
Coresets for Classification – Simplified and
Strengthened

Tung Mai
Adobe Research

tumai@adobe.com

Cameron Musco
University of Massachusetts Amherst

cmusco@cs.umass.edu

Anup Rao
Adobe Research

anuprao@adobe.com

Abstract

We give relative error coresets for training linear classifiers with a broad class of
loss functions, including the logistic loss and hinge loss. Our construction achieves
(1 ± ε) relative error with Õ(d · µy(X)2/ε2) points, where µy(X) is a natural
complexity measure of the data matrix X ∈ Rn×d and label vector y ∈ {−1, 1}n,
introduced in [MSSW18]. Our result is based on subsampling data points with
probabilities proportional to their `1 Lewis weights. It significantly improves on
existing theoretical bounds and performs well in practice, outperforming uniform
subsampling along with other importance sampling methods. Our sampling dis-
tribution does not depend on the labels, so can be used for active learning. It also
does not depend on the specific loss function, so a single coreset can be used in
multiple training scenarios.

1 Introduction

Coresets are an important tool in scalable machine learning. Given n data points and some objective
function, we seek to select a subset of m � n data points such that minimizing the objective
function on those points (possibly where selected points are weighted non-uniformly) will yield a
near minimizer over the full dataset. Coresets have been applied to problems ranging from clustering
[HPM04, FL11], to principal component analysis [CEM+15, FSS20], to linear regression [DMM06,
DDH+09, CWW19], to kernel density estimation [PT20], and beyond [AHPV05, BLK17, SS18].

We study coresets for linear classification. Given a data matrix X ∈ Rn×d, with ith row xi and
a label vector y ∈ {−1, 1}n, the goal is to compute β∗ = arg minβ∈Rd L(β), where L(β) =∑n
i=1 f(〈xi, β〉 · yi) for a classification loss function f , such as the logistic loss f(z) = ln(1 + e−z)

used in logistic regression or hinge loss f(z) = max(0, 1− z) used in soft-margin SVMs.

We seek to select a subset of m� n points xi1 , . . . , xim along with a corresponding set of weights
w1, . . . , wm such that, for some small ε > 0 and all β ∈ Rd,∣∣∣∣∣∣

m∑
j=1

wj · f(〈xij , β〉 · yij)− L(β)

∣∣∣∣∣∣ ≤ ε · L(β). (1)

This relative error coreset guarantee ensures that if β̃ ∈ Rd is computed to be the minimizer of the
weighted loss over our m selected points, then L(β̃) ≤ 1+ε

1−ε · L(β∗).

It is well known that common classification loss functions such as the log and hinge losses do not
admit relative error coresets with o(n) points [MSSW18]. To address this issue, Munteanu et al.
introduce a natural notion of the complexity of the matrix X and label vector y, which we will also
use to parameterize our results:

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Definition 1 (Classification Complexity Measure [MSSW18]). For any X ∈ Rn×d, y ∈ {−1, 1}n,
let µy(X) = supβ 6=0

‖(DyXβ)+‖1
‖(DyXβ)−‖1 , where Dy ∈ Rn×n is a diagonal matrix with y as its diagonal,

and (DyXβ)+ and (DyXβ)− denote the set of positive and negative entries in DyXβ.

Roughly, µy(X) is large when there is some parameter vector β ∈ Rd that produces significant
imbalance between correctly classified and misclassified points. This can occur e.g., when the data is
exactly separable. However, as argued in [MSSW18], we typically expect µy(X) to be small.

1.1 Our Results

Our main result, formally stated in Corollary 9, is that sampling Õ
(
d·µy(X)2

ε2

)
points according to

the `1 Lewis weights of X and reweighting appropriately, yields a relative error coreset satisfying
(1) for the logistic loss, the hinge loss, and generally a broad class of ‘hinge-like’ losses. This
significantly improves the previous state-of-the-art using the same µy(X) parameterization, which

was Õ
(
d3·µy(X)3

ε4

)
[MSSW18]. See Table 1 for a detailed comparison with prior work.

Theoretical Approach. The Lewis weights are a measure of the importance of rows in X , originally
designed to sample rows in order to preserve ‖Xβ‖1 for any β ∈ Rd [CP15]. They can be viewed as
an `1 generalization of the leverage scores which are used in applications where one seeks to preserve
‖Xβ‖2 [CLM+15]. Like the leverage scores, the Lewis weights can be approximated very efficiently,
in Õ(nnz(X) + dω) time where ω ≈ 2.37 is the constant of fast matrix multiplication. They can
also be approximated in streaming and online settings [BDM+20]. Our coreset constructions directly
inherit these computational properties.

The `1 Lewis weights are a natural sampling distribution for hinge-like loss functions, including the
logistic loss, hinge loss, and the ReLU. These functions grow approximately linearly for positive
z, but asymptote at 0 for negative z. Thus, ignoring some technical details, it can be shown that∑n
i=1 f(〈xi, β〉 · yi) concentrates only better under sampling than

∑n
i=1 |〈xi, β〉 · yi| = ‖DyXβ‖1.

