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ABSTRACT

We present an empirical study in the geometric task of learning interatomic po-
tentials, which shows equivariance matters even more at larger scales; we show a
clear power-law scaling behaviour with respect to data, parameters and compute
with “architecture-dependent exponents”. In particular, we observe that equivari-
ant architectures, which leverage task symmetry, scale better than non-equivariant
models. Moreover, among equivariant architectures, higher-order representations
translate to better scaling exponents. Our analysis also suggests that for compute-
optimal training, the data and model sizes should scale in tandem regardless of the
architecture. At a high level, these results suggest that, contrary to common belief,
we should not leave it to the model to discover fundamental inductive biases such
as symmetry, especially as we scale, because they change the inherent difficulty
of the task and its scaling laws.
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Figure 1: Performance of neural network interatomic potentials follows a power law (linear in log-
log space) in training compute (PFLOPs, GPU-hours). The scaling behaviour varies with archi-
tectural complexity: the slope of the performance curve improves as the architecture changes from
unconstrained to low-order to high-order, implying that performance gaps widen with increasing
compute. Body order ν: number of nodes whose states define a message within a layer. Tensor
order ℓ: order of geometric features processed by the models. Left: Empirical scaling laws along
the FLOPs-optimal frontier. Right: Empirical scaling laws along the train-time-optimal frontier.

1 INTRODUCTION

Recent years have witnessed extensive study of neural scaling laws across various machine learning
domains, including natural language and vision. The general observation supported by the theory
is that test errors exhibit a power-law relationship with the scale of training data points, model
parameters, and the amount of compute in floating-point operations (FLOPs). These laws identify
the optimal scaling of model size with dataset size for a given compute budget, enabling an optimal
use of resources at scale.
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A common view is that the scaling behaviour is consistent across various expressive architectures
for a task—i.e., the choice of architecture can only increase or decrease the loss by a multiplica-
tive factor that remains constant across sufficiently large scales. This belief is supported by both
theoretical results (Sharma & Kaplan, 2022; Bahri et al., 2024) and empirical studies in different
domains (Ahmad & Tesauro, 1988; Hestness et al., 2017), including language (Kaplan et al., 2020;
Hoffmann et al., 2022) and vision (Zhai et al., 2022), and it is further reinforced by Sutton’s bitter
lesson (Sutton, 2019), which highlights that attempts to encode inductive biases, such as symmetry,
explicitly are often outperformed in the long run, since models can learn these structures on their
own when scaled.

The specific inductive bias of symmetry, and in particular Euclidean and rotational symmetry have
been successfully leveraged in many domains, including for molecular force fields. The success
of these networks is often attributed to their improved generalization and robustness to out-of-
distribution data (Batatia et al., 2022; Petrache & Trivedi, 2023). However, one may argue that
equivariant networks are harder to scale as their specialized operations, such as tensor products,
spherical harmonics (Thomas et al., 2018; Anderson et al., 2019; Liao & Smidt, 2023), or high-order
message passing (Gasteiger et al., 2020b; Klicpera et al., 2021), are complex and computationally
expensive. At the same time, several works in protein folding (Abramson et al., 2024), molecule con-
former generation (Wang et al., 2024), and Neural Network Interatomic Potentials (NNIPs) (Deng
et al., 2023; Qu & Krishnapriyan, 2024; Rhodes et al., 2025) demonstrate that non-equivariant net-
works can perform well in geometric tasks. Brehmer et al. (2025) also show that non-equivariant
architectures trained with data augmentation can perform on par with their equivariant counterparts
when given sufficient compute. All of this paints a picture in favour of forgoing equivariance and
scaling simpler non-equivariant models.

This paper presents a careful empirical study that questions this growing mindset and shows that
equivariance matters even more as we scale. We report a clear architecture-dependent scaling expo-
nent in model size, data size, and compute, for several widely used scalable NNIPs architectures that
encode rotational and permutation symmetry to varying degrees. This translates to a performance
gap that grows with scale, favouring scalable models with a higher-order symmetry bias at larger
scales; see fig. 1.

Our target domain for this study has witnessed a growing number of deep learning techniques for
predicting quantum properties of atomistic systems in recent years, where neural models approxi-
mate computationally demanding ab initio calculations, such as density functional theory. The most
promising progress is being made on NNIPs, which map molecular systems to their energies and
forces. NNIPs’ foundation models are unlocking new possibilities through efficient and accurate
molecular dynamics, and our findings in this domain identify the most promising direction for the
design of models that are trained at scale.

1.1 KEY FINDINGS AND CONTRIBUTIONS

In this work, we conduct comprehensive scaling-law experiments, drawing on best practices and
insights from prior work on the expressive power of (geometric) message passing neural networks
(MPNNs) (Loukas, 2020; Joshi et al., 2023), maximal update parametrization (µP) (Yang et al.,
2021), and compute-optimal scaling (Hoffmann et al., 2022). Our key findings are:

• Clear power law scaling. Message-passing NNIPs obey power-law scaling with respect to com-
pute, data, and model size. For compute, unlike prior studies that report only FLOPs within ar-
chitectures, we characterize scaling with both FLOPs and wall-clock training time (GPU-hours).
Given that equivariant networks can be less GPU-friendly, this approach provides a more com-
plete view for practical purposes. While prior work in geometric domains has shown architecture-
dependent scaling with respect to only the dataset size (Batzner et al., 2022), to our knowledge,
none of them provide a complete and comparable picture to ours.

• Architecture-dependent exponents. Power-law exponents increase as the “degree” of equivari-
ance grows, from non-equivariant (unconstrained) models to lower- to higher-order equivariant
designs.

• Compute-optimal scaling. We find that the power-law exponents for dataset and model size in a
compute-optimal scaling are similar across non-equivariant and equivariant architectures of differ-
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ent representation degrees. This means that a compute-optimal scaling should increase the model
and dataset size in tandem; this mirrors the findings of Hoffmann et al. (2022) in natural language.

• Multi-epoch training and data-augmentation. While our main results consider a single epoch
regime, we show that the same scaling laws hold across tens of epochs in a multi-epoch setting.
This is because, at scale – even with 1% of our training set – the effect of overfitting is negligible.
For non-equivariant models, data augmentation is required to avoid overfitting and maintain the
scaling coefficients. We also consider inference-time augmentation for the unconstrained model,
and show that it only changes the multiplicative coefficient (rather than the exponent) in the scaling
law, and its benefit saturates quickly with the number of augmentations for this task.

• Scaling effect of symmetry loss. Enforcing symmetry through loss does NOT seem to provide the
same benefits as having an equivariant architecture.

• Trend in optimal depth. For a fixed parameter and compute budget, the optimal depth of the
network is correlated with the “degree” of equivariance among the architectures we studied; with
equivariant networks, the benefit of depth saturates at higher values, and for higher rotation order
networks this value grows larger; this corroborates the claims of Joshi et al. (2023); Jia et al.
(2020).

Organization. The rest of the paper is organized as follows. Section 2 outlines problem setup and
symmetry constraints through architectures and loss. Section 3 discusses our experiments, includ-
ing key hyperparameters and scaling strategies. Section 4 presents our results and their analysis.
Section 5 concludes with an emphasis on limitations of our work, and important directions for
near-future work. Appendix includes detailed related works in neural scaling laws and existing re-
sults on molecular graphs in appendix A, geometric message passing in appendix C, experimental
setup in appendix D, uncertainty in scaling laws in appendix E, the effect of scaling vector channels
appendix F, results on more diverse dataset appendix G, effect of test-time augmentation in ap-
pendix H, ablation study on translation invariance in appendix J, and instabilities of training vanilla
transformers for this tasks in appendix K.

