

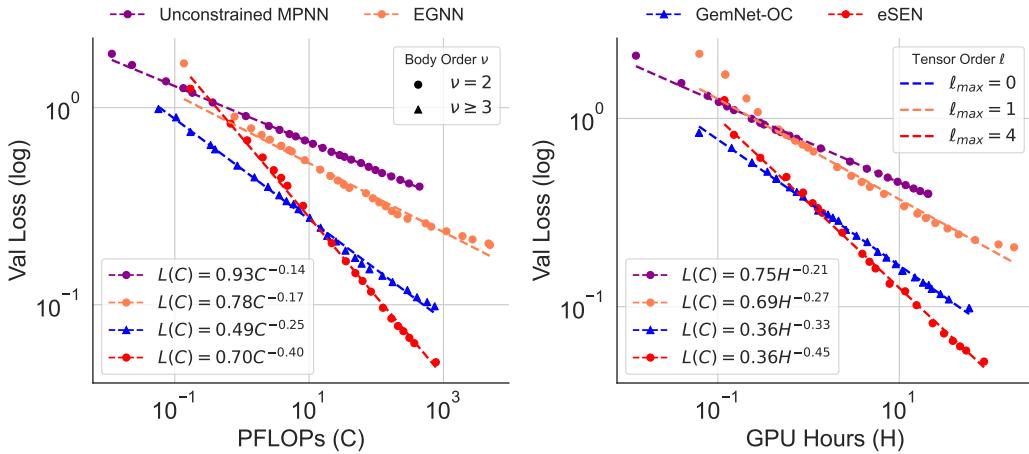
000 001 SCALING LAWS AND SYMMETRY, 002 EVIDENCE FROM NEURAL FORCE FIELDS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 We present an empirical study in the geometric task of learning interatomic po-
012 tentials, which shows equivariance matters even more at larger scales; we show a
013 clear power-law scaling behaviour with respect to data, parameters and compute
014 with “architecture-dependent exponents”. In particular, we observe that equivari-
015 ant architectures, which leverage task symmetry, scale better than non-equivariant
016 models. Moreover, among equivariant architectures, higher-order representations
017 translate to better scaling exponents. Our analysis also suggests that for compute-
018 optimal training, the data and model sizes should scale in tandem regardless of the
019 architecture. At a high level, these results suggest that, contrary to common belief,
020 we should not leave it to the model to discover fundamental inductive biases such
021 as symmetry, especially as we scale, because they change the inherent difficulty
022 of the task and its scaling laws.



039 Figure 1: Performance of neural network interatomic potentials follows a power law (linear in log-
040 log space) in training compute (PFLOPs, GPU-hours). The scaling behaviour varies with archi-
041 tectural complexity: the slope of the performance curve improves as the architecture changes from
042 unconstrained to low-order to high-order, implying that performance gaps widen with increasing
043 compute. *Body order ν* : number of nodes whose states define a message within a layer. *Tensor*
044 *order ℓ* : order of geometric features processed by the models. **Left**: Empirical scaling laws along
045 the FLOPs-optimal frontier. **Right**: Empirical scaling laws along the train-time-optimal frontier.

046 1 INTRODUCTION

049 Recent years have witnessed extensive study of neural scaling laws across various machine learning
050 domains, including natural language and vision. The general observation supported by the theory
051 is that test errors exhibit a power-law relationship with the scale of training data points, model
052 parameters, and the amount of compute in floating-point operations (FLOPs). These laws identify
053 the optimal scaling of model size with dataset size for a given compute budget, enabling an optimal
use of resources at scale.

054 A common view is that the scaling behaviour is consistent across various expressive architectures
 055 for a task—i.e., the choice of architecture can only increase or decrease the loss by a multiplicative
 056 factor that remains constant across sufficiently large scales. This belief is supported by both
 057 theoretical results (Sharma & Kaplan, 2022; Bahri et al., 2024) and empirical studies in different
 058 domains (Ahmad & Tesauro, 1988; Hestness et al., 2017), including language (Kaplan et al., 2020;
 059 Hoffmann et al., 2022) and vision (Zhai et al., 2022), and it is further reinforced by Sutton’s bitter
 060 lesson (Sutton, 2019), which highlights that attempts to encode inductive biases, such as symmetry,
 061 explicitly are often outperformed in the long run, since models can learn these structures on their
 062 own when scaled.

063 The specific inductive bias of symmetry, and in particular Euclidean and rotational symmetry have
 064 been successfully leveraged in many domains, including for molecular force fields. The success
 065 of these networks is often attributed to their improved generalization and robustness to out-of-
 066 distribution data (Batatia et al., 2022; Petrache & Trivedi, 2023). However, one may argue that
 067 equivariant networks are harder to scale as their specialized operations, such as tensor products,
 068 spherical harmonics (Thomas et al., 2018; Anderson et al., 2019; Liao & Smidt, 2023), or high-order
 069 message passing (Gasteiger et al., 2020b; Klicpera et al., 2021), are complex and computationally
 070 expensive. At the same time, several works in protein folding (Abramson et al., 2024), molecule con-
 071 former generation (Wang et al., 2024), and [Neural Network Interatomic Potentials \(NNIPs\)](#) (Deng
 072 et al., 2023; Qu & Krishnapriyan, 2024; Rhodes et al., 2025) demonstrate that non-equivariant net-
 073 works can perform well in geometric tasks. Brehmer et al. (2025) also show that non-equivariant
 074 architectures trained with data augmentation can perform on par with their equivariant counterparts
 075 when given sufficient compute. All of this paints a picture in favour of forgoing equivariance and
 076 scaling simpler non-equivariant models.

077 This paper presents a careful empirical study that questions this growing mindset and shows that
 078 equivariance matters even more as we scale. We report a clear architecture-dependent scaling expo-
 079 nent in model size, data size, and compute, [for several widely used scalable NNIPs architectures that](#)
 080 [encode rotational and permutation symmetry to varying degrees](#). This translates to a performance
 081 gap that grows with scale, favouring scalable models with a higher-order symmetry bias at larger
 082 scales; see fig. 1.

083 Our target domain for this study has witnessed a growing number of deep learning techniques for
 084 predicting quantum properties of atomistic systems in recent years, where neural models approxi-
 085 mate computationally demanding ab initio calculations, such as density functional theory. The most
 086 promising progress is being made on NNIPs, which map molecular systems to their energies and
 087 forces. NNIPs’ foundation models are unlocking new possibilities through efficient and accurate
 088 molecular dynamics, and our findings in this domain identify the most promising direction for the
 089 design of models that are trained at scale.

090 1.1 KEY FINDINGS AND CONTRIBUTIONS

091 In this work, we conduct comprehensive scaling-law experiments, drawing on best practices and
 092 insights from prior work on the expressive power of (geometric) message passing neural networks
 093 (MPNNs) (Loukas, 2020; Joshi et al., 2023), maximal update parametrization (μ P) (Yang et al.,
 094 2021), and compute-optimal scaling (Hoffmann et al., 2022). Our key findings are:

- 095 • **Clear power law scaling.** Message-passing NNIPs obey power-law scaling with respect to com-
 096 pute, data, and model size. For compute, unlike prior studies that report only FLOPs within ar-
 097 chitectures, we characterize scaling with both FLOPs and wall-clock training time (GPU-hours).
 098 Given that equivariant networks can be less GPU-friendly, this approach provides a more com-
 099 plete view for practical purposes. While prior work in geometric domains has shown architecture-
 100 dependent scaling with respect to only the dataset size (Batzner et al., 2022), to our knowledge,
 101 none of them provide a complete and comparable picture to ours.
- 102 • **Architecture-dependent exponents.** Power-law exponents increase as the “degree” of equivari-
 103 ance grows, from non-equivariant (unconstrained) models to lower- to higher-order equivariant
 104 designs.
- 105 • **Compute-optimal scaling.** We find that the power-law exponents for dataset and model size in a
 106 compute-optimal scaling are similar across non-equivariant and equivariant architectures of differ-

108 ent representation degrees. This means that a compute-optimal scaling should increase the model
 109 and dataset size in tandem; this mirrors the findings of Hoffmann et al. (2022) in natural language.
 110

- 111 • **Multi-epoch training and data-augmentation.** While our main results consider a single epoch
 112 regime, we show that the same scaling laws hold across tens of epochs in a multi-epoch setting.
 113 This is because, at scale – even with 1% of our training set – the effect of overfitting is negligible.
 114 For non-equivariant models, data augmentation is required to avoid overfitting and maintain the
 115 scaling coefficients. We also consider inference-time augmentation for the unconstrained model,
 116 and show that it only changes the multiplicative coefficient (rather than the exponent) in the scaling
 117 law, and its benefit saturates quickly with the number of augmentations for this task.
 118
- 119 • **Scaling effect of symmetry loss.** Enforcing symmetry through loss does NOT seem to provide the
 120 same benefits as having an equivariant architecture.
 121
- 122 • **Trend in optimal depth.** For a fixed parameter and compute budget, the optimal depth of the
 123 network is correlated with the “degree” of equivariance among the architectures we studied; with
 124 equivariant networks, the benefit of depth saturates at higher values, and for higher rotation order
 125 networks this value grows larger; this corroborates the claims of Joshi et al. (2023); Jia et al.
 126 (2020).
 127

128 **Organization.** The rest of the paper is organized as follows. Section 2 outlines problem setup and
 129 symmetry constraints through architectures and loss. Section 3 discusses our experiments, includ-
 130 ing key hyperparameters and scaling strategies. Section 4 presents our results and their analysis.
 131 Section 5 concludes with an emphasis on limitations of our work, and important directions for
 132 near-future work. Appendix includes detailed related works in neural scaling laws and existing re-
 133 sults on molecular graphs in appendix A, geometric message passing in appendix C, experimental
 134 setup in appendix D, uncertainty in scaling laws in appendix E, the effect of scaling vector channels
 135 appendix F, results on more diverse dataset appendix G, effect of test-time augmentation in ap-
 136 pendix H, ablation study on translation invariance in appendix J, and instabilities of training vanilla
 137 transformers for this tasks in appendix K.
 138

139 2 SETUP

140 An atomistic system can be represented as a point cloud $X = \{(z_1, x_1), \dots, (z_n, x_n)\}$, where $z_i \in$
 141 \mathbb{N} and $x_i \in \mathbb{R}^3$ are the the atomic number and the position respectively. The potential energy $e(X)$
 142 is a scalar that is invariant to global translations and rotations, while forces $f_i(X) = -\partial e(X)/\partial x_i$
 143 are vectors that are translation-invariant and rotation-equivariant. The task of our NNIPs is to train
 144 a neural network $\phi_\theta : \mathbb{N} \times \mathbb{R}^{3 \times n} \rightarrow \mathbb{R}^{1+3 \times n}$ that takes X as input and predicts the potential energy
 145 (scalar) and atom-level forces, one for each atom – i.e., $\phi_\theta : X \mapsto (e_\theta(X), \{f_{\theta,1}(X), \dots, f_{\theta,n}(X)\})$.
 146 While it is sufficient to learn the energy for predicting conservative forces, direct force prediction is
 147 significantly more scalable. Using this approach enables one to benefit from the dense signal during
 148 pre-training. In post-training, the force prediction can be removed and the model can be fine-tuned
 149 to predict conservative forces through backpropagation via the predicted energies, ensuring a good
 150 balance between computational cost and accuracy (Bigi et al., 2025; Fu et al., 2025). We minimize
 151 the per-atom mean absolute error (MAE) and mean squared error of forces (Fu et al., 2025; Wood
 152 et al., 2025):

$$153 \mathcal{L}(\phi_\theta, X) = \frac{\lambda_e}{n} \|e_\theta(X) - e(X)\|_1 + \frac{\lambda_f}{n} \sum_{i=1}^n \|f_{\theta,i}(X) - f_i(X)\|_2, \quad (1)$$

154 with $\lambda_e, \lambda_f > 0$ are the coefficients that control the relative importance of energy and force predic-
 155 tions; we use $\lambda_e = \lambda_f$.
 156

157 2.1 ARCHITECTURES

158 Since we observed instability issues when scaling vanilla transformers for this task, we focused
 159 on message-passing architectures. Here, in addition to a basic unconstrained MPNN, following
 160 the classification of MPNNs in Joshi et al. (2023), we considered three widely adopted equivariant
 161 architectures that cover various body and tensor orders. The body order corresponds to S_n repre-
 162 sentations, and refers to the number of nodes participating in a message function. The tensor order
 163 ℓ corresponding to $SO(3)$ representations, and denotes the order of the geometric tensor embed-
 164 dings processed by each model. Below we briefly enumerate these; for more background on these
 165 architectures, see appendix C:
 166

