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Abstract001

Text corpora in non-English clinical contexts002
are sparse, where synthetic data generation003
with Large Language Models (LLMs) appears004
as a promising strategy to overcome this data005
gap. In order to test the quality of LLMs in006
generating synthetic data, we applied them to007
our novel German Medical Interview Ques-008
tions Corpus (GerMedIQ), consisting of 4,524009
unique question-response pairs in German. We010
augmented our corpus by asking a cohort of011
models to produce suitable responses to the012
same questions. Structural and semantic evalu-013
ations of the synthetic responses revealed that014
while augmented responses may meet the gram-015
matical requirements, most models were not016
able to produce semantically comparable re-017
sponses to humans. Also, an LLM-as-a-judge018
experiment showcased that human responses019
were consistently rated more appropriate than020
synthetic ones. We find that data augmentation021
with LLMs in non-English and clinical domain022
contexts has to be performed carefully.023

1 Introduction024

Textual medical data is crucial for developing and025

validating Natural Language Processing (NLP) ap-026

plications within clinical contexts. While there are027

large high-quality datasets available for the English028

language (e.g., MIMIC by Johnson et al. (2016)),029

accessible German clinical documentation typically030

remains sparse (Hahn, 2024). This is often due to031

stringent privacy constraints, restricted access to se-032

cure environments, or a lack of accessible datasets033

or corpora. While the creation of such shareable034

datasets should be viewed as the optimal solu-035

tion, it is time-, labour-, and resource-intensive (cf.036

Meineke et al., 2023; Lohr et al., 2024). A quicker037

and more lightweight alternative is data augmen-038

tation using Large Language Models (LLMs) (cf.039

Piedboeuf and Langlais, 2024). However, the fea-040

sibility of using LLMs as robust data generation041

engines in the clinical domain remains largely un- 042

derexplored, particularly regarding their capability 043

to reliably simulate realistic clinical interactions 044

between physicians and patients. 045

With this paper, we release the German Medical 046

Interview Questions Corpus (GerMedIQ), a dataset 047

consisting of 116 real-world questions from stan- 048

dardized German anamnesis questionnaires and 39 049

simulated responses, each by humans. Moreover, 050

we explore the suitability of small to medium-sized 051

LLMs in generating synthetic responses to those 052

questions, specifically focusing on their ability to 053

adopt the role of the patient. The central question 054

guiding our investigation is: Can LLMs effectively 055

serve as synthetic data generators in the context of 056

clinical anamnesis? Further, our experiments allow 057

us to assess the ability of LLMs to simulate patient 058

behaviour. 059

2 Related Work 060

The following section dives deeper into the exist- 061

ing literature on synthetic data generation in the 062

biomedical and clinical domain. Furthermore, an 063

overivew about existing medical interview datasets 064

will be given. 065

2.1 Synthetic Data Generation in the 066

Biomedical Domain 067

The generation of synthetic data has evolved over 068

the last years to overcome shortages of clinical data 069

due to privacy constraints. Common use cases are 070

to augment smaller datasets with synthetic data 071

points in order to increase their size or diversity, or 072

to become more independent of time-consuming 073

data collection processes. Usually, data augmenta- 074

tion workflows are built upon existing data, where 075

parts of datasets are paraphrased or back-translated 076

by a model (cf. Rentschler et al., 2022). Since the 077

advancement of LLMs in recent years, researchers 078

have been able to generate synthetic data com- 079
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pletely independently from existing data sources,080

