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ABSTRACT

Knowledge editing aims to efficiently correct factual errors in Language Models
(LMs). The popular locate-then-edit approach modifies an MLP layer by find-
ing an optimal mapping between its input vector (key) and output vector (value)
that leads to the expression of the edited knowledge. However, existing methods
without any constraints on the key and value vectors cause significant perturba-
tions to the edited model. To address this, we propose Subspace Knowledge Edit
(SUIT), a method that identifies and modifies only the subspace of critical features
relevant to the edit. Our empirical results on LLaMA-3-8B, GPT-J-6B, and
Qwen2.5-7B models show that SUIT dramatically improves knowledge preser-
vation over strong baselines while maintaining high edit efficacy. This effective-
ness confirms that SUIT successfully identifies the critical subspace for the edit.
Further analyses provide additional validation for our approach. The source code
and data will be released to the public upon publication of the paper.

1 INTRODUCTION

Large language models (LLMs) retain and recall substantial factual knowledge. However, they often
produce incorrect statements due to noisy training data or a temporal shift (Maynez et al., 2020; Ji
et al., 2023; Lin et al., 2022). These errors reveal gaps and temporal drift in the model’s knowledge,
indicating the need for edits to correct these issues. Fine-tuning is commonly used for this purpose,
but it is computationally costly and susceptible to overfitting and catastrophic forgetting (Zhang
et al., 2024; Bethune et al., 2025; Luo et al., 2025). Consequently, knowledge editing methods have
emerged as a promising alternative, enabling targeted edits of specific knowledge while preserving
the rest (Yao et al., 2023; Wang et al., 2024b). Among various knowledge editing methods (Wang
et al., 2024a), our work builds on the locate-then-edit approach. This approach, which edits knowl-
edge by directly identifying and updating the edit-relevant weights, has shown high precision in both
mass and sequential editing (Meng et al., 2023b; Fang et al., 2025).

Knowledge editing replaces the old object o in a factual tuple (s, r, o) with a new object o∗. For
example, for the subject (s, “Chrome”) and the relation (r, “was developed by”), the old object
(o, “Google”) can be edited to the new object (o∗, “Apple”). Within the locate-then-edit methods,
this editing is performed by viewing the Transformer MLP’s down-projection matrix W as a linear
associative memory (Anderson, 1972; Kohonen, 1972; Meng et al., 2023a), where W maps key
vectors to value vectors. In these methods, the key vector k encodes the subject s, and the value
vector v encodes the (r, o). The edit is then achieved by computing a new value vector v∗ for the
new pair (r, o∗) and redirecting the mapping from k 7→ v to k 7→ v∗. Once the pair (k,v∗) is
specified, the corresponding weight update ∆ to be added to W such that (W+∆)k = v∗ can be
calculated in closed form, allowing the final weights to be set as W′ = W+∆. Thus, the result of
the edit is determined by the specification of k and v∗.

An ideal knowledge editing method should edit targeted knowledge while preserving unrelated
knowledge. This latter property, known as specificity, prevents perturbation: any unintended change
in the model’s output on unedited inputs. Understanding how the model represents knowledge is
key to edit the knowledge without causing perturbation. According to the Linear Representation
Hypothesis, a language model’s hidden states are composed of a linear combination of semantic
features, where each feature occupies a distinct subspace (Elhage et al., 2022; Mikolov et al., 2013).
Prior research has empirically shown that these decomposable features encode interpretable infor-
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mation (Huang et al., 2024; Park et al., 2024). This perspective suggests that the key and value
vectors themselves are also linear combinations of semantic features.

For knowledge editing, we hypothesize that these key and value vectors decompose into features
relevant to the specific knowledge being edited and that are less edit-relevant. Therefore we pro-
pose Subspace Knowledge Edit (SUIT) that localizes target knowledge to specific subspaces and
confines edits within them. For the key vector k, we isolate its entity-specific subspaces containing
features that activate differently for the various entities, removing identified common subspace. For
the new value vector v∗, we restrict the update within the subspace that primarily encodes the new
object o∗.

Across LLaMA-3-8B, GPT-J-6B, and Qwen2.5-7B, SUIT demonstrates a significant leap in
performance. Compared to AlphaEdit (Fang et al., 2025), a leading baseline renowned for minimiz-
ing knowledge disruption, SUIT achieves a substantial gain in specificity, improving by 43.2 points
on LLaMA-3-8B, while retaining high edit efficacy. It also demonstrates robustness in preserving
the model’s general capabilities. To further validate our approach, we demonstrate SUIT’s effec-
tiveness in reducing a entity’s last token perturbation, empirically test our hypotheses on subspace
identification, and present a hyperparameter analysis and an ablation study.

2 RELATED WORK

Knowledge Editing Knowledge editing methods can be broadly categorized into three paradigms.
Memory-based approaches preserve the original model by storing edited knowledge externally and
retrieving it during inference (Mitchell et al., 2022; Hartvigsen et al., 2023). Meta-learning ap-
proaches employ auxiliary networks to learn weight updates that are subsequently applied to the
base model for efficient editing (Mitchell et al., 2022; Cao et al., 2021). Finally, Locate-Then-Edit
approaches identify knowledge-relevant parameters within the model and directly modify them to
achieve targeted updates (Meng et al., 2023a;b).

Linear Representation Hypothesis The Linear Representation Hypothesis posits that the hidden
states of language models are a linear combination of semantic features, with each feature occupying
a distinct subspace (Elhage et al., 2022; Mikolov et al., 2013; Park et al., 2024). Indeed, numerous
studies have empirically demonstrated this hypothesis, showing that a variety of features—such as
syntax, position, and factual knowledge, among others—can be identified within specific, decom-
posable subspaces or directions (Huben et al., 2024; Ji et al., 2023; Huang et al., 2024).

3 PRELIMINARIES

3.1 LINEAR ASSOCIATIVE MEMORY

Knowledge editing in language models aims to edit a fact triplet from (s, r, o) to (s, r, o∗). The
locate-then-edit methods (Meng et al., 2023a;b; Fang et al., 2025) achieve this by viewing the MLP’s
down-projection layer as a linear associative memory that maps keys to values. From this perspec-
tive, MLP’s down-projection layer can be expressed as

Wk = v.

Here, the down-projection matrix W maps the key vector k, which is the MLP’s up-projection
activation, to the value vector v.

Based on this, the core idea of the locate-then-edit methods is that the key vector k encodes the
subject s, while the value vector v encodes the relation r and object o. To edit the model’s knowl-
edge, these methods update the matrix W by adding an update matrix ∆. This change redirects
the mapping of the key vector k from the value vector v, encoding (r, o), to a new value vector v∗

that encodes (r, o∗). This remapping is achieved by finding an update matrix ∆ that satisfies the
approximation:

(W +∆)k ≈ v∗

The update matrix ∆ is calculated to satisfy the condition ∆k ≈ r, where r := v∗ − v, referred to
as the residual vector.
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Building on this principle, MEMIT (Meng et al., 2023b) extends the approach to edit multiple pieces
of knowledge simultaneously. For a batch of n facts (s, r, o∗)i where i = 1, . . . , n, it first computes
the corresponding key vectors ki and residual vectors ri. These are then concatenated to form a key
matrix K = [k1 | k2 | · · · | kn] and a residual matrix R = [r1 | r2 | · · · | rn]. MEMIT provides a
closed-form solution to find the update matrix ∆ using these matrices.

