− I)Xt + 2(W − I)Gt + µ(2W − I)Bt||2F

=
1

n
E|| − 1

η
(W (2W − I)− I)Xt + 2(W − I)(Gt − Ḡt) + µ(2W − I)Bt||2F

=
1

n
E|| − 1

η
(W (2W − I)− I)Xt + 2(W − I)E[Gt − Ḡt] + µ(2W − I)Bt||2F

+
1

n
E||2(W − I)(Gt − E[Gt]− (Ḡt − E[Ḡt]))||2F

≤ 1

n
E||1

η
(I −W (2W − I))Xt + 2(W − I)E[Gt − Ḡt] + µ(2W − I)Bt||2F

+ 8σ2

(a)

≤ 1

n

(
1 +

1− µ

µ

)
E||µ(2W − I)Bt||2F + 8σ2

+
1

n

(
1 +

µ

1− µ

)
E||1

η
(I −W (2W − I))Xt + 2(W − I)E[Gt − Ḡt]||2F

15



≤µ

n
E||Bt||2F + 8σ2 +

2

n(1− µ)
E||E[Gt − Ḡt]||2F

+
2

nη2(1− µ)
E||(I −W (2W − I))Xt||2F

=
1− (1− µ)

n
E||Bt||2F + 8σ2 +

2

n(1− µ)
E||E[Gt − Ḡt]||2F

+
2

nη2(1− µ)
E||(2W + I)(I −W )Xt||2F

(b)

≤ 1− (1− µ)

n
E||Bt||2F + 8σ2 +

2

n(1− µ)
E||E[Gt − Ḡt]||2F

+
18

nη2(1− µ)
E||(I −W )Xt||2F

=
1− (1− µ)

n
E||Bt||2F + 8σ2 +

2

n(1− µ)
E||E[Gt − Ḡt]||2F

+
18

nη2(1− µ)
E||(I −W )(Xt − X̄t)||2F

≤1− (1− µ)

n
E||Bt||2F + 8σ2 +

36

nη2(1− µ)
E||Xt − X̄)||2F

+
2

n(1− µ)
E||E[Gt]±∇f(x̄t)− E[Ḡt]||2F

≤1− (1− µ)

n
E||Bt||2F + 8σ2 +

36

nη2(1− µ)
E||Xt − X̄)||2F

+
8ζ2

1− µ
+

4L2

n(1− µ)
E||Xt − X̄)||2F

=
1− (1− µ)

n
E||Bt||2F + 8σ2 +

4(9 + η2L2)

nη2(1− µ)
E||Xt − X̄)||2F +

8ζ2

1− µ

Multiplying both sides with 6η2µ2

ρ(1−µ)

6η2µ2

nρ(1− µ)
E||Bt+1||2F ≤

( 6η2µ2

nρ(1− µ)
− 6η2µ2

nρ

)
E||Bt||2F +

24(9 + η2L2)µ2

nρ(1− µ)2
E||Xt − X̄)||2F

+
48η2µ2σ2

ρ(1− µ)
+

48η2µ2ζ2

ρ(1− µ)2

(c)

≤
( 6η2µ2

nρ(1− µ)
− 6η2µ2

nρ

)
E||Bt||2F +

ρ

8n
E||Xt − X̄)||2F

+
η2ρσ2(1− µ)

8
+

η2ρζ2

8

Note that W − I < I , I −W < 2I , (W − I)X̄t = 0 and (W − I)Ḡt = 0. (a) follows from the
fact that ||a+ b||2 ≤ (1 + α)||a||2 + (1 + 1

α )||b||
2 ∀α > 0 and let α = 1−µ

µ . (b) uses the fact that
||AB||2F ≤ σ2

max(A)||B||2F where A = 2W + I , B = (I −W )Xt and σ2
max(A) = 9. (c) uses the

assumption µ
1−µ ≤ ρ

42 and η ≤ ρ
7L . This implies that 24(9+η2L2)µ2

ρ(1−µ)2 ≤ ρ
8 and 48µ2

ρ(1−µ)2 ≤ ρ
8

We present the proof for Theorem 1 using Lemmas. 2, 3, and 4. Adding Lemmas. 3, and 4 and
simplifying, we get
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24L2η

n
E||Xt+1 − X̄t+1||2F +

144L2η3µ2

nρ2(1− µ)
E||Bt+1||2F ≤

(24L2η

n
− 3L2η

n

)
E||Xt − X̄t||2F

+
144L2η3µ2

nρ2(1− µ)
E||Bt||2F +

312L2η3

ρ2
(ζ2 + σ2(2− µ))