and Piedboeuf and Langlais (2024) showed that081

LLM-generated synthetic data tends to increase082

model performance much better than traditional083

approaches.084

Typical reasons for the increasing interest in syn-085

thetic data generation are cost efficiency, scalabil-086

ity, control over the diversity and balance of data,087

and reduced privacy concerns, especially in health-088

care (Liu et al., 2024; Nadas et al., 2025). This089

is underpinned by Hahn (2024), who states that090

besides domain proxies (e.g., guidelines) and trans-091

lated datasets (e.g, in non-English contexts MIMIC-092

derived datasets), synthetic textual data are crucial093

for NLP applications in the clinical domain. Ex-094

amples of existing German synthetic text corpora095

are JSYNCC (Lohr et al., 2018) and GRASCCO096

(Modersohn et al., 2022).097

A known disadvantage of data synthesized by098

LLMs is the fact that those models are reportedly099

vulnerable to biases or hallucinations, potentially100

leading to counterfactual, unrealistic, or semanti-101

cally implausible synthetic corpora (Yu et al., 2023;102

Liu et al., 2024; Hicks et al., 2024; Hahn, 2024;103

Nadas et al., 2025).104

Synthetic data generation has been applied suc-105

cessfully in boosting LLMs’ performance on arith-106

metics (Geva et al., 2020), information retrieval107

(Xiong et al., 2024), or named entity recognition108

(NER) (Lu et al., 2024). But also in the biomedical109

domain, data augmentation improved the perfor-110

mance of ICD-9 and ICD-10 code labeling (Sarkar111

et al., 2024; Kumichev et al., 2024) or other clin-112

ical NER tasks (Šuvalov et al., 2025). Synthetic113

radiology reports helped to classify misdiagnosed114

fractures (Liu et al., 2025) and medical LLMs115

trained on synthetic text only even outperformed116

ones trained on real data (Peng et al., 2023).117

2.2 Medical Conversational Datasets118

Researchers have collected real and simulated med-119

ical conversational datasets, mostly for training120

conversational artificial intelligence (AI) systems.121

The largest real-world conversational dataset122

from the medical domain is MedDialog: Zeng123

et al. (2020) compiled a Chinese corpus with 3.4M124

doctor-patient interactions and an English corpus125

with 260K such conversations, covering numerous126

medical specialities. The researchers showed that127

models trained on the MedDialog dataset produced128

accurate medical conversations. Similar results are129

reported by Pieri et al. (2024) on models that were130

trained on BiMediX, their 1.3M corpus of English- 131

Arabic clinical conversations. Moreover, Xu et al. 132

(2022) collected the RelMedDial dataset consist- 133

ing of 24K utterances from Chinese telemedical 134

interviews in order to train or improve medical 135

dialogue systems. Saley et al. (2024) captured a 136

22K corpus of English doctor-patient dialogues for 137

medical history taking and the dataset may serve 138

task-oriented conversational AI systems. Another 139

non-English corpus with Spanish counseling ses- 140

sions included 800 medical questions and about 141

400 expert reflections (Gunal et al., 2025). Gratch 142

et al. (2014) collected the DAIC corpus with about 143

500 psychological English interviews for diagnosis 144

support. The only medical interview corpus that in- 145

cludes German that we are aware of is DiK, which 146

contains roughly 120 audio recordings with tran- 147

scriptions of doctor-patient interactions in German, 148

Portuguese, and Turkish as well as interpreted con- 149

versations. DiK was collected to study the multilin- 150

gual interpretation in the clinical context (Bührig 151

and Meyer, 2009). 152

In order to boost the automatic summarization 153

abilities of LLMs as well as clinical note genera- 154

tion, Ben Abacha et al. (2023) collected a 1.7K cor- 155

pus of simulated interactions between physicians 156

and patients. Fareez et al. (2022) crafted a mul- 157

timodal dataset consisting of 272 medical conver- 158

sations derived from simulated cases focusing on 159

respiratory diseases. Similarly, Papadopoulos Ko- 160

rfiatis et al. (2022) created a small, multimodal 161

corpus for primary care consultations. Sanni et al. 162

(2025) generated a dataset with medical and non- 163

medical conversations in different African accents 164

to enhance automatic speech recognition systems. 165

3 Dataset: The GerMedIQ Corpus 166

To the best of our knowledge, there is no available 167

German anamnesis question dataset for research. 168

Therefore, we present the German Medical Inter- 169

view Questions Corpus (GerMedIQ), consisting of 170

116 standardized anamnesis questions answered by 171

39 participants, resulting in 4,524 unique German 172

question-response pairs. 173

3.1 The Corpus Collection 174

The interview questions were extracted from a 175

mixture of standardized questionnaires and basic 176

anamnesis questions used at the University Hos- 177

pital REDACTED. We took questions from the 178

Barthel Index (Mahoney and Barthel, 1965), the 179
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EORTC Quality of Life Questionnaire (Aaronson180

