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ABSTRACT

CLIP is a highly efficient cross-modal text-image embedding model with re-
markable generalization ability. However, the encoders in CLIP usually oper-
ate independently without dynamic cross-modal interaction, leading to subopti-
mal performance in few-shot classification. Therefore, we propose a Global and
Fine-Grained Framework for CLIP with Cross-Modal Mamba in Few-Shot Image
Classification (GF4FC). Specifically, the CLIP with Cross-Modal Mamba mod-
ule (CLIMA) is conducted to leverage Transformer and Vision-Transformer to
interdependently encode text and image. These cross-modal representations then
serve as mutual prompts to refine the embedding space, while the proposed Cross-
Modal Mamba module ensures efficient time complexity. Moreover, we design a
Fine-Grained Capture module (FGC) to enhance CLIMA’s image representations
using a Vssm module to extract prior fine-grained information. Furthermore, the
Local Feature Supplementation (LFS) module is conducted to supplement CLIP’s
logits with FGC-derived fine-grained representations through a residual structure.
Finally, the Adaptive Logits Fusion module is constructed to dynamically fuses
logits using learned adaptive weights. Experiments on seven datasets demonstrate
that GF4FC achieves superior performance compared with state-of-the-art meth-
ods in few-show image classification.

1 INTRODUCTION

Few-Shot Learning (FSL) is a crucial approach in machine learning to tackle the problem of insuffi-
cient labeled data (Song et al., 2022), since it makes full use of existing samples to effectively obtain
reliable representation and has been applied for diverse fields such as image classification (Sun et al.,
2025), object detection (Köhler et al., 2024), semantic segmentation (Catalano & Matteucci, 2024)
and instance segmentation (Ganea et al., 2021). Models for Vision Language Pretraining (VLP), no-
tably CLIP (Radford et al., 2021), have significantly advanced Few-Shot Learning (FSL) by leverag-
ing powerful representation learning capabilities derived from large-scale pretraining (Zhang et al.,
2024). 1

FSL models based on CLIP methods can be divided into three categories. (1) Prompt Learning.
CLIP’s unified modeling approach grounds its prompt learning techniques in text-understanding
models, where ”prompts” denote the textual tokens to be optimized, with the objective of refining
the model’s semantic representations. For instance, CoOp(Kaiyang Zhou, 2022) and CoCoOp(Zhou
et al., 2022) optimize text prompts by treating them as learnable vectors to generate classification
weights. However,the classification boundaries cannot be optimized, leading to confusion in the
model’s understading. (2) Adapter Design. To circumvent catastrophic forgetting during data-scarce
fine-tuning of CLIP, which learns unified text-image embeddings from massive pairs, an adapter-
based solution freezes the pre-trained backbone and introduces lightweight adapters for new task
learning (Gao et al., 2025). For example, Tip-Adapter (Zhang et al., 2021) freezes the backbone and
uses lightweight modules for adaptation. Although it really improves the effectiveness of models,

1We acknowledge the use of a large language model (LLM) for assistance in polishing and refining the
manuscript. However, the intellectual contribution and core significance of the work originate entirely from the
authors.
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it underutilizes cross-modal interactions between text and images. (3) Feature Enhancement. The
internal feature representation within CLIP entails a transformation from specific, low-level details
to generalized, high-level concepts, a process that dissipates fine-grained information. Concurrently,
the feature emphasis is shaped by the systematic biases of the associated textual data. For example,
given the text “a dog eating”, the designed model usually focus on “dog” and “eating” while ignoring
the color and bread of a dog, leading to degraded performance on specific tasks. Through operations
such as feature decoupling, reconstruction, and reuse, enhancement techniques seek to facilitate the
identification of more discriminative and task-relevant features (Bär et al., 2024) (Ye et al., 2025).
For example, LDC (Li et al., 2025) decouples features to reduce category confusion. It takes the fine-
grained information and one-modal information into consideration, but neglects the global feature
enhancement and two-modal dynamic interaction.

To address the above issues, we proposes a Global and Fine-grained Framework based on Cross-
Modal Mamba (CMM) for Few-shot Image Classification (GF4FC). This framework aims to over-
come the deficiencies of existing models in establishing fine-grained semantic associations and cat-
egory discrimination through deep cross-modal interaction and a global-local feature complemen-
tation mechanism. Specifically, the Cross-Modal Mamba module (CLIMA) breaks modal isolation
through a bidirectional mutual prompting mechanism, enabling the collaborative operation of text
and image encoders. Thereinto, text features dynamically guide image encoding, while visual fea-
tures real-time correct text embeddings, achieving linear complexity interaction using State Space
Model (SSM). Besides, the Fine-Grained Capture module (FGC) utilizes a Vssm structure to extract
local prior visual features and captures multi-scale details through a method of multi-directional
flattening and reconstructed. Moreover, the Local Feature Supplement (LFS) mechanism constructs
a residual path, fusing fine-grained features extracted by FGC with global logits from CLIMA to
supplement local information lost in cross-modal alignment. Furthermore, the adaptive logits fusion
module dynamically balances the contributions of global and local features, automatically adjusting
the decision weights of the two types of features through learnable weight factors to optimize the
final classification boundary. The experimental results across seven datasets show that GF4FC has
outstanding performance in few-shot image classification, outperforming state-of-the-art methods.