As shown by Cohen and Peng [CP15], taking Õ(d/ε2) samples according to the Lewis weights of
X (which are the same as those of DyX) suffices to approximate ‖DyXβ‖1 for all β ∈ Rd up to
(1± ε) relative error. We show in Thm. 8 using contraction bounds for Rademacher averages that it
in turn suffices to approximate

∑n
i=1 f(〈xi, β〉 · yi) up to additive error roughly ε(‖X‖1 + n). We

then simply show in Corollaries 6 and 9 that by setting ε′ = Θ(ε/µy(X)) and applying Def. 1, this
result yields a relative error coreset for a broad class of hinge-like loss functions including the ReLU,
the log loss, and the hinge loss.

Samples Error Loss Assumptions Distribution Ref.

Õ
(
d·µ(X)2

ε2

)
relative log, hinge

ReLU Def. 1 `1 Lewis Cors. 6, 9

Õ
(
d3·µ(X)3

ε4

)
relative log Def. 1 sqrt lev. scores [MSSW18]

Õ
(√

n·d3/2·µ(X)

ε2

)
relative log Def. 1 sqrt lev. scores [MSSW18]

Õ
(
n1−κd
ε2

)
relative log, hinge

‖xi‖2 ≤ 1 ∀i
regularization nκ‖β‖1,
nκ‖β‖2, or nκ‖β‖22

uniform [CIM+19]

O
(√

d
ε

)
additive εn log ‖β‖2, ‖xi‖2 ≤ 1∀i deterministic [KL19]

Table 1: Comparison to prior work. Õ(·) hides logarithmic factors in the problem parameters. We
note that the bounded norm assumption of [CIM+19] can be removed by simply scaling X , giving a
dependence on the maximum row norm of X in the sample complexity. The importance sampling
distributions of our work and [MSSW18] are both in fact a mixture with uniform sampling. Our work
and [KL19, CIM+19] generalize to broader classes of loss functions – for simplicity here we focus
just on the important logistic loss, hinge loss, and ReLU.

2

Experimental Evaluation. In Sec 5, we compare our Lewis weight-based method to the square
root of leverage score method of [MSSW18], uniform sampling as studied in [CIM+19], and an
oblivious sketching algorithm of [MOW21]. We study performance in minimizing both the log and
hinge losses, with and without regularization. We observe that our method typically far outperforms
uniform sampling, even in some cases when regularization is used. It performs comparably to the
method of [MSSW18], seeming to outperform when the µy(X) complexity parameter is large.

1.2 Related Work

Our work is closely related to [MSSW18], which introduces the µy(X) complexity measure. They
give relative error coresets with worse polynomial dependences on the parameters through a mixture
of uniform sampling and sampling by the squareroots of the leverage scores. This approach has the
same intuition as ours – the squareroot leverage score sampling preserves the ‘linear part’ of the
hinge-like loss function and the uniform sampling preserves the asymptoting piece. However, like
many other works on coresets for logistic regression and other problems [HCB16, TF18, CIM+19,
TMF20, TBFR21] the analysis of Munteanu et al. centers on the sensitivity framework. At best, this
framework can achieve Ω(d2) sample complexity – one d factor comes from the total sensitivity
of the problem, and the other from a VC dimension bound on the set of linear classifiers. To the
best of our knowledge, our work is the first that avoids this sensitivity framework – Lewis weight
sampling results are based on `1 matrix concentration result and give optimal linear dependence on
the dimension d.

Regularized Classification Losses. Rather than using the µy(X) parameterization of Def. 1, several
other works [TF18, CIM+19] achieve relative error coresets for the log and hinge losses by assuming
that the loss function is regularized by nκ ·R(β), where κ > 0 is some parameter and R(β) is some
norm – e.g., ‖β‖1, ‖β‖2, or in the important case of soft-margin SVM, ‖β‖22.

Curtin et al. show that simple uniform sampling gives a relative error coreset with Õ
(
n1−κd/ε2

)
points in this setting [CIM+19]. They also show that no coreset with o(n(1−κ)/5) points exists.
In Appendix B, we tighten this lower bound, showing via a reduction to the INDEX problem in
communication complexity that the Õ(n1−κ) bound achieved by uniform sampling is in fact optimal.

Our theoretical results are incomparable to those of [CIM+19]. However, empirically, Lewis weight
sampling often far outperforms uniform sampling – see Sec. 5. Note that our results directly apply in
the regularized setting – our relative error can only improve. However, our theoretical bounds do not
actually improve with regularization, still depending on µy(X), which is avoided by [CIM+19].

Other Related Work. Less directly, our work is connected to sampling and sketching algorithms
for linear regression under different loss functions, often using variants of the leverage scores or
Lewis weights [DDH+09, CW14, ALS+18, CWW19, CD21]. It is also related to work on sketching
methods that preserve the norms of vectors under nonlinear transformations, like the ReLU, often
with applications to coresets or compressed sensing for neural networks [BJPD17, BOB+20, GM21].
Another line of related work includes coresets for standard optimization algorithms such as Frank-
Wolfe algorithm [Cla10], Gilbert’s algorithm [CHW12] and Stochastic Gradient Descent [HKS11].