Subsequently, AlphaEdit (Fang et al., 2025), based on MEMIT, introduced a new formula for ∆
designed to better preserve the model’s existing knowledge. The proposed formula is:

∆ = RK⊤P
(
KpK

⊤
p P+KK⊤P+ I

)−1
(1)

In this formula, both Kp and P are pre-computed (details in Appendix A). In other words, since the
computation of the update matrix ∆ depends on the key vector k for the subject s and the residual
vector r representing the change from o to o∗, it is crucial to calculate these values accurately.

3.2 COMPUTING THE KEY VECTOR k AND THE RESIDUAL VECTOR δ

Key Vector. Suppose we want to edit the fact triplet from (s, r, o) to (s, r, o∗). To compute the
key vector k, we extract the MLP up-projection activation from the last token of the subject (e.g.,
“rome” in “Chrome”). To improve the generalization of the key vector, we repeat this with various
prefixes. We average the extracted MLP up-projection activations to obtain the final key vector k.

Residual Vector. While ROME (Meng et al., 2023a) targeted a single layer, most subsequent
approaches perform edits across multiple layers. These multi-layer methods do not compute the
residual vector r separately for each layer. Instead, they first calculate an entire residual vector δ
(henceforth, the residual vector) from the residual stream of the final layer being edited. This vector
δ is then distributed proportionally to determine the specific r for each layer involved in the edit. To
obtain δ, it is added to the residual stream h at the subject’s last token position in the last modified
layer and optimized via gradient descent to maximize the logit of the new object o∗ (“Apple”) given
the input s, r (“Chrome was developed by”). To prevent overfitting to the new fact, which can lead to
the corruption of unrelated knowledge, a regularization termR is added to the loss function (details
in Appendix B). The optimization objective is formulated as:

δ = argmin
δ̃

{
− log p

(
o∗ | h∗ ← h+ δ̃

)
+R

}
. (2)

4 SUIT: SUBSPACE KNOWLEDGE EDIT

4.1 KNOWLEDGE EDITING UNDER LINEAR REPRESENTATION HYPOTHESIS

According to the Linear Representation Hypothesis, the key and value vectors within an MLP’s
down-projection layer can be viewed as a composition of semantic features. For knowledge editing,
we hypothesize that these vectors consist of features that are either relevant or irrelevant to the spe-
cific edit. The key vector k, which encodes the subject, can be divided into entity-specific features
and more general, entity-agnostic features that activate similarly across many subjects. Similarly,
the value vector v, encoding the relation and object, contains features that primarily define the object
(o or o∗) alongside other less relevant features.

To ensure that knowledge edits are precise—modifying only the target knowledge while preserving
other knowledge—we propose introducing explicit constraints. When computing the key vector
k, we aim to consider only the subspace occupied by its entity-specific features. Likewise, when
computing the residual vector δ, we aim to consider only the feature directions that significantly
influence the object’s logit. Accordingly, in the following sections we obtain the subspace-aware
key vector k′ (§ 4.2) and the subspace-aware residual vector δ′ (§ 4.3); using these, we compute the
update matrix ∆ via Eq. (1).

4.2 SUBSPACE-AWARE COMPUTATION FOR OUR KEY VECTOR k′

When computing our key vector k′ that encodes the subject s, our objective is to isolate the com-
ponent that lies within Ks—the subspace containing only entity-specific features, which activate

3
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differently for the various entities. Conversely, the orthogonal subspace K⊥
s contains the entity-

agnostic features that activate similarly across many subjects.

We begin with the key vector k. (§ 3.2) We then decompose this vector into its entity-specific
component, ks ∈ Ks, and its entity-agnostic component, k∼s ∈ K⊥

s . Our key vector k′ is obtained
by removing this entity-agnostic component:

k = ks + k∼s

k′ = k− k∼s = ks

The core task is to identify the entity-agnostic subspace K⊥
s and compute these vector components.

We accomplish this through the following procedure.

We sample N = 10,000 subjects from PARAREL(Elazar et al., 2021), a dataset of (s, r, o) triplets
derived from Wikidata. For each subject, we compute its key vector k to form the matrix: Ksubject =
[k1 | k2 | · · · | k10000].

Applying singular value decomposition (SVD) to this matrix yields:

Ksubject = USV⊤,

where S = diag(σ1, σ2, . . . , σr) with σ1 ≥ σ2 ≥ · · · ≥ σr denotes the singular values, and
U = [u1 | u2 | · · · | ur] contains the corresponding left singular vectors.

To determine how many critical components to remove, we introduce a hyperparameter τenergy ∈
[0, 1) that represents the proportion of total variance (energy) to isolate. Let Etotal =

∑r
i=1 σ

2
i be

the total energy of Ksubject. We find the smallest integer m such that the cumulative energy of the
first m components exceeds this threshold:

∑m
i=1 σ

2
i ≥ τenergy · Etotal. Let Ut = [u1 | · · · | um]

denote the matrix of the first m left singular vectors. We then define the entity-agnostic subspace
K⊥

s as their span:
K⊥

s := span(Ut) .

This subspaceK⊥
s represents the directions of common features that activate similarly across various

entities. Finally, we use the matrix UtU
⊤
t to project the key vector k onto the entity-agnostic

subspaceK⊥
s . By subtracting this projection k∼s, we remove the entity-agnostic component, leaving

only the entity-specific component ks. This procedure yields the constrained key vector k′, which
now contains only the features relevant to the subject being edited:

k′ = k− k∼s, k∼s = UtU
⊤
t k.

4.3 SUBSPACE-AWARE COMPUTATION FOR OUR RESIDUAL VECTOR δ′

The computation of the residual vector δ is intended to modify the residual stream h to encode
(r, o∗). (§ 3.2) Rather than altering the full-dimensional residual stream h, our approach is to target
a low-dimensional subspace that governs the model’s prediction for the given (s, r) pair.

We hypothesize that this targeted modification can be achieved within a two-dimensional subspace
spanned by two critical unit feature directions, w1 and w2. Specifically, increasing the magnitude of
h along w1 (i.e., h⊤w1) raises the logit of the new object o∗, while decreasing its magnitude along
w2 (i.e., h⊤w2) suppresses the logit of the old object o. To edit o to o∗, we swap these magnitudes:
we increase the magnitude of h along w1 and decrease its magnitude along w2. For simplicity, we
ignore interactions between the two directions and implement the edit as a simple additive update
(details in Appendix C). The updated residual stream h∗ is:

h∗ = h+ δ′, δ′ = (h⊤w2 − h⊤w1)w1 + (h⊤w1 − h⊤w2)w2

The process for finding the optimal basis vectors, {w1,w2}, follows a similar structure to the op-
timization for the residual vector δ shown in Eq. (2). The primary objective is to maximize the
logit of the new object o∗. While Eq. (2) included a general regularization term R, it is unneces-
sary in our approach as we constrain the update to a two-dimensional subspace. To encourage the
basis vectors w1 and w2 to represent distinct directions, we introduce a directional penalty term,
formulated as