In summary, our key contributions are summarized as follows: (1) We introduce GF4FC, a CLIP-
based method designed to enhance few-shot learning performance by integrating global feature en-
hancement with local feature supplementation. (2) GF4FC utilizes the State Space Model-based
Mamba and Vssm methods for their high temporal efficiency, enabling efficient dual-branch fea-
ture extraction from CLIP-encoded text and imagery. (3) GF4FC consistently boosts the few-shot
learning capability of CLIP across seven benchmark datasets, and it outperforms four established
CLIP-based FSL baselines in parallel tests, an advantage that is particularly evident with larger
sample sizes.

2 APPROACH

The details of GF4FC are introduced as follows, which also can be found in Figure 1. The proposed
architecture takes as input a batch of unlabeled images list x of length b , in which the images have
been cut to 224× 224 size in preprocess and a set of class descriptions list τ of length c, in which the
texts have been cut or filled to the length of 77. It outputs a probability matrix S ∈ Rb×c, where each
row corresponds to an image and each column represents the probability of that image belonging to
a specific class.

The GF4FC includes CLIP with Cross-Modal Mamba (CLIMA). The CLIMA architecture com-
prises a text encoder and an image encoder, which embed text and images into a unified space,
and comprises our novel Cross-Modal Mamba (CMM) to optimize this space by treating matched
text-image pairs as mutual descriptions. This brings related embeddings closer and pushes unrelated
ones farther apart. GF4FC features a Fine-Grained Capture (FGC) module. This module makes use
of multilayer image features from CLIMA’s image encoder. It then uses the Vssm (Liu et al., 2024)
to enhance these features, and weighted sum to fuse these features. These enhanced features are
used to generate logits and adaptive weight α.

Drawing inspiration from the LDC (Li et al., 2025) architecture, GF4FC includes a Local Feature
Supplementation (LFS) component, which employs a residual structure to learn fine-grained and
local information from the enhanced image features, and an Adaptive Logits Fusion (ALF) module

2
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Figure 1: The architecture of our GF4FC contains four parts. (1) CLIP with Cross-Modal Mamba
(CLIMA) is designed to refine embedding space, (2) Fine-Grained Capture (FGC) is aimed at ex-
tract fine-grained features from Image Encoder, (3) Local Feature Supplementation (LFS) is used
to supplement CLIP’s logits with local features and (4) Adaptive Logits Fusion (ALF) dynamically
fuses the outputs form CLIMA and LFS.

fuses logits from enhanced features and fine-grained information using adaptively generated weights
α. Notations and symbols used are defined in Appendix.

2.1 CLIP WITH CROSS-MODAL MAMBA (CLIMA)

Prevailing approaches are often hampered by a static processing mechanism that treats textual and
visual modalities in relative isolation. Without a dedicated mechanism for dynamic cross-modal
interaction, these methods struggle to bridge the semantic gap effectively, culminating in insufficient
representation learning and ambiguous model predictions (Zhang et al., 2021) (Li et al., 2025).
Therefore, we propose CLIP with Cross-Modal Mamba (CLIMA), a novel framework for cross-
modal modeling based on the emerging Mamba architecture, whose overall structure is depicted
in Figure 1. The CLIMA framework comprises three core components: a Text Encoder, an Image
Encoder, and a Cross-Modal Mamba (CMM) module.

2.1.1 TEXT ENCODER AND IMAGE ENCODER

The Text Encoder and Image Encoder utilize CLIP’s standard Transformer and Vision Transformer
architectures, based on Multi-head self-attention mechanism to generate initial text and image em-
beddings in a shared space. They take in Text Prompt List τ and Image List x, and give out Text
Features Zτ ∈ Rc×e and Image Features Zx ∈ Rb×e.

2.1.2 CROSS-MODAL MAMBA (CMM)

The CMM, shown in figure 2, concatenates these textual and visual features in two different orders
and apply the Mamba model for sequence modeling. It takes in Zτ and Zx, and repeats them through
Eq.1 and Eq.2.

Zτr ∈ Rb×c×e,Zτr[i, :, :] = Zτ , for i = [0, 1, . . . , b− 1] (1)

Zxr ∈ Rb×c×e,Zxr[:, j, :] = Zx, for j = [0, 1, · · · , c− 1] (2)

3
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Figure 2: The Structure of CMM

Zτr and Zxr are concatenated in two ways. Then CMM conducts a bidirectional mamba fusion and
gives out Text Enhanced Features Zτe ∈ Rb×c×e, Image Enhanced Features Zxe ∈ Rb×c×e , as
shown in Eq.3 and Eq.4.

Zτe = mamba(cat((Zτr,Zxr), dim = 1))[:, :,−1] (3)

Zxe = mamba(cat((Zxr,Zτr), dim = 1))[:, :,−1] (4)
where cat(A,B, dim = d) function means concatenate two matrices A and B in dimension d.

Mamba was originally designed for temporal modeling of sequences of embedding vectors. We
leverage Mamba’s sequential modeling capability to connect text and image sequences for bidi-
rectional image-text and text-image joint temporal modeling. This process enhances text features
guided by images and image features guided by text. In the CMM, each text is matched with and
prompts each image and vice versa. For matching pairs, the CMM strengthens the prompted lo-
cal features, while non-matching pairs cause confusion and weaken feature quality. Subsequently,
during cosine similarity calculation, non-matching pairs yield lower similarity scores. Through this
mechanism, we achieve enhanced positive samples, weakened negative samples, reinforced match-
ing results, and optimized embedding space. The CMM enables text and image to prompt each
other, allowing the mamba to selectively distinguish original embeddings and thereby acquire effec-
tive knowledge, bringing semantically similar text and image representations closer in the embed-
ding space while pushing dissimilar ones further apart. The pseudocode of CMM can be found in
Appendix.