- 162 1. **unconstrained**: a vanilla MPNN that directly processes geometric features, i.e., relative position
 163 vectors, without any symmetry constraints.
- 164 2. **invariant scalars**: geometric message passing neural network (GemNet-OC) (Gasteiger et al.,
 165 2022) is a variation of GemNet (Klicpera et al., 2021) adapted for large and diverse molecular
 166 dataset. Although it uses invariants such as interatomic distances and angles, and therefore has a
 167 tensor order $\ell = 0$, it can approximate equivariant functions from edge-based invariant features,
 168 because it performs geometric message passing with two-hop and edge-directional embeddings;
 169 see Theorem 3 in Klicpera et al. (2021). Because GemNet-OC incorporates dihedral-angle infor-
 170 mation, its two-hop messages depend simultaneously on the states of four nodes, and thus it is
 171 classified as four-body.
- 172 3. **Cartesian vectors**: E(n)-equivariant graph neural network (EGNN) (Satorras et al., 2021); in
 173 particular, the extension of Levy et al. (2023), which allows for more than one equivariant vector
 174 channel. We use a specific μ_P informed scaling, in which scalar channels scale quadratically wrt
 175 number of vector channels, see appendix C for details.
- 176 4. **high-order spherical tensors**: equivariant Smooth Energy Network (eSEN) (Fu et al., 2025),
 177 which uses higher-order irreducible representations of rotation group ($\ell \geq 2$). Unlike other ar-
 178 chitectures in the same category (e.g., Thomas et al., 2018; Batzner et al., 2022; Liao & Smidt,
 179 2023), we found eSEN more scalable because it uses frame alignment to sparsify the tensor
 180 product, allowing it to eliminate Clebsch–Gordan coefficients and to directly parameterize ker-
 181 nels with linear layers (Passaro & Zitnick, 2023).

182 2.2 SYMMETRY LOSS

184 Symmetry-based losses have been used in different settings from self-supervised learning (Dan-
 185 govski et al., 2021; Bai et al., 2025), to physics-informed settings (Akhound-Sadegh et al., 2023;
 186 Yang et al., 2024), generative modelling (Tong et al., 2025) and symmetry discovery (Escriche &
 187 Jegelka, 2025). A canonical choice is a loss that penalizes deviations from equivariance constraints
 188 for randomly sampled global transformations (e.g., Kim et al., 2023a; Elhag et al., 2025; Bai et al.,
 189 2025):

$$190 \quad \mathcal{L}_{\text{sym}}(\phi_{\theta}; x, y) = \frac{1}{M} \sum_{i=1}^M \mathcal{L}(\phi_{\theta}(\rho_{\text{in}}(g_i) x), \rho_{\text{out}}(g_i) y), \quad (2)$$

193 where $g_i \sim \mu_G$ is a sampled from the Haar measure, ρ_{in} and ρ_{out} define linear actions on inputs x
 194 and targets y , respectively, and \mathcal{L} is the task loss. The symmetry-augmented term is added to the
 195 base objective in eq. (1) when training f_{θ} .

196 For our task, the translation part of the special Euclidean group $SE(3) = SO(3) \times T(3)$ is accounted
 197 for by centring the molecule at its center of mass, and the loss is only for the rotation group. ¹

198 3 EXPERIMENTS

200 3.1 DATASET

202 We conduct our experiments on the OpenMol neutral-molecule subset (Levine et al., 2025), with
 203 34M training samples and 27K held-out validation samples.² Treating atom nodes as tokens, the
 204 training set corresponds to approximately $D \approx 9.2 \times 10^8$ tokens. Following scaling studies in
 205 LLMs, we consider a single-epoch training regime, where each sample is observed exactly once.
 206 While a multi-epoch setting can be more practical for AI4Science due to smaller datasets compared
 207 to language, our goal was to stay faithful to existing methodologies and avoid possible confounding
 208 effects (Muennighoff et al., 2023).

209 3.2 OPTIMIZATION

211 Following Choshen et al. (2025), which shows that estimating scaling laws from intermediate
 212 checkpoints yields more robust results, we track validation losses throughout training and fit these

214 ¹We also tried using regularization that measures invariance by differentiating along infinitesimal genera-
 215 tors, similar to Rhodes et al. (2025), but we could not achieve stable training.

216 ²We use the neutral subset rather than the full 100M-molecule corpus due to main-memory constraints.

points—excluding the first 1% – 10% of steps—to a standard scaling-law functional form (Kaplan et al., 2020; Hoffmann et al., 2022). A well-known caveat in scaling-law analyses is the sensitivity to learning-rate schedules, particularly when predefined decay steps are used (Hoffmann et al., 2022; Hu et al., 2024). To address this, we adopt scheduler-free AdamW-style optimizers (Defazio et al., 2024), which not only remove the need for tuning decay schedules but also allow us to capture model training dynamics within a single run—without retraining from scratch at each data ratio or relying on checkpoint restarts (Hu et al., 2024). Crucially, this approach enables more accurate measurement of training time by mitigating hardware-related artifacts and helps us derive scaling laws directly with respect to training time, measured in GPU-hours.

3.3 HYPER-PARAMETER TUNING

Investigating scaling behaviours of neural networks necessitates evaluations under optimal conditions for both efficiency and performance. We, therefore, perform systematic experiments to determine critical hyperparameters affecting the scaling behaviours of those architectures. Our analysis include non-equivariant MPNN, EGN, and GemNet-OC. Due to the higher computational cost of eSEN, we adopt the optimal hyperparameters from Passaro & Zitnick (2023); Fu et al. (2025).

Learning Rates and Batch Sizes. When fine-tuning the model, we swept over 12 configurations for each architecture by testing three learning rates, $\{1e-4, 5e-4, 1e-3\}$, and four batch sizes, $\{64, 128, 256, 512\}$. We performed the tuning with approximately one million parameters. As shown in fig. 10, smaller batch sizes and larger learning rates resulted in lower validation losses. This finding about small batch sizes aligns with observations in (Gasteiger et al., 2020a; Frey et al., 2022).

Saturation Depth. Depth d and width w (embedding dimension) govern the parameter count N . While Kaplan et al. (2020) found Transformer performance depends mainly on N and is independent of architectural factors such as d and w , recent MPNNs work shows that depth choice can undermine power-law scaling behaviour (Liu et al., 2024; Sypetkowski et al., 2024). We therefore probe the depth-saturation point on 3D geometric graphs—the depth beyond which validation error no longer improves for fixed capacity (Loukas, 2020). To isolate depth/width from model size, we fix $N \approx 10^6$ and sweep (d, w) . As shown in fig. 10, non-equivariant MPNNs degrade with increasing depth (over-smoothing/over-squashing (Topping et al., 2022)), whereas equivariant models continue to improve, with validation losses plateauing at depths $L \in \{12, \dots, 16\}$, consistent with prior reports (Joshi et al., 2023; Passaro & Zitnick, 2023; Pengmei et al., 2025).

Infinite-Width Scaling. Our depth-saturation experiments are motivated by the universality condition for message-passing-based architectures, which requires “sufficient depth” and unbounded width; see Corollary 3.1 in Loukas (2020). For each architecture type, we train a series of models with an increasing number of channels (width) along a scaling ladder. We fix the optimal hyperparameters—including depth, learning rate $\eta^* = 1e-3$, and batch size—for $\approx 1M$ -parameter models with base width w_{base} , and use μP (Yang et al., 2021) to transfer η^* to other widths w via $\eta(w) = \eta^* \cdot \frac{w_{\text{base}}}{w}$. We increase model size until the memory of a single NVIDIA A100 (40 GB) GPU is exhausted. In other words, we keep depth and batch size constant across model sizes and scale the width as high as our hardware allows.

4 SCALING LAWS

4.1 SCALING COMPUTE

Nominal FLOPs are hardware-agnostic, yet equivariant models often have lower GPU utilization, so FLOPs may understate practical cost. We therefore fit scaling laws in both theoretical FLOPs C and wall-clock training hours H , training all models on identical hardware; see Appendix D.

Counting FLOPs. Following Kaplan et al. (2020); Hoffmann et al. (2022), we define the compute as theoretical FLOPs counting C incurred from training a model of N parameters on D training tokens:

$$C \approx 3 \times \kappa \times N \times D. \quad (3)$$

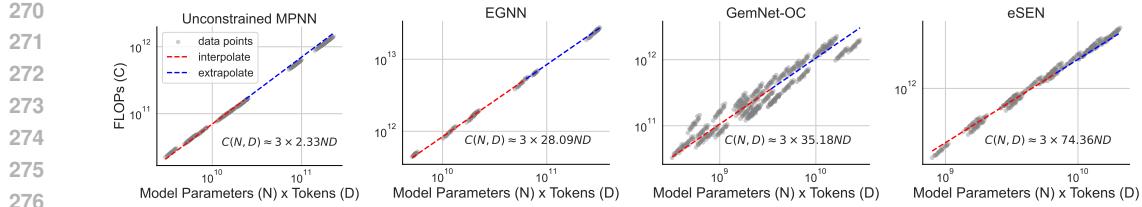
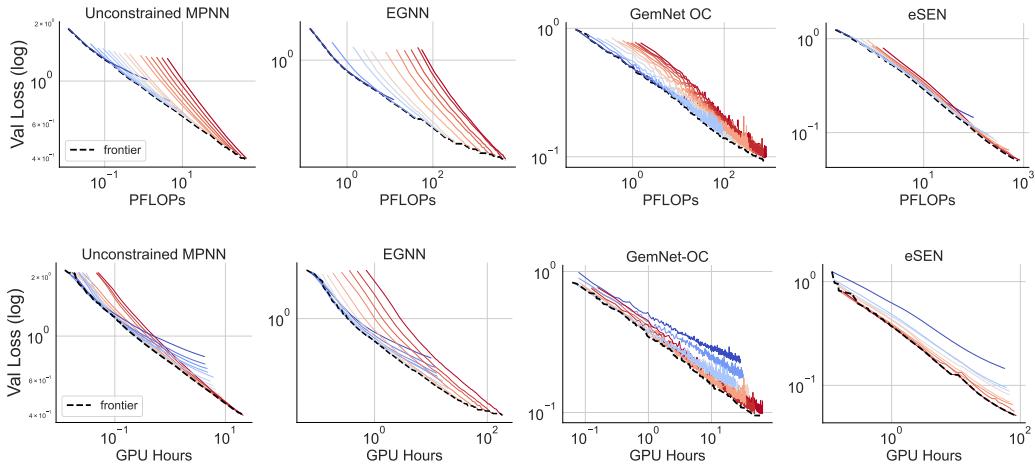
Figure 2: Estimation of κ for architectures used in our study.

Figure 3: Pareto frontiers of training compute in log–log spaces. **Top:** Efficient loss–FLOPs frontier. **Bottom:** Efficient loss–train-time frontier. Across architectures, the log–log frontiers are approximately linear. Line color encodes model size (small, large).

Here, κ is an architecture-dependent constant representing the number of FLOPs required for a single forward pass over one input token. During training, each input incurs both a forward and a backward pass, with the latter approximately doubling the FLOP cost. Consequently, the total training cost per token is 3κ . For architectures dominated by dense linear layers, $\kappa \approx 2$, yielding the widely used expression $C \approx 6ND$ for transformer-based language models.

Estimating κ . We empirically estimate κ by varying N and D , recording FLOPs for a pass over D , and fitting C vs. ND . Figure 2 shows a clear linear trend with distinct κ per architecture: unconstrained MPNNs with mostly linear layers give $\kappa \approx 2$, whereas equivariant architectures incur larger κ .

Compute-Optimal Frontier. For compute scaling, we follow approach 1 in Hoffmann et al. (2022). For each compute budget, we select the minimum validation loss achieved across runs, yielding the loss–compute Pareto frontiers. As shown in Figure 3³, loss–compute frontiers across architectures follows in linear relationships in log–log space. We then fit these frontier points to the power law:

$$L(C) = L_\infty + F_c C^{-\gamma_c}, \quad L(H) = L_\infty + F_h H^{-\gamma_h}, \quad (4)$$

where L_∞ is the irreducible loss for the given architecture and dataset, and F_c, γ_c, F_h , and γ_h are fit parameters. Unlike language modeling with cross-entropy, force-field tasks do not admit a clear theoretical baseline for L_∞ (Brehmer et al., 2025; Wood et al., 2025); therefore, we set $L_\infty \approx 0$ unless noted otherwise. This choice of L_∞ gives exponents that are consistent with the alternative

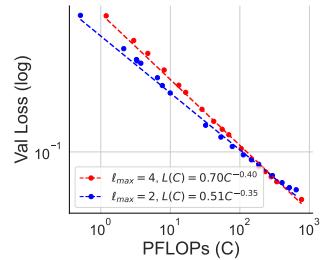


Figure 4: Using higher orders of feature tensors in eSEN leads to better scaling exponents w.r.t compute.

