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Abstract

Aligned instruction following models can better001
fulfill user requests than their unaligned coun-002
terparts. However, it has been shown that there003
is a length bias in evaluation of such models,004
and that training algorithms tend to exploit this005
bias by learning longer responses. In this work006
we show how to train models that can be con-007
trolled at inference time with instructions con-008
taining desired length constraints. Such models009
are superior in length instructed evaluations,010
outperforming standard instruction following011
models such as GPT4, Llama 3 and Mixtral.012

1 Introduction013

Instruction following has emerged as one of the014

most important topics in AI (Ouyang et al., 2022;015

Touvron et al., 2023). In current evaluations both016

humans and models tend to have a “length bias”017

whereby they prefer longer responses (Dubois et al.,018

2024b). Correspondingly, training methods that019

follow these preferences tend to produce longer020

responses (Singhal et al., 2023). Some benchmarks021

incorporate length penalties into their scoring to022

counteract this bias (Dubois et al., 2024a), but this023

does not fix the problem at its source.024

We argue that the expected length of responses025

is ill-defined in many queries, and this ambiguity026

makes evaluation difficult, which in turn affects027

training algorithms that use these evaluation signals.028

Typical requests can be ambiguous in terms of the029

desired response length, e.g. without context the030

answer to ‘Give me information about Coco Gauff”031

could be a few sentences, or a multi-page document.032

To resolve this we propose that evaluation should033

include further disambiguating instructions that034

prescribe the length of the desired response.035

We show that many existing state-of-the-art in-036

struction following models fail to follow such max-037

imum word length instructions adequately. To038

measure this we construct and evaluate models on039

length instructed versions of AlpacaEval 2 (Dubois 040

et al., 2024b) and MT-Bench (Zheng et al., 2023) 041

by augmenting existing prompts with length in- 042

structions. We find that, for example, GPT4-Turbo 043

violates length constraints almost 50% of the time, 044

highlighting a significant flaw in these models 045

when it comes to steering their output length. 046

We hence develop a method for improving mod- 047

els at length instruction following. Our approach, 048

Length-Instruction Fine-Tuning (LIFT), involves 049

augmenting an instruction following dataset by in- 050

serting length instructions in the original prompts. 051

We define length instructions so that the augmented 052

preference pairs reflect both length constraints and 053

response quality. We then finetune models on this 054

length instruction augmented dataset via Direct 055

Preference Optimization (DPO) (Rafailov et al., 056

2023). We train both Llama 2 and Llama 3 models 057

using LIFT-DPO and evaluate them on standard 058

and our length instructed benchmarks. We find that 059

our method leads to fewer length constraint viola- 060

tions and improved overall win rates compared to 061

existing instruction following models. 062

2 Related Work 063

Length Bias in Model Alignment Reinforce- 064

ment learning (RL) has been consistently observed 065

to encourage models to produce longer responses 066

(Zhao et al., 2024). This effect seen in training 067

parallels that on the evaluation, whereby longer re- 068

sponses are more preferred(Dubois et al., 2024b), 069

even though not necessarily better (Park et al., 070

2024; Achiam et al., 2023; Casper et al., 2023). 071

Length-aware Training Existing approaches e.g. 072

balancing preferences (Singhal et al., 2023), dis- 073

entangling length from quality (Shen et al., 2023; 074

Chen et al., 2024), adding a length regularizer to 075

the loss (Park et al., 2024), all assume optimum 076

lengths in training. In contrast, our work assumes 077

desired length depends on additional context. 078
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AlpacaEval-LI MT-Bench-LI

Standard models Vlt(%) Win(%) Words Vlt(%) Win(%) Words

GPT4 Omni (gpt-4o-2024-05-13) 39.0 35.7 180 39.2 30.2 177
GPT4 Turbo (gpt4_1106_preview) 46.1 29.9 182 45.0 28.1 174
GPT4 Turbo (gpt-4-turbo-2024-04-09) 49.3 29.2 187 44.2 27.5 179
Claude 3 Opus (02/29) 37.0 32.9 183 37.9 33.1 174
Mistral Large (24/02) 17.6 28.8 158 20.8 27.7 158
Llama3-70B-Instruct 10.2 38.5 154 20.3 28.5 151
Llama3-8B-Instruct 7.0 22.5 145 20.0 20.0 140

Table 1: Length Instruction-Following results of SOTA models on the AlpacaEval-LI + MT-Bench-LI
benchmarks. Many SOTA LLMs have large violation rates (Vlt(%)) as they fail to follow length instructions.