et al., 1993), and the PainDETECT Questionnaire181

(Freynhagen et al., 2006), which are actively used182

in everyday clinical routine, especially with can-183

cer patients. In addition, we compiled anamnesis184

questions from clinical routine interviews covering185

a wide variety of topics like basic body characteris-186

tics (e.g., weight or height) or the medical history of187

a patient. Some questions were slightly rephrased188

for consistency reasons.189

Table 1 shows the distribution of questions190

across the full list of questionnaires. Due to pri-191

vacy regulations, we were not able to collect re-192

sponses from real patients and decided to focus193

on a cohort of laypeople without previous formal194

medical knowledge, and we have no information195

about their medical history. A rationale behind196

this decision is that no medical knowledge should197

be required to answer anamnesis questionnaires198

properly. In order to obtain realistic responses,199

the participants were explicitly instructed to give200

‘appropriate’, i.e., grammatically well-formed and201

contextually reasonable responses to each question202

without disclosing any personally identifiable in-203

formation. Although no detailed patient profiles204

were provided, participants were encouraged to an-205

swer as plausibly as possible, drawing on their own206

understanding or interpretation of hypothetical clin-207

ical scenarios. The survey was conducted online208

on the platform MyMedax1 and took each partici-209

pant roughly 40 minutes. Each participant received210

monetary compensation to increase their level of211

motivation.212

Questionnaire N
Baseline: Medical History 19
Baseline: Anamnesis Assessment 16
Baseline: Subjective History 16
EORTC QLQ 30 14
PainDetect Questionnaire 9
Barthel Index 8
Baseline: Patient Characteristics 7
Baseline: Patient Circumstances 7
Baseline: Immune System 6
Baseline: Senses 5
Baseline: Cardiovascular System 3
Baseline: Airways 2
Baseline: Existing Documents 2
Baseline: Teeth 1
Baseline: Upper Abdominal Organs 1
Total 116

Table 1: Distribution of questions per questionnaire.

1https://mymedax.de

The corpus2 contains three different question 213

types: 12 Wh-questions (WhQ), 59 polar ques- 214

tions (PQ) (or yes/no-questions), and 39 questions 215

that combine the two syntactic question types (CQ). 216

While PQ semantically denote a binary set of propo- 217

sitions (i.e., either confirming or rejecting the ques- 218

tion), WhQ are known to have significantly larger 219

response space (e.g, cf. Hamblin, 1958, 1973; Groe- 220

nendijk and Stokhof, 1984; Karttunen, 1977). As 221

CQ contain both question types, they are expected 222

to behave similarly to WhQ. Thus, we hypothesize 223

that WhQ and CQ evoke more diverse and longer 224

responses compared to binary PQ. Three sample 225

questions per question type, together with potential 226

responses, can be seen in (1) - (3). 227

(1) Waren Sie kurzatmig? (Have you experi- 228

enced shortness of breath?) 229

a. Ja (Yes) 230

b. Nein, es gab keine Probleme (No, 231

there were no problems) 232

(2) Wie oft trinken Sie Alkohol pro Woche? 233

(How often do you consume alcohol per 234

week?) 235

a. Ich trinke zwei Bier (I drink two beers) 236

b. Ich trinke nicht (I don’t drink) 237

(3) Üben Sie regelmäßig einen bestimmten 238

Sport aus? Falls ja, bitte nennen Sie 239

die Sportart (Do you exercise a specific 240

sport regularly? If so, please specify which 241

sport.) 242

a. Ich gehe regelmäßig schwimmen (I go 243

swimming regularly) 244

b. Ich spiele Tennis, dienstags im Verein 245

(I play tennis, every Tuesday with my 246

club) 247

3.2 Data Augmentation Process 248

We augmented the human-produced GerMedIQ 249

corpus with machine-generated, synthetic re- 250

sponses from 15 LLMs in order to assess their 251

quality without finetuning in a zero-shot approach. 252

We selected a vanilla and, if existing, a biomed- 253

ically fine-tuned variant of each LLM, ranging 254

over different architectures and sizes. As a use 255

case, we focused on small to medium-sized, open- 256

weight LLMs to guarantee broader accessibility. 257

Table 2 displays the key characteristics of the mod- 258

2We will release the corpus upon acceptance.
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els used.3259