³GemNet-OC exhibits noisier learning curves because it relies on empirically estimated per-layer scaling factors—approximated from a few random batches—rather than explicit normalization (e.g., LayerNorm) to control activation variance.

derivation in section 4.3. Figure 1 summarizes our main results, which indicate different exponents for architectures with increasing levels of symmetry expressivity. We also find the argument holds within the same architecture; particularly, fig. 4 shows an improvement in compute-scaling exponents as the max order ℓ_{\max} increases from 2 to 4 in eSEN. Finally, it is worth noting that we do not study the effects of denoising pretraining, as done for Orb, a non-equivariant model, by Neumann et al. (2024). Consequently, our compute-scaling results are not directly comparable to this line of work, since their compute budget is allocated differently between pretraining and downstream fine-tuning.

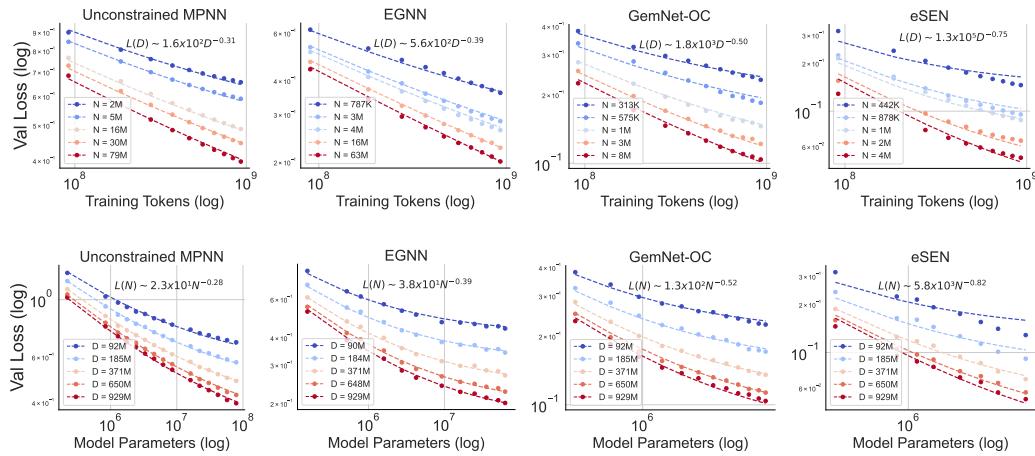


Figure 5: **Top:** Scaling number of training tokens. **Bottom:** Scaling number of parameters

4.2 SCALING PARAMETER AND DATASET

Sum-Power-Law. To analyze scaling in model size N and dataset size D , we follow approach 3 of (Hoffmann et al., 2022) and fit the triplets (N, D, L) to the separable power-law model as:

$$L(N, D) = L_\infty + A \times N^{-\alpha} + B \times D^{-\beta}. \quad (5)$$

$L(N, D)$ is the validation loss represented as a function of (N, D) . L_∞ , A , B , α , β are parameters that we fit. Notably, we found L_∞ to be ≈ 0 in all architecture families. For each N , we measured validation loss at training set fractions $r \in \{0.1, 0.2, \dots, 1.0\}$, that is $D_r = r \cdot D_{\max}$ ⁴.

Scaling Analysis. Figure 5 presents our fit for four architectures under study. The top row shows the power-law fit in validation loss when the number of training tokens, D , is the limiting factor. Power-law exponents β , are .31, .39, .50 and .75 from left to right. The bottom row shows this relationship when the number of model parameters, N , is the bottleneck. Here, the exponent α from left to right is .28, .39, .52, and .82. These results highlight three phenomena:

- **Data Efficiency:** In data-limited scenarios, equivariant models demonstrate superior scaling behaviours compared to unconstrained models, demonstrated by their larger scaling exponents β . Moreover, equivariance of higher orders translates to larger exponents.
- **Expressivity:** When bottlenecked by model size, equivariant models exhibit higher scaling exponents with respect to N . This occurs because explicit symmetry constraints enable greater expressivity with fewer parameters. Furthermore, the scaling exponent gap between high-order architectures (i.e., eSEN, GemNet-OC) and lower-order ones (i.e., EGNN) is considerable. While higher order representations are known to result in better expressivity (Joshi et al., 2023), the fact that the benefit of such representations grows with scale is a novel finding.
- $\alpha \approx \beta$: The exponents remain close across architectures. We discuss this finding in section 4.3.

In brief, we observe larger data-scaling exponents β for equivariant networks, consistent with prior reports (Batzner et al., 2022; Brehmer et al., 2025; Wood et al., 2025). Meanwhile, our parameter-scaling exponents α are larger for equivariant networks, and this differs from (Brehmer et al., 2025),

⁴Because the GemNet-OC loss curve is high-variance, we smooth it using an exponential moving average with a smoothing factor of 0.9.

378 which report larger α for unconstrained models; note that the tasks are not directly comparable.
 379 Together, the increases in both β and α for equivariant models change the slope of the compute-
 380 optimal frontier under $C \propto ND$, which is one of our main findings.
 381

382 4.3 COMPUTE-OPTIMAL ALLOCATION 383

384 We have presented two scaling laws so far: (1) a power law with respect to the *compute-optimal*
 385 *frontier* in section 4.1, and (2) a *sum-power-law* with respect to parameter count and the number
 386 of training tokens in section 4.2. In this section, we discuss the connection between them. Given a
 387 fixed compute budget C (FLOPs), we seek the optimal allocation between model size N and training
 388 tokens D . We pose this as a constrained optimization problem that combines eq. (5) with eq. (3); in
 389 particular, we have:

$$390 N^*(C), D^*(C) = \operatorname{argmin} L(N, D), \quad 3\kappa ND = C. \quad (6)$$

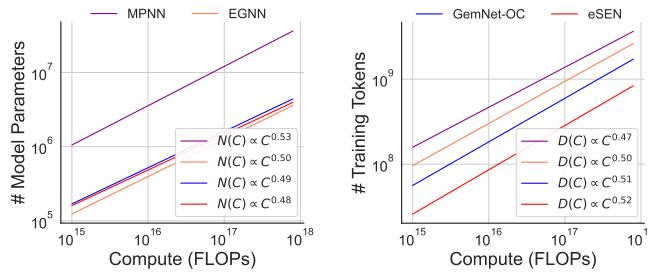
392 Recall that $L(N, D) = L_\infty + AN^{-\alpha} + BD^{-\beta}$, with $L_\infty \approx 0$. Let $N^*(C)$ and $D^*(C)$ denote,
 393 respectively, the compute-optimal model size and data size for a fixed compute budget C . Solving
 394 eq. (6) yields $N^*(C) = G\xi^{-a}C^a$, $D^*(C) = G^{-1}\xi^{-b}C^b$, where $\xi = 3\kappa$, $G = (\frac{\alpha A}{\beta B})^{\frac{1}{\alpha+\beta}}$, $a =$
 395 $\frac{\beta}{\alpha+\beta}$, $b = \frac{\alpha}{\alpha+\beta}$ (Hoffmann et al., 2022; Brehmer et al., 2025). Furthermore, plugging back the
 396 results to $L(N, D)$, we get back the loss-compute frontier power law similar to eq. (4):
 397

$$398 L(C) = L(N^*(C), D^*(C)) = F_c C^{-\gamma_c}, \quad (7)$$

399 where $F_c = AG^{-\alpha}\xi^\gamma + BG^\beta\xi^\gamma$, and $\gamma_c = \frac{\alpha\beta}{\alpha+\beta}$. Table 1 presents the values of F_c and γ_c obtained
 400 from two methods. The results show a good agreement between them, indicating the consistency
 401 of our power laws. We further visualize the compute-optimal allocation between model size N and
 402 data size D in section 4.3. Across architectures, we find $a \approx b \approx 0.5$, indicating that parameters
 403 and tokens should be scaled in roughly equal proportions, consistent with the Chinchilla allocation
 404 for transformer language modelling (Hoffmann et al., 2022).

405 Table 1: Compute-optimal scaling law parameters with 95% confidence intervals; see appendix E.
 406 Compute is scaled to PFLOPs.

408	409 Architecture	410 Param	411 Fit Method	
			412 Compute-Optimal Frontier 413 eq. (4)	414 Sum-Power-Law 415 eq. (7)
416	417 MPNN	F_c	0.928 [0.925–0.930]	0.934 [0.863–0.952]
		γ_c	0.142 [0.141–0.143]	0.146 [0.142–0.159]
418	419 MC-EGNN	F_c	0.775 [0.761–0.792]	0.811 [0.784–0.832]
		γ_c	0.173 [0.169–0.178]	0.195 [0.188–0.204]
420	421 GemNet-OC	F_c	0.488 [0.485–0.491]	0.479 [0.424–0.542]
		γ_c	0.255 [0.252–0.257]	0.256 [0.232–0.282]
422	423 eSEN	F_c	0.703 [0.696–0.712]	0.669 [0.575–0.729]
		γ_c	0.403 [0.401–0.406]	0.392 [0.342–0.451]



424 Figure 6: Optimal model size (left)
 425 and training size (right) at a fixed
 426 level of compute (log-log)

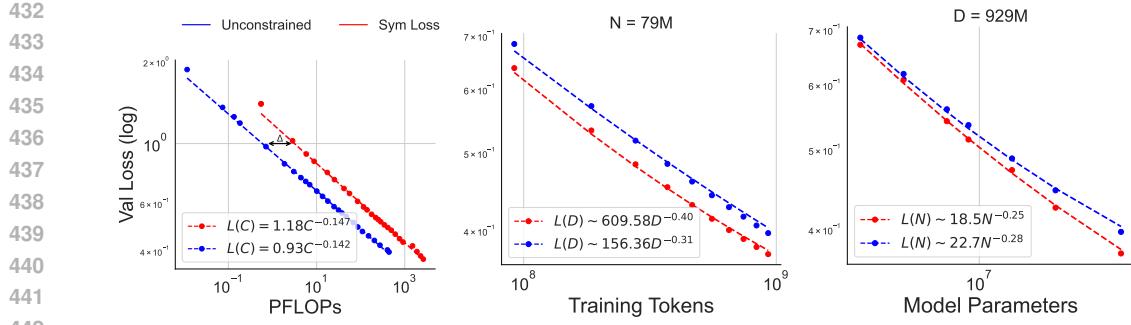


Figure 7: Comparison of scaling exponents for unconstrained MPNNs with/without symmetry regularization. **Left:** Rightward shift of the log–log loss–compute frontier. **Middle:** Symmetry loss increases the data-scaling exponent (β), indicating improved data efficiency. **Right:** The parameter-scaling exponent (α) decreases, suggesting that the regularization benefits larger models more. Validation loss excludes the regularization term (task loss only).

4.4 EFFECT OF SYMMETRY LOSS IN SCALING LAWS

In this experiment, we train an unconstrained model augmented with a symmetry-loss term. The loss is $\mathcal{L} = \mathcal{L}_{\text{obj}} + \lambda \mathcal{L}_{\text{sym}}$, where \mathcal{L}_{obj} is the task loss in eq. (1) and \mathcal{L}_{sym} is the symmetry loss in eq. (2) wherein we set $M = 5$. We use unit coefficients for both terms (i.e., $\lambda = 1$), as smaller weights ($\lambda \ll 1$) on \mathcal{L}_{sym} are reported to have negligible effect (Elhag et al., 2025). For validation, we track \mathcal{L}_{obj} , ensuring direct comparison with models trained without the symmetry penalty. We fit the learning-curve trajectories to the functional forms in eq. (4) and eq. (5). Figure 7 shows the resulting fits. Compared with models trained without \mathcal{L}_{sym} , we observe:

- **Opposite Changes in Slopes of D and N :** Under the scaling form $L(N, D) = L_\infty + AN^{-\alpha} + BD^{-\beta}$, when N is sufficiently large ($N \rightarrow \infty$), adding a symmetry-constraint loss slightly increases the data exponent β , indicating improved sample-efficiency: the model leverages the regularizer to infer approximate symmetries from data. Conversely, in the infinite-data regime ($D \rightarrow \infty$), a smaller model-size exponent α implies that increasing the parameter count N more effectively reduces loss.
- **Unchanged Compute-Optimal Slope:** We hypothesize that because the N - and D -slopes change in opposite directions, the induced exponent γ with respect to compute $C \propto ND$ is preserved. Furthermore, the sampling-based regularizer in eq. (2) functions as data augmentation: in addition to each original sample, we also evaluate M group-transformed inputs and predict the correspondingly transformed targets. As a result, the training FLOPs scale as $C_{\text{sym}} = (M + 1)C_{\text{unconstr}}$, shifting the compute-optimal frontier to the right by $\Delta \approx \gamma \log(M + 1) \approx 0.14 \log_{10}(6)$ in log–log coordinates as shown in fig. 7. Our fits indicate that approximate symmetry enforced via sampling-based augmentation may be unnecessary for compute-optimal scaling, as the relevant scaling exponents remain unchanged.