2 SETUP

An atomistic system can be represented as a point cloud X = {(z1, x1), . . . , (zn, xn)}, where zi ∈
N and xi ∈ R3 are the the atomic number and the position respectively. The potential energy e(X)
is a scalar that is invariant to global translations and rotations, while forces fi(X) = − ∂e(X)/∂xi

are vectors that are translation-invariant and rotation-equivariant. The task of our NNIPs is to train
a neural network ϕθ : N×R3×n → R1+3×n that takes X as input and predicts the potential energy
(scalar) and atom-level forces, one for each atom – i.e., ϕθ : X 7→ (eθ(X), {fθ,1(X), . . . fθ,n(X)}).
While it is sufficient to learn the energy for predicting conservative forces, direct force prediction is
significantly more scalable. Using this approach enables one to benefit from the dense signal during
pre-training. In post-training, the force prediction can be removed and the model can be fine-tuned
to predict conservative forces through backpropagation via the predicted energies, ensuring a good
balance between computational cost and accuracy (Bigi et al., 2025; Fu et al., 2025). We minimize
the per-atom mean absolute error (MAE) and mean squared error of forces (Fu et al., 2025; Wood
et al., 2025):

L(ϕθ, X) =
λe

n

∥∥eθ(X)− e(X)
∥∥
1
+

λf

n

n∑
i=1

∥∥fθ,i(X)− fi(X)
∥∥
2
, (1)

with λe, λf > 0 are the coefficients that control the relative importance of energy and force predic-
tions; we use λe = λf .

2.1 ARCHITECTURES

Since we observed instability issues when scaling vanilla transformers for this task, we focused
on message-passing architectures. Here, in addition to a basic unconstrained MPNN, following
the classification of MPNNs in Joshi et al. (2023), we considered three widely adopted equivariant
architectures that cover various body and tensor orders. The body order corresponds to Sn repre-
sentations, and refers to the number of nodes participating in a message function. The tensor order
ℓ corresponding to SO(3) representations, and denotes the order of the geometric tensor embed-
dings processed by each model. Below we briefly enumerate these; for more background on these
architectures, see appendix C:
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1. unconstrained: a vanilla MPNN that directly processes geometric features, i.e., relative position
vectors, without any symmetry constraints.

2. invariant scalars: geometric message passing neural network (GemNet-OC) (Gasteiger et al.,
2022) is a variation of GemNet (Klicpera et al., 2021) adapted for large and diverse molecular
dataset. Although it uses invariants such as interatomic distances and angles, and therefore has a
tensor order ℓ = 0, it can approximate equivariant functions from edge-based invariant features,
because it performs geometric message passing with two-hop and edge-directional embeddings;
see Theorem 3 in Klicpera et al. (2021). Because GemNet-OC incorporates dihedral-angle infor-
mation, its two-hop messages depend simultaneously on the states of four nodes, and thus it is
classified as four-body.

3. Cartesian vectors: E(n)-equivariant graph neural network (EGNN) (Satorras et al., 2021); in
particular, the extension of Levy et al. (2023), which allows for more than one equivariant vector
channel. We use a specific µP informed scaling, in which scalar channels scale quadratically wrt
number of vector channels, see appendix C for details.

4. high-order spherical tensors: equivariant Smooth Energy Network (eSEN) (Fu et al., 2025),
which uses higher-order irreducible representaions of rotation group (ℓ ≥ 2). Unlike other ar-
chitectures in the same category (e.g., Thomas et al., 2018; Batzner et al., 2022; Liao & Smidt,
2023), we found eSEN more scalable because it uses frame alignment to sparsify the tensor
product, allowing it to eliminate Clebsch–Gordan coefficients and to directly parameterize ker-
nels with linear layers (Passaro & Zitnick, 2023).

2.2 SYMMETRY LOSS

Symmetry-based losses have been used in different settings from self-supervised learning (Dan-
govski et al., 2021; Bai et al., 2025), to physics-informed settings (Akhound-Sadegh et al., 2023;
Yang et al., 2024), generative modelling (Tong et al., 2025) and symmetry discovery (Escriche &
Jegelka, 2025). A canonical choice is a loss that penalizes deviations from equivariance constraints
for randomly sampled global transformations (e.g., Kim et al., 2023a; Elhag et al., 2025; Bai et al.,
2025):

Lsym(ϕθ;x, y) =
1

M

M∑
i=1

L
(
ϕθ(ρin(gi)x), ρout(gi) y

)
, (2)

where gi ∼ µG is a sampled from the Haar measure, ρin and ρout define linear actions on inputs x
and targets y, respectively, and L is the task loss. The symmetry-augmented term is added to the
base objective in eq. (1) when training fθ.

For our task, the translation part of the special Euclidean group SE(3) = SO(3)⋉T (3) is accounted
for by centring the molecule at its center of mass, and the loss is only for the rotation group. 1

3 EXPERIMENTS

3.1 DATASET

We conduct our experiments on the OpenMol neutral-molecule subset (Levine et al., 2025), with
34M training samples and 27K held-out validation samples.2 Treating atom nodes as tokens, the
training set corresponds to approximately D ≈ 9.2 × 108 tokens. Following scaling studies in
LLMs, we consider a single-epoch training regime, where each sample is observed exactly once.
While a multi-epoch setting can be more practical for AI4Science due to smaller datasets compared
to language, our goal was to stay faithful to existing methodologies and avoid possible confounding
effects (Muennighoff et al., 2023).

3.2 OPTIMIZATION

Following Choshen et al. (2025), which shows that estimating scaling laws from intermediate
checkpoints yields more robust results, we track validation losses throughout training and fit these

1We also tried using regularization that measures invariance by differentiating along infinitesimal genera-
tors, similar to Rhodes et al. (2025), but we could not achieve stable training.

2We use the neutral subset rather than the full 100M-molecule corpus due to main-memory constraints.
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points—excluding the first 1% − 10% of steps—to a standard scaling-law functional form (Kaplan
et al., 2020; Hoffmann et al., 2022). A well-known caveat in scaling-law analyses is the sensitiv-
ity to learning-rate schedules, particularly when predefined decay steps are used (Hoffmann et al.,
2022; Hu et al., 2024). To address this, we adopt scheduler-free AdamW-style optimizers (Defazio
et al., 2024), which not only remove the need for tuning decay schedules but also allow us to cap-
ture model training dynamics within a single run—without retraining from scratch at each data ratio
or relying on checkpoint restarts (Hu et al., 2024). Crucially, this approach enables more accurate
measurement of training time by mitigating hardware-related artifacts and helps us derive scaling
laws directly with respect to training time, measured in GPU-hours.

3.3 HYPER-PARAMETER TUNING

Investigating scaling behaviours of neural networks necessitates evaluations under optimal condi-
tions for both efficiency and performance. We, therefore, perform systematic experiments to deter-
mine critical hyperparameters affecting the scaling behaviours of those architectures. Our analysis
include non-equivariant MPNN, EGNN, and GemNet-OC. Due to the higher computational cost of
eSEN, we adopt the optimal hyperparameters from Passaro & Zitnick (2023); Fu et al. (2025).