(
ŵ⊤

1 ŵ2

)2
. Here, since {w1,w2} are completely symmetric in the formulation, we

4
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Method Counterfact zsRE

S Eff. ↑ Gen. ↑ Spe. ↑ Flu. ↑ Con. ↑ GA ↑ S Eff. ↑ Gen. ↑ Spe. ↑
L

L
am

a3
Pre-edit 0.0 0.0 0.0 100.0 634.9 20.9 63.4 45.1 35.9 34.8 100.0
FT-L 1.9 9.9 1.4 1.3 438.5 19.2 6.2 43.2 34.8 34.0 88.0
MEND 0.0 0.0 0.0 1.3 519.5 0.6 0.0 0.0 0.0 0.0 89.7
MEMIT 48.3 76.2 74.0 28.2 628.9 36.7 60.8 68.3 89.3 85.7 47.5
PMET 37.6 56.6 56.0 22.6 608.8 33.8 50.1 69.8 89.2 83.9 50.4
AlphaEdit 55.8 97.3 88.7 31.0 633.6 38.6 62.2 73.7 93.5 88.7 53.3
SUIT 86.8 99.7 90.3 74.2 631.2 38.2 63.0 81.6 95.2 85.7 68.5

G
PT

-J

Pre-edit 0.0 0.0 0.0 100.0 621.1 23.9 24.3 35.4 27.2 26.3 100.0
FT-L 13.3 64.9 46.7 5.3 334.2 12.2 24.2 28.4 69.3 60.6 13.4
MEND 0.0 0.0 0.0 0.0 515.0 2.7 0.0 0.6 0.4 0.4 80.0
MEMIT 60.2 92.0 90.4 35.8 617.4 48.5 20.1 88.6 96.8 90.8 79.9
PMET 57.4 84.6 84.5 35.0 618.5 44.8 19.1 85.9 95.1 89.2 75.8
AlphaEdit 73.0 98.3 95.0 49.0 621.8 49.9 19.5 96.9 99.1 92.4 99.4
SUIT 82.3 98.6 93.3 64.1 619.4 49.4 20.4 95.9 99.7 89.5 99.3

Q
w

en
2.

5

Pre-edit 0.0 0.0 0.0 100.0 625.5 21.9 28.9 29.5 22.5 21.2 100.0
FT-L 10.3 47.9 31.7 4.2 476.7 4.5 0.0 7.3 18.1 15.6 3.4
MEND 0.0 0.0 0.0 0.0 466.3 0.1 0.0 0.0 0.0 0.0 85.3
MEMIT 22.6 83.0 84.0 9.2 622.1 37.0 34.8 72.7 82.9 72.2 65.1
PMET 32.6 67.5 65.9 16.1 545.2 27.5 14.8 60.2 71.9 65.5 48.4
AlphaEdit 67.8 97.1 91.6 43.4 626.2 41.0 28.1 89.6 97.5 86.3 85.8
SUIT 85.7 99.5 86.8 74.4 626.2 37.4 30.8 88.2 93.9 76.9 96.6

Table 1: Results on COUNTERFACT and ZSRE. Best numbers are bold; second-best are underlined.
Abbreviations: Eff. = Efficacy, Gen. = Generalization, Spe. = Specificity, Flu. = Fluency, Con. =
Consistency, GC = General Capability.

can assume the constraint h⊤w1 < h⊤w2 without loss of generality. The complete optimization
objective reflecting this is therefore formulated as:

{w1,w2} = arg min
ŵ1,ŵ2

{
− log p

(
o∗ | h∗ ← h+ δ̂′

)
+ λ

(
ŵ⊤

1 ŵ2

)2}
,

where the hyperparameter λ is the penalty weight that controls the strength of the directional penalty.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models & Baseline Methods. We conduct our experiments on these models: Llama3-Instruct
(8B) (Grattafiori et al., 2024), GPT-J (6B) (Wang & Komatsuzaki, 2021), and Qwen2.5-Instruct
(7B) (Yang et al., 2024). We compare SUIT against several representative model editing baselines,
including Fine-Tuning (FT-L) (Zhu et al., 2020), MEND (Mitchell et al., 2022), PMET (Li et al.,
2024), MEMIT (Meng et al., 2023b), and AlphaEdit (Fang et al., 2025). Further comparison re-
sults with other methods (FT-W (Zhu et al., 2020), ROME (Meng et al., 2023a), RECT (Gu et al.,
2024), PRUNE (Ma et al., 2024), NSE (Jiang et al., 2024)) are presented in Appendix F.1, and the
hyperparameters are listed in Appendix D.2.

Dataset and Metrics We evaluate model editing performance on two widely used benchmarks:
COUNTERFACT(Meng et al., 2023a) and ZSRE(Levy et al., 2017). In line with prior works (Meng
et al., 2023a;b; Fang et al., 2025), we employ three metrics to evaluate the performance of edit:
Efficacy, Generalization, and Specificity. First, Efficacy assesses whether the model generates o∗

for a given rewrite prompt (s, r), while Generalization measures the same for paraphrase prompts.
Lastly, Specificity verifies that an edit does not negatively impact unrelated knowledge. This is
evaluated using a neighborhood prompt, which involves a different subject s′ but shares the same
r and o as the fact being edited. To provide a single, comprehensive measure, we also report the
harmonic mean of these three metrics, denoted as S. Beyond factual correctness, we also evaluate
generation quality via Consistency and Fluency. Further details are provided in the Appendix E.

5
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Evaluation Details Our objective is editing, the task of changing (s, r, o) to (s, r, o∗). Since
editing presupposes the model’s prior knowledge of a fact, we exclusively evaluate on instances
where the model’s argmax prediction is o for the original prompt (s, r) as well as its correspond-
ing paraphrase and neighborhood prompts. This condition is not applied to ZSRE, which contrasts
with declarative datasets like COUNTERFACT. Its question-based prompts lead the model to predict
sentence-starters (e.g., “The”) rather than the immediate object, making the argmax check unsuit-
able. In Table 1, we present the results of applying 1000 edits sequentially in 10 batches of 100. For
this evaluation, an edit is considered successful based on a generation-based criterion, which counts
an edit as successful only if o∗ is the argmax prediction. In the Appendix F.2, we also report results
with the less demanding probability-based criterion (P (o∗) > P (o)), common in prior work.

General Capability We evaluate the model’s general capability (GC) to measure any side effects
from editing. The GC score (Table 1) is the average F1 score across six benchmarks: MMLU
(Hendrycks et al., 2021b) and tasks from GLUE (Wang et al., 2019) (NLI, MRPC, SST, RTE,
CoLA). Detailed results for each benchmark can be found in the Appendix F.3.

5.2 EXPERIMENTAL RESULTS

0 1000 2000 3000 4000 5000
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Figure 1: Mean F1 score degrada-
tion during a 5,000-edit setting.

As shown in Table 1, SUIT attains the highest overall perfor-
mance (S score) across most model–dataset pairs. Its advan-
tage is most evident on COUNTERFACT: with Llama, SUIT
achieves an S score of 86.8%, 31 points lead over AlphaEdit
(55.8%). The gain is driven by Specificity, where SUIT scores
74.2% compared to 31.0% (+43.2 points). The improvement
extends to GPT-J (+15.1 points) and Qwen (+31.0 points).We
further assessed contextual robustness by evaluating the model
edited with COUNTERFACT on the CHED (Park et al., 2025)
dataset, and Appendix F.4 confirms that SUIT remains effec-
tive even with preceding context. On the ZSRE dataset, SUIT’s
strong performance continues. It achieves the highest S score
on Llama (81.6%). In addition, it records the best Efficacy on
GPT-J (99.7%) and the highest Specificity on Qwen (96.6%).