3 AlpacaEval-LI & MT-Bench-LI:079

New Length-Instructed Benchmarks080

3.1 Augmenting General Instructions081

To test whether models can follow the given082

length instruction, we augment existing083

instructions with maximum length limits,084

with the template “Answer the following085

instruction using <MAX_LEN> words or086

less.\n\n<ORIGINAL_INSTRUCTION>”. We087

set <MAX_LEN> to the minimum generation088

length among GPT-4 Turbo(11/06) , Claude 3089

Opus(02/29) and Mistral Large(24/02) on the090

original prompts. This constraint varies for each091

individual prompt, and is not trivially satisfied.092

To establish a strong baseline, we employ the093

same minimum of three models approach. This094

ensures the baseline generations always meet the095

length constraint while maintaining high quality.096

3.2 Metrics097

Length Instruction Following We use violation098

rates (Vlt%) to measure the percentage of responses099

that violate the length constraint.100

Response Quality We report pairwise winrates101

comparing model and baseline generations on102

length-following instructions, referred to as the103

Length-Instructed (LI) Winrate. We treat the length104

limit as a hard constraint. Since the baseline always105

satisfies the length constraint, if the model response106

being tested exceeds the limit it automatically loses.107

If the model response satisfies the length limit, we108

use the standard pairwise comparison.109

3.3 AlpacaEval-LI & MT-Bench-LI110

Following Section 3.1, we augment AlpacaEval111

(Dubois et al., 2024b) with length instructions to112

create AlpacaEval-Length-Instructed (LI). We ex-113

clude three out of the 805 Alpaca test instructions114

with explicit length constraint. For MT-Bench115

(Zheng et al., 2023), we sample three length limits 116

for each prompt. For simplicity we only consider 117

first turns, giving 240 MT-Bench-LI prompts. 118

4 Length-Instruction Fine-Tuning (LIFT) 119

To improve models’ length-instruction following 120

ability, we propose the following LIFT method. 121

Given a pairwise preference dataset D = 122

(x, ywi , y
l
i), let len(y) be the number of words in 123

response y. First, we filter out any triple with dif- 124

ference between len(ywi ) and len(yli) less than T 125

(T = 10 in our experiments). We then prepends an 126

explicit length instruction to the input xi using the 127

template to form x′i and construct an augmented 128

dataset D′ = (x′i, y
w

′

i , yl
′

i ) as follows: 129

If len(ywi ) > len(yli): i.e. the winning response 130

is longer, we construct two samples in D′ by, (1) 131

adding a length instruction to xi that both responses 132

satisfy (we use len(ywi ) + T ) and the winning re- 133

sponse and losing response remain the same, and 134

(2) adding a length constraint uniformly sampled 135

from the interval
[
len(yli), len(y

w
i )

]
, and ywi be- 136

comes the losing one due to the violation of length 137

constraint, and yli becomes the winning one. 138

If len(ywi ) < len(yli): We construct two sam- 139

ples in D′ by, (1)setting length constraint to 140

len(yli) + T that both responses satisfy, (2) 141

sampling a length constraint from the interval 142[
len(ywi ), len(y

l
i)
]
. Here, the winning and losing 143

responses remain the same as original. 144

Our LIFT method can be used to augment in- 145

structions with other types of disambiguated con- 146

straints, see Appendix L for results on apply- 147

ing LIFT with lower bound length limits. LIFT- 148

augmentation help models prioritize the length con- 149

straints over the original preferences when neces- 150

sary. We train models on both D and D′ to handle 151

prompts with and without length instructions. 152
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AlpacaEval-LI MT-Bench-LI

Vlt(%) Win(%) Words Vlt(%) Win(%) Words

Llama2-70B-Base + DPO 65.8 4.6 216 60.8 5.0 199
Llama2-70B-Base + R-DPO (Park et al., 2024) (α = 0.1) 45.0 7.7 178 39.4 8.5 161
Llama2-70B-Base + LIFT-DPO 7.1 13.6 151 10.0 11.0 146

Llama2-70B-Chat 28.2 11.3 162 38.3 11.9 168
Llama2-70B-Chat + DPO 15.1 10.4 135 24.2 10.8 147
Llama2-70B-Chat + LIFT-DPO 2.7 14.2 140 6.7 12.5 135

Table 2: Llama 2 Length Instruction-Following results on the AlpacaEval-LI + MT-Bench-LI benchmarks.
LIFT-DPO yields improved winrates (Win(%)) and lower length instruction following violation rates (Vlt(%)).

AlpacaEval-LI MT-Bench-LI

Vlt(%) Win(%) Words Vlt(%) Win(%) Words

Llama3-8B-Base + DPO 58.1 5.0 202 50.8 7.7 191
Llama3-8B-Base + LIFT-DPO 6.1 11.1 153 13.8 12.9 152

Llama3-8B-Instruct 7.0 22.5 145 20.0 20.0 140
Llama3-8B-Instruct + DPO 7.1 25.1 143 21.3 20.0 142
Llama3-8B-Instruct + LIFT-DPO 3.1 25.6 161 10.8 26.3 157

Table 3: Llama 3 Length Instruction-Following results on the AlpacaEval-LI + MT-Bench-LI benchmarks.
LIFT-DPO yields improved winrates (Win(%)) and lower length instruction following violation rates (Vlt(%)).