Learning Rates and Batch Sizes. When fine-tuning the model, we swept over 12 configurations
for each architecture by testing three learning rates, {1e − 4, 5e − 4, 1e − 3}, and four batch sizes,
{64, 128, 256, 512}. We performed the tuning with approximately one million parameters. As
shown in fig. 10, smaller batch sizes and larger learning rates resulted in lower validation losses.
This finding about small batch sizes aligns with observations in (Gasteiger et al., 2020a; Frey et al.,
2022).

Saturation Depth. Depth d and width w (embedding dimension) govern the parameter count N .
While Kaplan et al. (2020) found Transformer performance depends mainly on N and is independent
of architectural factors such as d and w, recent MPNNs work shows that depth choice can undermine
power-law scaling behaviour (Liu et al., 2024; Sypetkowski et al., 2024). We therefore probe the
depth-saturation point on 3D geometric graphs—the depth beyond which validation error no longer
improves for fixed capacity (Loukas, 2020). To isolate depth/width from model size, we fix N≈106

and sweep (d,w). As shown in fig. 10, non-equivariant MPNNs degrade with increasing depth
(over-smoothing/over-squashing (Topping et al., 2022)), whereas equivariant models continue to
improve, with validation losses plateauing at depths L ∈ {12, . . . , 16}, consistent with prior reports
(Joshi et al., 2023; Passaro & Zitnick, 2023; Pengmei et al., 2025).

Infinite-Width Scaling. Our depth-saturation experiments are motivated by the universality con-
dition for message-passing-based architectures, which requires “sufficient depth” and unbounded
width; see Corollary 3.1 in Loukas (2020). For each architecture type, we train a series of mod-
els with an increasing number of channels (width) along a scaling ladder. We fix the optimal hy-
perparameters—including depth, learning rate η∗ = 1e−3, and batch size—for ≈1M-parameter
models with base width wbase, and use µP (Yang et al., 2021) to transfer η∗ to other widths w via
η(w) = η∗ · wbase

w . We increase model size until the memory of a single NVIDIA A100 (40 GB)
GPU is exhausted. In other words, we keep depth and batch size constant across model sizes and
scale the width as high as our hardware allows.

4 SCALING LAWS

4.1 SCALING COMPUTE

Nominal FLOPs are hardware-agnostic, yet equivariant models often have lower GPU utilization,
so FLOPs may understate practical cost. We therefore fit scaling laws in both theoretical FLOPs C
and wall-clock training hours H , training all models on identical hardware; see Appendix D.

Counting FLOPs. Following Kaplan et al. (2020); Hoffmann et al. (2022), we define the compute
as theoretical FLOPs counting C incurred from training a model of N parameters on D training
tokens:

C ≈ 3× κ×N ×D. (3)

5
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Figure 2: Estimation of κ for architectures used in our study.
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Figure 3: Pareto frontiers of training compute in log–log spaces. Top: Efficient loss-FLOPs frontier.
Bottom: Efficient loss-train-time frontier. Across architectures, the log–log frontiers are approxi-
mately linear. Line color encodes model size (small, large).
Here, κ is an architecture-dependent constant representing the number of FLOPs required for a
single forward pass over one input token. During training, each input incurs both a forward and
a backward pass, with the latter approximately doubling the FLOP cost. Consequently, the total
training cost per token is 3κ. For architectures dominated by dense linear layers, κ ≈ 2, yielding
the widely used expression C ≈ 6ND for transformer-based language models.
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Figure 4: Using higher orders
of feature tensors in eSEN
leads to better scaling expo-
nents w.r.t compute.

Estimating κ. We empirically estimate κ by varying N and D,
recording FLOPs for a pass over D, and fitting C vs. ND. Figure 2
shows a clear linear trend with distinct κ per architecture: uncon-
strained MPNNs with mostly linear layers give κ ≈ 2, whereas
equivariant architectures incur larger κ.

Compute-Optimal Frontier. For compute scaling, we follow ap-
proach 1 in Hoffmann et al. (2022). For each compute budget, we
select the minimum validation loss achieved across runs, yielding
the loss–compute Pareto frontiers. As shown in Figure 3 3, loss-
compute frontiers across architectures follows in linear relation-
ships in log-log space. We then fit these frontier points to the power
law:

L(C) = L∞ + Fc C
−γc , L(H) = L∞ + FhH

−γh , (4)

where L∞ is the irreducible loss for the given architecture and dataset, and FC ,γc, Fh, and γh are
fit parameters. Unlike language modeling with cross-entropy, force-field tasks do not admit a clear
theoretical baseline for L∞ (Brehmer et al., 2025; Wood et al., 2025); therefore, we set L∞ ≈ 0
unless noted otherwise. This choice of L∞ gives exponents that are consistent with the alternative

3GemNet-OC exhibits noisier learning curves because it relies on empirically estimated per-layer scaling
factors—approximated from a few random batches-rather than explicit normalization (e.g., LayerNorm) to
control activation variance.
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derivation in section 4.3. Figure 1 summarizes our main results, which indicate different exponents
for architectures with increasing levels of symmetry expressivity. We also find the argument holds
within the same architecture; particularly, fig. 4 shows an improvement in compute-scaling expo-
nents as the max order ℓmax increases from 2 to 4 in eSEN. Finally, it is worth noting that we do not
study the effects of denoising pretraining, as done for Orb, a non-equivariant model, by Neumann
et al. (2024). Consequently, our compute-scaling results are not directly comparable to this line
of work, since their compute budget is allocated differently between pretraining and downstream
fine-tuning.
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Figure 5: Top: Scaling number of training tokens. Bottom: Scaling number of parameters

4.2 SCALING PARAMETER AND DATASET

Sum-Power-Law. To analyze scaling in model size N and dataset size D, we follow approach 3
of (Hoffmann et al., 2022) and fit the triplets (N,D,L) to the separable power-law model as:

L(N,D) = L∞ +A×N−α +B ×D−β . (5)
L(N,D) is the validation loss represented as a function of (N,D). L∞ A,B, α, β are parameters
that we fit. Notably, we found L∞ to be ≈ 0 in all architecture families. For each N , we measured
validation loss at training set fractions r ∈ {0.1, 0.2, . . . , 1.0}, that is Dr = r ·Dmax

4.

Scaling Analysis. Figure 5 presents our fit for four architectures under study. The top row shows
the power-law fit in validation loss when the number of training tokens, D, is the limiting factor.
Power-law exponents β, are .31, .39, .50 and .75 from left to right. The bottom row shows this
relationship when the number of model parameters, N , is the bottleneck. Here, the exponent α from
left to right is .28, .39, .52, and .82. These results highlight three phenomena:

• Data Efficiency: In data-limited scenarios, equivariant models demonstrate superior scaling be-
haviours compared to unconstrained models, demonstrated by their larger scaling exponents β.
Moreover, equivariance of higher orders translates to larger exponents.

• Expressivity: When bottlenecked by model size, equivariant models exhibit higher scaling ex-
ponents with respect to N . This occurs because explicit symmetry constraints enable greater
expressivity with fewer parameters. Furthermore, the scaling exponent gap between high-order
architectures (i.e., eSEN, GemNet-OC) and lower-order ones (i.e., EGNN) is considerable. While
higher order representations are known to result in better expressivity (Joshi et al., 2023), the fact
that the benefit of such representations grows with scale is a novel finding.