2 Preliminaries

Notation. Throughout, for f : R→ R and a vector y ∈ Rn, we let f(y) ∈ Rn denote the entrywise
application of f to y. For a vector y ∈ Rn we let yi denote it’s ith entry. So f(y)i = f(yi).

For data matrix X ∈ Rn×d with rows x1, . . . , xn ∈ Rd and label vector y ∈ {−1, 1}n we consider
classification loss functions of the form L(β) =

∑n
i=1 f(〈xi, β〉 · yi) =

∑n
i=1 f(DyXβ)i, where

Dy ∈ Rn×n is the diagonal matrix with y on its diagonal. For simplicity, we write X instead of DyX
throughout, since we can think of the labels as just being incorporated into X by flipping the signs of
its rows. Similarly, we write the complexity parameter of Def. 1 as µ(X) = supβ 6=0

‖(Xβ)+‖1
‖(Xβ)−‖1 .

Throughout we will call f(z) = ln(1 + ez) the logistic loss and f(z) = max(0, 1 + z) the hinge
loss. Note that these functions have the sign of z flipped from the typical convention. This is just
notational – we can always negate X or β and have an identical loss function. We use these versions
as they are both `∞ close to the ReLU function, a fact that we will leverage in our analysis.

3

Basic sampling results. Our coreset construction is based on sampling with the `1 Lewis weights.
We define these weights and state fundamental results on Lewis weight sampling and below.
Definition 2 (`1 Lewis Weights [CP15]). For any X ∈ Rn×d the `1 Lewis weights are the
unique values τ1(X), . . . , τn(X) such that, letting W ∈ Rn×n be the diagonal matrix with
1/τ1(X), . . . , 1/τn(X) as its diagonal, for all i,

τi(X)2 = xTi (XTWX)+xi,

where for any matrix M , M+ is the pseudoinverse. M+ = M−1 when M square and full-rank.
Theorem 3 (`1 Lewis Weight Sampling). Consider any X ∈ Rn×d, and set of sampling values pi
with

∑n
i=1 pi = m and pi ≥ c·τi(X) log(m/δ)

ε2 for all i, where c is a universal constant. If we generate
a matrix S ∈ Rm×n with each row chosen independently as the ith standard basis vector times
1/pi with probability pi/m then there exists an ` > 1 such that if σ ∈ {−1, 1}m is chosen with
independent Rademacher entries

E
S,σ

 sup
β:‖Xβ‖1=1

∣∣∣∣∣
m∑
i=1

σi[SXβ]i

∣∣∣∣∣
`
 ≤ ε` · δ.

In particular, if each pi is a scaling of a constant factor approximation to the Lewis weight τi(X)

(which means that ∀i, c̃τi(X) ≤ pi ≤ cτi(X) for some constants c, c̃), S has m = O
(
d log(d/δε)

ε2

)
rows.

Theorem 3 is implicit in [CP15], following from the proof of Lemma 7.4, which shows a high
probability bound on |‖SXβ‖1 − 1| via the moment bound stated above. This moment bound is
proven on page 29 of the arXiv version. The claim on the bound on m can be derived as follows. We
have

∑n
i=1 τi(X) = d, which gives that m =

∑
pi ≤ cd log(m/δ)/ε2 for some constant c. If we set

m = O(d log(d/(δε))/ε2) we have log(m/δ) = O(log(d/(δε)) which gives m = cd log(m/δ)/ε2

as needed.

We will translate the above moment bound to give approximate bounds for classification loss functions
like the ReLU, logistic loss, and hinge loss, using the following standard result on Rademacher
complexities:
Theorem 4 (Ledoux-Talagrand contraction, c.f. [Duc]). Consider V ⊆ Rm, along with L-Lipschitz
functions fi : R → R with fi(0) = 0. Then for any ` > 1, if σ ∈ {−1, 1}m is chosen with
independent Rademacher entries,

E
σ

sup
v∈V

∣∣∣∣∣
m∑
i=1

σifi(vi)

∣∣∣∣∣
`
 ≤ (2L)` · E

σ

sup
v∈V

∣∣∣∣∣
m∑
i=1

σivi

∣∣∣∣∣
`
 .

3 Warm Up: Coresets for ReLU Regression

We start by showing that `1 Lewis weight sampling yields a (1 + ε)-relative error coreset for ReLU
regression, under the complexity assumption of Def. 1. Our proofs for log loss, hinge loss, and other
hinge-like loss functions will follow a similar structure, with some added complexities.

We first show that Lewis weight sampling gives a coreset with additive error ε‖X‖1. By setting
ε′ = ε/µ(X), we then easily obtain a relative error coreset under the assumption of Def. 1.
Theorem 5 (ReLU Regression – Additive Error Coreset). Consider X ∈ Rn×d and let ReLU(z) =

max(0, z) for all z ∈ R. For a set of sampling values pi with
∑n
i=1 pi = m and pi ≥ c·τi(X) log(m/δ)

ε2

for all i, where c is a universal constant, if we generate S ∈ Rm×n with each row chosen indepen-
dently as the ith standard basis vector times 1/pi with probability pi/m then with probability at least
1− δ, for all β ∈ Rd, ∣∣∣∣∣

m∑
i=1

[S ReLU(Xβ)]i −
n∑
i=1

ReLU(Xβ)i

∣∣∣∣∣ ≤ ε‖Xβ‖1.
If each pi is a scaling of a constant factor approximation to the Lewis weight τi(X), S has m =

O
(
d log(d/(δε))

ε2

)
rows.