5 Experimental Setup153

We empirically investigate the effectiveness of our154

LIFT training strategy on: Llama2-70B-Base and155

Llama2-70B-Chat models (Touvron et al., 2023)156

and Llama3-8B-Base and Llama3-8B-Instruct.157

Standard Training Data Following Li et al.158

(2024) we use 3,200 first-turn human-authored En-159

glish examples from OpenAssistant (OA) dataset160

(Köpf et al., 2023) as D, that are high-quality based161

on their human annotated rank (choosing only the162

highest rank 0 as chosen and rank 1 as loser). We163

do supervised finetuning (SFT) on the chosen re-164

sponses of D, then fine-tune the SFT model using165

the DPO loss on D as our Standard DPO baseline.166

In addition, we also compare against the Length167

Regularized DPO (R-DPO) (Park et al., 2024). See168

DPO training details in Appendix F.169

Length-Instructed Fine-Tuning (LIFT) Data170

We apply our LIFT method to create dataset D′171

from D, which yields 5,954 preference pairs with172

length instructions. We train on D ∪ D′ with the173

DPO loss, which we call LIFT-DPO.174

6 Experimental Results175

We report performances of SOTA models in Ta-176

ble 1, and our LIFT-DPO results in Table 5 and177

Table 3. We observe several key findings.178

SOTA LLMs fail to follow length instructions179

In Table 1, SOTA models such as the GPT-4 se-180

ries exhibit significant challenges in adhering to 181

length instructions. Specifically, the GPT-4 Turbo 182

(0409) shows a high violation rate of 49.3% on our 183

AlpacaEval-LI and 44.2% on MT-Bench-LI. 184

LIFT-DPO models perform well on AlpacaEval- 185

LI and MT-Bench-LI In Table 5, LIFT-DPO 186

dramatically reduces violation rates compared to 187

the (standard) DPO, from 65.8% to 7.1% on 188

AlpacaEval-LI with the Llama-2-70B-Base model, 189

while improving win rate from 4.6% to 13.6%. For 190

the Llama-2-70B-Chat model, our LIFT-DPO re- 191

duces violation from 15.1% to 2.7%, and enhances 192

win rate from 10.4% to 14.2%. On MT-Bench-LI, 193

LIFT-DPO also reduced violation rate while boost- 194

ing the win rates for both Llama2 and 3 models. 195

While the R-DPO baseline improves over standard 196

DPO on both benchmarks, it still shows signifi- 197

cantly higher violation rates compared to LIFT- 198

DPO, which negatively affects R-DPO’s win rates. 199

In Appendix M, we show that SFT is not enough 200

for teaching models to follow length instructions. 201

LIFT-DPO models show no performance degra- 202

dation when length instructions are not applied 203

On the standard AlpacaEval benchmark, detailed in 204

Table 6, the win rates improved from 12.6% using 205

DPO to 12.9% with LIFT-DPO for the Llama-2- 206

70B-Chat model. The LC winrate increased from 207

13.9% to 15.7% for Llama-3-8B-Base models, and 208

from 26.3% to 26.5% for the Llama-3-8B-Instruct 209

models with LIFT-DPO. Similar results are ob- 210
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Figure 1: The violation rate of DPO or R-DPO Llama2-
70B models on AlpacaEval-LI increases as the target
length shortens. However, LIFT-DPO consistently main-
tains a low violation rate independent of length scale.

served on standard MT-Bench in Appendix Table 8.211

LIFT-DPO can follow out-of-distribution length212

instructions better than existing methods To213

increase the difficulty of AlpacaEval-LI, we reduce214

the length limit using a scaling factor from 0.9 to215

0.1, and assessed the violation rates of standard216

DPO, R-DPO and LIFT-DPO in Figure 1. The stan-217

dard DPO model exhibits increasingly higher vio-218

lation rates escalating from below 50% to almost219

100% when the scale factor is 0.1, indicating sig-220

nificant difficulties in adhering to stringent length221

constraints. The R-DPO model displays similar222

trends, suggesting that while it can reduce the gen-223

eration length, it lacks the capability to precisely224

steer it. In contrast, our LIFT-DPO model consis-225

tently maintains a low violation rate (below 10%)226

across all tested length scales. Similar trends on227

MT-Bench-LI are observed in Appendix Figure 8.228

Furthermore, we assess the LIFT-DPO models on229

math tasks to validate their ability to follow length230

in out-of-domain settings (see Appendix N).231

LIFT-DPO can follow various natural length232

prompts better than existing methods We eval-233

uated our LIFT-DPO models on IFEval (Zhou et al.,234

2023), which includes instructions with verifiable235

constraints such as “write a 400+ words essay”.236

Our aim was to assess the robustness of our mod-237

els on natural length prompt templates and length238

limits beyond what we used in our training process.239

IFEval consists of 541 “verifiable instructions”, of240

which 44 contain upper bound length constraints.241

We found that LIFT-DPO achieved significantly242

lower violation rates on max word constraints and243

max sentence constraints compared to normal DPO.244

Detailed results are provided in Appendix K.245

Figure 2: AlpacaEval 2 LC winrate vs target length
scale. Our LIFT-DPO Llama-3-8B-Instruct model can
be controlled to produce different length responses,
which affects overall LC winrate.