(17)

Finally, define a function Φt as shown below

Φt =
24L2η

n
E||Xt − X̄t||2F +

144L2η3µ2

nρ2(1− µ)
E||Bt||2F + E[f(x̄t)− f∗] (18)

Now adding Lemma 2 and (17), we have the following

Φt+1 ≤Φt − η

4
E|| 1

n

n∑
i=1

∇fi(x
t
i)||2 −

η

4
E||∇f(x̄t)||2 + Lη2σ2

n
+

312L2η3

ρ2
(ζ2 + σ2(2− µ))

≤Φt − η

4
E||∇f(x̄t)||2 + Lη2σ2

n
+

312L2η3

ρ2
(ζ2 + σ2(2− µ))

=⇒ η

4
E||∇f(x̄t)||2 ≤ (Φt − Φt+1) +

Lη2σ2

n
+

312L2η3

ρ2
(ζ2 + σ2(2− µ))

Summing over t

1

T

T−1∑
t=0

E||∇f(x̄t)||2 ≤ 4

ηT
(f(x̄0 − f∗) + η

4Lσ2

n
+ η2

1248L2

ρ2
(ζ2 + σ2(2− µ)). (19)

This concludes the proof of the Theorem 1.

A.4 Proof of Corollary. 1

In the proof of Theorem 1, we assumed the following the following constraints on learning rate η and
scaling factor µ:

(i) η ≤ min
{ 1

4L
,
ρ

7L

}
(ii)

µ

1− µ
≤ ρ

42
.

We assume that the step size η is O(
√

n
T ), where n is the total number of agents and T is the number

of iterations. Given this assumption, we have the following order of each term in (19) of Theorem 1.

4

ηT
(f(x̄0 − f∗) = O

( 1√
nT

)
.

For the remaining terms we have,

η
4Lσ2

n
= O

( 1√
nT

)
, η2

1248L2

ρ2
(ζ2 + σ2(2− µ)) = O

( n
T

)
.

Therefore, by omitting the constant n in this context of higher order terms, there exists a constant
C > 0 such that the overall convergence rate is as follows:

1

T

T−1∑
t=0

E||∇f(x̄t)||2 ≤ C

(
1√
nT

+
1

T

)
,

which suggests when T is sufficiently large, GUT enables the convergence rate of O( 1√
nT

).

17



B Algorithmic details

In this section, we present the pseudo-code for QG-GUTm which combines the proposed GUT
algorithm with quasi-global momentum as Algorithm 2 and its PyTorch implementation version
is shown in Algorithm 3. We also summarize the memory-efficient implementation of GUT in
Algorithm 4.

Algorithm 2 Global Update Tracking with momentum (QG-GUTm)

Input: Each agent i ∈ [1, n] initializes model weights x(0)
i and neighbors’ copy x̂

(0)
j , momentum

buffer m(0)
i , step size η, momentum coefficient β, mixing matrix W = [wij ]i,j∈[1,n], GUT scaling

factor µ, Iij are elements of n× n identity matrix, N (i) represents neighbors of i including itself,
and note x̂t

i = xt
i.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for t=0, 1, . . . , T − 1 do
3. dti ∼ Di

4. gti = ∇xfi(d
t
i;
∑

j∈N (i) wij ∗ x̂t
j)

5. δti = gti − 1
η

∑
j∈N (i)(wij − Iij) ∗ x̂t

j

6. yti = δti + µ
[ ∑
j∈N (i)

wij(m
t−1
j − 1

η (x̂
t
j − xt

i))− δt−1
i

]
7. mt

i = βmt−1
i + (1− β)yti

8. SENDRECEIVE(mt
i)

9. xt+1
i = xt

i − ηmt
i

10. x̂t+1
j = x̂t

j − ηmt
j ∀ j ∈ N(i)\i

11. end
12. return

Algorithm 3 Global Update Tracking with momentum (QG-GUTm) – Pytorch Implementation