After the CMM processing, the enbedding vectors for text in Zτe and the enbedding vectors for
images in Zxe are dot-producted to obtain similarity indices ∆S for each text-image pair:

SCLIP = γ · Zx · (Zτ )T (5)
where γ is a shared learnable parameter, aimed at scaling logits.

These indices are then added to the similarity matrix SCLIP that wasn’t processed by the CMM:

∆S[i, j] = γ · Zxe[i, j, k] · Zτe[i, j, k] for i = 0, 1, . . . , b− 1 and j = 0, 1, · · · , c− 1 (6)

SMA = ∆S+ SCLIP (7)
The resultant Logits Matrix SMA is fine-tuned based on SCLIP with global features.

2.2 FINE-GRAINED CAPTURE (FGC)

The FGC module is designed to capture fine-grained and local information to supplement the clas-
sification. Specifically, the FGC module first takes advantages of Intermediate Image Features
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Zxm ∈ Rl×b×h×w (where we set l = 4) from the Image Encoder. It inputs it into the Vssm (Liu
et al., 2024), where feature maps pass through an SS2D state space model to capture long-range
dependencies and enhance global contextual information:

for each Z ∈ Zxm, Ze = Append(Ze, V ssm(Z)) (8)

where Ze is an empty list and Append(A,B) is a function that appends element B to list A.

Afterward, the feature maps are fused by weighted sum with weight β1, β2, β3, β4:

Zxme = β1Z
e[0] + β2Z

e[1] + β3Z
e[2] + β4Z

e[3] (9)

and then projected into the embedding space to generate the Enhanced Image Features Zxme ∈
Rb×e. Subsequently, Zxme goes through a MLP to produce Logits Matrix SFGC :

SFGC = MLP (Zxme) (10)

Through this process, FGC extracts fine-grained features from the prior features obtained before
CMM. This enhances the utilization of feature information and serves as a foundation for the sub-
sequent LFS module, ensuring more effective feature refinement and utilization. The pseudocode of
FGC can be found in Appendix.

2.3 LOCAL FEATURE SUPPLEMENTATION (LFS)

After obtaining SFGC from the FGC module, LFS uses it to perform feature supplementation
through three MLPs and a residual structure. Specifically, SFGC first undergoes dimensionality
expansion via an MLP to optimize the spatial and manifold structure of fine-grained features in
SFGC , enhancing their usability. Simultaneously, SCLIP passes through another MLP to project
it onto the same dimension as the expanded SFGC . The two outputs are then added together and
fed into a third MLP to jointly learn the missing fine-grained features in SCLIP . Finally, a residual
connection with SCLIP is applied to supplement local features:

SLFS = SCLIP +MLP 3(MLP 1(SFGC) +MLP 2(SCLIP )) (11)

This module uses SCLIP as a dynamic prompt to supplement the fine-grained and local features in
SFGC . Consequently, the LFS module learns to recognize feature-supplementation patterns. This
strengthens the utilization of CLIP-encoded image features, boosts the model’s ability to adapt to
new data, and enhances few-shot performance.

2.4 ADAPTIVE LOGITS FUSION (ALF)

Finally, the ALF module adaptively fuses SMA and SLFS to obtain the final adaptive Logits Matrix
SALF. Specifically, we use a Weight Generator to produce an adaptive weight α from enhanced
features Zxme, then apply α for a weighted fusion of SFGC and SLFS:

SALF = αSMA + (1− α)SLFS , α = WeightGenerator(Zxme) (12)

Via the above ALF module, our approach can adaptively supplement missing fine-grained and local
features. This makes the final SALF more robust and accurate. The core lies in using α to achieve
more reasonable fusion.

2.5 LOSS FUNCTION

In GF4FC, we train CMM of CLIMA, Vssm, MLP, Weight Generator in FGC and MLPs in LFS.
Specifically, our goal is to make the Logits Matrix SMA output by CLIMA achieve good classifica-
tion accuracy and realize global feature supplementation to ensure accurate classification through
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Algorithm 1 The procedure of the proposed GF4FC.

Require: Text prompt list τ , image List x, image label list y, trade-off parameter λ, weight
β1, β2, β3, β4, a learnable logit scale γ

Ensure: Adaptive Logits SALF .
1: Y ← using y by Eq.(16);
2: Zτ ← TextEncoder(τ);
3: Zx and Zxm ← ImageEncoder(x);
4: SCLIP ← γ · Zx · (Zτ )T ;
5: Zτe and Zxe← using Zτ and Zx by Alg.2;
6: ∆S← γ · einsum(′ijk, ijk− > ij′,Zxe,Zτe);
7: SMA ← ∆S+ SCLIP ;
8: SFGC ,Zxme ← using Zxm and weight β1, β2, β3, β4 by Alg.3
9: SLFS ← using SFGCand SCLIP by Eq.(11);

10: SALF ← using Zxme, SMAand SLFS by Eq.(12);
11: LCE ← using SALF , SLFS , SFGC and Y by Eq.(13);
12: LSim ← using SLFS , SFGC and SCLIP by Eq.(14);
13: L ← using LCE , LSim and λ by Eq.(15);
14: L.backward();
15: Update all learnable parameters in GF4FC by AdamW;
16: return SALF .