Robustness of Length Controlled AlpacaEval 246

Previous research has acknowledged the presence 247

of length bias, and introduced measures to miti- 248

gate it, notably through Length-Controlled (LC) 249

AlpacaEval. Nevertheless, we find that the LC win- 250

rate can still be manipulated. By scaling the length 251

constraints as we did in AlpacaEval-LI and measur- 252

ing the AlpacaEval LC winrate, we observe signifi- 253

cant fluctuations in the LC winrate from 23% up to 254

29%, as shown in Figure 2. In contrast, we argue 255

that expected length is ill-defined in many queries 256

(see motivation in Section 1), and that length in- 257

struction evaluation helps remove this ambiguity, 258

and hence also any potential gameability. 259

7 Conclusion 260

To address the length bias in general instruction fol- 261

lowing, we propose length instructions, which as- 262

sess models’ abilities to generate responses within 263

given length limits. We introduce two Length- 264

Instructed (LI) benchmarks, MT-Bench-LI and 265

AlpacaEval-LI, and show that SOTA models sur- 266

prisingly fail to follow length instructions on these 267

benchmarks. We hence propose Length-Instruction 268

Fine-Tuning (LIFT), a method that augments ex- 269

isting general instruction-following examples with 270

varying length limits. LIFT-DPO models show sig- 271

nificant improvement in controlling output length 272

while maintaining high response quality. Our 273

length instruction following approach provides a 274

way to compare models without length bias, as it 275

does not suffer from the gameability of simply in- 276

creasing model response length, as that leads to a 277

violation. In addition, augmenting general instruc- 278

tions with length limits allows for more controlla- 279

bility for users in real-world use cases. 280
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8 Limitations281

In this paper, the length limit is set in terms of282

the number of words. Our results indicate that283

training on word limits can also transfer to im-284

proved adherence to length limits in number of285

sentence, but more generally length limit can be286

set in other measure, such as number of charac-287

ters. The promising results with LIFT-DPO, which288

follows various length prompt templates despite289

being trained on a fixed one, suggest a potential av-290

enue for further generalization. Length instructions291

could be phrased more flexibly, allowing users to292

specify limits in their own words, such as “Keep293

the response under 100 words.”. We also did not294

address other kinds of length instructions such as295

“write 100-300 words”. Given promising results296

showing how LIFT-DPO can improve models’ abil-297

ities on both lower and upper length limits, future298

work could adapt our LIFT method to other more299

complex length instructions. While this paper at-300

tempts to address length bias in model evaluations301

through length instructions, this bias may also arise302

from a natural human preference for longer and303

more detailed responses. Future research could304

further explore human desired response lengths305

across different instructions. Such studies could306

further enhance the alignment of models with hu-307

man expectations. Another possible cause of longer308

responses could be related to the increased com-309

putation allowance that comes with more tokens,310

which can benefit from future analysis.311
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A More Details on LI Evaluation and404

Training.405

Standard AlpacaEval 2 compares model against406

baseline GPT-4 Preview (1106). In AlpacaEval-LI,407

the baseline is built from GPT4-1106, Claude3-408

Opus and Mistral Large as described in Section 3.1.409

Their respective winrates in the standard AlpacaE-410

val 2 are 50%, 40.5% and 32.7%. This indicates411

that the resulting baseline is of high quality while412

consistently meeting the length constraint. For413

AlpacaEval-LI, We exclude three out of the 805414

Alpaca test instructions which already have an ex-415

plicit length constraint in the original prompt.416

Figure 4 shows the ratio of generation lengths417

over target instruction lengths as target lengths vary.418

GPT4-0409 generations exceed the target length419

limits almost 50% of the time (red dots), especially420

when target lengths are over 200 words. Claude3-421

Opus has a similar trend according to the scatter422

plot. We also include results for Mistral Large and423

LLAMA3-70b-Instruct in Appendix D.424

B Examples of LIFT-DPO model425

responses on length instructions426

C Word Count Function We Use427

1 from nltk.tokenize import 428
word_tokenize 429

2 import string 430
3 431
4 def count_words(text) -> int: 432
5 # Count the number of words 433
6 # while excluding punctuations 434
7 return len([word for word in 435