4.5 EFFECT OF MULTI-EPOCH TRAINING IN SCALING LAWS

In the previous sections, we present clear scaling-law trends across architectures in the one-pass training regime, keeping our empirical setup aligned with insights from rigorous theoretical works that focus on this setting (Paquette et al., 2024; Bordelon et al., 2024). Unfortunately, scaling laws for scenarios in which data is repeated for multiple epochs remain under-explored, both in practice and in theory. To our knowledge, Muennighoff et al. (2023) is among the few works investigating this area, showing that under fixed compute, training models for a small number of epochs on repeated data has negligible effects on the loss, behaving almost as if the models are trained on fresh data. We examine this hypothesis in our study by simulating a scenario where data is extremely limited by sampling only 1% of the full dataset, to train the models. The data is repeated over 100 epochs in each training run, which naturally enables the use of data augmentation to improve the data efficiency of unconstrained models. Also, validation losses are recorded after every 1000 gradient steps.

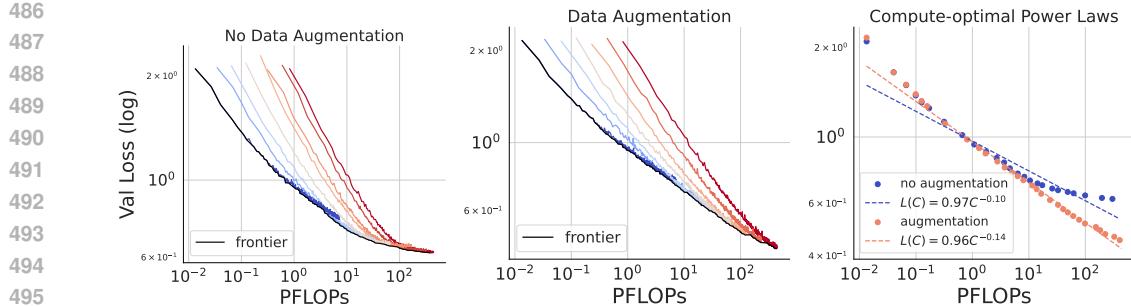


Figure 8: **Loss-compute Pareto frontiers** for unconstrained models trained on 1% of the data for 100 epochs, shown without data augmentation (**Left**) and with data augmentation (**Middle**). **Right**: The linear trend in log-log space is broken at late training when data augmentation is omitted, and is recovered when data augmentation is utilized.

Figure 8 shows the resulting fits in this regime. We observe that for unconstrained models trained without augmentation, the loss-compute frontier follows power-law scaling in early epochs, similar to findings of Muennighoff et al. (2023). However, this power law breaks down when the number of passes exceeds a certain threshold, as heavy data repetition induces overfitting. In contrast, data augmentation substantially stabilizes the learning curves and ultimately recovers the same power law ($\gamma_c \approx 0.14, F_c \approx 0.96$) with respect to the compute-optimal frontier as in the one-epoch training regime, indicating that the effect of data augmentation under low-data regime is the same as adding fresh data in one-pass training over larger datasets. Furthermore, we also examine the power laws of eSEN under this regime, and observe that its compute-optimal power-law holds as the same in one-pass training. Importantly, fig. 9 reveals that the gap between data augmentation and equivariant networks continues to grow as compute increases through multi-epoch training.

5 CONCLUSION, FUTURE WORKS AND LIMITATIONS

Our empirical study of scaling laws in the geometric task of interatomic potentials shows that the degree to which an architecture encodes domain symmetries is correlated with the exponent in its power-law scaling behaviour. The empirical change in exponent is dramatic, suggesting that the role of symmetry potentially extends beyond simply reducing data dimensionality (Sharma & Kaplan, 2022). This is because the degrees of freedom in the input and output are $\approx 3n$ for n atoms, while the rotation group is only three-dimensional. Our findings, therefore, suggest an important future research direction in developing a theory that explains this scaling behaviour. On the practical side, our work provides a recipe for scaling the model and data size in geometric tasks, such as force fields, and it motivates the development of more scalable models that utilize higher-order representations.

Other directions for future work are, in part, motivated by the limitations of this work: (1) Our scaling-law analysis focuses on single-epoch, academic-scale settings for NNIPs. Extending it to multi-epoch training and larger models, as well as more diverse models and datasets, is a natural next step. (2) Our study of symmetry losses was confined to one simple choice; it is possible that training with alternative definitions, if scalable, could provide a different scaling behaviour. (3) Our work completely ignores the family of architecture-agnostic equivariant models, such as frame averaging and canonicalization (e.g., Puny et al., 2022; Kaba et al., 2023; Kim et al., 2023b). We plan to study their scaling laws in the future. (4) Finally, we leave to future work a systematic, large-scale evaluation of denoising pretraining for both unconstrained models (Neumann et al., 2024; Rhodes et al., 2025) and equivariant networks (Liao et al., 2024a).

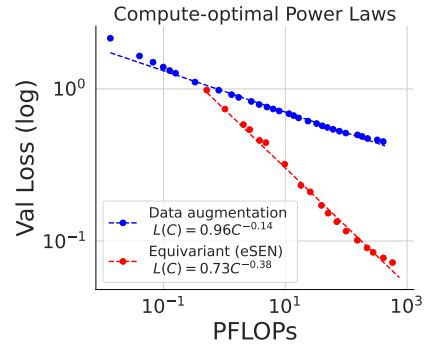


Figure 9: **Scaling with training compute** for unconstrained models trained with data augmentation and eSEN. The models are trained on 1% of training dataset for 100 epochs.

540 REFERENCES
541

- 542 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
543 Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Boden-
544 stein, David A. Evans, Chia-Chun Hung, Michael O'Neill, David Reiman, Kathryn Tunyasuvu-
545 nakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex
546 Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie,
547 Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishabh Jain, Yousuf A. Khan, Caro-
548 line M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula,
549 Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski,
550 Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M.
551 Jumper. Accurate structure prediction of biomolecular interactions with alphafold 3. *Nature*,
552 630(8016):493–500, Jun 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07487-w. URL
553 <https://doi.org/10.1038/s41586-024-07487-w>.
- 554 Subutai Ahmad and Gerald Tesauro. Scaling and generalization in neural networks: A case study.
555 In D. Touretzky (ed.), *Advances in Neural Information Processing Systems*, volume 1. Morgan-
556 Kaufmann, 1988. URL https://proceedings.neurips.cc/paper_files/paper/1988/file/d1f491a404d6854880943e5c3cd9ca25-Paper.pdf.
- 557 Tara Akhoud-Sadegh, Laurence Perreault-Levasseur, Johannes Brandstetter, Max Welling, and
558 Siamak Ravanbakhsh. Lie point symmetry and physics-informed networks. In A. Oh,
559 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-
560 ral Information Processing Systems*, volume 36, pp. 42468–42481. Curran Associates, Inc.,
561 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/8493c860bec41705f7743d5764301b94-Paper-Conference.pdf.
- 562 Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neu-
563 ral scaling laws in language and vision. In S. Koyejo, S. Mohamed, A. Agarwal,
564 D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Process-
565 ing Systems*, volume 35, pp. 22300–22312. Curran Associates, Inc., 2022. URL
566 https://proceedings.neurips.cc/paper_files/paper/2022/file/8c22e5e918198702765ecff4b20d0a90-Paper-Conference.pdf.
- 567 Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neu-
568 ral networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
569 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran
570 Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/03573b32b2746e6e8ca98b9123f2249b-Paper.pdf.
- 571 Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
572 scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.
- 573 Yulu Bai, Jiahong Fu, Qi Xie, and Deyu Meng. A regularization-guided equivariant approach for
574 image restoration. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
575 pp. 2300–2310, 2025.
- 576 Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gabor Csanyi. Mace:
577 Higher order equivariant message passing neural networks for fast and accurate force fields.
578 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in
579 Neural Information Processing Systems*, volume 35, pp. 11423–11436. Curran Associates, Inc.,
580 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/4a36c3c51af1ed9f34615b81edb5bbc-Paper-Conference.pdf.
- 581 Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Ko-
582 rnbluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural
583 networks for data-efficient and accurate interatomic potentials. *Nature Communications*, 13
584 (1), May 2022. doi: 10.1038/s41467-022-29939-5. URL <https://doi.org/10.1038/s41467-022-29939-5>.
- 585 Filippo Bigi, Marcel F. Langer, and Michele Ceriotti. The dark side of the forces: assessing
586 non-conservative force models for atomistic machine learning. In *Forty-second International
587 Conference on Machine Learning*, pp. 111–120. PMLR, 2024.
- 588
- 589
- 590
- 591
- 592
- 593

- 594 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=OE13L8osas>.
 595
 596
- 597 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scal-
 598 ing laws. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
 599 Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Confer-
 600 ence on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
 601 4345–4382. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/bordelon24a.html>.
 602
- 603 Johann Brehmer, Sönke Behrends, Pim De Haan, and Taco Cohen. Does equivariance matter at
 604 scale?, 2025. URL <https://openreview.net/forum?id=iIWeyfGTof>.
 605
- 606 Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. In
 607 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=sckjveqlCZ>.
 608
- 609 Leshem Choshen, Yang Zhang, and Jacob Andreas. A hitchhiker’s guide to scaling law estimation.
 610 In *International Conference on Machine Learning*, 2025.
 611
- 612 Corinna Cortes, Lawrence D Jackel, Sara Solla, Vladimir Vapnik, and John Denker. Learning
 613 curves: Asymptotic values and rate of convergence. *Advances in neural information process-
 614 ing systems*, 6, 1993.
- 615 Rumen Dangovski, Li Jing, Charlotte Loh, Seungwook Han, Akash Srivastava, Brian Cheung, Pulkit
 616 Agrawal, and Marin Soljačić. Equivariant contrastive learning. *arXiv preprint arXiv:2111.00899*,
 617 2021.
 618
- 619 Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
 620 Ashok Cutkosky. The road less scheduled. In A. Globerson, L. Mackey, D. Bel-
 621 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 622 formation Processing Systems*, volume 37, pp. 9974–10007. Curran Associates, Inc.,
 623 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/136b9a13861308c8948cd308ccd02658-Paper-Conference.pdf.
 624
- 625 Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J Bartel, and
 626 Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-informed
 627 atomistic modelling. *Nature Machine Intelligence*, 5(9):1031–1041, 2023.
 628
- 629 Alexandre Agm Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D.
 630 Malliaros, Yoshua Bengio, and David Rolnick. FAENet: Frame averaging equivariant GNN for
 631 materials modeling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
 632 Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on
 633 Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 9013–9033.
 634 PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/duval23a.html>.
 635
- 636 Ahmed A. A. Elhag, T. Konstantin Rusch, Francesco Di Giovanni, and Michael M. Bronstein. Re-
 637 laxled equivariance via multitask learning. In *ICLR 2025 Workshop on Machine Learning for Ge-
 638 nomics Explorations*, 2025. URL <https://openreview.net/forum?id=8kZSO4WbTh>.
 639
- 640 Eduardo Santos Escricle and Stefanie Jegelka. Learning equivariant models by discovering sym-
 641 metries with learnable augmentations. *arXiv preprint arXiv:2506.03914*, 2025.
 642
- 643 Nathan Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor
 644 Coley, and Vijay Gadepally. Neural scaling of deep chemical models. *ChemRxiv*, 2022. doi:
 645 10.26434/chemrxiv-2022-3s512.
- 646 Nathan C Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Con-
 647 nor W Coley, and Vijay Gadepally. Neural scaling of deep chemical models. *Nature Machine
 Intelligence*, 5(11):1297–1305, 2023.