4

Corollary 6 (ReLU Regression – Relative Error Coreset). Consider the setting of Thm. 5, where∑n
i=1 pi = m and pi ≥ c·τi(X) log(m/δ)·µ(X)2

ε2 for all i. With probability at least 1 − δ, ∀β ∈ Rd,
|
∑m
i=1[S ReLU(Xβ)]i −

∑n
i=1 ReLU(Xβ)i| ≤ ε ·

∑n
i=1 ReLU(Xβ)i. If each pi is a scaling of a

constant factor approximation to the Lewis weight τi(X), S has m = O
(
d log(d/(δε))·µ(X)2

ε2

)
rows.

Proof of Corollary 6. We have
n∑
i=1

ReLU(Xβ)i =
∑

i:[Xβ]i≥0

[Xβ]i = ‖(Xβ)+‖1, (2)

Additionally, since by definition µ(X) = supβ 6=0
‖(Xβ)+‖1
‖(Xβ)−‖1 = supβ 6=0

‖(Xβ)−‖1
‖(Xβ)+‖1 ,

‖Xβ‖1
‖(Xβ)+‖1

= 1 +
‖(Xβ)−‖1
‖(Xβ)+‖1

≤ 1 + µ(X). (3)

Combining (2) with (3) gives that
∑n
i=1 ReLU(Xβ)i ≥ 1

1+µ(X) · ‖Xβ‖1, which then completes the
corollary after applying Theorem 5 with ε′ = ε

1+µ(X) .

Proof of Theorem 5. We prove the theorem restricted to β such that ‖Xβ‖1 = 1. Since the ReLU
function is linear in that ReLU(cz) = c · ReLU(z), this yields the complete theorem via scaling. It
suffices to prove that there exists some ` > 0 such that

B
def
= E

S

 sup
β:‖Xβ‖1=1

∣∣∣∣∣
m∑
i=1

[S ReLU(Xβ)]i −
n∑
i=1

ReLU(Xβ)i

∣∣∣∣∣
`
 ≤ ε` · δ.

The theorem then follows via Markov’s inequality and the monotonicity of z` for z, ` ≥ 0. Via a
standard symmetrization argument (c.f. the Proof of Theorem 7.4 in [CP15]) we have

B ≤ 2` · E
S,σ

 sup
β:‖Xβ‖1=1

∣∣∣∣∣
m∑
i=1

σi[S ReLU(Xβ)]i

∣∣∣∣∣
`
 ,

where σ ∈ {−1, 1}m has independent Rademacher random entries. We can then apply, for each fixed
value of S the Ledoux-Talagrand contraction theorem (Theorem 4) with V = {SXβ : ‖Xβ‖1 = 1}
and fi(z) = ReLU(z) for all i. fi(z) is 1-Lipschitz with f(0) = 0. This gives

B ≤ 4` · E
S,σ

 sup
β:‖Xβ‖1=1

∣∣∣∣∣
m∑
i=1

σi[SXβ]i

∣∣∣∣∣
`
 ≤ (4ε)` · δ

for some ` > 1 by Theorem 3. This completes the theorem after adjusting ε by a factor of 4, which
only affects the sample complexity by a constant factor.

4 Extension to the Hinge Like Loss Functions

We next extend Theorem 5 to a family of ‘nice hinge functions’ which includes the hinge loss
f(z) = max(0, 1 + z) and the log loss f(z) = ln(1 + ez). These functions present two additional
challenges: 1) they are generally not linear in that f(c · z) 6= c · f(z), an assumption which is used in
the proof of Theorem 5 to restrict to considering β with ‖Xβ‖1 = 1 and 2) they are not contractions
with f(0) = 0, a property which was used to apply the Ledoux-Talagrand contraction theorem.
Definition 7 (Nice Hinge Function). We call f : R→ R+ an (L, a1, a2)-nice hinge function if for
fixed constants L, a1 and a2,

(1) f is L-Lipschitz (2) |f(z)− ReLU(z)| ≤ a1 for all z (3) f(z) ≥ a2 for all z ≥ 0.

We start with an additive error coreset result for nice hinge functions. We then show that under the
additional assumption of a2 > 0, the additive error achieved is small compared to

∑n
i=1 f(Xβ)i,

yielding a relative error coreset. This gives our main results for both the hinge loss and log loss,
which are (1, 1, 1)-nice and (1, ln 2, ln 2)-nice hinge functions respectively.

5

Theorem 8 (Nice Hinge Function – Additive Error Coreset). Consider X ∈ Rn×d and let f : R→
R+ be an (L, a1, a2)-nice hinge function (Def. 7). For a set of sampling values pi with

∑n
i=1 pi = m

and pi ≥ Cmax(τi(X),1/n)
ε2 for all i, where C = c ·max(1, L, a1)2 · log

(
log(nmax(1,L,a1)/ε)m

δ

)
and c

is a fixed constant, if we generate S ∈ Rm×n with each row chosen independently as the ith standard
basis vector times 1/pi with probability pi/m, then with probability at least 1− δ, ∀β ∈ Rd,∣∣∣∣∣

m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f(Xβ)i

∣∣∣∣∣ ≤ ε · (‖Xβ‖1 + n).