word_tokenize(text) if word 436
not in string.punctuation ]) 437

D Additional Results on SOTA models’ 438

length following measurements 439

We plot the generation lengths over target instruc- 440

tion lengths on AlpacaEval-LI for Mistral Large 441

and LLAMA3-70b-Instruct in Figure 6. The scatter 442

plots reveal that both models occasionally fail to 443

meet the length constraints. 444

E Training and test length distribution 445

The original dataset D consists of 223 pairs where 446

the two responses have less than T = 10 words 447

difference, 1,083 pairs where chosen responses 448

are shorter than loser responses, and 1894 pairs 449

where chosen responses are longer. As a result, D′ 450

contains 1,083 pairs where the original winning 451

response loses due to violations of length limits. 452

Figure 7 illustrates the distribution of length con- 453

straints in our LIFT-DPO training data alongside 454

those in AlpacaEval-LI and MT-Bench-LI. We ob- 455

served that the majority of our training data features 456

length constraints ranging from 50 to 300, a range 457

that is consistent with that of AlpacaEval-LI. Addi- 458

tionally, we have depicted the distribution of length 459

constraints in AlpacaEval-LI scaled by a factor of 460

0.1 in Figure 7. Nearly all scaled length constraints 461

fall below 50, constituting only a small fraction 462

of the length constraints present in our training 463

dataset. 464

F DPO training details 465

Our DPO training sweeps over a range of learn- 466

ing rates 5e−7 to 5e−6 with a cosine learning rate 467

schedule, a batch size of 16, and a dropout rate of 468

0.1. Specifically for DPO training, we set β = 0.1. 469

For R-DPO, we set α ∈ [0.01, 0.1]. We had to re- 470

verse the sign of the regularization term in Eq. 9 of 471

Park et al. (2024). All Llama2 models are trained 472

for up to 2,000 steps and Llama3 models for up to 473

20 epochs, and we perform checkpoint selection 474

for early stopping 475

We perform checkpoint selection by saving a 476

checkpoint every 200 steps and at the end of each 477
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Figure 4: SOTA Models fail to follow length instructions. Length instruction following of GPT4-0409 and
Claude3-Opus on 802 AlpacaEval-Length-Instructed (LI) examples. The target length is plotted on the x-axis and
the ratio of the actual generated length to the target length on the y-axis. Red dots represent violations where the
generated length exceeds the target limit, while blue dots satisfy the limit.

Existing response 
pair for prompt

>><>

length limit

>
Create new 

preference pairs 
with prompt __

If If

Figure 5: Length-Instruction Fine-Tuning (LIFT) method for augmenting preference pairs (x, yw, yl) in general
instruction-following tasks with length instructions. The original prompt x is prepended with an extra instruction
specifying a target response length, yielding a new prompt x′. The target length is chosen in multiple ways, creating
extra preference pairs. In some cases the original winning response yw becomes the loser if it exceeds the limit.

Instruction <MAX_LEN> Generation Length

20 Yes, I’d be happy to help you improve your handwriting skills! 12
Answer the fol-
lowing instruction
using <MAX_LEN>
words or less.

40
I’d be happy to help. To improve your handwriting, practice regularly, focus
on posture and grip, and try using guidelines or a light box to help you stay
within lines.

31

I’m trying to teach
myself to have
nicer handwriting.
Can you help?

80

I’d be happy to help you improve your handwriting. Here are a few tips
to get you started: dslkfhhsadlfkadskfkladsjkfladskjfkladsjkf ff adsjk jadds
d* Choose the right tools: Use a pen with good grip and smooth ink flow.
Experiment with different types of paper to find one that works well for you.

70

* Practice regularly: Set aside time each day to practice writing.
* Focus on posture and grip: Keep your hand steady and your fingers relaxed.

I’m trying to teach N/A Improving your handwriting takes practice, patience, and some guidance. I’d
be happy to help you with that. Here are some tips to get you started: 456

myself to have
nicer handwriting.
Can you help?

1. **Choose the right tools**: Invest in a few good quality pens or pencils
that feel comfortable in your hand. Experiment with different types of pens
(e.g., fine tip, medium tip, calligraphy) to find what works best for you.
2. **Practice basic strokes**: Focus on mastering basic strokes such as: ......

Table 4: Length-Instructed example generations. We show examples from our Length-Instruction Fine-Tuned
(LIFT) Llama-3-8B-Instruct model with different length instruction limits for the same question. The last row is a
response generation using the original input without length instructions (partial generation due to limited space).
Many state-of-the-art LLMs are unable to follow such length instructions, see Figure 4.