Input: Each agent i ∈ [1, n] initializes model weights x(0)
i and neighbors’ copy x̂

(0)
j , momentum

buffer m(0)
i , step size η, momentum coefficient β, mixing matrix W = [wij ]i,j∈[1,n], GUT scaling

factor µ, Iij are elements of n× n identity matrix, N (i) represents neighbors of i including itself,
and note x̂t

i = xt
i.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for t=0, 1, . . . , T − 1 do
3. dti ∼ Di

4. gti = ∇xfi(d
t
i;
∑

j∈N (i) wij ∗ x̂t
j)

5. δti = gti − 1
η

∑
j∈N (i)(wij − Iij) ∗ x̂t

j

6. yti = δti + µ
[ ∑
j∈N (i)

wij(m
t−1
j − 1+β

η (x̂t
j − xt

i))− δt−1
i

]
7. mt

i = βmt−1
i + yti

8. SENDRECEIVE(mt
i)

9. xt+1
i = xt

i − ηmt
i

10. x̂t+1
j = x̂t

j − ηmt
j ∀ j ∈ N(i)\i

11. end
12. return
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Algorithm 4 Global Update Tracking (Memory Efficient Implementation)
Input: Each agent i ∈ [1, n] initializes model parameters x0

i and weighted model parameters
of neighborhood s0i , step size η, GUT scaling factor µ, mixing matrix W = [wij ]i,j∈[1,n], N (i)
represents neighbors of i including itself.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for t = 0, 1, . . . , T − 1 do
3. dti ∼ Di

4. gti = ∇xFi(s
t
i; d

t
i)

5. δti = gti − 1
η (s

t
i − xt

i)

6. yti = δti + µ
[ ∑
j∈N (i)

wijy
t−1
j − 1

η (s
t
i − xt

i)− δt−1
i

]
7. SENDRECEIVE(yti )
8. xt+1

i = xt
i − ηyti

9. st+1
i = sti − η

∑
j∈N (i) wijyj

10. end
11. return 1

n

∑n
i=1 x

T
i

C Decentralized Learning Setup

For the decentralized setup, we use an undirected ring, undirected Dyck graph, and undirected torus
graph topologies with a uniform mixing matrix. The undirected ring topology for any graph size has
3 peers per agent including itself and each edge has a weight of 1

3 . The undirected Dyck topology
with 32 agents has 4 peers per agent including itself and each edge has a weight of 1

4 . The undirected
torus topology with 32 agents has 5 peers per agent including itself and each edge has a weight of 1

5 .
All our experiments were conducted on a system with Nvidia GTX 1080ti card with 4 GPUs except
for ImageNette simulations. We used NVIDIA A40 card with 4 GPUs for ImageNette simulations.

C.1 Datasets

In this section, we give a brief description of the datasets used in our experiments. We use a diverse
set of datasets each originating from a different distribution of images to show the generalizability of
the proposed techniques.

CIFAR-10: CIFAR-10 [13] is an image classification dataset with 10 classes. The image samples are
colored (3 input channels) and have a resolution of 32× 32. There are 50, 000 training samples with
5000 samples per class and 10, 000 test samples with 1000 samples per class.

CIFAR-100: CIFAR-100 [13] is an image classification dataset with 100 classes. The image
samples are colored (3 input channels) and have a resolution of 32× 32. There are 50, 000 training
samples with 500 samples per class and 10, 000 test samples with 100 samples per class. CIFAR-100
classification is a harder task compared to CIFAR-10 as it has 100 classes with very few samples per
class to learn from.

Fashion MNIST: Fashion MNIST [25] is an image classification dataset with 10 classes. The image
samples are in greyscale (1 input channel) and have a resolution of 28×28. There are 60, 000 training
samples with 6000 samples per class and 10, 000 test samples with 1000 samples per class.

Imagenette: Imagenette [10] is a 10-class subset of the ImageNet dataset. The image samples are
colored (3 input channels) and have a resolution of 224× 224. There are 9469 training samples with
roughly 950 samples per class and 3925 test samples.