Observe that for a fixed function f , L, a1 are constant and so, if each pi is a scaling of a constant
factor approximation to max(τi(X), 1/n), S has m = O

(
d log(log(n/ε)d/(δε))

ε2

)
= Õ

(
d
ε2

)
rows.

Proof. Let J = c1 log(nmax(1,L,a1)
ε) for some constant c1. We will show that for each integer

j ∈ [−J, J], with probability at least 1− δ
2J ,

sup
β:‖Xβ‖1∈[2j ,2j+1]

∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f([Xβ]i)

∣∣∣∣∣ ≤ ε · 2j + ε · n. (4)

Via a union bound this gives the theorem for all β with ‖Xβ‖1 ∈ [2−J , 2J]. We then just need to
handle the case of Xβ with norm outside this range – i.e. when ‖Xβ‖1 is polynomially small or
polynomially large in n and the other problem parameters. We will take a union bound over the
failure probabilities for these cases, and after adjusting δ by a constant, have the complete theorem.
We make the argument for ‖Xβ‖1 outside [2−J , 2J] first.

Small Norm. For β with ‖Xβ‖1 ≤ 2−J , ‖Xβ‖∞ ≤ 2−J ≤ ε
L . Thus, f(Xβ)i ∈ [f(0)−ε, f(0)+ε]

for all i. Thus by triangle inequality, and the fact that f(0) ≤ ReLU(0) + a1 = a1:

sup
β:‖Xβ‖1≤2−J

∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f(Xβ)i

∣∣∣∣∣ ≤ a1 ·
∣∣∣∣∣
m∑
i=1

1/pji − n

∣∣∣∣∣+ ε ·

(
m∑
i=1

1/pji + n

)
, (5)

where 1/pji is value of the single nonzero entry in the ith row of S, which samples index ji from
f(Xβ). Let Z1, . . . , Zm be i.i.d., each taking value 1/pj with probability pj

m for all j ∈ [n]. Then∣∣∣∣∣
m∑
i=1

1/pji − n

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

(Zi − EZi)

∣∣∣∣∣ .
For all j ∈ [n] we have pj ≥ C·max(τj(X),1/n)

ε2 ≥ c·max(1,a1)
2·log(J/δ)

nε2 , so applying a Bernstein
bound, if the constant c is chosen large enough we have:

P

[∣∣∣∣∣
m∑
i=1

1/pji − n

∣∣∣∣∣ ≥ εn

max(1, a1)

]
≤ 2 exp

(
− ε2n2/(2 max(1, a1)2)

n2ε2

c log(J/δ)·max(1,a1)2
+ n2ε3

c log(J/δ)·max(1,a1)3

)
≤ δ

4J
.

(6)

Combining (6) with (5), with probability at least 1− δ, we have

sup
β:‖Xβ‖1≤2−J

∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f(Xβ)i

∣∣∣∣∣ ≤ a1 · εn
max(1, a1)

+ ε ·
(

2 +
ε

max(1, a1)

)
n ≤ 4ε · n.

Adjusting constants on ε, this gives the theorem for β with ‖Xβ‖1 ≤ 2−J .

Large Norm. We next consider β with ‖Xβ‖1 ≥ 2J . Since by assumption |f(z)−ReLU(z)| ≤ a1
for all z ∈ R, we can apply triangle inequality to give for any β ∈ Rd,∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f(Xβ)i

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
i=1

[S ReLU(Xβ)]i −
n∑
i=1

ReLU(Xβ)i

∣∣∣∣∣+ a1 ·

(
m∑
i=1

1/pji + n

)
.

6

Applying Theorem 5 and the bound on
∑m
i=1 1/pji given in (6), we thus have, with probability at

least 1− 2δ, for all β with ‖Xβ‖1 ≥ 2J ,∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f(Xβ)i

∣∣∣∣∣ ≤ ε

2
‖Xβ‖1 + 3a1n ≤ ε‖Xβ‖1,

where the final bound uses that ‖Xβ‖1 ≥ 2J ≥
(
nmax(1,a1)

ε

)c1
for a large enough constant c1. This

gives the theorem for β with ‖Xβ‖1 ≥ 2J .