7



0 100 200 300 400 500
target length

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ge
ne

ra
tio

n 
le

ng
th

 / 
ta

rg
et

 le
ng

th

Mistral Large

0 100 200 300 400 500
target length

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ge
ne

ra
tio

n 
le

ng
th

 / 
ta

rg
et

 le
ng

th

LLAMA3-70b-Instruct

Figure 6: The length instruction following ability of Mistral Large and LLAMA3-70b-Instruct on 802 AlpacaEval
Length-Instructed (LI) examples. The scatter plots display each sample from the AlpacaEval LI dataset, with the
target length plotted on the x-axis and the ratio of the actual generated length to the target length on the y-axis. Red
dots represent violations where the generated length exceeds the target limit, while blue dots satisfy the limit.
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Figure 7: The distribution of length constraints across LIFT-DPO training data, AlpacaEval-LI, and MT-Bench-LI.
Additionally, we also include a plot of the AlpacaEval-LI length constraints scaled by a factor of 0.1.
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epoch. We then evaluate these checkpoints using478

GPT-4-Turbo on a set of 253 validation examples,479

which are derived from various sources as outlined480

by Li et al. (2024). The LI (Length-Instructed) val-481

idation set is augmented from the same validation482

set but includes length limits, using the minimum483

length from three strong LLMs in Section 3.1.484

For the standard instruction-following valida-485

tion set, each new model checkpoint is evaluated486

by comparing its generations pairwise with those487

from the previous checkpoint, utilizing the Al-488

pacaEval evaluation prompt format (Li et al., 2023).489

For length-instructed tasks, evaluations are con-490

ducted pairwise against a baseline from one of the491

three LLMs, specifically the one whose genera-492

tion length matches the length limit specified in493

the prompt. The win rate of a model checkpoint is494

calculated as the average of the win rates on both495

the instruction-following validation set and the LI496

validation set. We implement early stopping if we497

observe a decrease in this average win rate.498

G More Results499

SOTA LLMs fail to follow length instructions500

As demonstrated in Table 1, SOTA models such as501

the GPT-4 series exhibit significant challenges in502

adhering to length instructions. Specifically, the503

GPT-4 Turbo (0409) shows a high violation rate504

of 49.3% on our AlpacaEval-LI and 44.2% on MT-505

Bench-LI. The Llama-3 instruct model series dis-506

plays considerably lower violation rates. For in-507

stance, the Llama3-8B-Instruct model achieves a508

violation rate of 7.0% on AlpacaEval-LI and 20.0%509

on MT-Bench-LI, but nevertherless has a lower510

winrate due to being a less powerful model.511

In the standard MT-Bench evaluation, models512

employ different temperatures (including 0) for513

different categories during inference time. To ex-514

pand the size of MT-Bench-LI via sampling, we515

standardized the temperature setting to 0.7 across516

all categories for pairwise baseline models as well517

as models being tested. However, for the stan-518

dard MT-Bench evaluation reported in Table 8, we519

switch back to the original setup using different520

temperatures for different categories and assessing521

performance on 80 unique questions.522

H Decoding Parameters523

During inference time, except for the standard MT-524

Bench evaluations, we apply consistent hyperpa-525

rameter settings for the Llama models. For the526
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Figure 8: The violation rates of DPO, R-DPO, LIFT-
DPO trained models based on Llama2-70B models on
MT-Bench-LI as the target length shortens (via target
length scale).

Llama2 models, we set the temperature to 0.7, with 527

a maximum token limit of 2048. For the Llama3 528

models, the temperature is adjusted to 0.6, main- 529

taining the same top-p of 0.9, but with an increased 530

maximum token limit of 4096. We consistently set 531

top-p to 0.9 for AlpacaEval 2 and AlpacaEval-LI 532

and top-p to 1.0 for MT-Bench and MT-Bench-LI. 533

I Additional Length Instruction 534

Following Results 535

In our MT-Bench-LI evaluations, we progressively 536

reduced the length instructions by applying scal- 537

ing factors to the existing values, ranging from 538

0.9 down to 0.1. We assessed the performance 539

of various models based on the Llama-2-70B- 540

Base, including standard DPO, R-DPO, and LIFT- 541

DPO, and plotted their violation rates as shown 542

in Figure 8). The results indicate that our LIFT- 543

DPO trained model significantly outperforms both 544

DPO and R-DPO in adhering to length constraints. 545

Specifically, the LIFT-DPO model maintains a vi- 546

olation rate below 20% across all scaling factors, 547

whereas both DPO and R-DPO models exhibit vio- 548

lation rates exceeding 80% when the scaling factor 549

is reduced to less than 0.6. Additionally, we ana- 550

lyzed the performance of models based on Llama- 551

3-8B-Instruct on AlpacaEval-LI under gradually 552

reduced length limits. The observed trend is simi- 553

lar to that of MT-Bench-LI, as depicted in Figure 9. 554

J AlpacaEval Results & MT-Bench 555

Results 556

The results of the LIFT-DPO models on standard 557

AlpacaEval and MT-Bench are detailed in Table 6 558

and Table 8, respectively. Our analysis reveals 559
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AlpacaEval-LI MT-Bench-LI