• α ≈ β: The exponents remain close across architectures. We discuss this finding in section 4.3.

In brief, we observe larger data-scaling exponents β for equivariant networks, consistent with prior
reports (Batzner et al., 2022; Brehmer et al., 2025; Wood et al., 2025). Meanwhile, our parameter-
scaling exponents α are larger for equivariant networks, and this differs from (Brehmer et al., 2025),

4Because the GemNet-OC loss curve is high-variance, we smooth it using an exponential moving average
with a smoothing factor of 0.9.
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which report larger α for unconstrained models; note that the tasks are not directly comparable.
Together, the increases in both β and α for equivariant models change the slope of the compute-
optimal frontier under C ∝ ND, which is one of our main findings.

4.3 COMPUTE-OPTIMAL ALLOCATION

We have presented two scaling laws so far: (1) a power law with respect to the compute-optimal
frontier in section 4.1, and (2) a sum-power-law with respect to parameter count and the number
of training tokens in section 4.2. In this section, we discuss the connection between them. Given a
fixed compute budget C (FLOPs), we seek the optimal allocation between model size N and training
tokens D. We pose this as a constrained optimization problem that combines eq. (5) with eq. (3); in
particular, we have:

N∗(C), D∗(C) = argmin L(N,D), 3κND = C. (6)

Recall that L(N,D) = L∞ + AN−α + BD−β , with L∞ ≈ 0. Let N∗(C) and D∗(C) denote,
respectively, the compute-optimal model size and data size for a fixed compute budget C. Solving
eq. (6) yields N∗(C) = Gξ−aCa, D∗(C) = G−1ξ−bCb, where ξ = 3κ, G = (αAβB )

1
α+β , a =

β
α+β , b = α

α+β (Hoffmann et al., 2022; Brehmer et al., 2025). Furthermore, plugging back the
results to L(N,D), we get back the loss-compute frontier power law similar to eq. (4):

L(C) = L(N∗(C), D∗(C)) = FcC
−γc , (7)

where Fc = AG−αξγ +BGβξγ , and γc =
αβ
α+β . Table 1 presents the values of Fc and γc obtained

from two methods. The results show a good agreement between them, indicating the consistency
of our power laws. We further visualize the compute-optimal allocation between model size N and
data size D in section 4.3. Across architectures, we find a ≈ b ≈ 0.5, indicating that parameters
and tokens should be scaled in roughly equal proportions, consistent with the Chinchilla allocation
for transformer language modelling (Hoffmann et al., 2022).

Table 1: Compute-optimal scaling law parameters with 95% confidence intervals; see appendix E.
Compute is scaled to PFLOPs.

Architecture Param Fit Method

Compute-Optimal Frontier
eq. (4)

Sum-Power-Law
eq. (7)

MPNN
Fc 0.928 [0.925–0.930] 0.934 [0.863–0.952]
γc 0.142 [0.141–0.143] 0.146 [0.142–0.159]

MC-EGNN
Fc 0.775 [0.761–0.792] 0.811 [0.784–0.832]
γc 0.173 [0.169–0.178] 0.195 [0.188–0.204]

GemNet-OC
Fc 0.488 [0.485–0.491] 0.479 [0.424–0.542]
γc 0.255 [0.252–0.257] 0.256 [0.232–0.282]

eSEN
Fc 0.703 [0.696–0.712] 0.669 [0.575–0.729]
γc 0.403 [0.401–0.406] 0.392 [0.342–0.451]

10
15

10
16

10
17

10
18

Compute (FLOPs)

10
5

10
6

10
7

# 
M

od
el

 P
ar

am
et

er
s

N(C) C0.53

N(C) C0.50

N(C) C0.49

N(C) C0.48

MPNN EGNN

10
15

10
16

10
17

10
18

Compute (FLOPs)

10
8

10
9

# 
Tr

ai
ni

ng
 T

ok
en

s

D(C) C0.47

D(C) C0.50

D(C) C0.51

D(C) C0.52

GemNet-OC eSEN
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.
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Figure 7: Comparison of scaling exponents for unconstrained MPNNs with/without symmetry reg-
ularization. Left: Rightward shift of the log–log loss–compute frontier. Middle: Symmetry loss
increases the data-scaling exponent (β), indicating improved data efficiency. Right: The parameter-
scaling exponent (α) decreases, suggesting that the regularization benefits larger models more. Val-
idation loss excludes the regularization term (task loss only).

4.4 EFFECT OF SYMMETRY LOSS IN SCALING LAWS

In this experiment, we train an unconstrained model augmented with a symmetry-loss term. The
loss is L = Lobj + λLsym, where Lobj is the task loss in eq. (1) and Lsym is the symmetry loss in
eq. (2) wherein we set M = 5. We use unit coefficients for both terms (i.e., λ = 1), as smaller
weights (λ ≪ 1) on Lsym are reported to have negligible effect (Elhag et al., 2025). For validation,
we track Lobj, ensuring direct comparison with models trained without the symmetry penalty. We
fit the learning-curve trajectories to the functional forms in eq. (4) and eq. (5). Figure 7 shows the
resulting fits. Compared with models trained without Lsym, we observe:

• Opposite Changes in Slopes of D and N : Under the scaling form L(N,D) = L∞ + AN−α +
BD−β , when N is sufficiently large (N → ∞), adding a symmetry-constraint loss slightly in-
creases the data exponent β, indicating improved sample-efficiency: the model leverages the
regularizer to infer approximate symmetries from data. Conversely, in the infinite-data regime
(D → ∞), a smaller model-size exponent α implies that increasing the parameter count N more
effectively reduces loss.

• Unchanged Compute-Optimal Slope: We hypothesize that because the N - and D-slopes change
in opposite directions, the induced exponent γ with respect to compute C ∝ ND is preserved.
Furthermore, the sampling-based regularizer in eq. (2) functions as data augmentation: in addition
to each original sample, we also evaluate M group-transformed inputs and predict the correspond-
ingly transformed targets. As a result, the training FLOPs scale as Csym = (M + 1)Cunconstr,
shifting the compute-optimal frontier to the right by ∆ ≈ γ log(M + 1) ≈ 0.14 log10(6) in
log–log coordinates as shown in fig. 7. Our fits indicate that approximate symmetry enforced via
sampling-based augmentation may be unnecessary for compute-optimal scaling, as the relevant
scaling exponents remain unchanged.

4.5 EFFECT OF MULTI-EPOCH TRAINING IN SCALING LAWS

In the previous sections, we present clear scaling-law trends across architectures in the one-pass
training regime, keeping our empirical setup aligned with insights from rigorous theoretical works
that focus on this setting (Paquette et al., 2024; Bordelon et al., 2024). Unfortunately, scaling laws
for scenarios in which data is repeated for multiple epochs remain under-explored, both in practice
and in theory. To our knowledge, Muennighoff et al. (2023) is among the few works investigating
this area, showing that under fixed compute, training models for a small number of epochs on re-
peated data has negligible effects on the loss, behaving almost as if the models are trained on fresh
data. We examine this hypothesis in our study by simulating a scenario where data is extremely lim-
ited by sampling only 1% of the full dataset, to train the models. The data is repeated over 100 epochs
in each training run, which naturally enables the use of data augmentation to improve the data effi-
ciency of unconstrained models. Also, validation losses are recorded after every 1000 gradient steps.
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Figure 8: Loss-compute Pareto frontiers for unconstrained models trained on 1% of the data for 100
epochs, shown without data augmentation (Left) and with data augmentation (Middle). Right: The
linear trend in log-log space is broken at late training when data augmentation is omitted, and is
recovered when data augmentation is utilized.