SFGC , SLFS , and SALF . So we employ Cross-Entropy Loss to assess the discrepancy between
SMA, SFGC , SLFS , and SALF :

LtotalCE = LCEMA(S
MA,Y)+LCEFGC(S

FGC ,Y)+LCELFS(S
LFS ,Y)+LCEALF(S

ALF ,Y) (13)

where Y is the Sample Probability Distribution Matrix, and the detailed definition can be found in
Appendix.

Meanwhile, to prevent over-enhancement of features and overfitting to samples, we use the L1 Loss
to calculate the difference between SFGC and SCLIP , and between SLFS and SCLIP :

LSim = LL1FGC(S
FGC ,SCLIP ) + LL1LFS(S

LFS ,SCLIP ) (14)

For ultimate loss, we introduce a trade-off parameter to balance the impact between LtotalCE and
LSim:

Lfinal = LtotalCE + λLSim (15)

where λ is a trade-off parameter.

3 EXPERIMENTS

3.1 DATASETS

To verify our method’s effectiveness, we employed seven classification datasets, including Cal-
tech101 (Fei-Fei et al., 2004), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGV-
CAircraft (Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al.,
2014), and OxfordPets (Parkhi et al., 2012). Detailed imformation can be found in Appendix.

3.2 COMPARISON METHODS

We compared our method with several baseline methods, including SuS-X (Udandarao et al., 2023),
CoOp (Zhou et al., 2022), Tip-Adapter, and Tip-Adapter-F (Zhang et al., 2021). The introduction of
these methods can be found in Appendix.
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Figure 3: Classification performance of different methods on 7 datasets, and the last one is the
average performance on 7 datasets.

3.3 SETTINGS

All experiments were conducted with an NVIDIA GeForce RTX 4090 GPU, using Ubuntu 22.04.
In GF4FC, the parameters we prepared for the CLIMA module are pre-trained. Among them, the
text and image encoders of CLIMA are initialized with parameters from ViT-B/16 (Radford et al.,
2021), and these parameters remain frozen throughout subsequent experiments. For CMM, FGC,
LFS and ALF, the parameters are initialized randomly. For fairness, other comparison methods
were all backed by ViT-B/16 as backbone. We set the batch size to 64 and the learning rate to
10−4, using cosine annealing for 50 epochs. The optimizer was AdamW with weight decay at 10−4

and eps at 10−4, hyperparameter λ is 1. We conducted experiments for 1-Shot, 2-Shot, 4-Shot, 8-
Shot, and 16-Shot scenarios. For other comparison methods, hyperparameters followed the official
recommendations. We used accuracy as the metric for comparison.

3.4 EXPERIMENT RESULTS AND ANALYSIS

To evaluate GF4FC’s effectiveness, we tested it on seven image classification datasets and com-
pared its classification accuracy with several SOTA CLIP-based FSL methods using ViT-B/16 as the
backbone. The result is shown in Figure 3.

Firstly, we examined how our method performed across different datasets. Results showed that on
Caltech101, the 16-Shot setting was optimal, with an accuracy 0.73% higher than the second-best
method. On DTD, EuroSAT, and Flower102, higher-shot settings were more effective. At 8-Shot,
our method outperformed the second-best by 1.24%, 2.32%, and 3.57%, respectively, and at 16-Shot,
by 0.53%, 0.69%, and 2.19%. However, on OxfordPets, UCF101, and FGVCAircraft, our method
underperformed compared to Tip-Adapter-F. We attribute this to the characteristics of the datasets.
Caltech101, DTD, EuroSAT, and Flower102 have clear global structures and moderate fine-grained
differences. In contrast, OxfordPets, UCF101, and FGVCAircraft require focus on local features
or extremely fine-grained details. GF4FC, which emphasizes the complementary use of global and
local features and cross-modal dynamic interaction, suits tasks needing semantic alignment and
context modeling. But in extremely fine-grained or local feature - dominant tasks, cross-modal
interaction may add noise or fail to capture key local areas.

Secondly, we looked into our model’s average performance across all datasets. The average classi-
fication accuracy, as shown in Table 1, indicates better performance at higher shots, with 16-Shot
being the best, yet slightly lower than Tip-Adapter-F at lower shots. We think this is due to GF4FC’s
multiple trainable modules (CLIMA, Vssm and MLP in FGC, MLP in LFS, and the weight generator
in ALF), which have many parameters and need enough data to learn meaningful feature transfor-

7
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mation and interaction. With only 1-2 samples per class, the complex model may overfit to the noise
or unique features of these few samples, reducing generalization. As the number of samples per
class increases to 8 or 16, these modules can learn meaningful patterns, and the advantages of the
large model capacity emerge. Ample samples allow CLIMA’s cross-modal interaction to better learn
robust and discriminative text-image correlation rules.

GF4FC’s key innovation lies in its dual-path design of global feature enhancement (CLIMA) and
local feature supplementation (FGC+LFS). When data is sufficient, this design can learn richer and
more comprehensive representations than a single feature stream. CLIMA brings semantically sim-
ilar text and image representations closer through cross-modal interaction, optimizing the global
embedding space. FGC and LFS supplement local details that CLIP might miss, crucial for dis-
tinguishing similar categories. ALF dynamically fuses global and local information based on input
images. The more data, the better the weight generator in ALF can be trained, leading to more accu-
rate decisions. GF4FC is designed for practical few-shot learning scenarios with about ten samples
per class, where its advantages can be fully utilized.

Table 1: The average results of all methods over 7 datasets.