Vlt(%) Win(%) Words Vlt(%) Win(%) Words

Llama2-70B-Base + DPO 65.8 4.6 216 60.8 5.0 199
Llama2-70B-Base + R-DPO (Park et al., 2024) (α = 0.01) 63.8 5.2 217 57.9 2.1 194
Llama2-70B-Base + R-DPO (Park et al., 2024) (α = 0.1) 45.0 7.7 178 39.4 8.5 161
Llama2-70B-Base + LIFT-DPO 7.1 13.6 151 10.0 11.0 146

Llama2-70B-Chat 28.2 11.3 162 38.3 11.9 168
Llama2-70B-Chat + DPO 15.1 10.4 135 24.2 10.8 147
Llama2-70B-Chat + LIFT-DPO 2.7 14.2 140 6.7 12.5 135

Table 5: Llama 2 Length Instruction-Following results on the AlpacaEval-LI + MT-Bench-LI benchmarks.
LIFT-DPO yields improved winrates (Win(%)) and lower length instruction following violation rates (Vlt(%)).
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Figure 9: The violation rates of DPO, LIFT-DPO trained
models based on Llama3-8B-Instruct on AlpacaEval-LI
as the target length shortens (via target length scale).
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Figure 10: The violation rates of LIFT-DPO trained
models based on Llama3-8B-Instruct on GSM8k test
set as the target length shortens (via target length scale).

that the LIFT-DPO models exhibit no performance560

degradation when compared to the standard DPO561

models on these benchmarks.562

K IFEval Results563

While existing benchmarks such as IFEval (Zhou564

et al., 2023) also include instructions with verifiable565

constraints such as “write in less than 400 words”.566

We observe that the IFEval benchmark primarily567

focuses on the accuracy of adhering to verifiable 568

constraints, placing more emphasis on this aspect 569

than on the overall quality of the response. Instead, 570

our Length-Instructed Benchmarks assess models 571

on both the length instruction-following capabil- 572

ities as well as qualities of generations. IFEval 573

consists of 541 "verifiable instructions", of which 574

44 contain length constraints with upper bound 575

limits on generation lengths. Among these length 576

constraints, 22 are upper bound limits on word 577

counts and 22 are upper bound limits on sentence 578

length. We tested models’ performance in follow- 579

ing these upper bound limit constraints, and the 580

results are shown in Table 9. We found that LIFT- 581

DPO achieved significantly lower violation rates on 582

max word constraints and max sentence constraints 583

compared to normal DPO. 584

Notably, our LIFT-DPO models, trained on 585

datasets with fixed length instruction templates and 586

word count constraints, not only improve models’ 587

ability to follow natural length prompt templates 588

that differ from what was used during training but 589

also generalize to following max sentence con- 590

straints. 591

L Lower Bound Results 592

We also evaluate LIFT-DPO method on length con- 593

straints with lower bound word counts in this for- 594

mat “Answer the following instruction using at 595

least <MAX_LEN> words. ” 596

Results of violation rates on lower bound limits 597

and standard AlpacaEval are detailed in Table 10. 598

Our analysis reveals that the LIFT-DPO models sig- 599

nificantly lower the violation rates on instructions 600

with lower bound limits and exhibit no performance 601

degradation when compared to the standard DPO 602

models on the AlpacaEval benchmarks. We also 603

tested our model on IFEval where in all 541 in- 604

structions, 36 of them have lower bound limits on 605
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Standard models Vlt(%) LC-Win(%) Win(%) Words

GPT4 Turbo(1106-preview) 91.1 50 50 324
GPT4 Turbo(0409-preview) 77.1 55.0 46.1 277
GPT4 Omni 77.8 57.5 51.3 282
Claude 3 Opus (02/29 57.8 40.5 29.1 219
Mistral Large (24/02) 49.7 32.7 21.4 223
Llama2-70B Chat 84.8 13.9 14.7 296
Llama3-70B Instruct 84.2 34.4 33.2 302
Llama3-8B Instruct 88.6 22.9 22.6 303

Llama2-70B Models

26Llama2-70B + DPO 60.7 13.1 8.6 211
Llama2-70B + LIFT-DPO 65.7 15.4 9.9 220
Llama2-70B + R-DPO (α = 0.01) 57.9 11.3 7.5 204
Llama2-70B + R-DPO (α = 0.1) 48.6 13.6 8.0 187

Llama2-70B-Chat + DPO 66.8 23.3 12.6 218
Llama2-70B-Chat + LIFT-DPO 75.9 20.5 12.9 242

Llama3-8B Models

Llama3-8B + DPO 45.1 13.9 7.8 188
Llama3-8B + LIFT-DPO 33.9 15.7 7.2 158

Llama3-8B-Instruct + DPO 86.5 26.3 25.8 308
Llama3-8B-Instruct + LIFT-DPO 85.1 26.5 22.7 285

Table 6: Results on the AlpacaEval benchmark. LIFT-DPO still maintains good performance in the standard
(non-length) instruction-following setup.