Figure 8 shows the resulting fits in this regime. We observe that for unconstrained models trained
without augmentation, the loss-compute frontier follows power-law scaling in early epochs, similar
to findings of Muennighoff et al. (2023). However, this power law breaks down when the number
of passes exceeds a certain threshold, as heavy data repetition induces overfitting. In contrast, data
augmentation substantially stabilizes the learning curves and ultimately recovers the same power law
(γc ≈ 0.14, Fc ≈ 0.96) with respect to the compute-optimal frontier as in the one-epoch training
regime, indicating that the effect of data augmentation under low-data regime is the same as adding
fresh data in one-pass training over larger datasets. Furthermore, we also examine the power laws
of eSEN under this regime, and observe that its compute-optimal power-law holds as the same in
one-pass training. Importantly, fig. 9 reveals that the gap between data augmentation and equivariant
networks continues to grow as compute increases through multi-epoch training.

5 CONCLUSION, FUTURE WORKS AND LIMITATIONS
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Data augmentation 
 L(C) = 0.96C 0.14

Equivariant (eSEN) 
 L(C) = 0.73C 0.38

Figure 9: Scaling with training compute
for unconstrained models trained with
data augmentation and eSEN. The mod-
els are trained on 1% of training dataset
for 100 epochs.

Our empirical study of scaling laws in the geometric task
of interatomic potentials shows that the degree to which
an architecture encodes domain symmetries is correlated
with the exponent in its power-law scaling behaviour. The
empirical change in exponent is dramatic, suggesting that
the role of symmetry potentially extends beyond simply
reducing data dimensionality (Sharma & Kaplan, 2022).
This is because the degrees of freedom in the input and
output are ≈ 3n for n atoms, while the rotation group is
only three-dimensional. Our findings, therefore, suggest
an important future research direction in developing a the-
ory that explains this scaling behaviour. On the practical
side, our work provides a recipe for scaling the model and
data size in geometric tasks, such as force fields, and it
motivates the development of more scalable models that
utilize higher-order representations.

Other directions for future work are, in part, motivated by
the limitations of this work: (1) Our scaling-law analy-
sis focuses on single-epoch, academic-scale settings for
NNIPs. Extending it to multi-epoch training and larger models, as well as more diverse models and
datasets, is a natural next step. (2) Our study of symmetry losses was confined to one simple choice;
it is possible that training with alternative definitions, if scalable, could provide a different scaling
behaviour. (3) Our work completely ignores the family of architecture-agnostic equivariant models,
such as frame averaging and canonicalization (e.g., Puny et al., 2022; Kaba et al., 2023; Kim et al.,
2023b). We plan to study their scaling laws in the future. (4) Finally, we leave to future work a sys-
tematic, large-scale evaluation of denoising pretraining for both unconstrained models (Neumann
et al., 2024; Rhodes et al., 2025) and equivariant networks (Liao et al., 2024a).
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A RELATED WORKS

Neural Scaling Laws. Numerous studies investigating the scaling behavior of neural networks
(Ahmad & Tesauro, 1988; Henighan et al., 2020; Hoffmann et al., 2022; Kaplan et al., 2020; Sharma
& Kaplan, 2022) demonstrate a predictable relationship: performance improves as model size N ,
dataset size D, and computational budget C increase. Various functional forms have been proposed
to model these scaling laws. Using test error ϵ as the evaluation metric, Cortes et al. (1993) and
Hestness et al. (2017) proposed the functional form L = ax−b + L∞, where b > 0, L∞ ≥ 0
denotes the irreducible error, and x can be N , D, or C. While useful, this form may result in
infinite error as the scaling variable x approaches zero (e.g., for models performing random guessing
in classification tasks). To address this limitation, Zhai et al. (2022) introduced a more general
form, L = a(x + c)−b + L∞, where the parameter c represents an effective offset, indicating
the scale at which performance significantly surpasses random guessing. The coefficients of these
power laws have been empirically explored across various research domains and tasks, including
autoregressive generative modeling (Henighan et al., 2020; Kaplan et al., 2020; Hoffmann et al.,
2022) and computer vision (Zhai et al., 2022; Henighan et al., 2020; Alabdulmohsin et al., 2022).
Further research by Hoffmann et al. (2022) and Snell et al. (2025) has improved methodologies
for studying scaling laws, allowing for the determination of optimal scaling strategies to achieve
the best performance on specific tasks under given constraints. Additionally, Caballero et al. (2023)
introduced “broken” scaling laws to better model and extrapolate neural network scaling behaviours,
particularly when the scaling functions exhibit non-monotonic transitions.

Scaling laws for MPNNs on Molecular Graphs. Learning accurate molecular representations is
a fundamental challenge in drug discovery and computational chemistry. Numerous studies have
investigated the scalability of graph neural networks (GNNs), particularly message-passing neural
networks (MPNNs), for predicting molecular properties. For 2D molecular graphs, prior research
by Liu et al. (2024); Sypetkowski et al. (2024); Li et al. (2025) has demonstrated the promising
scalability of MPNNs, showing that network performance follows a power-law scaling behaviour
with increases in both dataset and model sizes. Similar scaling trends have also been observed by
Frey et al. (2023); Li et al. (2025); Wood et al. (2025) for E(3)/SE(3) equivariant MPNNs trained
on 3D atomistic systems. In contrast to these observations, Pengmei et al. (2025) demonstrate
that scaling behaviours of geometric GNNs deviate from conventional power laws across different
settings, including self-supervised, supervised, and unsupervised learning.

Our work extends scaling-law analysis across NNIP architectures. Unlike Wood et al. (2025), which
derives compute-optimal scaling for equivariant models on mixed materials–molecule datasets with
periodic coordinates and other auxiliaries, we focus on molecules using only atomic 3D coordinates
and atomic numbers. Despite using the eSEN same backbone, Wood et al. (2025) report that, for
dense models 5, the compute-optimal strategy scales model size N faster than data size D, whereas
in our setting we observe nearly equal scaling between N and D; though the tasks are different.
Relative to Frey et al. (2023), our study uses a substantially larger force-field dataset, enabling more
robust scaling estimates that consider different architectures.

B ADDITIONAL FIGURES

C DESIGN PRINCIPLES FOR GEOMETRIC MESSAGE PASSING

Table 2: Architectures and their expressivity.

Architectures Characteristic Tensor Order (ℓ) Body Order (ν)

Unconstrained MPNN unconstrained - 2
GemNet-OC invariant 0 4
EGNN equivariant 1 2
eSEN equivariant ≥ 2 2

5The authors also study the effect of linear mixture-of-experts, while we don’t consider this in our work.
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Figure 10: A sweep over batch size-learning rate (top row), and depth-width (bottom row) for three
architectures with numbers of parameters are approximately equal to 1M .

Following Joshi et al. (2023), we categorize the models and their expressivity in Table 2. The tensor
order ℓ denotes the order of the geometric tensor embeddings processed by each model. The body
order refers to the number of nodes participating in a message function. Because GemNet-OC
incorporates dihedral-angle information, its two-hop messages depend simultaneously on the states
of four nodes, and thus it is classified as four-body. By contrast, the remaining architectures use
one-hop message passing that depends only on the source and target nodes, i.e., two-body.