Beyond these metrics, SUIT preserves Fluency, Consistency, and overall General Capability, show-
ing that it edits knowledge without degrading overall performance. We further validate this in a
5,000-edit setting, tracking General Capability degradation at every 100-edit interval (Figure 1). As
shown in the figure, SUIT remains highly stable and surpasses AlphaEdit while maintaining editing
efficacy. Complete results and benchmark-level F1 scores are reported in Appendix F.5. In sum-
mary, SUIT enables effective knowledge editing with minimal disruption, setting a new standard for
scalable and reliable model editing.

6 ANALYSIS

To further investigate SUIT, we conducted a series of analyses. We demonstrate its effectiveness
in reducing perturbation at the subject’s last-token. We then empirically validate our hypotheses
regarding the subspaces identified for computing the key and residual vectors. Finally, we present
a hyperparameter tradeoff analysis and an ablation study. All analyses were performed using the
Llama-3-Instruct model. For experiments requiring edited models, we used models edited with 10
batches of 100 edits each from the COUNTERFACT.

6.1 REDUCING ENTITY’S LAST TOKEN PERTURBATION

Ideally, an edited model is expected to behave identically to the original model on unedited knowl-
edge, without introducing any perturbation. Prior research (Meng et al., 2023a; Geva et al., 2023;
Chughtai et al., 2024) has demonstrated that an entity’s attributes are predominantly enriched at
the last token position of the entity. Accordingly, locate-then-edit methods perform edits by deriv-
ing key and value vectors directly from this position. This approach, however, induces significant
perturbation precisely at this critical location.

6
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Figure 2: Comparison of token-level perturba-
tions in residual streams.
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Figure 3: Norm differences of MLP outputs at
the last token position across methods.

Figure 2 shows the L2 norm of difference in the residual streams of the final edited layer between the
original model and models edited using MEMIT, AlphaEdit, and SUIT. This difference, representing
the perturbation at each token, is visualized through color intensity on a sample paragraph from the
Wikinews Article Dataset. The figure demonstrates that, compared to other tokens, all methods
generally exhibit a more notable perturbation at the last token of the subject entity (e.g., “OS” in
“NOS”, “ner” in “Donner”). Notably, among these methods, the perturbation from SUIT is visibly
less pronounced than that of MEMIT and AlphaEdit. Further examples confirming this pattern are
provided in the Appendix H.

To quantify the perturbation from editing, we analyze the output of the MLP layers, which are the
direct targets of the edits. Using unedited knowledge from the COUNTERFACT dataset, we measure
the L2 distance between the outputs of the original and edited models at the subject entity’s last
token position. As shown in Figure 3, while all three methods induce a non-zero perturbation, SUIT
consistently exhibits the smallest change. This indicates that SUIT performs more localized and
precise edits, affecting unrelated knowledge the least.

6.2 ANALYSIS FOR SUBSPACES

In this section, we investigate whether the subspaces Ks, K⊥
s and the directions w1, w2, which

we identified to find the key vector k and the residual vector δ, indeed correspond to the feature
subspaces we hypothesized. We hypothesized that Ks is a entity-specific feature subspace that
activates differently for each subject entity. Conversely, its orthogonal subspace K⊥

s is assumed to
be a entity-agnostic feature space, activating similarly across different entities. Furthermore, we
posited that w1, w2 are crucial directions for the update. Specifically, when their scaled versions
are added to the residual stream h, we believe w1 is the principal direction for increasing the logit
of the new object o∗, while w2 is principal direction for decreasing the logit of the old object o.

6.2.1 ANALYSIS FOR Ks, K⊥
s

To investigate whetherKs is entity-specific andK⊥
s is entity-agnostic, we designed an experiment to

measure component variance. We began by extracting the key vectors k for 5,000 randomly selected
subjects from the COUNTERFACT and ZSRE datasets. Each key vector k was then decomposed into
its component ks in the subspace Ks and its component k∼s in the orthogonal space K⊥

s . Finally,
we computed the variance for each set of components across all 5,000 subjects.

The results of our variance analysis, presented in Table 2, align with our initial expectations. Across
both datasets, the variance of the entity-specific components ks was significantly higher than that
of the entity-agnostic ones k∼s, being approximately 2.6 times higher for COUNTERFACT and 4.5
times higher for ZSRE. This finding is consistent with our hypothesis, suggesting that Ks may cap-
ture entity-specific features that vary across individuals, while K⊥

s appears to contain more stable,
entity-agnostic information.

Furthermore, we conducted an experiment to verify that our update matrix, ∆, interacts less with the
subspace K⊥

s . To test this, we compared our method against MEMIT and AlphaEdit on the rewrite,
paraphrase, and neighborhood prompts in the COUNTERFACT. Specifically, we measured the pro-
portion of the update that affects the entity-agnostic components, calculated as ∥∆k∼s∥2/∥∆k∥2.
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Table 2: Variance of decomposed
key vector components across 5,000
subjects.

COUNTERFACT ZSRE

V (k∼s) 2.041 1.333
V (ks) 5.269 5.938

Table 3: Proportion of the modification affect-
ing entity-agnostic components at layer 4.

Prompt type MEMIT AlphaEdit SUIT
rewrite 0.2814 0.4623 0.0035
paraphrase 0.2929 0.4717 0.0039
neighborhood 0.6805 0.8114 0.0201

The results for layer 4, the first edited layer, are presented in Table 3, while the results for the other
layers can be found in the Appendix.

The results clearly demonstrate that for all prompt types, the proportion of the update affecting the
entity-agnostic space ∥∆k∼s∥2/∥∆k∥2 is negligible for our method, SUIT. This is in stark contrast
to MEMIT and AlphaEdit, which show a significantly higher proportion of their modifications im-
pacting these common components. This finding suggests that SUIT successfully isolates its edits to
the entity-specific space Ks, leaving the shared, entity-agnostic knowledge largely untouched. We
can, therefore, infer that this precise targeting is a key reason for SUIT’s enhanced specificity for
neighborhood prompts.

6.2.2 ANALYSIS FOR w1, w2

Next, we verified our hypothesis that the subspace spanned by w1 and w2 represents the critical
directions for increasing the logit of the new object o∗. To do this, we first computed the residual
vector δ. We then decomposed this vector into two distinct components: the component lying in the
subspace span(w1,w2), δ∥W , and the remaining orthogonal component, δ⊥W . The projection is
calculated as

δ∥W = PW δ, where W = [w1, w2], PW = W
(
WTW

)−1
WT .

Table 4: Results of steering with
decomposed components of δ.

Space δ∥W δ⊥W∥∥δ∥/⊥W

∥∥2/∥∥δ∥∥2 24.17 75.82
p(o∗) 0.67 0.59
logit(o∗) -1.44 -1.72

To compare the respective effects of these two components on
increasing the logit of o∗, we added each of δ∥W and δ⊥W to the
residual stream h and measured the logit and probability of o∗,
given the subject s and relation r, averaged over the 1000 edits
in COUNTERFACT.