Methods K-Shot Accuracy (%)
0 1 2 4 8 16

ZS-CLIP 63.86 - - - - -

CoOp - 65.57 69.38 73.40 76.28 79.34
Tip-Adapter - 70.02 71.41 73.81 75.48 78.02

Tip-Adapter-F - 71.99 73.52 76.71 79.57 81.86
SuS-X - 69.53 71.61 74.73 76.12 78.54

CLIMA - 62.87 65.29 67.64 69.37 71.36

GF4FC (Our) - 71.26 72.09 76.27 79.55 81.95

3.5 ABLATION EXPERIMENTS

To analyze the effect of our modules and settings, we conduct a series of ablation experiments over
seven datasets.

3.5.1 EFFECT ANALYSIS OF EACH MODULE

In our work, we propose four key modules: CLIMA, FGC, LFS, and ALF. To investigate their
individual contributions, we conducted a series of ablation experiments. The results are presented
in Table 2. As shown in it, GF4FC with ViT-B/16 backbone achieves a significant improvement,
raising the average accuracy by 19.39%. Each module contributes effectively. Adding the CLIMA
module boosts average accuracy by 14.82%, while its removal causes a 2.72% drop. FGC and LFS
together increase accuracy by 16.67%, and removing them leads to a 5.11% decrease. The ALF
module further enhances accuracy when combined with others. These results highlight the model’s
efficiency in improving global and fine-grained feature processing.

Table 2: The average results of each module over 7 datasets.

Module Backbone
CLIP CLIMA FGC LFS ALF ViT-B/16

✓ 62.56
✓ ✓ 77.38
✓ ✓ 79.53
✓ ✓ ✓ 79.23
✓ ✓ ✓ ✓ ✓ 81.95
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3.5.2 ABLATION STUDY OF CLIMA

In the ablation study of the CLIMA module, we explored two approaches: using the cosine similarity
result ∆S of enhanced features Zτe and Zxe directly as SMA, or combining it with SCLIP to derive
SMA, as shown in Table 3. The results indicate that integrating ∆S as a global feature supplement
for fine-tuning is more effective. This is likely because ∆S captures unique semantic information
that enhances the discriminative power of the model. By combining it with SCLIP , we enrich the
feature space, allowing the model to leverage both the enhanced semantic information from ∆S and
the robust, pre-trained features from CLIP. This synergy leads to better performance across both
CLIMA and GF4FC datasets. Moreover, the efficacy of using CMM for global feature enhancement
is underscored by these results. CMM appears to effectively refine the global features, making them
more suitable for the specific fine-tuning tasks at hand. The improvement in accuracy when using the
combined approach suggests that CMM helps in creating a more balanced and informative feature
representation, which is crucial for achieving higher classification accuracy. This approach not only
boosts the model’s ability to generalize but also highlights the importance of strategically integrating
different feature sources to maximize performance.

Table 3: Ablation study of CLIMA module.

SMA CLIMA GF4FC

∆S 70.73 80.46
∆S+ SCLIP 77.38 81.95

3.5.3 ABLATION STUDY OF FGC

Table 4: The average results of parameters study.

β1 β2 β3 β4 ACC

0.4 0.3 0.2 0.1 80.90
0.25 0.25 0.25 0.25 80.92
0.1 0.2 0.3 0.4 80.97

In the ablation study of FGC module, we explored different fine-grained feature extraction method.
We have tried to extract multi-layer features from CLIP’s Image Encoder, and define balance pa-
rameters β1, β2, β3 and β4 to control the contribution of the feature from different layer. We test
different combination of features from the last four layers of CLIP’s Image Encoder, and the results
are shown below in Table 4. As shown in it, GF4FC focuses mainly on the intermediate feature
of CLIP’s deep layer for fine-grained and local information capture, achieving the highest accuracy
of 80.97%. This strategy is effective for several reasons. Firstly, the deep layer’s features cap-
ture high-level semantics crucial for classification. Secondly, these features are task-specific and
refined, making them ideal for fine-grained distinctions. Thirdly, using deeper layer reduces model
complexity and avoids noise from shallower layers.

CONCLUSION

In this paper, we propose a novel method called Global and Fine-Grained Framework for CLIP
with Cross-modal Mamba in Few-Shot Learning (GF4FC) to better solve Few-Shot Classification
problems. GF4FC uses Cross-Modal Mamba (CMM) for global feature enhancement, and Fine-
Grained Capture (FGC) and Local Feature Supplementation (LFS) modules for fine-grained and
local feature supplementation. These two paths are dynamically fused via the ALF module, boosting
CLIP’s few-shot classification performance. Experiments on seven datasets, compared with four
methods, validate our framework’s effectiveness.

In the future, we plan to optimize the mutual prompting mechanism in the CLIMA module. And
extend GF4FC to dense prediction tasks such as object detection (e.g.COCO) and segmentation
(e.g.ADE20K) where fine-grained alignment is critical.

9
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A APPENDIX

B RELATED WORK

In Related Work, we are going to introduce the three main aspects of CLIP-based FSL methods:
Prompt Learning, Adapter Design and Feature Enhancement.

B.1 PROMPT LEARNING IN CLIP-BASED FSL

Text prompts, sentence-like instructions given to the language branch of VLP models, help them
understand tasks. Prompts can be manually designed for downstream tasks or automatically learned
during fine-tuning, known as Prompt Learning. Many works adapt VLP models by learning prompts
in end-to-end training. CoOpKaiyang Zhou (2022) fine-tunes CLIP’s language branch by optimiz-
ing continuous prompt vectors for few-shot transfer, while CoCoOpZhou et al. (2022) conditions
prompts on image instances to address CoOp’s generalization issues. MaPLekhattak et al. (2023) en-
hances consistency between visual and language representations through multimodal prompt learn-
ing across both branches. However, these methods, not optimizing classification boundaries during
pre-training, can cause category confusion in downstream tasks.