Let {h(t)
1 , . . . , h

(t)
n } denote the node embeddings at layer t, with h

(0)
i initialized from input features

zi. For a distance cutoff c > 0, define the neighborhood

N (v) = {u ̸= v | ∥xu − xv∥ ≤ c }.
We update node v by aggregating messages from its neighbors using a permutation-invariant (mean)
aggregator, making the overall layer permutation-equivariant:

h(t+1)
v =

1

|N (v)|
∑

u∈N (v)

m(t)
u→v, m(t)

u→v = ϕ(t)
m

(
·), (8)

Let ruv := xu − xv be the relative position vector and w := dimh
(t)
v be the embedding width. The

symmetry properties (e.g., E(3)/SE(3) invariance or equivariance) are determined by architectural
choices in ϕ

(t)
m , in particular, how it uses ruv (e.g., through rotational invariants such as ∥ruv∥ or via

equivariant tensor constructions). We discuss specific message constructions in the next section.

C.1 UNCONSTRAINED MESSAGE PASSING

Following Duval et al. (2023), geometry is injected directly:

m(t)
u→v = ϕm

(
h(t)
u , h(t)

v , ruv, ∥ruv∥2
)
, (9)

with h
(t)
u , h

(t)
v ∈ Rw and ϕm : R2w+4 → Rw is an MLP. Because raw vectors ruv are processed

without symmetry constraints, rotational equivariance is not enforced, and thus the node embeddings
h
(t)
v are not rotationally invariant.

C.2 DIRECTIONAL MESSAGE PASSING

GemNet-T (Klicpera et al., 2021) and GemNet-OC (Gasteiger et al., 2022) construct messages from
multi–body E(3)-invariant geometric features, including pairwise distances, bond (three-body) an-
gles, and dihedral (four-body) angles. Define the bond angle φuvk := ∠

(
rvu, rvk

)
and the dihedral
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angle ωuvkj as the angle between the planes (u, v, k) and (v, k, j) (e.g., via normals n1 ∝ rvu×rvk
and n2 ∝ rkj×rkv). Then the message from u to v is

m(t)
u→v =

∑
k∈N (v)\{u}
j∈N (k)\{u,v}

ϕm

(
h(t)
u , h(t)

v , ∥ruv∥2, φuvk, ωuvkj

)
, (10)

where h
(t)
u , h

(t)
v ∈ Rw are scalar node embeddings and ϕm is a learnable function operating on

E(3)-invariant inputs (distance, angles) together with scalar features. Because the geometric inputs
are E(3)-invariant (rotation/translation invariant) and h’s are scalar channels, the resulting message
is E(3)-invariant as well. Linear and bilinear interactions inside ϕm do not affect this invariance so
long as they act on invariant/scalar quantities.

C.3 CARTESIAN-VECTOR MESSAGE PASSING

The original EGNN uses a single vector channel (node coordinates) (Satorras et al., 2021), which
limits expressive power (Joshi et al., 2023). To address this, we use a multi-channel extension,
MC-EGNN (Levy et al., 2023). Each atom v carries both scalar features h

(t)
v ∈ Rw and E vector

channels X(t)
v ∈ R3×E , with the relative vector X(t)

uv := X
(t)
u −X

(t)
v ∈ R3×E .

MC-EGNN maintains invariance/equivariance by updating the invariant node embeddings hv and
the multi-channel equivariant vectors Xv using invariant messages. In particular, messages depend
only on rotation–translation invariants:

m(t)
u→v = ϕm

(
h(t)
u , h(t)

v , ∥X(t)
uv ∥ 2

e

)
, ϕm : R 2w+E→Rw, (11)

where ∥Xuv∥e ∈ RE denotes the channel-wise Euclidean norm (applied over the 3 spatial com-
ponents). The invariant message m

(t)
u→v from Equation (11) is then used in Equation (8) to update

h
(t+1)
v . In addition, MC-EGNN updates the vectors via a channel mixer:

X(t+1)
v = X(t)

v +
1

|N (v)|
∑

u∈N (v)

1

E
X(t)

uv Φx

(
m(t)

u→v

)
, (12)

where Φx is a linear map with weights Wx : Rw →RE×E′
followed by a reshape. This channel

mixing preserves equivariance because E(3) actions (and permutations) act on the 3D indices but
not on the channel index.

Θ(1)-Variance Scaling. Our empirical analyses suggest that increasing E significantly improves
performance; see appendix F. This, in turn, suggests that studying scaling laws requires scaling
both the invariant dimension w and the equivariant channels E. However, very large E can be
computationally expensive, and scaling arbitrarily may cause exploding gradients due to the matrix-
valued function Φx and the matrix product XuvΦx(mu→v). To scale properly, one should ensure
that each layer’s output scales as Θ(1) and gradient update scales as Θ(1) (Yang et al., 2021),
i.e., are invariant across widths. Let Wx ∼ N (0, σ2) with σ = Θ(

√
min(w,EE′)/w2). Setting

E = E′ ≈
√
w yields σ ≈ Θ(1/

√
w). Under µP, we assume the entries of mu→v and Xuv

have variance Θ(1); then Wxmu→v also has Θ(1)-entries, and since reshape has no parameters,
the entries of Φx(mu→v) remain Θ(1). For the matrix product, because both Xuv and Φx(mu→v)
have Θ(1)-variance entries, (XuvΦx(mu→v))3×E , which sums over E, scales as Θ(E). To keep
gradient updates stable across widths, we scale XuvΦx(mu→v) by 1/E ≈ 1/

√
w, instead of 1/

√
E,

which has the same effect as scaling the logits of dot-product attention by 1/emb dim rather than
1/

√
embed dim as discussed by Yang et al. (2021).

C.4 HIGH-ORDER TENSOR MESSAGE PASSING

Irreducible Representations. High-order equivariant models (e.g., Thomas et al. (2018); Ander-
son et al. (2019); Batzner et al. (2022); Batatia et al. (2022); Liao et al. (2024b); Wood et al. (2025))
use SO(3) irreducible representations (irreps) as node embeddings:

h(t)
u =

ℓmax⊕
ℓ=0

h
(t)
u,ℓ, h

(t)
u,ℓ ∈ RCℓ⊗V(ℓ), dimV(ℓ) = 2ℓ+ 1, (13)
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with
⊕

denotes concatenation of multiple order-ℓ tensors that are expanded by Cℓ channels, and thus
total dimension is d :=

∑ℓmax

ℓ=0 Cℓ(2ℓ+1). Assume all orders have the same number of channels C,
the atom embedding has a size of w = C(ℓmax+1)2.

SO(3) Convolution. Let r̂uv = ruv/∥ruv∥. Messages couple source irreps with spherical har-
monics:

m
(t)
u→v,ℓ3

=
∑
ℓ1,ℓ2

wℓ1ℓ2ℓ3

⊕
m3

∑
m1,m2

h
(t)
u, (ℓ1,m1)

C
(ℓ3m3)
(ℓ1,m1), (ℓ2m2)

Y m2

ℓ2
(r̂uv) (14)

where C ℓ3m3

ℓ1m1, ℓ2m2
are Clebsch–Gordan coefficients, wℓ1,ℓ2,ℓ3 are learnable weights, and Yℓ is the

order-ℓ spherical harmonics of the unit displacement vector r̂uv , |ℓ1 − ℓ3| ≤ ℓ2 ≤ |ℓ1 + ℓ3| and
mi ∈ {−ℓi, . . . , ℓi}.