- 648 Xiang Fu, Brandon M Wood, Luis Barroso-Luque, Daniel S. Levine, Meng Gao, Misko Dzamba,
 649 and C. Lawrence Zitnick. Learning smooth and expressive interatomic potentials for physical
 650 property prediction. In *Forty-second International Conference on Machine Learning*, 2025. URL
 651 <https://openreview.net/forum?id=R0PBjxIbgm>.
- 652 Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Günnemann. Fast and
 653 uncertainty-aware directional message passing for non-equilibrium molecules. In *Machine Learn-
 654 ing for Molecules Workshop, NeurIPS*, 2020a.
- 655 Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
 656 molecular graphs. In *International Conference on Learning Representations*, 2020b. URL
 658 <https://openreview.net/forum?id=B1eWbxStPH>.
- 659 Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary Ulissi,
 660 C. Lawrence Zitnick, and Abhishek Das. How do graph networks generalize to large and diverse
 661 molecular systems? *arxiv preprint arxiv:2204.02782*, 2022.
- 662 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
 663 Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
 664 modeling. *arXiv preprint arXiv:2010.14701*, 2020.
- 665 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 666 Md Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 667 empirically. *arXiv preprint arXiv:1712.00409*, 2017.
- 668 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 669 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 670 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
- 671 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
 672 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
 673 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.
- 674 Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, and Linfeng
 675 Zhang. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms
 676 with machine learning. In *Proceedings of the International Conference for High Performance
 677 Computing, Networking, Storage and Analysis, SC '20*. IEEE Press, 2020.
- 678 Chaitanya K. Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the expres-
 679 sive power of geometric graph neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun
 680 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th In-
 681 ternational Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
 682 Research*, pp. 15330–15355. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/joshi23a.html>.
- 683 Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravan-
 684 bakhsh. Equivariance with learned canonicalization functions. In Andreas Krause, Emma
 685 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
 686 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
 687 Research*, pp. 15546–15566. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/kaba23a.html>.
- 688 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 689 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 690 models. *arXiv preprint arXiv:2001.08361*, 2020.
- 691 Hyunsu Kim, Hyungi Lee, Hongseok Yang, and Juho Lee. Regularizing towards soft equivari-
 692 ance under mixed symmetries. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 693 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International
 694 Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*,
 695 pp. 16712–16727. PMLR, 23–29 Jul 2023a. URL <https://proceedings.mlr.press/v202/kim23p.html>.

- 702 Jinwoo Kim, Dat Nguyen, Ayhan Suleymanzade, Hyeokjun An, and Seunghoon Hong. Learning
 703 probabilistic symmetrization for architecture agnostic equivariance. In A. Oh, T. Naumann,
 704 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural
 705 Information Processing Systems*, volume 36, pp. 18582–18612. Curran Associates, Inc.,
 706 2023b. URL [https://proceedings.neurips.cc/paper_files/paper/2023/
 707 file/3b5c7c9c5c7bd77eb73d0baec7a07165-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/3b5c7c9c5c7bd77eb73d0baec7a07165-Paper-Conference.pdf).
- 708 Johannes Klicpera, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
 709 neural networks for molecules. In *Conference on Neural Information Processing (NeurIPS)*, 2021.
 710
- 711 Daniel S Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G Taylor, Muham-
 712 mad R Hasyim, Kyle Michel, Ilyes Batatia, Gábor Csányi, Misko Dzamba, Peter Eastman,
 713 et al. The open molecules 2025 (omol25) dataset, evaluations, and models. *arXiv preprint
 714 arXiv:2505.08762*, 2025.
- 715 Daniel Levy, Sékou-Oumar Kaba, Carmelo Gonzales, Santiago Miret, and Siamak Ravanchahsh.
 716 Using multiple vector channels improves e (n)-equivariant graph neural networks. *arXiv preprint
 717 arXiv:2309.03139*, 2023.
- 718 Chaojian Li, Zhifan Ye, Massimiliano Lupo Pasini, Jong Youl Choi, Cheng Wan, Yingyan Celine
 719 Lin, and Prasanna Balaprakash. Scaling laws of graph neural networks for atomistic materials
 720 modeling. *arXiv preprint arXiv:2504.08112*, 2025.
- 721 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
 722 graphs. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 723 <https://openreview.net/forum?id=KwmPfARgOTD>.
- 725 Yi-Lun Liao, Tess Smidt, Muhammed Shuaibi, and Abhishek Das. Generalizing denoising to
 726 non-equilibrium structures improves equivariant force fields. *Transactions on Machine Learn-
 727 ing Research*, 2024a. ISSN 2835-8856. URL <https://openreview.net/forum?id=whGzYUbIWA>.
- 729 Yi-Lun Liao, Brandon M Wood, Abhishek Das, and Tess Smidt. EquiformerV2: Improved equivari-
 730 ant transformer for scaling to higher-degree representations. In *The Twelfth International Confer-
 731 ence on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=mCOBKZmrzD>.
- 733 Jingzhe Liu, Haitao Mao, Zhikai Chen, Tong Zhao, Neil Shah, and Jiliang Tang. Neural scaling
 734 laws on graphs. *arXiv e-prints*, pp. arXiv–2402, 2024.
- 736 Andreas Loukas. What graph neural networks cannot learn: depth vs width. In *International Confer-
 737 ence on Learning Representations*, 2020. URL <https://openreview.net/forum?id=B112bp4YwS>.
- 739 Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
 740 *arXiv preprint arXiv:2210.16859*, 2022.
- 742 Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Pi-
 743 ktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language mod-
 744 els. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in
 745 Neural Information Processing Systems*, volume 36, pp. 50358–50376. Curran Associates, Inc.,
 746 2023. URL [https://proceedings.neurips.cc/paper_files/paper/2023/
 747 file/9d89448b63cele2e8dc7af72c984c196-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/9d89448b63cele2e8dc7af72c984c196-Paper-Conference.pdf).
- 748 Mark Neumann, James Gin, Benjamin Rhodes, Steven Bennett, Zhiyi Li, Hitarth Choubisa, Arthur
 749 Hussey, and Jonathan Godwin. Orb: A fast, scalable neural network potential, 2024. URL
 750 <https://arxiv.org/abs/2410.22570>.
- 751 Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of
 752 compute-optimal neural scaling laws. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 753 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing
 754 Systems*, volume 37, pp. 16459–16537. Curran Associates, Inc., 2024. doi: 10.52202/
 755 079017-0526. URL [https://proceedings.neurips.cc/paper_files/paper/
 2024/file/1dccfc3ee01871d05e33457c61037d59-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2024/file/1dccfc3ee01871d05e33457c61037d59-Paper-Conference.pdf).

- 756 Saro Passaro and C. Lawrence Zitnick. Reducing $SO(3)$ convolutions to $SO(2)$ for efficient
 757 equivariant GNNs. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
 758 hardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Con-
 759 ference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*,
 760 pp. 27420–27438. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/passaro23a.html>.
- 761
- 762 Zihan Pengmei, Zhengyuan Shen, Zichen Wang, Marcus D. Collins, and Huzefa Rangwala. Push-
 763 ing the limits of all-atom geometric graph neural networks: Pre-training, scaling, and zero-shot
 764 transfer. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 765 <https://openreview.net/forum?id=4S2L519nIX>.
- 766
- 767 Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs un-
 768 der (approximate) group equivariance. In A. Oh, T. Naumann, A. Globerson,
 769 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
 770 cessing Systems*, volume 36, pp. 61936–61959. Curran Associates, Inc., 2023. URL
 771 https://proceedings.neurips.cc/paper_files/paper/2023/file/c35f8e2fc6d81f195009a1d2ae5f6ae9-Paper-Conference.pdf.
- 772
- 773 Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
 774 Yaron Lipman. Frame averaging for invariant and equivariant network design. In *International
 775 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=zIUyj55nXR>.
- 776
- 777 Eric Qu and Aditi S. Krishnapriyan. The importance of being scalable: Improving the speed and
 778 accuracy of neural network interatomic potentials across chemical domains. In A. Globerson,
 779 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-
 780 ral Information Processing Systems*, volume 37, pp. 139030–139053. Curran Associates, Inc.,
 781 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/fad8e1915f66161581bb127ccf01092e-Paper-Conference.pdf.
- 782
- 783 Benjamin Rhodes, Sander Vandenhante, Vaidotas Šimkus, James Gin, Jonathan Godwin, Tim
 784 Dugnian, and Mark Neumann. Orb-v3: atomistic simulation at scale. *arXiv preprint
 785 arXiv:2504.06231*, 2025.
- 786
- 787 Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. $E(n)$ equivariant graph neural net-
 788 works. In *International Conference on Machine Learning (ICML)*, 2021.
- 789
- 790 Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. *Journal of
 791 Machine Learning Research*, 23(9):1–34, 2022. URL <http://jmlr.org/papers/v23/20-1111.html>.
- 792
- 793 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
 794 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth Interna-
 795 tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4FWAwZtd2n>.
- 796
- 797 Richard Sutton. The bitter lesson. *Incomplete Ideas (blog)*, 13(1):38, 2019.
- 798
- 799 Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Frad-
 800 kin, and Dominique Beaini. On the scalability of gnns for molecular graphs. In A. Glober-
 801 son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in
 802 Neural Information Processing Systems*, volume 37, pp. 19870–19906. Curran Associates, Inc.,
 803 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2345275663a15ee92a06bc957be54a2c-Paper-Conference.pdf.
- 804
- 805 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
 806 Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
 807 clouds. *arXiv preprint arXiv:1802.08219*, 2018.
- 808
- 809 Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Rao-blackwell
 810 gradient estimators for equivariant denoising diffusion. *arXiv preprint arXiv:2502.09890*, 2025.

810 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
 811 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *International*
 812 *Conference on Learning Representations*, 2022. URL [https://openreview.net/](https://openreview.net/forum?id=7UmjRGzp-A)
 813 [forum?id=7UmjRGzp-A](https://openreview.net/forum?id=7UmjRGzp-A).

814 Yuyang Wang, Ahmed A. A. Elhag, Navdeep Jaitly, Joshua M. Susskind, and Miguel Ángel Bautista.
 815 Swallowing the bitter pill: Simplified scalable conformer generation. In Ruslan Salakhutdinov,
 816 Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
 817 Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,
 818 volume 235 of *Proceedings of Machine Learning Research*, pp. 50400–50418. PMLR, 21–27 Jul
 819 2024. URL <https://proceedings.mlr.press/v235/wang24q.html>.

820 Brandon M Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque,
 821 Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R Kitchin, Daniel S Levine, et al. Uma: A
 822 family of universal models for atoms. *arXiv preprint arXiv:2506.23971*, 2025.

823 Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi,
 824 Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural
 825 networks via zero-shot hyperparameter transfer. In M. Ranzato, A. Beygelzimer,
 826 Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information
 827 Processing Systems*, volume 34, pp. 17084–17097. Curran Associates, Inc.,
 828 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf.

829 Jianke Yang, Wang Rao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry-
 830 informed governing equation discovery. In A. Globerson, L. Mackey, D. Belgrave,
 831 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
 832 Processing Systems*, volume 37, pp. 65297–65327. Curran Associates, Inc.,
 833 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/77fa0e7d45c6687f1958de0b31e9fc05-Conference.pdf.

834 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
 835 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 836 12104–12113, 2022.

841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 A RELATED WORKS
865

866 **Neural Scaling Laws.** Numerous studies investigating the scaling behavior of neural networks
867 (Ahmad & Tesauro, 1988; Henighan et al., 2020; Hoffmann et al., 2022; Kaplan et al., 2020; Sharma
868 & Kaplan, 2022) demonstrate a predictable relationship: performance improves as model size N ,
869 dataset size D , and computational budget C increase. Various functional forms have been proposed
870 to model these scaling laws. Using test error ϵ as the evaluation metric, Cortes et al. (1993) and
871 Hestness et al. (2017) proposed the functional form $L = ax^{-b} + L_\infty$, where $b > 0$, $L_\infty \geq 0$
872 denotes the irreducible error, and x can be N , D , or C . While useful, this form may result in
873 infinite error as the scaling variable x approaches zero (e.g., for models performing random guessing
874 in classification tasks). To address this limitation, Zhai et al. (2022) introduced a more general
875 form, $L = a(x + c)^{-b} + L_\infty$, where the parameter c represents an effective offset, indicating
876 the scale at which performance significantly surpasses random guessing. The coefficients of these
877 power laws have been empirically explored across various research domains and tasks, including
878 autoregressive generative modeling (Henighan et al., 2020; Kaplan et al., 2020; Hoffmann et al.,
879 2022) and computer vision (Zhai et al., 2022; Henighan et al., 2020; Alabdulmohsin et al., 2022).
880 Further research by Hoffmann et al. (2022) and Snell et al. (2025) has improved methodologies
881 for studying scaling laws, allowing for the determination of optimal scaling strategies to achieve
882 the best performance on specific tasks under given constraints. Additionally, Caballero et al. (2023)
883 introduced “broken” scaling laws to better model and extrapolate neural network scaling behaviours,
884 particularly when the scaling functions exhibit non-monotonic transitions.