C.2 Network Architecture

We replace ReLU+BatchNorm layers of all the model architectures with EvoNorm-S0 as it was
shown to be better suited for decentralized learning over non-IID distributions.
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VGG-11: We modify the standard VGG-11 [21] architecture by reducing the number of filters in each
convolutional layer by 4× and using only one dense layer with 128 units. Each convolutional layer
is followed by EvoNorm-S0 as the activation-normalization layer. VGG-11 has 0.58M trainable
parameters.

ResNet-20: For ResNet-20 [8], we use the standard architecture with 0.27M trainable parameters
except that BatchNorm+ReLU layers are replaced by EvoNorm-S0.

LeNet-5: For LeNet-5 [14], we use the standard architecture with 61, 706 trainable parameters.

MobileNet-V2: We use the the standard MobileNet-V2 [20] architecture used for CIFAR dataset
with 2.3M parameters except that BatchNorm+ReLU layers are replaced by EvoNorm-S0.

C.3 Hyper-parameters

This section presents a detailed description of the hyper-parameters used in our experiments. All the
experiments were run for three randomly chosen seeds. We decay the step size by 10x after 50%
and 75% of the training, unless mentioned otherwise. The hyper-parameter µ is set to 0.9 for all
the experiments using GUT optimizer. We used grid search to choose the hyper-parameter µ for
QG-GUTm.

Hyper-parameters for experiments in Table 1: All the experiments have the stopping criteria set to
200 epochs. The initial learning rate is set to 0.1. We decay the step size by 10× in multiple steps at
100th and 150th epoch. Table 6 presents values of the scaling factor µ used in the experiments. For
all the experiments, we use a mini-batch size of 32 per agent. The stopping criteria is a fixed number
of epochs. We have used a momentum of 0.9 for all QG-DSDm and QG-GUTm experiments.

Table 6: The value of scaling factor µ used for training CIFAR-10 with non-IID data using ResNet-20
and VGG-11 model architectures presented in Table 1

Agents (n) Method ResNet-20
α = 1 α = 0.1 α = 0.01

DSGD 0.0 0.0 0.0
GUT (ours) 0.9 0.9 0.9

16 QG-DSGDm 0.0 0.0 0.0
QG-GUTm (ours) 0.04 0.06 0.04

DSGD 0.0 0.0 0.0
GUT (ours) 0.9 0.9 0.9

32 QG-DSGDm 0.0 0.0 0.0
QG-GUTm (ours) 0.04 0.04 0.04

Agents (n) Method VGG-11
α = 1 α = 0.1 α = 0.01

DSGD 0.0 0.0 0.0
GUT (ours) 0.9 0.9 0.9

16 QG-DSGDm 0.0 0.0 0.0
QG-GUTm (ours) 0.06 0.08 0.09

DSGD 0.0 0.0 0.0
GUT (ours) 0.9 0.9 0.9

32 QG-DSGDm 0.0 0.0 0.0
QG-GUTm (ours) 0.08 0.08 0.08

Hyper-parameters for experiments in Table 2: All the experiments have the stopping criteria set to
200 epochs. The initial learning rate is set to 0.1. We decay the step size by 10× in multiple steps
at 100th and 150th epoch. Table 7 presents values of the scaling factor µ used in the experiments.
For all the experiments, we use a mini-batch size of 32 per agent. The stopping criteria is a fixed
number of epochs. For all QG-DSDm and QG-GUTm experiments, we have used a momentum of
0.9 and Nesterov is set to False. We did not use any regularization in our experiments on non-IID
data i.e., weight decay is set to zero. We set the weight decay to be 1e−4 for experiments on IID data
(DSGDm case in Table. 1).

Hyper-parameters for experiments in Table 3: All the experiments with Fashion-MNIST and
Imagenette datasets have the stopping criteria set to 100 epochs where as CIFAR-100 experiments
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Table 7: The value of scaling factor µ used for training CIFAR-10 with non-IID data using ResNet-20
model architecture over varies graph topologies presented in Table 2

Method Dyck Graph (32 agents) Torus (32 agents)
α = 0.1 α = 0.01 α = 0.1 α = 0.01

QG-DSGDm 0.0 0.0 0.0 0.0
QG-GUTm 0.05 0.05 0.05 0.05

have the stopping criteria as 200 epochs. The initial learning rate is set to 0.1 for experiments on
CIFAR-100 and Fashion MNIST datasets. The initial learning rate is set to 0.01 for experiments
on the Imagenette dataset. We decay the step size by 10× in multiple steps at 50th and 75th epoch.
Table 8 presents values of the scaling factor µ used in the experiments. For all the experiments, we
use a mini-batch size of 32 per agent. The stopping criteria is a fixed number of epochs. We have
used a momentum of 0.9 for all QG-DSDm and QG-GUTm experiments.