B.2 ADAPTER DESIGN IN CLIP-BASED FSL

In the field of natural language processing (NLP), fine-tuning large pre-trained models is an effective
way to transfer knowledge to downstream tasks. However, when facing many downstream tasks,
this method lacks parameter efficiency: each task requires a brand-new model. As an alternative,
(Houlsby et al., 2019) proposed using adapter modules for transfer learning. These adapter modules
can produce compact and scalable models, adding only a small number of trainable parameters per
task and allowing new tasks to be added without reprocessing previous ones. The original network
parameters remain fixed, achieving high parameter sharing. Adapters, as an alternative to full model
fine-tuning, have been widely used in many areas, including FSL. For example, Tip-Adapter(Zhang
et al., 2021) uses the features and labels of a few-shot support set to build a non-parametric classifier
based on caching, which is then weighted and fused with CLIP’s zero-shot classifier. It requires no
training and is fast. Tip-Adapter-F(Zhang et al., 2021) enhances this by adding a tiny MLP adapter
module for end-to-end fine-tuning. CALIP(Guo et al., 2022) adds adapter layers on frozen CLIP
features and uses zero-shot CLIP predictions as a prior to modulate adapter outputs via a prior-
adapter module, reducing overfitting to few-shot data. However, these approaches still underuse the
cross-modal interaction between text and image.

B.3 FEATURE ENHANCEMENT IN CLIP-BASED FSL

Feature enhancement improves feature extraction to boost model performance. In CLIP-Based FSL,
it focuses on optimizing cross-modal features to address category confusion and domain differences.
Key methods include feature decoupling and reconstruction. For example, LDC(Li et al., 2025)
decomposes classification logits, isolates discriminant and confusion components, and suppresses
noise. It focus on multi-layer image features, but may ignore the global information enhancement
in classification and may not effectively utilize the rich cross-modal potential of CLIP. Cross-modal
Feature Refiner(Zhang et al., 2025) uses a lightweight Transformer to refine visual features with
textual guidance. It is a dynamical refiner that can enhance the fine-grained features of images, but
ignores that images can also prompt texts.

To overcome these limitations, we propose GF4FC. GF4FC introduces the Cross-Modal Mamba
module to interdependently encode text and image, using cross-modal representations as mutual
prompts to refine the embedding space. This approach not only enhances the model’s adaptability
and generalization ability but also improves classification performance by strengthening dynamic
cross-modal interaction.
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Table 5: The Descriptions of Used Notations.

Notations Descriptions

Xn matrix X named n
Xn

i,· the i-th row of Xn

Xn
·,j the j-th column of Xn

xi the i-th element of x
rank(X) the rank of X
XT the transpose of X
tr(X) the trace of X
X−1 the inverse of X

Table 6: The Definitions of Used Symbols

Symbols Definitions

c the number of texts
b the number of images
h height
w width
cls the number of classes
e embedding dimension
l the number of layers
s the length of the sequence
MLPn a multilayer perceptron named n

C APPROACH

C.1 NOTATIONS AND DEFINITIONS

In this paper, matrices, vectors, and scalars are defined in boldface uppercase, boldface lowercase,
and normal italic, respectively, e.g.X, x, and x. In addition, some notations are listed in Table 5.

In addition to the above notation conventions, we use some symbols with specific meanings as shown
in the Table 6.

C.2 DATA PREPROCESSING

GF4FC is a deep learning architecture that handles both images and text, so data preprocessing is
divided into text and image parts.

For text preprocessing, picture-text datasets have natural text descriptions but in classification
datasets, text descriptions are generated via ”label + template” way, as shown in Table 7.

Table 7: The Templates for Classification Datasets

Datasets Templates

Caltech101 a photo of a {label}.
DTD {label} texture.
EuroSAT a centered satellite photo of {label}.
FGVCAircraft a photo of a {label}, a type of aircraft.
Food101 a photo of {label}, a type of food.
OxfordPets a photo of a {label}, a type of pet.
Flower102 a photo of a {label}, a type of flower.

After that, text descriptions are tokenized using a BPE tokenizer(Shibata et al., 1999), which splits
text into common subword units based on frequency. Token sequences longer than the max len are

13
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truncated to max len, and those shorter than max len are padded with 0 to reach max len. We set
max len to 77.

For image preprocessing, images are first resized to 224×224 using bicubic interpolation, then con-
verted to RGB format and normalized with mean (0.48145466, 0.4578275, 0.40821073) and stan-
dard deviation (0.26862954, 0.26130258, 0.27577711).

C.3 PSEUDOCODE

The pseudocode of CMM module and FGC module are shown in Alg.2 and Alg.3 respectively.

Algorithm 2 The procedure of CMM.

Require: Text Features Zτ , Image Features Zx.
Ensure: Txt Enhanced Feats Zτe, Img Enhanced Feats Zxe.

1: Zτr ← repeat interleave(Zτ ,Zx.shape[0], dim = 0);
2: Zxr ← repeat(Zx,Zτ .shape[0], dim = 1);
3: Zτe ← mamba(cat((Zτr,Zxr), dim = 1))[:, :,−1];
4: Zxe ← mamba(cat((Zxr,Zτr), dim = 1))[:, :,−1];
5: return Zτe,Zxe.

Algorithm 3 The procedure of FGC.