885 **Scaling laws for MPNNs on Molecular Graphs.** Learning accurate molecular representations is
886 a fundamental challenge in drug discovery and computational chemistry. Numerous studies have
887 investigated the scalability of graph neural networks (GNNs), particularly message-passing neural
888 networks (MPNNs), for predicting molecular properties. For 2D molecular graphs, prior research
889 by Liu et al. (2024); Sypetkowski et al. (2024); Li et al. (2025) has demonstrated the promising
890 scalability of MPNNs, showing that network performance follows a power-law scaling behaviour
891 with increases in both dataset and model sizes. Similar scaling trends have also been observed by
892 Frey et al. (2023); Li et al. (2025); Wood et al. (2025) for $E(3)/SE(3)$ equivariant MPNNs trained
893 on 3D atomistic systems. In contrast to these observations, Pengmei et al. (2025) demonstrate
894 that scaling behaviours of geometric GNNs deviate from conventional power laws across different
895 settings, including self-supervised, supervised, and unsupervised learning.

896 Our work extends scaling-law analysis across NNIP architectures. Unlike Wood et al. (2025), which
897 derives compute-optimal scaling for equivariant models on mixed materials–molecule datasets with
898 periodic coordinates and other auxiliaries, we focus on molecules using only atomic 3D coordinates
899 and atomic numbers. Despite using the eSEN same backbone, Wood et al. (2025) report that, for
900 dense models⁵, the compute-optimal strategy scales model size N faster than data size D , whereas
901 in our setting we observe nearly equal scaling between N and D ; though the tasks are different.
902 Relative to Frey et al. (2023), our study uses a substantially larger force-field dataset, enabling more
903 robust scaling estimates that consider different architectures.

904 B ADDITIONAL FIGURES
905906 C DESIGN PRINCIPLES FOR GEOMETRIC MESSAGE PASSING
907908
909 Table 2: Architectures and their expressivity.
910

911 Architectures	912 Characteristic	913 Tensor Order (ℓ)	914 Body Order (ν)
913 Unconstrained MPNN	914 unconstrained	915 -	916 2
914 GemNet-OC	915 invariant	916 0	917 4
915 EGNN	916 equivariant	917 1	918 2
916 eSEN	917 equivariant	918 ≥ 2	919 2

917 ⁵The authors also study the effect of linear mixture-of-experts, while we don’t consider this in our work.

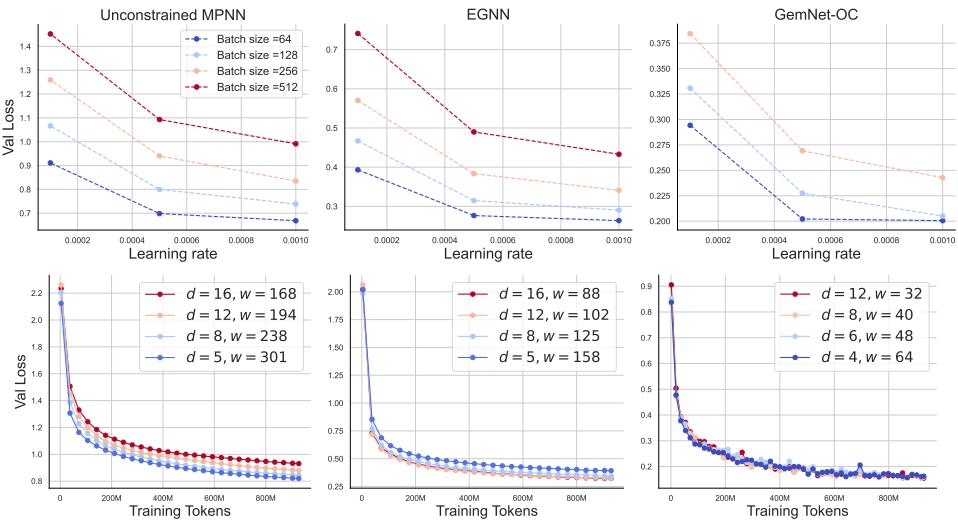


Figure 10: A sweep over batch size-learning rate (top row), and depth-width (bottom row) for three architectures with numbers of parameters are approximately equal to 1M.

Following Joshi et al. (2023), we categorize the models and their expressivity in Table 2. The tensor order ℓ denotes the order of the geometric tensor embeddings processed by each model. The body order refers to the number of nodes participating in a message function. Because GemNet-OC incorporates dihedral-angle information, its two-hop messages depend simultaneously on the states of four nodes, and thus it is classified as four-body. By contrast, the remaining architectures use one-hop message passing that depends only on the source and target nodes, i.e., two-body.

Let $\{h_1^{(t)}, \dots, h_n^{(t)}\}$ denote the node embeddings at layer t , with $h_i^{(0)}$ initialized from input features z_i . For a distance cutoff $c > 0$, define the neighborhood

$$\mathcal{N}(v) = \{u \neq v \mid \|x_u - x_v\| \leq c\}.$$

We update node v by aggregating messages from its neighbors using a permutation-invariant (mean) aggregator, making the overall layer permutation-equivariant:

$$h_v^{(t+1)} = \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} m_{u \rightarrow v}^{(t)}, \quad m_{u \rightarrow v}^{(t)} = \phi_m^{(t)}(\cdot), \quad (8)$$

Let $r_{uv} := x_u - x_v$ be the relative position vector and $w := \dim h_v^{(t)}$ be the embedding width. The symmetry properties (e.g., $E(3)/SE(3)$ invariance or equivariance) are determined by architectural choices in $\phi_m^{(t)}$, in particular, how it uses r_{uv} (e.g., through rotational invariants such as $\|r_{uv}\|$ or via equivariant tensor constructions). We discuss specific message constructions in the next section.

C.1 UNCONSTRAINED MESSAGE PASSING

Following Duval et al. (2023), geometry is injected directly:

$$m_{u \rightarrow v}^{(t)} = \phi_m(h_u^{(t)}, h_v^{(t)}, r_{uv}, \|r_{uv}\|_2), \quad (9)$$

with $h_u^{(t)}, h_v^{(t)} \in \mathbb{R}^w$ and $\phi_m : \mathbb{R}^{2w+4} \rightarrow \mathbb{R}^w$ is an MLP. Because raw vectors r_{uv} are processed without symmetry constraints, rotational equivariance is not enforced, and thus the node embeddings $h_v^{(t)}$ are not rotationally invariant.

C.2 DIRECTIONAL MESSAGE PASSING

GemNet-T (Klicpera et al., 2021) and GemNet-OC (Gasteiger et al., 2022) construct messages from multi-body $E(3)$ -invariant geometric features, including pairwise distances, bond (three-body) angles, and dihedral (four-body) angles. Define the bond angle $\varphi_{uvk} := \angle(r_{vu}, r_{vk})$ and the dihedral

angle ω_{uvkj} as the angle between the planes (u, v, k) and (v, k, j) (e.g., via normals $n_1 \propto r_{vu} \times r_{vk}$ and $n_2 \propto r_{kj} \times r_{kv}$). Then the message from u to v is

$$m_{u \rightarrow v}^{(t)} = \sum_{\substack{k \in \mathcal{N}(v) \setminus \{u\} \\ j \in \mathcal{N}(k) \setminus \{u, v\}}} \phi_m\left(h_u^{(t)}, h_v^{(t)}, \|r_{uv}\|_2, \varphi_{uvk}, \omega_{uvkj}\right), \quad (10)$$

where $h_u^{(t)}, h_v^{(t)} \in \mathbb{R}^w$ are scalar node embeddings and ϕ_m is a learnable function operating on $E(3)$ -invariant inputs (distance, angles) together with scalar features. Because the geometric inputs are $E(3)$ -invariant (rotation/translation invariant) and h 's are scalar channels, the resulting message is $E(3)$ -invariant as well. Linear and bilinear interactions inside ϕ_m do not affect this invariance so long as they act on invariant/scalar quantities.

C.3 CARTESIAN-VECTOR MESSAGE PASSING

The original EGNN uses a single vector channel (node coordinates) (Satorras et al., 2021), which limits expressive power (Joshi et al., 2023). To address this, we use a multi-channel extension, MC-EGNN (Levy et al., 2023). Each atom v carries both scalar features $h_v^{(t)} \in \mathbb{R}^w$ and E vector channels $X_v^{(t)} \in \mathbb{R}^{3 \times E}$, with the relative vector $X_{uv}^{(t)} := X_u^{(t)} - X_v^{(t)} \in \mathbb{R}^{3 \times E}$.

MC-EGNN maintains invariance/equivariance by updating the invariant node embeddings h_v and the multi-channel equivariant vectors X_v using invariant messages. In particular, messages depend only on rotation–translation invariants:

$$m_{u \rightarrow v}^{(t)} = \phi_m(h_u^{(t)}, h_v^{(t)}, \|X_{uv}^{(t)}\|_e^2), \quad \phi_m : \mathbb{R}^{2w+E} \rightarrow \mathbb{R}^w, \quad (11)$$

where $\|X_{uv}^{(t)}\|_e \in \mathbb{R}^E$ denotes the channel-wise Euclidean norm (applied over the 3 spatial components). The invariant message $m_{u \rightarrow v}^{(t)}$ from Equation (11) is then used in Equation (8) to update $h_v^{(t+1)}$. In addition, MC-EGNN updates the vectors via a channel mixer:

$$X_v^{(t+1)} = X_v^{(t)} + \frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} \frac{1}{E} X_{uv}^{(t)} \Phi_x(m_{u \rightarrow v}^{(t)}), \quad (12)$$

where Φ_x is a linear map with weights $W_x : \mathbb{R}^w \rightarrow \mathbb{R}^{E \times E'}$ followed by a reshape. This channel mixing preserves equivariance because $E(3)$ actions (and permutations) act on the 3D indices but *not* on the channel index.

$\Theta(1)$ -Variance Scaling. Our empirical analyses suggest that increasing E significantly improves performance; see appendix F. This, in turn, suggests that studying scaling laws requires scaling both the invariant dimension w and the equivariant channels E . However, very large E can be computationally expensive, and scaling arbitrarily may cause exploding gradients due to the matrix-valued function Φ_x and the matrix product $X_{uv} \Phi_x(m_{u \rightarrow v})$. To scale properly, one should ensure that each layer's output scales as $\Theta(1)$ and gradient update scales as $\Theta(1)$ (Yang et al., 2021), i.e., are invariant across widths. Let $W_x \sim \mathcal{N}(0, \sigma^2)$ with $\sigma = \Theta(\sqrt{\min(w, EE')/w^2})$. Setting $E = E' \approx \sqrt{w}$ yields $\sigma \approx \Theta(1/\sqrt{w})$. Under μ P, we assume the entries of $m_{u \rightarrow v}$ and X_{uv} have variance $\Theta(1)$; then $W_x m_{u \rightarrow v}$ also has $\Theta(1)$ -entries, and since *reshape* has no parameters, the entries of $\Phi_x(m_{u \rightarrow v})$ remain $\Theta(1)$. For the matrix product, because both X_{uv} and $\Phi_x(m_{u \rightarrow v})$ have $\Theta(1)$ -variance entries, $(X_{uv} \Phi_x(m_{u \rightarrow v}))_{3 \times E}$, which sums over E , scales as $\Theta(E)$. To keep gradient updates stable across widths, we scale $X_{uv} \Phi_x(m_{u \rightarrow v})$ by $1/E \approx 1/\sqrt{w}$, instead of $1/\sqrt{E}$, which has the same effect as scaling the logits of dot-product attention by $1/\text{emb_dim}$ rather than $1/\sqrt{\text{embed_dim}}$ as discussed by Yang et al. (2021).