The results, presented in Table 4, reveal a compelling finding.
δ∥W accounts for only about 24% of the total squared norm
of δ. Despite its significantly smaller magnitude, this compo-
nent was more effective at increasing the logit and probability of o∗ than the remaining 76%
of the vector δ⊥W . This outcome indicates that while the residual vector δ contains both com-
ponents crucial for increasing the logit of o∗ and other less-essential ones, our approach com-
putes our residual vector exclusively from the critical subspace, span(w1,w2). This allows our
method to perform a more focused and potent update within a much narrower directional space.
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Figure 4: Effects of ∆w1 and ∆w2 on
the logits of “Apple” and “Google”

We further analyzed the individual roles of w1 and w2 to
test if w1 primarily increases the logit of the new object
o∗ while w2 primarily decreases the logit of the old object
o. To do this, we decomposed our update vector δ′ into
its components along these directions, ∆w1 = (h⊤w2 −
h⊤w1)w1, ∆w2 = (h⊤w1 − h⊤w2)w2.

We then incrementally added each component to the
residual stream h by scaling it with an interpolation fac-
tor k ∈ [0, 1] and observed the logits for both objects.
Figure 4 shows the results for the edit (“Chrome”, “was
developed by”, “Apple”). As expected, the ∆w1 compo-
nent is effective at increasing the target o∗ (“Apple”) logit, while the ∆w2 component effectively
decreases the original o (“Google”) logit.
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Although w1 and w2 drive logits as expected and were trained in different directions, we find that
w1 also suppresses the old object o, and w2 promotes the new object o∗, rather than each playing
only a single role. The effectiveness of fully disentangling them would be worth exploring in future
work. For a detailed visualization and a full breakdown of these component effects, please see
Appendix G.

6.3 TRADEOFF AND ABLATION STUDY

In this section, we analyze the performance tradeoff between our method’s two main compo-
nents—key vector k′ computation (§ 4.2) and residual vector δ′ computation (§ 4.3)—by varying
their respective hyperparameters, the energy threshold τenergy and the penalty weight λ. We also
conduct an ablation study to validate the contributions of each component.

Hyperparameter Tradeoff. For the analysis, we incrementally varied each hyperparameter from
0 to 0.9 while keeping the other fixed (λ = 0.3 or τenergy = 0.4), evaluating performance over 10
batches of 100 edits on the COUNTERFACT. Regarding the energy threshold τenergy , the efficacy
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Figure 5: Tradeoff analysis for hyperparameters τenergy and λ.

score tended to remain stable as the threshold increased. The generation score showed a sweet
spot around 0.3-0.4, which appears to be effective for identifying a suitable subspace K⊥

s . As τenergy
increased further, the subspace considered for editing tended to narrow. This created a clear tradeoff:
the generation score decreased as the model became less fitted to the edits, while the specificity score
increased.

For the penalty weight λ, efficacy also showed a tendency to remain consistent. A higher λ tended
to impose stronger regularization, compelling weight vectors w1 and w2 to find more divergent
directions. This generally resulted in the model being less fitted to the edits, revealing a direct
tradeoff where the generation score decreased while the specificity score increased.

Table 5: Performance analysis of
the individual components of SUIT.

Method Eff. Gen. Spe.

SUIT (k + δ) 99.7 90.3 74.2
k-only 96.4 77.9 74.7
δ-only 99.7 83.8 44.6

Ablation Study. To isolate the contribution of each of our
proposed components, we conducted an ablation study on the
key vector computation (k-only) and the residual vector com-
putation (δ-only), with the results summarized in Table 5. The
study reveals a powerful synergy between the two compo-
nents. Our full method not only preserves the high efficacy
of the δ-only method and the strong specificity of the k-only
method but also achieves a generalization score that signifi-
cantly surpasses both. This result validates the effectiveness
of our integrated approach.

7 CONCLUSION

In this work, we proposed Subspace Knowledge Edit (SUIT), a method for targeted knowledge
editing in language models. Grounded in the Linear Representation Hypothesis, SUIT constrains
edits to edit-relevant subspaces by decomposing the key vector k into entity-specific feaures and
restricting the residual vector δ to features relevant to the new object. This subspace-aware formu-
lation enables precise modification of target knowledge. Our experiments demonstrate that SUIT
achieves high efficacy and markedly improves specificity, confirming that subspace-based editing
enables accurate knowledge updates while preserving general capabilities.
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A DETAILS OF THE ALPHAEDIT UPDATE FORMULA

A.1 CLOSED-FORM SOLUTION

The primary objective is to find ∆ that incorporates new knowledge while preserving both the origi-
nal model’s knowledge and knowledge from previous edits. The optimization problem is formulated
as follows:

∆ = argmin
∆̃

(
∥∆̃PK−R∥2 + ∥∆̃P∥2 + ∥∆̃PKp∥2

)
where the three terms represent to the insertion of new information, a regularization term for stable
convergence, and the preservation of prior edits, respectively.

This objective has a closed-form solution. The final update matrix ∆′ = ∆P is given by:

∆′ = RK⊤P
(
KpK

⊤
p P+KK⊤P+ I

)−1

A.2 COMPUTATION OF THE PROJECTION MATRIX P

The matrix P is a projection matrix designed to project the update ∆ into the null space of a large
key matrix K0, which represents a vast collection of the model’s existing knowledge. This ensures
that the update does not interfere with this preserved knowledge, satisfying ∆PK0 = 0.

Due to the high dimensionality of K0, the projection is computed using the much smaller covari-
ance matrix K0K

⊤
0 . The procedure is as follows. First, Singular Value Decomposition (SVD) is

performed on the covariance matrix:

{U,Λ, (U)⊤} = SVD(K0K
⊤
0 )

Next, the eigenvectors in U (which are its columns) corresponding to near-zero eigenvalues are
identified. A submatrix Ũ is then constructed using only these selected eigenvectors. Finally, the
projection matrix P is defined as:

P = Ũ(Ũ)⊤

A.3 COMPUTATION OF THE PRIOR KEYS MATRIX Kp

The matrix Kp is used in sequential editing tasks to protect the knowledge updated in previous steps
from being disrupted by the current edit. It is constructed by aggregating the key matrices from all
prior edits.

Specifically, if there have been t − 1 previous edits, with corresponding key matrices
K1,K2, . . . ,Kt−1, then Kp is the horizontal concatenation of these matrices:

Kp = [K1,K2, . . . ,Kt−1]

For the very first edit, Kp is an empty matrix.

B THE REGULARIZATION TERM R

The optimization objective to find the residual vector δ is given by:

δ = argmin
δ̃

{
− log p

(
o∗ | h∗ ← h+ δ̃

)
+R

}
.

13

https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The regularization termR is introduced to prevent the model from overfitting to the new fact, which
could corrupt existing knowledge. It consists of two components: a KL divergence term and a
weight decay term. The full regularization term is formulated as:

R = λKLDKL(p(h) || p(h+ δ̃)) + λWD||δ̃||22.