Efficient Convolution. eSCN/eSEN (Passaro & Zitnick, 2023; Fu et al., 2025) sparsify eq. (14)
by rotating vector ruv into an edge-aligned frame. Let Ruv ∈ R3×3 such that Ruv r̂uv = (0, 1, 0).
Then Y m2

ℓ2
(Ruv r̂uv) = 0 unless m2 = 0. Therefore, we can simplify eq. (14) as:

m
(t)
u→v,ℓ3

= D−1
ℓ3

∑
ℓ1,ℓ2

wℓ1,ℓ2,ℓ3

⊕
m3

∑
m1

h̃
(t)
u,(ℓ1,m1)

C
(ℓ3,m3)
(ℓ1,m1),(ℓ2,0)

, (15)

here h̃
(t)
(ℓ1,m1)

= Dℓ1h
(t)
(ℓ1,m1)

where we denote Dℓ1 := Dℓ1(Ruv) and Dℓ3 := Dℓ3(Ruv) denote
Wigner-D matrices of order ℓ1 and ℓ3, respectively. The output is rotated back by Dℓ3 to ensure
equivariance, and without loss of generality, we re-scale Y m2

ℓ2
(Ruv r̂uv) to 1. Given that m2 = 0,

C
(ℓ3,m3)
(ℓ1,m1), (ℓ2,0)

are non-zero only when m1 = ±m3. This further simplifies the computation to:

m
(t)
u→v,ℓ3

= D−1
ℓ3

∑
ℓ1,ℓ2

wℓ1,ℓ2,ℓ3

⊕
m3

(
h̃
(t)
v,(ℓ1,m3)

C
(ℓ3,m3)
(ℓ1,m3),(ℓ2,0)

+h̃
(t)
v,(ℓ1,−m3)

C
(ℓ3,m3)
(ℓ1,−m3),(ℓ2,0)

)
. (16)

Rearranging eq. (16), we obtain:

m
(t)
u→v,ℓ3

= D−1
ℓ3

∑
ℓ1

⊕
m3

(
h̃
(t)
v,(ℓ1,m3)

∑
ℓ2

wℓ1,ℓ2,ℓ3C
(ℓ3,m3)
(ℓ1,m3),(ℓ2,0)

+h̃
(t)
v,(ℓ1,−m3)

∑
ℓ2

wℓ1,ℓ2,ℓ3C
(ℓ3,m3)
(ℓ1,−m3),(ℓ2,0)

)
.

(17)
Passaro & Zitnick (2023) propose to replace the Clesbh-Gordon coefficients with parameterized
weights as:

w̃(ℓ1,ℓ3)
m3

=
∑
ℓ2

wℓ1,ℓ2,ℓ3C
(ℓ3,m3)
(ℓ1,m3),(ℓ2,0)

=
∑
ℓ2

wℓ1,ℓ2,ℓ3C
(ℓ3,−m3)
(ℓ1,−m3),(ℓ2,0)

, for m ≥ 0, (18)

w̃
(ℓ1,ℓ3)
−m3

=
∑
ℓ2

wℓ1,ℓ2,ℓ3C
(ℓ3,m3)
(ℓ1,−m3),(ℓ2,0)

= −
∑
ℓ2

wℓ1,ℓ2,ℓ3C
(ℓ3,−m3)
(ℓ1,m3),(ℓ2,0)

, for m < 0. (19)

Plugging back this into eq. (16), we obtain:

m
(t)
u→v,ℓ3

= D−1
ℓ3

∑
ℓ1

y
(ℓ1)
ℓ3

, (20)

where:

y
(ℓ1)
ℓ3,0

= w̃
(ℓ1,ℓ3)
0 h̃

(t)
u,(ℓ1,0)

(21)(
y
(ℓ1)
(ℓ3,m3)

y
(ℓ1)
(ℓ3,−m3)

)
=

(
w̃

(ℓ1,ℓ3)
m3 −w̃

(ℓ1,ℓ3)
−m3

w̃
(ℓ1,ℓ3)
−m3

w̃
(ℓ1,ℓ3)
m3

)
·

(
h̃
(t)
u,(ℓ1,m3)

h̃
(t)
u,(ℓ1,−m3)

)
for m3 > 0. (22)

Therefore, the overall computation is reduced to an equivalent SO(2) linear operation with a param-
eterized kernel as in eq. (22). In eSEN, SO(2) blocks are applied only for values |m3| ≤ mmax ≤
ℓmax; we set mmax = 2 as similar to the default setting.
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Table 3: Scaling ladder for unconstrained MPNN.

Depth Width # Params
5 128 222404
5 256 838020
5 320 1293284
5 375 1763133
5 441 2422704
5 517 3311714
5 607 4543769
5 712 6226800
5 835 8535023
5 1150 16101729
5 1349 22109506
5 1583 30389712
5 1857 41755644
5 2179 57415632
5 2557 78974296

Table 4: Scaling ladder for EGNN. We scale the number of channels for equivariant vectors as
√
w,

ensuring stable update and Θ(1)-variance entries when scaling w.

Depth d Width w # Params
12 32 156358
12 48 306199
12 56 403992
12 64 516553
12 81 786925
12 102 1195553
12 120 1590131
12 160 2745453
12 200 4231015
12 300 9214218
12 500 24959524
12 600 35673024
12 721 51092972
12 800 63035228

D EXPERIMENTAL SETUP

Graph Construction. Except for GemNet-OC, geometric graphs are built with a radial cutoff of
6 Å and a maximum of 30 neighbors per atom. For GemNet-OC, using the same cutoff occasionally
failed on molecules where its high-order message passing requires a larger candidate neighborhood.
Accordingly, we use a 10 Å cutoff and cap the neighborhood at 50 neighbors for this architecture.

Direct-Force Prediction. Although the pre-training performance of direct-force models does not
always transfer seamlessly to certain downstream physical tasks, these models provide substantial
efficiency gains during pre-training. We focus on the scaling behaviour of direct-force models in
the pre-training regime, i.e., training across large collections of molecular systems, and therefore
employ them consistently throughout our experiments.

Energy Reference and Normalization. Following Wood et al. (2025)6, we apply the same ref-
erence scheme to the energies. Then, we normalize those referenced energies as e′ = (e − µ)/σ,
where µ and σ are the sample mean and standard deviation estimated from the training set. Atomic

6https://github.com/facebookresearch/fairchem/tree/main
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forces for atom i, f ′
i = −∂e/∂xi, are invariant to constant energy shifts; accordingly, we rescale

them by the same factor: f ′
i = fi/σ.

Table 5: Scaling ladder for eSEN. Since eSEN use high-order tensors expanded into C channels
each, the embedding width w = (ℓmax + 1)2C.

Depth ℓmax mmax # Channels C # Hidden Channels # Params
12 4 2 4 32 441778
12 4 2 8 32 878434
12 4 2 10 32 1100746
12 4 2 12 32 1325714
12 4 2 16 32 1783618
12 4 2 20 32 2252146
12 4 2 32 32 3721474

Table 6: Scaling ladder for GemNet-OC.