C.4 HIGH-ORDER TENSOR MESSAGE PASSING

Irreducible Representations. High-order equivariant models (e.g., Thomas et al. (2018); Anderson et al. (2019); Batzner et al. (2022); Batatia et al. (2022); Liao et al. (2024b); Wood et al. (2025)) use $SO(3)$ irreducible representations (irreps) as node embeddings:

$$h_u^{(t)} = \bigoplus_{\ell=0}^{\ell_{\max}} h_{u,\ell}^{(t)}, \quad h_{u,\ell}^{(t)} \in \mathbb{R}^{C_\ell \otimes \mathbb{V}^{(\ell)}}, \quad \dim \mathbb{V}^{(\ell)} = 2\ell + 1, \quad (13)$$

1026 with \oplus denotes concatenation of multiple order- ℓ tensors that are expanded by C_ℓ channels, and thus
 1027 total dimension is $d := \sum_{\ell=0}^{\ell_{\max}} C_\ell(2\ell+1)$. Assume all orders have the same number of channels C ,
 1028 the atom embedding has a size of $w = C(\ell_{\max}+1)^2$.
 1029

1030 **SO(3) Convolution.** Let $\hat{r}_{uv} = r_{uv}/\|r_{uv}\|$. Messages couple source irreps with spherical har-
 1031 monics:
 1032

$$1033 \quad m_{u \rightarrow v, \ell_3}^{(t)} = \sum_{\ell_1, \ell_2} w_{\ell_1, \ell_2, \ell_3} \bigoplus_{m_3} \sum_{m_1, m_2} h_{u, (\ell_1, m_1)}^{(t)} C_{(\ell_1, m_1), (\ell_2, m_2)}^{(\ell_3, m_3)} Y_{\ell_2}^{m_2}(\hat{r}_{uv}) \quad (14)$$

1036 where $C_{(\ell_1, m_1), (\ell_2, m_2)}^{(\ell_3, m_3)}$ are Clebsch–Gordan coefficients, $w_{\ell_1, \ell_2, \ell_3}$ are learnable weights, and Y_ℓ is the
 1037 order- ℓ spherical harmonics of the unit displacement vector \hat{r}_{uv} , $|\ell_1 - \ell_3| \leq \ell_2 \leq |\ell_1 + \ell_3|$ and
 1038 $m_i \in \{-\ell_i, \dots, \ell_i\}$.
 1039

1040 **Efficient Convolution.** eSCN/eSEN (Passaro & Zitnick, 2023; Fu et al., 2025) sparsify eq. (14)
 1041 by rotating vector r_{uv} into an edge-aligned frame. Let $R_{uv} \in \mathbb{R}^{3 \times 3}$ such that $R_{uv} \hat{r}_{uv} = (0, 1, 0)$.
 1042 Then $Y_{\ell_2}^{m_2}(R_{uv} \hat{r}_{uv}) = 0$ unless $m_2 = 0$. Therefore, we can simplify eq. (14) as:
 1043

$$1044 \quad m_{u \rightarrow v, \ell_3}^{(t)} = D_{\ell_3}^{-1} \sum_{\ell_1, \ell_2} w_{\ell_1, \ell_2, \ell_3} \bigoplus_{m_3} \sum_{m_1} \tilde{h}_{u, (\ell_1, m_1)}^{(t)} C_{(\ell_1, m_1), (\ell_2, 0)}^{(\ell_3, m_3)}, \quad (15)$$

1046 here $\tilde{h}_{(\ell_1, m_1)}^{(t)} = D_{\ell_1} h_{(\ell_1, m_1)}^{(t)}$ where we denote $D_{\ell_1} := D_{\ell_1}(R_{uv})$ and $D_{\ell_3} := D_{\ell_3}(R_{uv})$ denote
 1047 Wigner-D matrices of order ℓ_1 and ℓ_3 , respectively. The output is rotated back by D_{ℓ_3} to ensure
 1048 equivariance, and without loss of generality, we re-scale $Y_{\ell_2}^{m_2}(R_{uv} \hat{r}_{uv})$ to 1. Given that $m_2 = 0$,
 1049 $C_{(\ell_1, m_1), (\ell_2, 0)}^{(\ell_3, m_3)}$ are non-zero only when $m_1 = \pm m_3$. This further simplifies the computation to:
 1050

$$1052 \quad m_{u \rightarrow v, \ell_3}^{(t)} = D_{\ell_3}^{-1} \sum_{\ell_1, \ell_2} w_{\ell_1, \ell_2, \ell_3} \bigoplus_{m_3} \left(\tilde{h}_{v, (\ell_1, m_3)}^{(t)} C_{(\ell_1, m_3), (\ell_2, 0)}^{(\ell_3, m_3)} + \tilde{h}_{v, (\ell_1, -m_3)}^{(t)} C_{(\ell_1, -m_3), (\ell_2, 0)}^{(\ell_3, m_3)} \right). \quad (16)$$

1055 Rearranging eq. (16), we obtain:

$$1056 \quad m_{u \rightarrow v, \ell_3}^{(t)} = D_{\ell_3}^{-1} \sum_{\ell_1} \bigoplus_{m_3} \left(\tilde{h}_{v, (\ell_1, m_3)}^{(t)} \sum_{\ell_2} w_{\ell_1, \ell_2, \ell_3} C_{(\ell_1, m_3), (\ell_2, 0)}^{(\ell_3, m_3)} + \tilde{h}_{v, (\ell_1, -m_3)}^{(t)} \sum_{\ell_2} w_{\ell_1, \ell_2, \ell_3} C_{(\ell_1, -m_3), (\ell_2, 0)}^{(\ell_3, m_3)} \right). \quad (17)$$

1059 Passaro & Zitnick (2023) propose to replace the Clebsch–Gordan coefficients with parameterized
 1060 weights as:

$$1062 \quad \tilde{w}_{m_3}^{(\ell_1, \ell_3)} = \sum_{\ell_2} w_{\ell_1, \ell_2, \ell_3} C_{(\ell_1, m_3), (\ell_2, 0)}^{(\ell_3, m_3)} = \sum_{\ell_2} w_{\ell_1, \ell_2, \ell_3} C_{(\ell_1, -m_3), (\ell_2, 0)}^{(\ell_3, -m_3)}, \quad \text{for } m \geq 0, \quad (18)$$

$$1064 \quad \tilde{w}_{-m_3}^{(\ell_1, \ell_3)} = \sum_{\ell_2} w_{\ell_1, \ell_2, \ell_3} C_{(\ell_1, -m_3), (\ell_2, 0)}^{(\ell_3, m_3)} = - \sum_{\ell_2} w_{\ell_1, \ell_2, \ell_3} C_{(\ell_1, m_3), (\ell_2, 0)}^{(\ell_3, -m_3)}, \quad \text{for } m < 0. \quad (19)$$

1067 Plugging back this into eq. (16), we obtain:

$$1068 \quad m_{u \rightarrow v, \ell_3}^{(t)} = D_{\ell_3}^{-1} \sum_{\ell_1} y_{\ell_3}^{(\ell_1)}, \quad (20)$$

1071 where:

$$1072 \quad y_{\ell_3, 0}^{(\ell_1)} = \tilde{w}_0^{(\ell_1, \ell_3)} \tilde{h}_{u, (\ell_1, 0)}^{(t)} \quad (21)$$

$$1074 \quad \begin{pmatrix} y_{(\ell_1)}^{(\ell_1)} \\ y_{(\ell_3, m_3)}^{(\ell_1)} \\ y_{(\ell_3, -m_3)}^{(\ell_1)} \end{pmatrix} = \begin{pmatrix} \tilde{w}_m^{(\ell_1, \ell_3)} & -\tilde{w}_{-m}^{(\ell_1, \ell_3)} \\ \tilde{w}_{-m}^{(\ell_1, \ell_3)} & \tilde{w}_m^{(\ell_1, \ell_3)} \end{pmatrix} \cdot \begin{pmatrix} \tilde{h}_{u, (\ell_1, m_3)}^{(t)} \\ \tilde{h}_{u, (\ell_1, -m_3)}^{(t)} \end{pmatrix} \quad \text{for } m_3 > 0. \quad (22)$$

1077 Therefore, the overall computation is reduced to an equivalent $SO(2)$ linear operation with a param-
 1078 eterized kernel as in eq. (22). In eSEN, $SO(2)$ blocks are applied only for values $|m_3| \leq m_{\max} \leq$
 1079 ℓ_{\max} ; we set $m_{\max} = 2$ as similar to the default setting.

Table 3: Scaling ladder for unconstrained MPNN.

Depth	Width	# Params
5	128	222404
5	256	838020
5	320	1293284
5	375	1763133
5	441	2422704
5	517	3311714
5	607	4543769
5	712	6226800
5	835	8535023
5	1150	16101729
5	1349	22109506
5	1583	30389712
5	1857	41755644
5	2179	57415632
5	2557	78974296

Table 4: Scaling ladder for EGNN. We scale the number of channels for equivariant vectors as \sqrt{w} , ensuring stable update and $\Theta(1)$ -variance entries when scaling w .

Depth d	Width w	# Params
12	32	156358
12	48	306199
12	56	403992
12	64	516553
12	81	786925
12	102	1195553
12	120	1590131
12	160	2745453
12	200	4231015
12	300	9214218
12	500	24959524
12	600	35673024
12	721	51092972
12	800	63035228

D EXPERIMENTAL SETUP

Graph Construction. Except for GemNet-OC, geometric graphs are built with a radial cutoff of 6 Å and a maximum of 30 neighbors per atom. For GemNet-OC, using the same cutoff occasionally failed on molecules where its high-order message passing requires a larger candidate neighborhood. Accordingly, we use a 10 Å cutoff and cap the neighborhood at 50 neighbors for this architecture.

Direct-Force Prediction. Although the pre-training performance of direct-force models does not always transfer seamlessly to certain downstream physical tasks, these models provide substantial efficiency gains during pre-training. We focus on the scaling behaviour of direct-force models in the pre-training regime, i.e., training across large collections of molecular systems, and therefore employ them consistently throughout our experiments.

Energy Reference and Normalization. Following Wood et al. (2025)⁶, we apply the same reference scheme to the energies. Then, we normalize those referenced energies as $e' = (e - \mu)/\sigma$, where μ and σ are the sample mean and standard deviation estimated from the training set. Atomic

⁶<https://github.com/facebookresearch/fairchem/tree/main>

1134 forces for atom i , $f'_i = -\partial e / \partial x_i$, are invariant to constant energy shifts; accordingly, we rescale
 1135 them by the same factor: $f'_i = f_i / \sigma$.
 1136

1137 Table 5: Scaling ladder for eSEN. Since eSEN use high-order tensors expanded into C channels
 1138 each, the embedding width $w = (\ell_{\max} + 1)^2 C$.
 1139

1140	Depth	ℓ_{\max}	m_{\max}	# Channels C	# Hidden Channels	# Params
1141	12	4	2	4	32	441778
1142	12	4	2	8	32	878434
1143	12	4	2	10	32	1100746
1144	12	4	2	12	32	1325714
1145	12	4	2	16	32	1783618
1146	12	4	2	20	32	2252146
1147	12	4	2	32	32	3721474

1150 Table 6: Scaling ladder for GemNet-OC.
 1151

1152	Depth	Width	# Params
1153	4	32	312992
1154	4	48	575472
1155	4	64	937280
1156	4	80	1398416
1157	4	96	1958880
1158	4	112	2618672
1159	4	128	3377792
1160	4	144	4236240
1161	4	160	5194016
1162	4	176	6251120
1163	4	192	7407552
1164	4	204	8340060

1165
 1166 **Training Hardware.** We trained all models across the different architectural families under identical
 1167 hardware conditions on NVIDIA 40GB A100 GPUs of the same compute cluster - each run
 1168 within a single unit. This setup naturally incorporates overheads such as data loading, CPU bot-
 1169 tlenecks, and metrics logging. During training, we continuously monitored validation losses along
 1170 with the corresponding wall-clock training times. The reported training times thus include forward
 1171 and backward passes over training samples, as well as forward passes over validation samples during
 1172 intermediate evaluation checkpoints. We chose batch sizes to strike a balance between performance
 1173 and computational efficiency, as using extremely small batch sizes is impractical. Based on the
 1174 empirical results in Figure 10, we set the batch size to 128 for EGNN, and 64 for the remaining
 1175 architectures⁷. These batch sizes were fixed across model sizes within each model family.
 1176

1177 **Scaling Ladder.** Tables 3, 4, 5, 6 detail model sizes of all architectures used in this study.
 1178

1179 Table 7: Scaling parameters for *sum-power-law* in eq. (5) with 95% confidence intervals.
 1180

1181	Architecture	$\log_{10}(A)$	$\log_{10}(B)$	α	β
1182	Unconstrained MPNN	1.356 [1.307-1.371]	2.194 [2.147-2.608]	0.276 [0.266-0.278]	0.311 [0.301-0.368]
1183	EGNN	1.582 [1.494,1.692]	2.750 [2.660-2.863]	0.387 [0.370-0.408]	0.394 [0.382-0.401]
1184	GemNet-OC	2.109 [1.901-2.422]	3.261 [2.842-3.607]	0.524 [0.484-0.584]	0.499 [0.444-0.544]
1185	eSEN	3.760 [3.119-4.333]	5.129 [4.348-6.224]	0.817 [0.706-0.918]	0.753 [0.662-0.888]

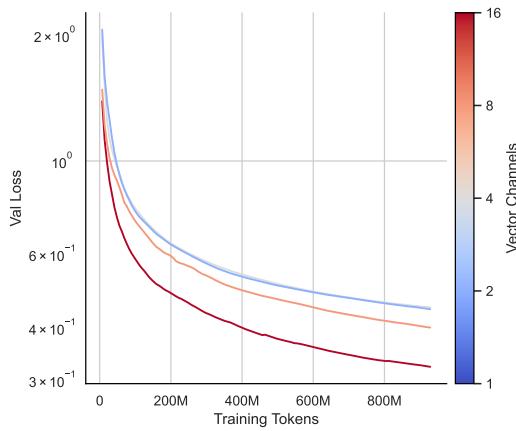
1186
 1187 ⁷For fair comparison, we double EGNN’s reported training time.