Bounded Norm. We now return to proving that (4) holds for any j ∈ [−J, J] with probability at
least 1− δ

2J . Let f̄(z) = f(z)− f(0). Then for any β ∈ Rd we have:∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f([Xβ]i)

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
i=1

[Sf̄(Xβ)]i −
n∑
i=1

f̄([Xβ]i)

∣∣∣∣∣+ f(0) ·

∣∣∣∣∣
m∑
i=1

1/pji − n

∣∣∣∣∣ .
We again apply the bound on

∑m
i=1 1/pji given in (6) and the fact that f(0) ≤ a1. This gives that

with probability at least 1− δ
4J , for all β ∈ Rd,∣∣∣∣∣

m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f([Xβ]i)

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
i=1

[Sf̄(Xβ)]i −
n∑
i=1

f̄([Xβ]i)

∣∣∣∣∣+ f(0) · εn

max(1, a1)

≤

∣∣∣∣∣
m∑
i=1

[Sf̄(Xx)]i −
n∑
i=1

f̄([Xx]i)

∣∣∣∣∣+ ε · n. (7)

Now, for ` ≥ 0, by a standard symmetrization argument (c.f. the proof of Thm. 7.4 in [CP15]),

B
def
= E

S

 sup
β:‖Xβ‖1∈[2j ,2j+1]

∣∣∣∣∣
m∑
i=1

[Sf̄(Xβ)]i −
n∑
i=1

f̄(Xβ)i

∣∣∣∣∣
`
 ≤ 2` E

S,σ

 sup
β:‖Xβ‖1∈[2j ,2j+1]

∣∣∣∣∣
n∑
i=1

σi[Sf̄(Xβ)]i

∣∣∣∣∣
`
 ,

where σ ∈ {−1, 1}m has independent Rademacher random entries. We can then apply, for each
fixed value of S the Ledoux-Talagrand contraction theorem (Thm. 4) with V = {SXβ : ‖Xβ‖1 ∈
[2j , 2j+1]} and fi(z) = 1/pji · f̄(pji · z). Note that fi(0) = 0 since f̄(0) = 0. Additionally, fi is
L-Lipschitz since by assumption f(z) is L-Lipschitz so f̄(pji · z) is (pji · L)-Lipschitz. We have,

fi([SXβ]i) = 1/pji · f̄(pji · 1/pji [Xβ]ji) = [Sf̄(Xβ)]i.

So, applying Theorem 3, for some ` > 1 we have, since pi ≥ Cτi(X)
ε2 for C = cmax(1, L, a1)2 ·

log(log(nmax(1, L, a1)/ε)m/δ) = Ω(max(1, L2) · log(Jm/δ)),

B ≤ (4L)` · E
S,σ

 sup
β:‖Xβ‖1∈[2j ,2j+1]

∣∣∣∣∣
n∑
i=1

σi[SXβ]i

∣∣∣∣∣
`
 ≤ (4L)` · (ε/L)` · δ

4J
· (2j+1)`.

Adjusting ε by a constant, this gives via Markov’s inequality that with probability at least 1− δ
4J ,

sup
β:‖Xβ‖1∈[2j ,2j+1]

∣∣∣∣∣
m∑
i=1

[Sf̄(Xβ)]i −
n∑
i=1

f̄(Xβ)i

∣∣∣∣∣ ≤ ε · 2j . (8)

In combination with (7), we then have that probability at least 1− δ
2J ,

sup
β:‖Xβ‖1∈[2j ,2j+1]

∣∣∣∣∣
m∑
i=1

[Sf(Xβ)]i −
n∑
i=1

f([Xβ]i)

∣∣∣∣∣ ≤ ε · 2j + ε · n.

This gives (4) and completes the theorem.

7

4.1 Relative Error Coresets

Our relative error coreset result for nice hinge functions follows as a simple corollary of Thm. 8. The
proof is analogous to the proof of Cor. 6, and given in the appendix.
Corollary 9 (Nice Hinge Function – Relative Error Coreset). Consider the setting of Thm. 8 under
the additional assumption that a2 > 0. If

∑n
i=1 pi = m and pi ≥ Cmax(τi(X),1/n)·µ(X)2

ε2 for all i,

where C = c ·max(1, L, a1, 1/a2)10 · log
(

log(nmax(1,L,a1,1/a2)·µ(X)/ε)m
δ

)
and c is a fixed constant,

with probability ≥ 1− δ, for all β ∈ Rd, |
∑m
i=1[Sf(Xβ)]i −

∑n
i=1 f(Xβ)i| ≤ ε ·

∑n
i=1 f(Xβ)i.

For fixed f(·), L, a1, a2 are constant and so, if each pi is a scaling of a constant factor approximation
to max(τi(X), 1/n), S has m = O

(
dµ(X)2 log(log(nµ(X)/ε)dµ(X)/(δε))

ε2

)
= Õ

(
dµ(X)2

ε2

)
rows. This

gives our main result for the hinge and log losses, which are (1, 1, 1) and (1, ln 2, ln 2)-nice.

5 Empirical Evaluation

We now compare our method (lewis), square root of leverage score method (l2s) of [MSSW18],
uniform sampling (uniform), and an oblivious sketching algorithm (sketch) of [MOW21]. Our
evaluation uses the codebase of [MSSW18], which was generously shared with us.

Implementation. Lewis weights are computed via an iterative algorithm given in [CP15], which
involves computing leverage scores of a reweighted input matrix in each iteration. We typically
don’t need many iterations to reach convergence – for all datasets we used 20 iterations and observed
relative difference between successive iterations around 10−6. Leverage scores are also needed by
the l2s routine, and are computed via the numpy qr factorization routine when possible. One dataset
(COVERTYPE) involves an almost singular matrix, we resorted to the pinv routine in numpy.