KL Divergence. The first term uses the Kullback-Leibler (KL) divergence to preserve knowledge
related to the subject of the edit. This is achieved by computing the divergence on a prompt, such
as “{subject} is a” (e.g., “Chrome is a”). Specifically, it measures the divergence between the
output probability distribution from the original hidden state h and the distribution from the modified
hidden state h+ δ̃. The hyperparameter λKL controls the strength of this penalty.

Weight Decay. The second term is a weight decay penalty on the L2 norm of the residual vector
δ̃. This term encourages the model to find a smaller solution for δ̃. The hyperparameter λKL controls
the strength of this penalty.

C THE ADDITIVE UPDATE

The updated residual stream h∗ is computed via a simple additive update:

h∗ = h+ δ′,

where our residual vector δ′ is defined as:

δ′ = (h⊤w2 − h⊤w1)w1 + (h⊤w1 − h⊤w2)w2.

This formulation is simplified by ignoring interactions between the feature directions w1 and w2.
By assuming interactions between them to be zero (i.e., w⊤

1 w2 = 0), we can achieve the intended
swap of magnitudes with a straightforward additive operation.

To verify that this update swaps the magnitudes of h along w1 and w2, we can compute the new
projections (h∗)⊤w1 and (h∗)⊤w2. Since w1 and w2 are unit vectors, w⊤

1 w1 = 1 and w⊤
2 w2 = 1.

First, let’s compute the projection of h∗ onto w1:

(h∗)⊤w1 =
(
h+ (h⊤w2 − h⊤w1)w1 + (h⊤w1 − h⊤w2)w2

)⊤
w1

= h⊤w1 + (h⊤w2 − h⊤w1)(w
⊤
1 w1) + (h⊤w1 − h⊤w2)(w

⊤
2 w1)

= h⊤w1 + (h⊤w2 − h⊤w1)(1) + (h⊤w1 − h⊤w2)(0)

= h⊤w1 + h⊤w2 − h⊤w1

= h⊤w2

As shown, the new magnitude of the hidden state along w1 is equal to its original magnitude along
w2.

Next, we compute the projection of h∗ onto w2:

(h∗)⊤w2 =
(
h+ (h⊤w2 − h⊤w1)w1 + (h⊤w1 − h⊤w2)w2

)⊤
w2

= h⊤w2 + (h⊤w2 − h⊤w1)(w
⊤
1 w2) + (h⊤w1 − h⊤w2)(w

⊤
2 w2)

= h⊤w2 + (h⊤w2 − h⊤w1)(0) + (h⊤w1 − h⊤w2)(1)

= h⊤w2 + h⊤w1 − h⊤w2

= h⊤w1

Similarly, the new magnitude along w2 becomes the original magnitude along w1. Thus, this sim-
ple additive update, which ignores interactions between the two directions, effectively swaps the
magnitudes as intended.

14
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D EXPERIMENT DETAILS

D.1 BASELINE METHODS

Below we provide brief descriptions of the baseline methods used for comparison. Our main
set comprises Fine-Tuning (FT; FT-L/FT-W) (Zhu et al., 2020), MEND (Mitchell et al., 2022),
PMET (Li et al., 2024), MEMIT (Meng et al., 2023b), and AlphaEdit (Fang et al., 2025). Addi-
tional baselines include ROME (Meng et al., 2023a), RECT (Gu et al., 2024), PRUNE (Ma et al.,
2024), and NSE (Jiang et al., 2024).

Fine-Tuning (FT-L & FT-W). FT-L fine-tunes only the weights of a specific layer (as identified
by ROME), rather than all layers. FT-W is a variant of FT-L that differs slightly in the loss used for
parameter optimization under regularization.

MEND (Model Editor Networks with Gradient Decomposition). Edits large pre-trained models
from a single input–output pair by applying a low-rank decomposition to the fine-tuning gradient and
using small auxiliary “editor” networks for fast, localized parameter updates that mitigate overfitting.

PMET (Precise Model Editing in Transformers). Observes that hidden states arise from FFN,
MHSA, and residual paths. It assumes MHSA encodes general extraction patterns and need not be
altered; PMET jointly optimizes hidden states for FFN/MHSA but updates only FFN weights using
the optimized FFN state to make more precise edits.

MEMIT (Mass-Editing Memory in a Transformer). Extends ROME to insert many new factual
memories efficiently by targeting transformer modules that causally mediate factual recall, enabling
simultaneous updates for thousands of associations.

AlphaEdit. Within the locate–then–edit paradigm, projects the parameter perturbation onto the
null space of knowledge to be preserved before applying it, so outputs for preserved queries remain
unchanged and corruption during sequential edits is reduced.

ROME (Rank-One Model Editing). Identifies key mid-layer feed-forward activations that in-
fluence factual predictions and applies a direct rank-one weight update to modify specific factual
associations.

RECT (Regularizing Causal Tracing). Regularizes weight updates during editing to prevent ex-
cessive changes and overfitting, mitigating side effects (e.g., reasoning degradation) while maintain-
ing general capabilities.

PRUNE (Preserving Representations through Unitary Nullspace Editing). Constrains the
edited matrix (e.g., via condition-number control and null-space restrictions) so perturbations re-
main limited to stored knowledge, preserving overall ability under sequential edits.

D.2 HYPERPARAMETER SETTINGS

We adopt a unified configuration across locate–then–edit methods (ROME, MEMIT, PMET, RECT,
PRUNE, NSE) as well as AlphaEdit and SUIT, and only deviate where method-specific constraints
apply. Unless noted otherwise, we set v weight decay= 0.5, and kl factor= 0.0625. For
model-specific layer selections, we use indices {4, 5, 6, 7, 8} for Llama3-8B-Insctruct, {3, 4, 5, 6,
7, 8} for Gpt-J-6b, and {4,5,6,7,8} for Qwen2.5-7B-Instruct; an exception is ROME, which always
edits a single target layer (index 5). SUIT does not use v weight decay or kl factor. In
addition, both AlphaEdit and SUIT employ nullspace threshold= 2 × 10−2 and L2= 10.
For SUIT, we fix the method-internal hyperparameters τenergy = 0.4 and λ = 0.3 for all models.
MEND and FT-L/FT-W are tuned following their original papers. Hyperparameter choices follow
those specified in the original papers; when not provided, we default to the EASYEDIT open-source
settings Wang et al. (2024a).
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E DETAILED DESCRIPTION OF EVALUATION METRICS

Let o denote the old object and o∗ the new object. For each item i, let xi be the rewrite prompt
(i.e., (si, ri)), N(xi) its paraphrase prompts, and O(xi) its neighborhood prompts. All probabilities
Pfθ (· | ·) are computed under the language model fθ. These evaluation metrics are not new; we
follow established practice from prior work (Fang et al., 2025; Meng et al., 2023a;b).

E.1 COUNTERFACT METRICS

Probability-based criterion. The following three metrics use probability comparisons between
the edited target o∗ and the original o.

Efficacy.
Ei 1

[
Pfθ

(
o∗ | xi

)
> Pfθ

(
o | xi

)]
.

Generalization.
Ei 1

[
Pfθ

(
o∗ | N(xi)

)
> Pfθ

(
o | N(xi)

)]
.

Specificity.
Ei 1

[
Pfθ

(
o | O(xi)

)
> Pfθ

(
o∗ | O(xi)

)]
.