Depth Width # Params
4 32 312992
4 48 575472
4 64 937280
4 80 1398416
4 96 1958880
4 112 2618672
4 128 3377792
4 144 4236240
4 160 5194016
4 176 6251120
4 192 7407552
4 204 8340060

Training Hardware. We trained all models across the different architectural families under iden-
tical hardware conditions on NVIDIA 40GB A100 GPUs of the same compute cluster - each run
within a single unit. This setup naturally incorporates overheads such as data loading, CPU bot-
tlenecks, and metrics logging. During training, we continuously monitored validation losses along
with the corresponding wall-clock training times. The reported training times thus include forward
and backward passes over training samples, as well as forward passes over validation samples during
intermediate evaluation checkpoints. We chose batch sizes to strike a balance between performance
and computational efficiency, as using extremely small batch sizes is impractical. Based on the
empirical results in Figure 10, we set the batch size to 128 for EGNN, and 64 for the remaining
architectures 7. These batch sizes were fixed across model sizes within each model family.

Scaling Ladder. Tables 3, 4, 5, 6 detail model sizes of all architectures used in this study.

Table 7: Scaling parameters for sum-power-law in eq. (5) with 95% confidence intervals.

Architecture log10(A) log10(B) α β

Unconstrained MPNN 1.356 [1.307-1.371] 2.194 [2.147-2.608] 0.276 [0.266- 0.278] 0.311 [0.301-0.368]
EGNN 1.582 [1.494,1.692] 2.750 [2.660-2.863] 0.387 [0.370-0.408] 0.394 [0.382-0.401]
GemNet-OC 2.109 [1.901-2.422] 3.261 [2.842-3.607] 0.524 [0.484-0.584] 0.499 [0.444-0.544]
eSEN 3.760 [3.119-4.333] 5.129 [4.348-6.224] 0.817 [0.706-0.918] 0.753 [0.662-0.888]

7For fair comparison, we double EGNN’s reported training time.
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E UNCERTAINTY IN SCALING LAWS.

Due to the cost of training NNIPs, we perform scaling study within a range of compute and model
sizes and do not consider tuning other hyper-parameters, such as weight decay. Thus, we construct
95% confidence intervals on the fit parameters of eq. (4) and eq. (5) from 1000 non-parametric boot-
straps. Table 7 demonstrates the values of fit parameters of eq. (5) along with confidence intervals
shown in parenthesis.

F EFFECT OF SCALING VECTOR CHANNELS

We evaluate the effect of multi-channel vectors in EGNN by plotting validation loss against the
number of vector channels E in fig. 11. Loss consistently decreases as E grows.

0 200M 400M 600M 800M
Training Tokens

10
0

3 × 10
1

4 × 10
1

6 × 10
1

2 × 10
0

Va
l L

os
s

1

2

4

8

16

Ve
ct

or
 C

ha
nn

el
s

Figure 11: Effect of scaling number of equivariant channels in EGNN

G SYMMETRY ADVANTAGES ON DATASETS OF DIVERSE MOLECULAR TYPES

In this experiment, we investigate whether the advantages of symmetry diminish when models are
trained on datasets containing more diverse molecular types, e.g., electrolytes, metal complexes,
and biomolecules rather than only neutral species. We train an unconstrained MPNN and eSEN
on the 4M split of the OpenMol dataset, which is sampled uniformly across the diverse molecular
types mentioned above. For validation, we use a held-out subset of 79K samples from the entire 4M
split, using the remainder for training. As shown in fig. 12, we observe that the benefits gained by
symmetry-aware design still persist even with this highly diverse dataset. Specifically, the difference
in scaling exponents between the unconstrained MPNN and eSEN remains significant, a result sim-
ilar to our findings for the neutral species split. It is important to note that the scaling exponents for
each architecture itself may differ from those observed in the neutral split. This is expected because
the coefficients of neural scaling laws are also dependent on the training dataset (Maloney et al.,
2022; Bahri et al., 2024; Bordelon et al., 2024).

H EFFECT OF TEST-TIME AUGMENTATION IN SCALING LAWS

An unconstrained model ϕθ can be made equivariant at test time via group averaging (GA) with no
additional training cost.

fθ(x) =
1

M

M∑
i=1

ρout(g
−1
i )ϕθ(ρin(gi)x), (23)

where gi ∼ µG is a sample from the Haar measure, ρin and ρout denote linear actions on input
and output of ϕθ, respectively. In this section, we explore the effect of GA on the performance of
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Figure 12: Loss-compute Pareto frontiers for unconstrained models (Left) and eSEN (Middle)
trained on OMol-4M split. Right: The compute-optimal power laws reveal that the benefits of
symmetry persist at scale, even when models are trained on datasets containing a high diversity of
molecular types.

unconstrained models at scale, especially when the model’s parameter count and number of group
elements increase.

Figure 13 shows that group averaging yields only a minimal improvement in the performance of
ϕθ across all model sizes. Furthermore, this improvement saturates as the number of rotations, M ,
increases beyond a certain threshold. To better understand this behavior, we fit scaling laws with
respect to the number of parameters N for both the baseline and the GA models:

L− LD = AN−α. (24)

We use the parameter scaling relationship to analyze the impact of group averaging (GA). LD

represents the lowest achievable loss for ϕθ at a fixed data size D; see eq. (7). For this analysis,
we utilize models trained on the largest dataset, Dmax ≈ 9.2 × 108 (atoms). Based on the results
in section 4, the data-limited loss is LD ≈ 1.6 × 10−2 × Dmax ≈ 0.223. We consider the GA
performance at the onset of saturation, specifically at M = 32. The fit results in fig. 13 show
that group averaging preserves the power-law exponent α that governs the scaling of ϕθ. As the
parameter count increases, the performance shows only a slight downward shift in the log-log scaling
relationship, due to a minor change in the multiplying constant A.
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Figure 13: Scaling analysis for group averaging (GA) at test time. Left: The benefit derived from
increasing the number of rotations saturates beyond a certain threshold. Right: Scaling performance
with respect to parameter count shows that utilizing group averaging results in a slight downward
shift of the linear trend in log-log space, while the critical scaling exponent remains unchanged.
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I DECOMPOSING ENERGY AND FORCE LOSS

Figure 14 shows the decomposition of the total loss in eq. (1) into its energy and force components.
We observe that the energy learning curves are relatively noisy, whereas the force losses remain
smooth across model sizes for each architecture.
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Figure 14: Learning curves of all models, including Energy Loss (Top) and Force Loss (Bottom).
Line color encodes model size (small, large)
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J EFFECT OF TRANSLATION INVARIANCE
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Figure 15: MPNNs exhibit a performance drop when translation invariance is not maintained.

K TRAINING INSTABILITIES OF VANILLA TRANSFORMERS

We further push the limit of lacking inductive biases by training a vanilla transformer for force-field
tasks. In particular, we train a GPT-style encoder in which atomic coordinates are fed directly into
the model by concatenating them with embeddings computed from atomic numbers. As a result,
E(3) equivariance is completely ignored in this setup. Moreover, because the transformer learns
global attention over all atom nodes, the inductive bias of local neighborhoods, which is critical in
NNIPs, is also abandoned. As shown in Figure 16, vanilla transformers fail to exhibit meaningful
learning, as the learning curves saturate rapidly and remain unchanged for the remainder of training.
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Figure 16: Training instabilities of vanilla transformers on force-field tasks.

L USAGE OF LARGE LANGUAGE MODELS

We used LLMs to assist with the writing of the paper (mainly for polishing) and also for coding.
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