Require: Intermediate Image Features Zxm, weight β1, β2, β3, β4.
Ensure: Logits Matrix SFGC , Enhanced Image Features Zxme.

1: Ze ← initList();
2: for Z in Zxm do
3: Ze.append(V ssm(Z));
4: end for
5: Zxme ← β1Z

e[0] + β2Z
e[1] + β3Z

e[2] + β4Z
e[3];

6: SFGC ←MLP (Zxme);
7: return SFGC , Zxme.

D EXPRIMENTS

D.1 DATASETS

To verify our method’s effectiveness, we employed seven classification datasets, including Cal-
tech101(Fei-Fei et al., 2004), DTD(Cimpoi et al., 2014), EuroSAT(Helber et al., 2019), FGV-
CAircraft(Maji et al., 2013), Flowers102(Nilsback & Zisserman, 2008), Food101(Bossard et al.,
2014), and OxfordPets(Parkhi et al., 2012). Following the practices of prior methods like
CoOp(Kaiyang Zhou, 2022), we divided each dataset into training, validation, and test sets. The
details are shown in Table 8.

Table 8: Datasets Statistics

Dataset Classes Train Val Test

Caltech101 100 4,128 1,649 2,465
Flowers102 102 4,093 1,633 2,463
FGVCAircraft 100 3,334 3,333 3,333
OxfordPets 37 2,944 736 3,669
DTD 47 2,820 1,128 1,692
EuroSAT 10 13,500 5,400 8,100
UCF101 101 7,639 1,898 3,783
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D.2 SETTINGS

All experiments were conducted on an Intel Xeon Gold 6430 CPU with an NVIDIA GeForce RTX
4090 GPU, using Ubuntu 22.04. For our GF4FC, experiments were in Python 3.8.20, with Py-
Torch 1.13.0+cu117 as the framework. For other comparison methods, the PyTorch environment
and Python version followed the official recommendations.

D.3 COMPARISON METHODS

We compared our method with several baseline methods, including SuS-X (Udandarao et al., 2023),
CoOp (Zhou et al., 2022), Tip-Adapter, and Tip-Adapter-F (Zhang et al., 2021). We used accuracy
as the metric for comparison.

1. SuS-X enables a novel paradigm called “name-only transfer,” meaning the only knowledge
about the downstream task during fine-tuning is the name of the target category. Consisting
of two key components: SuS and TIP-X, it neither requires fine-tuning with dense data nor
demands expensive labeled data. In this way, a new fine-tuning paradigm is established.

2. CoOp is a method designed to adapt visual-language pre-trained models, such as CLIP, to
downstream tasks. Specifically, CoOp employs learnable vectors to model the words in
a prompt, with the pre-trained model’s parameters kept fixed throughout the process. To
address diverse image recognition tasks, the authors have provided two implementations of
CoOp: unified context and class-specific context.

3. CoOp is a method designed to adapt visual-language pre-trained models, such as CLIP, to
downstream tasks. Specifically, CoOp employs learnable vectors to model the words in
a prompt, with the pre-trained model’s parameters kept fixed throughout the process. To
address diverse image recognition tasks, the authors have provided two implementations of
CoOp: unified context and class-specific context.

D.4 ABLATION EXPERIMENTS

D.4.1 EFFECT ANALYSIS OF EACH MODULE

As shown in Table 2, our GF4FC significantly improves the average accuracy by 19.39% with ViT-
B/16 as the backbone. All four modules demonstrate efficacy. After adding the CLIMA module, the
average classification accuracy increases by 14.82%. Removing CLIMA from the entire architec-
ture leads to a 2.72% accuracy drop, indicating that CLIMA enhances global feature perception and
improves classification. FGC and LFS can increase accuracy by 16.67%. Removing them causes a
5.11% accuracy decrease, suggesting the FGC-LFS route effectively captures fine-grained and local
features, boosting the model’s discrimination. The ALF module dynamically combines CLIMA and
FGC-LFS, further improving accuracy. This shows the model efficiently performs parallel enhance-
ment and fusion of global and fine-grained features.

D.5 ABLATION IN LFS

D.5.1 STRATEGY 1 IN LFS

Shown in figure 4, in Strategy 1, we abandon complex models and use MLPs for knowledge integra-
tion. SFGC is first expanded via an MLP to enhance its fine-grained features’ structure and usability.
Concurrently, SCLIP is projected to the same dimension using another MLP. The combined outputs
are then fed into a third MLP to learn missing fine-grained features in SCLIP . Finally, a residual
connection with SCLIP supplements local features.

D.5.2 STRATEGY 2 IN LFS

Shown in figure 5, in Strategy 2, we aim to boost performance by strengthening existing fine-grained
knowledge. We use a Mamba module, which takes the concatenation of SCLIP and SFGC as input
and outputs an optimized SFGC . Our goal is to model the use of SCLIP to guide the optimization
of the geometric structure of knowledge in SFGC . This allows us to decouple the fine-grained
knowledge needed by SCLIP and improve knowledge utilization. Then, using the optimized SFGC
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Figure 4: Strategy 1 of LFS

as fine-tuning knowledge and adding it via a residual connection to SCLIP , we obtain the final
output SLFS .

Figure 5: Strategy 2 of LFS

D.5.3 STRATEGY 3 IN LFS

Shown in figure 6, in Strategy 3, we also aim to enhance performance by reinforcing existing fine-
grained knowledge. Here, we employ a CrossAttention module, where SCLIP acts as the query, and
SFGC serves as both the key and value, outputting an optimized SFGC . Through this cross-attention
mechanism, we hope that SCLIP can guide the targeted optimization of knowledge manifolds in
SFGC . Similar to Strategy 2, we use the optimized SFGC as fine-tuning knowledge, add it via a
residual connection to SCLIP , and get the final output SLFS .