1188 E UNCERTAINTY IN SCALING LAWS.
1189

1190 Due to the cost of training NNIPs, we perform scaling study within a range of compute and model
1191 sizes and do not consider tuning other hyper-parameters, such as weight decay. Thus, we construct
1192 95% confidence intervals on the fit parameters of eq. (4) and eq. (5) from 1000 non-parametric boot-
1193 straps. Table 7 demonstrates the values of fit parameters of eq. (5) along with confidence intervals
1194 shown in parenthesis.

1195
1196 F EFFECT OF SCALING VECTOR CHANNELS
1197

1198 We evaluate the effect of multi-channel vectors in EGNN by plotting validation loss against the
1199 number of vector channels E in fig. 11. Loss consistently decreases as E grows.
1200



1215
1216 Figure 11: Effect of scaling number of equivariant channels in EGNN
1217
1218

1219 G SYMMETRY ADVANTAGES ON DATASETS OF DIVERSE MOLECULAR TYPES
1220

1221 In this experiment, we investigate whether the advantages of symmetry diminish when models are
1222 trained on datasets containing more diverse molecular types, e.g., electrolytes, metal complexes,
1223 and biomolecules rather than only neutral species. We train an unconstrained MPNN and eSEN
1224 on the 4M split of the OpenMol dataset, which is sampled uniformly across the diverse molecular
1225 types mentioned above. For validation, we use a held-out subset of 79K samples from the entire 4M
1226 split, using the remainder for training. As shown in fig. 12, we observe that the benefits gained by
1227 symmetry-aware design still persist even with this highly diverse dataset. Specifically, the difference
1228 in scaling exponents between the unconstrained MPNN and eSEN remains significant, a result simi-
1229 lar to our findings for the neutral species split. It is important to note that the scaling exponents for
1230 each architecture itself may differ from those observed in the neutral split. This is expected because
1231 the coefficients of neural scaling laws are also dependent on the training dataset (Maloney et al.,
1232 2022; Bahri et al., 2024; Bordelon et al., 2024).
1233

1234 H EFFECT OF TEST-TIME AUGMENTATION IN SCALING LAWS
1235

1236 An unconstrained model ϕ_θ can be made equivariant at test time via group averaging (GA) with no
1237 additional training cost.

$$1238 f_\theta(x) = \frac{1}{M} \sum_{i=1}^M \rho_{\text{out}}(g_i^{-1}) \phi_\theta(\rho_{\text{in}}(g_i)x), \quad (23)$$

1240 where $g_i \sim \mu_G$ is a sample from the Haar measure, ρ_{in} and ρ_{out} denote linear actions on input
1241 and output of ϕ_θ , respectively. In this section, we explore the effect of GA on the performance of

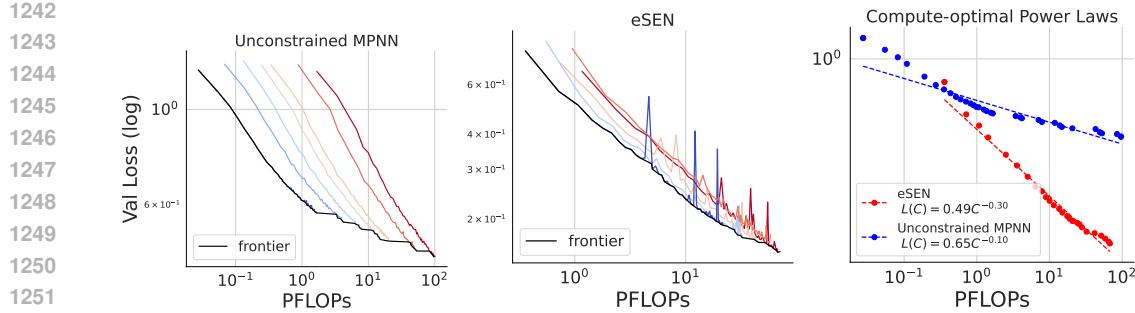


Figure 12: Loss-compute Pareto frontiers for unconstrained models (**Left**) and eSEN (**Middle**) trained on OMol-4M split. **Right**: The compute-optimal power laws reveal that the benefits of symmetry persist at scale, even when models are trained on datasets containing a high diversity of molecular types.

unconstrained models at scale, especially when the model’s parameter count and number of group elements increase.

Figure 13 shows that group averaging yields only a minimal improvement in the performance of ϕ_θ across all model sizes. Furthermore, this improvement saturates as the number of rotations, M , increases beyond a certain threshold. To better understand this behavior, we fit scaling laws with respect to the number of parameters N for both the baseline and the GA models:

$$L - L_D = AN^{-\alpha}. \quad (24)$$

We use the parameter scaling relationship to analyze the impact of group averaging (GA). L_D represents the lowest achievable loss for ϕ_θ at a fixed data size D ; see eq. (7). For this analysis, we utilize models trained on the largest dataset, $D_{\max} \approx 9.2 \times 10^8$ (atoms). Based on the results in section 4, the data-limited loss is $L_D \approx 1.6 \times 10^{-2} \times D_{\max} \approx 0.223$. We consider the GA performance at the onset of saturation, specifically at $M = 32$. The fit results in fig. 13 show that group averaging preserves the power-law exponent α that governs the scaling of ϕ_θ . As the parameter count increases, the performance shows only a slight downward shift in the log-log scaling relationship, due to a minor change in the multiplying constant A .

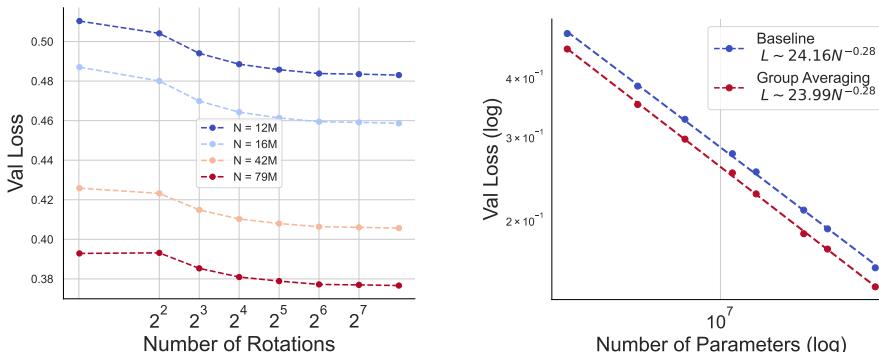
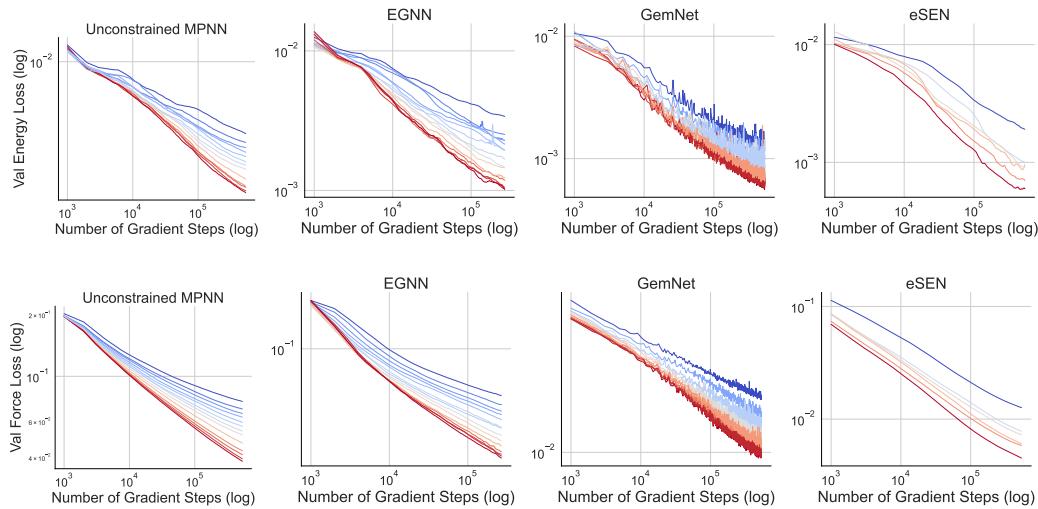
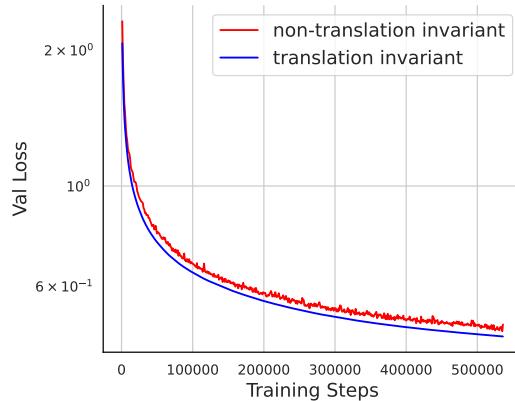


Figure 13: Scaling analysis for group averaging (GA) at test time. **Left**: The benefit derived from increasing the number of rotations saturates beyond a certain threshold. **Right**: Scaling performance with respect to parameter count shows that utilizing group averaging results in a slight downward shift of the linear trend in log-log space, while the critical scaling exponent remains unchanged.

1296 **I DECOMPOSING ENERGY AND FORCE LOSS**
12971298 Figure 14 shows the decomposition of the total loss in eq. (1) into its energy and force components.
1299 We observe that the energy learning curves are relatively noisy, whereas the force losses remain
1300 smooth across model sizes for each architecture.
13011310
1311 Figure 14: **Learning curves of all models, including Energy Loss (Top) and Force Loss (Bottom).**
1312 Line color encodes model size (small, large)
13131314 **J EFFECT OF TRANSLATION INVARIANCE**
13151316 Figure 15: MPNNs exhibit a performance drop when translation invariance is not maintained.
13171318 **K TRAINING INSTABILITIES OF VANILLA TRANSFORMERS**
13191320 We further push the limit of lacking inductive biases by training a vanilla transformer for force-field
1321 tasks. In particular, we train a GPT-style encoder in which atomic coordinates are fed directly into
1322 the model by concatenating them with embeddings computed from atomic numbers. As a result,
1323 E(3) equivariance is completely ignored in this setup. Moreover, because the transformer learns
1324 global attention over all atom nodes, the inductive bias of local neighborhoods, which is critical in
1325 NNIPs, is also abandoned. As shown in Figure 16, vanilla transformers fail to exhibit meaningful
1326 learning, as the learning curves saturate rapidly and remain unchanged for the remainder of training.
1327

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

L USAGE OF LARGE LANGUAGE MODELS

1368

1369 We used LLMs to assist with the writing of the paper (mainly for polishing) and also for coding.

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

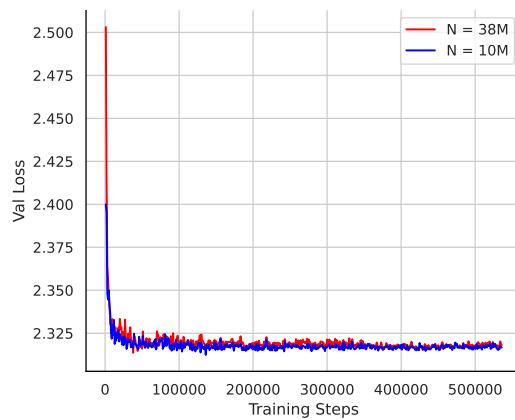


Figure 16: Training instabilities of vanilla transformers on force-field tasks.