Table 8: The value of scaling factor µ used for training different datasets over 16 agents ring topology
presented in Table 3

Method Fashion MNIST (LeNet-5) CIFAR-100 (ResNet-20) Imagenette (MobileNet-V2)
α = 0.1 α = 0.01 α = 0.1 α = 0.01 α = 0.1 α = 0.01

QG-DSGDm 0.0 0.0 0.0 0.0 0.0 0.0
QG-GUTm 0.01 0.005 0.005 0.005 0.03 0.04

D Additional Results

Table. 9 shows that the quasi-global variant of Global Update Tracking surpasses the other existing
methods even for a higher degree of heterogeneity i.e., α = 0.01. We also observe that the Nesterov
momentum hurts the performance when the heterogeneity in the data distribution is high. Table. 10
compares the DSGDm baseline with the proposed GUT and QG-GUTm. It shows that for a higher
degree of heterogeneity, GUT outperforms even the momentum version of DSGD. Table. 11 evaluates
the proposed method on various datasets trained on same model architecture (ResNet-20).

Table 9: Evaluating Global Update Tracking (GUT) with various versions of momentum using
CIFAR-10 dataset trained on ResNet-20 architecture over 16 agents ring topology for α = 0.01.

Method Local Nesterov Quasi-Global Global Update Test Accuracy
Momentum Momentum Tracking α = 0.01

DSGD x x x x 54.66± 4.74
DSGDm ✓ x x x 65.62± 4.95
DSGDm-N ✓ ✓ x x 63.66± 4.44
QG-DSGDm x x ✓ x 79.85± 2.13
QG-DSGDm-N x ✓ ✓ x 78.64± 2.14
GUT x x x ✓ 70.16± 4.94
GUTm ✓ x x ✓ 64.25± 5.31
GUTm-N ✓ ✓ x ✓ 63.42± 2.74
QG-GUTm x x ✓ ✓ 81.04± 1.66
QG-GUTm-N x ✓ ✓ ✓ 80.09± 3.82

E Hardware Efficiency

In this section, we present the quantitative results on communication, memory, and compute overheads
of the various decentralized algorithms. The communication cost incurred by the proposed GUT
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Table 10: Average test accuracy of different decentralized algorithms evaluated on CIFAR-10,
distributed with different degrees of heterogeneity (non-IID) for various models over ring topologies.

Agents (n) Method ResNet-20
α = 1 α = 0.1 α = 0.01

GUT (ours) 84.72± 0.20 81.86± 1.99 70.16± 4.94
16 DSGDm [15] 86.60± 0.54 79.87± 1.73 65.62± 4.95

QG-GUTm (ours) 88.22± 0.36 86.44± 0.36 81.04± 1.66
GUT (ours) 79.24± 0.33 76.07± 0.23 60.72± 1.03

32 DSGDm [15] 86.12± 0.32 77.43± 1.71 52.82± 4.02
QG-GUTm (ours) 87.48± 0.33 84.94± 0.60 72.04± 3.18

Agents (n) Method VGG-11
α = 1 α = 0.1 α = 0.01

GUT (ours) 82.12± 0.09 81.24± 0.95 76.62± 1.37
16 DSGDm [15] 81.77± 0.38 74.20± 1.89 58.44± 14.58

QG-GUTm (ours) 84.46± 0.33 83.05± 0.48 78.32± 1.03
GUT (ours) 80.37± 0.33 79.55± 1.00 73.59± 1.26

32 DSGDm [15] 81.89± 0.29 74.73± 0.73 61.60± 2.80
QG-GUTm (ours) 84.32± 0.11 83.39± 0.38 77.41± 3.44

Table 11: Average test accuracy of different decentralized algorithms evaluated with various datasets
trained on ResNet-20 architecture, distributed with different degrees of heterogeneity over 16 agents
ring topology.