Model AlpacaEval-LI Vlt(%)

Llama2-70B + LIFT-SFT 46.7
Llama2-70B + LIFT-DPO 7.1
Llama2-70B-Chat + LIFT-SFT 50.5
Llama2-70B-Chat + LIFT-DPO 2.7

Table 7: Results of LIFT-SFT on AlpacaEval-LI.
LIFT-SFT along is not enough for teaching models to
follow length instructions.

generation word length. Results demonstrate that606

our LIFT-DPO models also achieve much lower607

violation rate compared to standard DPO models.608

M SFT Results609

In our experiments, models initially undergo SFT610

on preferred responses from our dataset which con-611

tain length instructions before the DPO phase. We612

have evaluated the effectiveness of this phase as613

well (which we denote as LIFT-SFT); however, our614

findings indicate that models fine-tuned with SFT615

alone do not adhere to length instructions as ef-616

fectively as those further trained with DPO (see617

Table 7). For instance, the llama2-70B-chat model618

post-SFT exhibited a violation rate of 50.5% on619

AlpacaEval-LI, which significantly improved to620

2.7% after DPO training (see the Table below for621

more details). This comparison highlights DPO’s622

crucial role in enhancing the model’s ability to pre-623

cisely follow length constraints. 624

N LIFT-DPO Models on GSM8k 625

To see whether our trained models could generalize 626

to out of domain tasks, we have also tested LIFT- 627

DPO models on the GSM8k test set using the exact 628

same setup as in Figure 2. Specifically, we used the 629

gold solution length provided in the GSM8k test set 630

as the target length, and we varied the scale (from 631

0.1 to 0.9) multiplied to the target length to see how 632

the violation rate goes. Figure 10 are the results 633

comparing the untrained Llama3-8B-Instruct and 634

LIFT-DPO models. It’s clear that the LIFT-DPO 635

model maintains 0 violation rate across different 636

scales while the Llama3-8B-Instruct model fails to 637

follow the length constraints sometimes. The re- 638

sults demonstrate that even though our models are 639

trained on the general instruction following domain, 640

the underline length following mechanism learned 641

by the model can generalize to other domains like 642

math as well. 643
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Llama2 Models Overall Math, Coding Humanities, Extraction WordsScore & Reasoning & STEM, Roleplay, Writing

Llama2-70B + DPO 7.45 5.30 8.74 189
Llama2-70B + LIFT-DPO 7.54 4.77 9.21 275
Llama2-70B + R-DPO (α = 0.01) 6.65 4.17 8.14 181
Llama2-70B + R-DPO (α = 0.1) 6.53 3.53 8.33 163

Llama2-70B-Chat + DPO 7.58 5.03 9.10 218
Llama2-70B-Chat + LIFT-DPO 7.45 4.70 9.10 213

Llama3-8B Models

Llama3-8B + DPO 7.11 8.44 4.90 158
Llama3-8B + LIFT-DPO 6.99 8.54 4.40 138

Llama3-8B-Instruct + DPO 8.38 6.30 9.62 263
Llama3-8B-Instruct + LIFT-DPO 8.32 6.27 9.55 237

Table 8: Results on the MT-Bench benchmark. LIFT-DPO still maintains good performance in the standard
(non-length) instruction-following setup.

Max Sentence Max Word

Llama3-8B-Base (zero shot) 54.5 72.7
Llama3-8B-Base + DPO 48.5 63.6
Llama3-8B-Base + LIFT-DPO 22.7 16.7

Llama3-8B-Instruct 13.6 45.5
Llama3-8B-Instruct + DPO 13.6 31.8
Llama3-8B-Instruct + LIFT-DPO 9.1 25.8

Table 9: Results of LIFT-DPO on IFEval. LIFT-DPO yields much lower length instruction following violation
rates on max word constraints and max sentence constraints compared to normal DPO.

AlpacaEval IFEval AlpacaEval (Standard)

Lower Bound Vlt(%) Lower Bound Vlt(%) LC-Win(%) Words

Llama3-8B-Instruct 18.0 36.1 22.9 304
Llama3-8B-Instruct + DPO 19.8 30.6 25.8 308
Llama3-8B-Instruct + LIFT-DPO 3.2 19.4 25.8 289

Table 10: Results of LIFT-DPO on Instructions with Lower Bound Constraints on Generation Lengths:
LIFT-DPO yields much lower violation rates (Vlt(%)) on min word constraints on both AlpacaEval lower bound LI
and IFEval lower bound LI, while maintaining similar LC-winrate performance compared to DPO.
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