We note that [MSSW18] used a fast random sketching-based QR decomposition to compute the
leverage scores – this can also be applied to Lewis weight computation. The number of iterations
of the Lewis weight algorithm can also be reduced – it seems that roughly 5 iterations are sufficient
for practical purposes. Lewis weight computation will then take about 5 times as much time as l2s
weight computation.

Datasets. We use the same three datasets as in [MSSW18]. The WEBB SPAM1 data consists of
350,000 unigrams with 127 features from web pages with 61% positive labels. The task is is to
classify as spam or not. The other two datasets are loaded from scikit learn library2. COVERTYPE

consists of 581,012 cartographic observations of different forests with 54 features and 49% positive
labels. The task is to predict the type of tree. KDD CUP ’99 has 494,021 points with 41 features and
20% positive labels. The task is to detect network intrusions.

Loss functions. We evaluate the algorithms on two loss functions: 1) logistic loss f(z) = ln(1 + ez)
and 2) hinge loss f(z) = max(0, 1+z). As before, we use z = 〈β, x〉 ·y. Note that [MSSW18] gives
guarantees only for logistic loss for l2s. We also evaluate the above two losses with regularization
term 0.5‖β‖22. We evaluate sketch only for logistic loss without any regularization – which is what
is was designed for. Though it sometime preforms reasonably in other cases, it can have very high
variance or high error for certain combinations of loss functions and datasets.

Evaluation. Our evaluation follows that of [MSSW18]. Let β̃ be the parameter vector minimizing
the sum of the loss function on the coreset and β∗ be the true minimizer. We report the relative loss
|L(β∗)−L(β̃)|

L(β∗) , where L(β) =
∑n
i f(〈xi, β〉 · yi) is the sum of loss over all data points. Ideally, this

ratio should be close to 0. In Figure 1, we plot the log relative loss as a function of coreset size.

We observe that Lewis weights sampling performs better than all other methods on KDD CUP ’99 for
both loss functions, with and without regularization. Our bounds for lewis give a better dependence
on the complexity parameter µy(X) than the bounds [MSSW18] for l2s, and so this agrees with the
fact that the value of µy(X) is high for KDD CUP ’99. [MSSW18] estimated µy(X) values of WEBB

SPAM, COVERTYPE and KDD CUP ’99 to be 4.39, 1.86 and 35.18 respectively. For COVERTYPE and

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2https://scikit-learn.org/

8

WEBB SPAM COVERTYPE KDD CUP ’99

L
O

G
IS

T
IC

H
IN

G
E

L
2

L
O

G
IS

T
IC

L
2

H
IN

G
E

Figure 1: Each plot represents the performance of the studied methods with respect to one combination
of dataset and loss function. The x-axis shows the coreset size, and the y-axis shows the log scale of
the relative error. Each experiment is run 100 times. The solid line represents the median error. The
lower and upper boundary lines represent the 25th and 75th percentiles respectively.

WEBB SPAM, the performance of lewis is comparable or a little worse than that of l2s. Furthermore,
on these two datasets, with regularization, uniform sampling does relatively well for very small
sample sizes, which agrees with the results of [CIM+19].

Comparison of distributions. To give a better intuition behind our results, we illustrate how
different the Lewis weights are from the other sampling distributions on our three datasets in Fig.
3. Given two distributions p̄ = (p1, p2, .., pn) and q̄ = (q1, p2, .., qn), we plot the frequencies of
{max(pi/qi, qi/pi)}i. We let p̄ to be the uniform or l2s distributions and take q̄ to be Lewis weights.
We observe that the Lewis weights are far from uniform on all datasets, especially KDD CUP ’99. This
may explain why lewis performs so well on this dataset. l2s and lewis are much closer in general,
explaining their relatively similar performance. Note that these score comparisons are based only
on the data matrix X , and not the label vector y, which does not affect the leverage scores or Lewis
weights. Thus, they only give a partial picture of the differences between methods. In particular, our
theoretical bounds and the bounds for l2s in [MSSW18] both depend on µy(X), which depends on
the label vector.

Classification Error Here, we include additional experimental results based on reviewer feedback.
For various coreset sizes and datasets, we plot the log(1− auc) for each of the methods. auc stands

9

WEBB SPAM COVERTYPE KDD CUP ’99

L
2S

U
N

IF
O

R
M

Figure 2: Comparison of sampling distributions.

for Areas Under the Curve. A perfect classifier has auc = 1 and all other classifiers have auc < 1.
The lower the curve is in the plot, better it is as a classifier. Each plot is a result of 100 trials.

WEBB SPAM COVERTYPE KDD CUP ’99

Figure 3: Comparison of classification accuracy.

10

Acknowledgments and Disclosure of Funding

Cameron Musco was partially supported by an Adobe Research grant, along with NSF Grants
2046235 and 1763618.

References
[AHPV05] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approxima-

tion via coresets. Combinatorial and Computational Geometry, 52:1–30, 2005.
[ALS+18] Alexandr Andoni, Chengyu Lin, Ying Sheng, Peilin Zhong, and Ruiqi Zhong. Sub-

space embedding and linear regression with Orlicz norm. In Proceedings of the 35th
International Conference on Machine Learning (ICML), 2018.