Generation-based criterion (exact match). Let τ(o∗) = (o∗1, . . . , o
∗
T∗). Success if every target

token is the greedy choice at its step:

Ei 1

[
∀ t ∈ {1, . . . , T ∗} : o∗t = argmax

y
Pfθ

(
y
∣∣ o∗<t, xi

)]
.

Fluency (generation entropy) Measure for excessive repetition in model outputs. It uses the
entropy of n-gram distributions:

−2

3

∑
k

g2(k) log2 g2(k) +
4

3

∑
k

g3(k) log2 g3(k), (22)

where gn(·) is the n-gram frequency distribution.

Consistency (reference score) The consistency of the model’s outputs is evaluated by giving the
model fθ a subject s and computing the cosine similarity between the TF-IDF vectors of the model-
generated text and a reference Wikipedia text about o.

E.2 ZSRE METRICS

Token-level partial credit. For target string y with tokenization τ(y) = (y1, . . . , y|y|) and prompt
x, define the token-level accuracy under teacher-forced greedy decoding as

TokenAcc(x, y) =
1

|y|

|y|∑
t=1

1
[
yt = argmax

v
Pfθ

(
v
∣∣ y<t, x

)]
.

Efficacy. Average token-level accuracy on rewrite prompts:

Ei

[
TokenAcc

(
xi, o

∗) ].
Generalization. Average token-level accuracy on paraphrase prompts:

Ei

[
TokenAcc

(
N(xi), o

∗) ].
16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Specificity. Here, o denotes the first token generated by the pre-edit model for O(xi) rather than
the dataset’s gold answer; we adopt this choice because the language model often does not reproduce
the zsRE-provided o. Average token-level accuracy on neighborhood prompts:

Ei

[
TokenAcc

(
O(xi), o

) ]
.

F MORE EXPERIMENTAL RESULTS

F.1 EXTENDED BASELINE COMPARISONS

Method Counterfact

Eff. ↑ Gen. ↑ Spe. ↑ Flu. ↑ Con. ↑ GC ↑

L
L

aM
A

3

Pre-edit 0.0 0.0 100.0 634.9 20.9 62.3
FT-W 4.0 2.9 43.5 634.4 21.4 60.5
ROME 0.0 0.2 0.0 481.5 4.2 0.0
RECT 81.6 72.4 36.1 634.4 35.3 60.4
PRUNE 43.3 39.3 17.7 590.4 33.9 45.0
NSE 1.4 5.8 62.2 609.6 23.1 60.9
SUIT 99.7 90.3 74.2 631.2 38.2 61.8

G
PT

-J

Pre-edit 0.0 0.0 100.0 621.1 23.9 18.6
FT-W 12.3 2.4 49.0 613.4 25.7 36.1
ROME 0.1 0.2 0.2 407.2 4.2 0.0
RECT 92.9 85.8 44.4 625.0 47.6 14.9
PRUNE 51.8 56.0 16.9 504.6 29.4 29.4
NSE 0.8 12.6 54.1 608.0 34.2 27.5
SUIT 98.6 93.3 64.1 619.4 49.4 17.8

Q
w

en
2.

5

Pre-edit 0.0 0.0 100.0 625.5 21.9 20.8
FT-W 47.9 31.7 4.2 476.7 4.5 0.0
ROME 51.6 33.7 14.2 440.1 15.6 0.6
RECT 86.3 85.9 42.3 625.8 37.7 59.9
PRUNE 28.2 30.7 7.7 588.1 30.4 6.0
NSE 0.0 0.0 99.5 625.6 21.7 39.3
SUIT 99.5 86.8 74.4 626.2 37.4 23.7

Table 6: Results on COUNTERFACT same setting with Table 1. Abbreviations: Eff. = Efficacy,
Gen. = Generalization, Spe. = Specificity, Flu. = Fluency, Con. = Consistency, GC = General Capa-
bility.

F.2 PROBABILITY-BASED CRITERION RESULTS

LLama (Prob)

Method Eff. ↑ Gen. ↑ Spe. ↑
Pre Edit 0.0 0.0 100.0
FT-W 9.5 6.7 92.4
ROME 67.1 65.5 49.4
RECT 94.0 87.2 73.9
PRUNE 76.5 75.1 59.7
NSE 83.7 53.1 98.0
FT-L 93.0 89.1 35.8
MEND 52.7 53.1 48.4
MEMIT 90.8 88.8 71.1
PMET 82.7 81.0 67.0
AlphaEdit 99.7 94.1 72.7
SUIT 100.0 90.8 84.4

GPT-J (Prob)

Method Eff. ↑ Gen. ↑ Spe. ↑
Pre Edit 0.0 0.0 100.0
FT-W 21.8 6.1 88.4
ROME 49.6 48.9 55.6
RECT 98.5 92.8 74.0
PRUNE 87.2 88.3 53.9
NSE 88.5 70.6 90.9
FT-L 91.1 78.3 40.3
MEND 46.0 46.1 53.9
MEMIT 97.9 96.8 67.8
PMET 93.7 94.5 68.2
AlphaEdit 99.6 97.9 78.6
SUIT 99.3 96.2 89.7

Qwen (Prob)

Method Eff. ↑ Gen. ↑ Spe. ↑
Pre Edit 0.0 0.0 100.0
FT-W 82.3 71.7 34.8
ROME 76.7 69.2 56.8
RECT 95.9 85.9 42.3
PRUNE 72.2 73.6 56.7
NSE 0.0 0.0 100.0
FT-L 82.3 71.7 34.8
MEND 54.0 53.9 46.0
MEMIT 92.2 95.4 75.8
PMET 85.8 86.9 62.1
AlphaEdit 99.2 98.3 80.3
SUIT 100.0 94.4 95.0

Table 7: Probability-based criterion results (Eff./Gen./Spe.) on three models.
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F.3 DETAILED F1 SCORES ON GENERAL CAPABILITY BENCHMARKS

F.3.1 GENERAL CAPABILITY BENCHMARK DATASETS

To evaluate the general capabilities of language models, several well-known benchmark datasets
are utilized. The GLUE (General Language Understanding Evaluation) benchmark is a prominent
collection of diverse natural language understanding tasks (Wang et al., 2018). Key datasets included
in GLUE are: SST-2 (The Stanford Sentiment Treebank), a single-sentence classification task for
sentiment analysis of movie reviews (Socher et al., 2013); MRPC (Microsoft Research Paraphrase
Corpus), which involves determining if a pair of sentences are semantically equivalent (Dolan &
Brockett, 2005); RTE (Recognizing Textual Entailment), a task that assesses whether a premise
sentence logically entails a hypothesis (Bentivogli et al., 2009); and CoLA (Corpus of Linguistic
Acceptability), where the task is to decide if a sentence is grammatically acceptable (Warstadt et al.,
2019). Furthermore, NLI (Natural Language Inference) tasks, which require inferring the logical
relationship (entailment, contradiction, or neutral) between a pair of sentences, are a crucial part of
the evaluation (Williams et al., 2018).

Beyond GLUE, more comprehensive benchmarks exist to measure multi-task proficiency. MMLU
(Massive Multi-task Language Understanding) is a benchmark designed to measure a text model’s
multi-task accuracy under zero-shot and few-shot settings across a wide range of subjects
(Hendrycks et al., 2021a).