Method Fashion MNIST CIFAR-100 Imagenette
α = 0.1 α = 0.01 α = 0.1 α = 0.01 α = 0.1 α = 0.01

DSGDm [15] 87.89± 2.34 79.41± 3.29 47.93± 1.69 42.57± 2.71 66.89± 3.12 47.87± 4.03
QG-DSGDm [16] 92.21± 0.01 90.59± 0.92 53.19± 1.68 44.17± 3.64 73.93± 2.01 56.30± 5.43
QG-GUTm 92.55± 0.16 91.70± 0.36 53.40± 1.23 50.45± 1.30 75.44± 2.22 57.47± 5.33

and QG-GUTm methodologies is the same as the DSGD or QG-DSGDm techniques. All the above-
mentioned algorithms communicate a vector with the size same as the model parameters. However,
gradient tracking incurs 2× communication cost in terms of model size. The communication cost
and memory requirements for all the experiments are reported in Table. 12 and 13.

We report the numbers for communication, memory, and compute overheads for the memory-efficient
implementation of GUT Algorithm. 4 in Table. 14. Memory overhead is reported as the percentage
of additional memory required per agent during training with a batch size of 32.

Memory overhead =
Additional memory due to GUT

Total Memory

The total memory includes the memory required to store model parameters, activations, gradients,
gossip buffer, tracking variable (yi), and weighted neighbors’ parameters (si). We observe that for
compact models such as ResNet and MobileNet, the memory overhead is less than 2%. However, for
larger models such as VGG-11, the memory overhead shoots up to 14%. The computational overhead
is reported as the percentage of additional FLOPs required per sample per agent during training.

Compute overhead =
Additional compute due to GUT

Total Compute

The total compute includes the forward pass, backward pass, model updates, gossip averaging,
and tracking variable computation flops. We observe that for compact models such as ResNet and
MobileNet, the compute overhead is around 2%. However, for larger models such as VGG-11, the
compute overhead shoots up to 15%.
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Table 12: Communication cost and memory requirement per agent during training of CIFAR-10
dataset on various model architectures and graph topologies.

Model Graph Graph Size Method Comm. Cost Memory
(GB) (MB)

ResNet-20 Ring 16
Gradient Tracking 83.66 129.60

QG-DSGDm 41.83 128.56
QG-GUTm 41.83 130.64

ResNet-20 Ring 32
Gradient Tracking 41.93 129.60

QG-DSGDm 20.97 128.56
QG-GUTm 20.97 130.64

ResNet-20 Torus 32
Gradient Tracking 83.86 129.60

QG-DSGDm 41.93 128.56
QG-GUTm 41.93 130.64

ResNet-20 Dyck 32
Gradient Tracking 62.90 129.60

QG-DSGDm 31.45 128.56
QG-GUTm 31.45 130.64

VGG-11 Ring 16
Gradient Tracking 178.02 31.84

QG-DSGDm 89.01 29.63
QG-GUTm 89.01 34.05

VGG-11 Ring 32
Gradient Tracking 89.22 31.84

QG-DSGDm 44.61 29.63
QG-GUTm 44.61 34.05

Table 13: Communication cost and memory requirement incurred per agent during training of various
dataset and model architectures over 16 agents ring topology.

Dataset Model Method Comm. Cost Memory
(GB) (MB)

Fashion MNIST LeNet-5
Gradient Tracking 11.42 4.86

QG-DSGDm 5.71 4.62
QG-GUTm 5.71 5.10

CIFAR-100 ResNet-20
Gradient Tracking 85.46 129.72

QG-DSGDm 42.73 128.66
QG-GUTm 42.73 130.78

Imagenette MobileNet-V2
Gradient Tracking 68.86 3774

QG-DSGDm 34.43 3765
QG-GUTm 34.43 3782

Table 14: Communication, memory, and compute overhead incurred per agent during training of
various datasets and model architectures for the proposed GUT algorithm. Note that the overheads
are independent of the graph topology and graph size.

Dataset Model Communication Overhead Memory Overhead Compute Overhead
Fashion MNIST LeNet-5 0.00 0.099 0.275

CIFAR-10 ResNet-20 0.00 0.016 0.021
CIFAR-10 VGG-11 0.00 0.138 0.149
CIFAR-100 ResNet-20 0.00 0.016 0.022
Imagenette MobileNet-V2 0.00 0.005 0.021
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