[BDM+20] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upad-
hyay, David P Woodruff, and Samson Zhou. Near optimal linear algebra in the online
and sliding window models. In Proceedings of the 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2020.

[BJPD17] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing
using generative models. In Proceedings of the 34th International Conference on
Machine Learning (ICML), 2017.

[BLK17] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for
machine learning. arXiv:1703.06476, 2017.

[BOB+20] Mussay Ben, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman.
Data-independent neural pruning via coresets. In Proceedings of the 8th International
Conference on Learning Representations (ICLR), 2020.

[CD21] Xue Chen and Michał Dereziński. Query complexity of least absolute deviation regres-
sion via robust uniform convergence. arXiv:2102.02322, 2021.

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC),
2015.

[CHW12] Kenneth L Clarkson, Elad Hazan, and David P Woodruff. Sublinear optimization for
machine learning. Journal of the ACM (JACM), 59(5):1–49, 2012.

[CIM+19] Ryan R Curtin, Sungjin Im, Ben Moseley, Kirk Pruhs, and Alireza Samadian. On
coresets for regularized loss minimization. arXiv:1905.10845, 2019.

[Cla10] Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe
algorithm. ACM Transactions on Algorithms (TALG), 6(4):1–30, 2010.

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and
Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, pages 181–190, 2015.

[CP15] Michael B Cohen and Richard Peng. `p row sampling by Lewis weights. In Proceedings
of the 47th Annual ACM Symposium on Theory of Computing (STOC). https://arxiv.
org/abs/1412.0588, 2015.

[CW14] Kenneth L Clarkson and David P Woodruff. Sketching for M-estimators: A unified
approach to robust regression. In Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2014.

[CWW19] Kenneth Clarkson, Ruosong Wang, and David Woodruff. Dimensionality reduction for
Tukey regression. In Proceedings of the 36th International Conference on Machine
Learning (ICML), 2019.

[DDH+09] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney.
Sampling algorithms and coresets for `p regression. SIAM Journal on Computing,
38(5):2060–2078, 2009.

[DMM06] Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms
for l2 regression and applications. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2006.

11

http://arxiv.org/abs/1703.06476
http://arxiv.org/abs/2102.02322
http://arxiv.org/abs/1905.10845
https://arxiv.org/abs/1412.0588
https://arxiv.org/abs/1412.0588

[Duc] John C. Duchi. Probability bounds. https://stanford.edu/~jduchi/projects/
probability_bounds.pdf.

[FL11] Dan Feldman and Michael Langberg. A unified framework for approximating and
clustering data. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing (STOC), pages 569–578, 2011.

[FSS20] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA, and projective clustering. SIAM Journal on
Computing, 49(3):601–657, 2020.

[GM21] Aarshvi Gajjar and Cameron Musco. Subspace embeddings under nonlinear transforma-
tions. In Algorithmic Learning Theory, pages 656–672, 2021.

[HCB16] Jonathan H Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable
Bayesian logistic regression. Advances in Neural Information Processing Systems 29
(NeurIPS), 2016.

[HKS11] Elad Hazan, Tomer Koren, and Nati Srebro. Beating sgd: Learning svms in sublinear
time. In NIPS, pages 1233–1241. Citeseer, 2011.

[HPM04] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clus-
tering. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), 2004.

[KL19] Zohar Karnin and Edo Liberty. Discrepancy, coresets, and sketches in machine learning.
In Proceedings of the 32nd Annual Conference on Computational Learning Theory
(COLT), 2019.

[MOW21] Alexander Munteanu, Simon Omlor, and David Woodruff. Oblivious sketching for
logistic regression. In Proceedings of the 38th International Conference on Machine
Learning (ICML), 2021.

[MSSW18] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P Woodruff.
On coresets for logistic regression. Advances in Neural Information Processing Systems
31 (NeurIPS), 2018.

[PT20] Jeff M Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates.
Discrete & Computational Geometry, 63(4):867–887, 2020.

[Rou15] Tim Roughgarden. Communication complexity (for algorithm designers).
arXiv:1509.06257, 2015.

[SS18] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks:
A core-set approach. Proceedings of the 6th International Conference on Learning
Representations (ICLR), 2018.

[TBFR21] Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus. On coresets for support
vector machines. Theoretical Computer Science, 890:171–191, 2021.

[TF18] Elad Tolochinsky and Dan Feldman. Generic coreset for scalable learning of monotonic
kernels: Logistic regression, sigmoid and more. arXiv:1802.07382, 2018.

[TMF20] Morad Tukan, Alaa Maalouf, and Dan Feldman. Coresets for near-convex functions.
Advances in Neural Information Processing Systems, 33, 2020.

12

https://stanford.edu/~jduchi/projects/probability_bounds.pdf
https://stanford.edu/~jduchi/projects/probability_bounds.pdf
http://arxiv.org/abs/1509.06257
http://arxiv.org/abs/1802.07382

	Introduction
	Our Results
	Related Work

	Preliminaries
	Warm Up: Coresets for ReLU Regression
	Extension to the Hinge Like Loss Functions
	Relative Error Coresets

	Empirical Evaluation
	Omitted Proofs
	Lower Bounds for Regularized Classification