D.5.4 STRATEGY 4 IN LFS

Shown in figure 7, Strategy 4 combines the methods of Strategies 2 and 3. First, we optimize the
structure of SFGC using the Mamba module. Then, we add a CrossAttention module, again using
SCLIP as the query and SFGC as the key and value, to further optimize SFGC . Finally, using the
optimized SFGC as fine-tuning knowledge and combining it with SCLIP via a residual connection,
we obtain SLFS .
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Figure 6: Strategy 3 of LFS

Figure 7: Strategy 4 of LFS
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Table 9: Behavior of different strategies on few-shot classification.

Strategies ACC
LFS GF4FC

Strategy 1: MLPs 66.46 75.39
Strategy 2: Mamba 73.25 74.55

Strategy 3: CrossAttention 73.39 73.85
Strategy 4: Mamba with CrossAttention 73.64 74.65
Strategy 5: Mamba with AntiAttention 72.92 73.95

Average 71.93 74.48

D.5.5 STRATEGY 5 IN LFS

Shown in figure 8, in Strategy 5, building on Strategy 4, we introduce a novel attention mechanism
called AntiAttention. We realized that the cross-attention mechanism in Strategy 4 uses the cosine
similarity between query and key to compute weights, which might enhance the existing knowledge
in SCLIP while weakening the missing knowledge. To address this, AntiAttention subtracts the
cosine similarity from 1 to compute new weights, enabling the extraction of missing information
from SFGC . Strategy 5 simply replaces the CrossAttention in Strategy 4 with AntiAttention.

Figure 8: Strategy 5 of LFS

The results indicate that the accuracy of SLFS is highest at 73.64%, exceeding the average by
1.71%, when using Strategy 4. For SALF , the accuracy peaks at 75.39% with Strategy 1, surpassing
the average by 0.91%. Strategy 1’s effectiveness can be attributed to its use of MLPs for knowledge
integration. By expanding SFGC via an MLP, the fine-grained features’ structure and usability
are enhanced. Projecting SCLIP to the same dimension using another MLP allows for effective
combination of the two feature sets. The third MLP then learns the missing fine-grained features in
SCLIP , and the residual connection with SCLIP supplements local features, making the knowledge
generated by Strategy 1 highly effective and usable within the overall architecture. In contrast, other
strategies employed more complex structures. Strategy 2 uses a Mamba module to optimize the
geometric structure of knowledge in SFGC , while Strategy 3 employs a CrossAttention module to
guide the optimization of knowledge manifolds. Strategy 4 combines both the Mamba module and
CrossAttention module. However, these complex structures may have led to difficulties in effectively
integrating with global information, resulting in lower overall performance. Strategy 5 introduces
the AntiAttention mechanism to address the limitations of the CrossAttention mechanism, but it also
fails to effectively integrate with global information, leading to suboptimal performance.

Despite Strategy 1 yielding the lowest SLFS accuracy, it was ultimately chosen due to its superior
performance within the overall architecture. This suggests that the knowledge generated by Strategy
1 in SLFS is the most effective and usable. While other strategies achieved local successes with
more complex structures, they failed to effectively integrate with global information.
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Our training comprises two phases, each with distinct loss functions to meet different training ob-
jectives. For clarity, we first define key parameters and functions. Given a training set with n images
across c classes, each image i ∈ {0, 1, . . . , n− 1} has a label yi ∈ {0, 1, . . . , c− 1}. For the image
sequence n, the corresponding label vector is y = [y0, y1, . . . , yn−1]

T .

E LOSS FUNCTION

E.1 PROBABILITY DISTRIBUTION

The Sample Probability Distribution Matrix Y ∈ Rn×c is then defined as:

Y =


Y0,0 Y0,1 · · · Y0,c−1

Y1,0 Y1,1 · · · Y1,c−1

...
...

. . .
...

Yn−1,0 Yn−1,1 · · · Yn−1,c−1

 (16)

where each element Yi,j is:

Yi,j =

{
1, if yi = j

0, otherwise

Output by the model named N , SN ∈ Rn×c is the predicted probability distribution matrix.

E.2 CROSS-ENTROPY LOSS

Cross-Entropy Loss measures the dissimilarity between predicted and true probability distributions,
commonly used for classification tasks. It quantifies the difference between the predicted class
probabilities and the true labels, encouraging the model to assign higher probabilities to correct
classes. The Cross-Entropy Loss over all N samples and C classes is:

LCE(S,Y) = − 1

N

N−1∑
i=0

C−1∑
j=0

Yi,j log(Si,j) (17)

E.3 MEAN SQUARED ERROR (MSE) LOSS

MSE Loss computes the average squared difference between two values. It penalizes larger errors
more due to the squaring operation, making it sensitive to outliers. The MSE Loss over all N
samples and C classes is:

LMSE(S,T) =
1

N × C

N−1∑
i=0

C−1∑
j=0

(Si,j −Ti,j)
2 (18)

E.4 L1 LOSS

Also known as MAE Loss, L1 Loss computes the average absolute difference between predicted
and true values. It is more robust to outliers compared to MSE since it doesn’t square the residuals.
The L1 Loss over all N samples and C classes is:

LL1(S,T) =
1

N × C

N−1∑
i=0

C−1∑
j=0

|Si,j −Ti,j | (19)
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