F.3.2 GENERAL CAPABILITY BENCHMARK RESULTS

Model Method SST MMLU MRPC COLA RTE NLI Avg.

L
la

m
a

Pre Edit 81.78 59.93 65.28 76.72 27.65 69.27 63.44
FT-L 0.00 0.00 37.34 0.00 0.00 0.00 6.22
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEMIT 75.28 55.93 64.80 69.57 31.46 67.90 60.82
PMET 64.25 28.33 60.70 55.52 32.16 59.55 50.09
AlphaEdit 77.87 57.82 61.72 76.36 31.52 67.64 62.16
SUIT 77.18 58.93 65.64 77.63 29.53 69.26 63.03

G
PT

-J

Pre Edit 0.00 5.78 23.16 21.41 42.67 52.78 24.30
FT-L 0.00 17.74 19.67 15.92 46.13 45.79 24.21
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEMIT 0.00 5.89 6.73 13.29 41.56 53.33 20.13
PMET 0.00 7.81 3.63 12.22 44.69 46.17 19.09
AlphaEdit 0.00 4.30 5.81 9.26 44.91 52.79 19.51
SUIT 0.00 9.44 24.20 21.78 33.66 33.03 20.35

Q
w

en

Pre Edit 13.66 2.46 53.32 23.36 11.21 69.23 28.87
FT-L 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MEMIT 54.31 0.79 55.82 24.85 11.49 61.48 34.79
PMET 15.15 14.78 2.27 3.07 27.16 26.50 14.82
AlphaEdit 59.25 0.39 39.63 6.47 11.56 51.52 28.14
SUIT 19.07 3.23 55.03 32.27 8.80 66.23 30.77

Table 8: F1 scores per benchmark.

F.4 EVALUATION ON CHED (CONTEXTUAL HOP EDITING DATASET)

CHED (Park et al., 2025) extends the COUNTERFACT by evaluating whether knowledge edits re-
main robust under additional prefix contexts. Specifically, each rewrite prompt (s, r) is preceded
by sentences derived from either the original subject s, the old object o, the new object o∗, or their
one-hop neighbors. The six context types thus test whether the edited model can maintain correct-
ness when auxiliary but semantically related cues are introduced. As shown in Table 9, our method
consistently outperforms across all context types, indicating strong resilience to contextual variation.
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Table 9: Performance comparison on CHED. Each column corresponds to a rewrite prompt aug-
mented with one of six prefix–context types: Subject, Obj-Old, Obj-New, and their 1-hop variants.

Context Types Subject Obj-Old Obj-New Subject Hop Obj-Old Hop Obj-New Hop Avg.

MEMIT 75.4 73.6 77.8 74.1 70.4 75.7 74.2
AlphaEdit 92.7 88.6 94.2 90.4 87.9 92.0 91.0
SUIT 95.7 92.0 95.6 94.3 91.2 93.4 93.4

F.5 DETAILED RESULTS FOR THE 5,000-EDIT SETTING ON COUNTERFACT

The table 10 presents the performance metrics on the CounterFact dataset, where 5,000 cases were
sequentially edited in batches of 100.

Table 10: Full performance metrics on the CounterFact dataset. Metrics are grouped by generation-
based correctness (Gen) and output probabilities (Prob). The overall score S is the harmonic mean
of Efficacy (Eff.), Generalization (Gen.), and Specificity (Spe.). Fluency (N-gram Entropy) and
Consistency (Reference Score) values are scaled by 100. Best and second-best results are in bold
and underlined, respectively.

Method Generation-based Probability-based Fluency ↑ Consistency ↑
S Eff. ↑ Gen. ↑ Spe. ↑ S Eff. ↑ Gen. ↑ Spe. ↑

L
la

m
a SUIT 38.0 95.8 58.2 19.5 89.9 99.0 89.0 83.2 624.1 33.5

AlphaEdit 29.0 89.7 69.4 12.8 80.6 97.6 92.9 61.7 613.9 33.6

Figure 1 reports the average performance across all benchmarks, while Figure 6 presents the F1
scores for each benchmark individually.

0 1000 2000 3000 4000 5000
Edit Number

0.72

0.74

0.76

0.78

0.80

0.82

0.84

F1
 S

co
re

SST F1 Score

AlphaEdit
SUIT

0 1000 2000 3000 4000 5000
Edit Number

0.48

0.50

0.52

0.54

0.56

0.58

0.60

F1
 S

co
re

MMLU F1 Score
AlphaEdit
SUIT

0 1000 2000 3000 4000 5000
Edit Number

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

F1
 S

co
re

MRPC F1 Score

AlphaEdit
SUIT

0 1000 2000 3000 4000 5000
Edit Number

0.70

0.72

0.74

0.76

0.78

F1
 S

co
re

COLA F1 Score
AlphaEdit
SUIT

0 1000 2000 3000 4000 5000
Edit Number

0.28

0.29

0.30

0.31

0.32

0.33

0.34

F1
 S

co
re

RTE F1 Score
AlphaEdit
SUIT

0 1000 2000 3000 4000 5000
Edit Number

0.60

0.62

0.64

0.66

0.68

0.70

F1
 S

co
re

NLI F1 Score
AlphaEdit
SUIT

Figure 6: F1 scores for each benchmark.

G DETAILED VISUALIZATION OF COMPONENT EFFECTS

As stated in § 6.2.2, we analyzed the individual roles of w1 and w2 by decomposing our residual
vector δ′ into its components:

∆w1 = (h⊤w2 − h⊤w1)w1

∆w2 = (h⊤w1 − h⊤w2)w2

We then observed the changes in logits for the original object o (“Google”) and the new object o∗
(“Apple”) by incrementally adding each component to the residual stream h, scaled by an interpo-
lation factor k ∈ [0, 1].
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Figure 7 provides a full breakdown of these effects for the edit (“Chrome”, “was developed by”,
“Apple”). The results confirm our finding that the ∆w1 component is effective at increasing the
logit of the new object o∗, while the ∆w2 component is effective at decreasing the logit of the old
object o.

However, the plots also illustrate that w1 also suppresses the old object o, and w2 promotes the new
object o∗, rather than each playing only a single role. This visual evidence reinforces the point that
the components are not fully disentangled.
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Figure 7: A full breakdown of the effects of applying scaled components ∆w1 and ∆w2 to the
residual stream.

H ADDITIONAL HEATMAP VISUALIZATIONS

This appendix provides further examples from the Wikinews Article Dataset, illustrating the pertur-
bation at each entity’s last-token position. For each of the five articles presented, we show the L2

norm of the difference in the residual streams of the final edited layer between the original model
and models edited using SUIT, MEMIT, and AlphaEdit.

The figures are presented in the order: SUIT, MEMIT, AlphaEdit. As visually represented by the
color intensity, SUIT consistently reduces the perturbation on the last token of the subject entity
compared to both MEMIT and AlphaEdit. The same color indicates the same amount of perturbation
across all figures.
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Figure 8: Perturbation heatmaps for sample article 1.
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Figure 9: Perturbation heatmaps for sample article 2.
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Figure 10: Perturbation heatmaps for sample article 3.
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Figure 11: Perturbation heatmaps for sample article 4.
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Figure 12: Perturbation heatmaps for sample article 5.
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