Each model was instructed to respond to the up-260

coming standardized medical anamnesis question261

as if it were a real patient being asked that ques-262

tion. All models were exposed to the same prompt263

written in German, and we collected five indepen-264

dent responses from each model. The LLMs were265

inferenced on a NVIDIA A40 48GB.266

4 Evaluation of synthetic data points267

While it is straightforward to generate synthetic268

data points with LLMs, the evaluation of the data269

has to be conducted carefully. To evaluate the qual-270

ity of machine-generated responses, we conduct271

three complementary studies—linguistic-structural,272

semantic, and subjective rating—and compare the273

findings to those from human-generated responses.274

4.1 Structural Evaluation275

As a first approximation to the differences between276

human-produced and machine-generated responses277

to anamnesis interview questions, we measured the278

syntactic and grammatical properties of each type.279

4.1.1 Methods280

To evaluate the structural features of synthetic281

and human responses, we first replaced those con-282

sisting solely of model-internal tokens with the283

placeholder <EDIT-NO-RESPONSE> before we used284

spaCy (Honnibal et al., 2020) to tokenize the re-285

sponses. Moreover, we computed traditional cor-286

pus linguistic metrics, like response lengths, and287

token n-grams.288

4.1.2 Results289

Aggregated over all questions, human responses290

have an average length of 6.64 tokens (min = 1,291

max = 60) or 34.61 characters (min = 1, max =292

344). The longest responses received on average293

CQ with a mean length of 7.34 tokens or 39.22294

characters (min = 1tk/1chr, max = 60tk/344chr).295

Human responses to WhQ (avg = 4.90tk/26.36chr,296

min = 1tk/1chr, max = 44tk/214chr) were in aver-297

age shorter than those to PQ (avg = 6.83tk/34.73chr,298

min = 1tk/1chr, max = 52tk/301chr). The most fre-299

quent uni-, bi-, and trigrams in the human responses300

are ich (‘I’), ich habe (‘I have’), and ja ich habe301

(‘yes I have’).302

The average synthetic responses are longer than303

the human responses (avg = 27.18tk/148.51chr,304

3Note that sources of each model can be found in Table 3
in the Appendix.

min = 1tk/1chr, max = 533tk/563chr). Re- 305

sponses by biomedical models are slightly shorter 306

(avg = 24.13tk/131.59chr, min = 1tk/1chr, max 307

= 64tk/270chr) compared to those generated 308

by general LLMs (avg = 29.21tk/159.79chr, 309

min = 1tk/1chr, max = 533tk/563chr). The 310

model with the longest responses over all cat- 311

egories is Ministral-8B-Instruct-2410 (avg 312

= 36.43tk/204.31chr, min = 4tk/13chr, max = 313

103tk/371chr), but even BioGPT-MedText, the 314

model with the shortest responses over all ques- 315

tions, has on average longer responses than hu- 316

mans (avg = 7.80tk/37.46chr, min = 1tk/1chr, max 317

= 48tk/233chr). The most frequent n-grams within 318

the synthetic responses are identical to the human 319

n-grams.4. 320

4.1.3 Interim Discussion 321

The structural evaluation showed that LLMs tend 322

to produce more lengthy responses to anamne- 323

sis interview questions than humans, with general 324

LLMs being slightly longer than biomedical ones. 325

Interestingly, the shortest human responses were 326

found with WhQ, contradicting the initial hypothe- 327

sis based on the idea that WhQ would have longer 328

responses due to their increased semantic response 329

space. Despite differences in the response length, 330

the most frequent n-grams of the LLMs correspond 331

to the ones found in the human responses, suggest- 332

ing that LLMs correctly identified relevant key- 333

words for this task. 334

4.2 Semantic Evaluation 335

In the second step of our investigation, we focused 336

on the contextual relation between real and syn- 337

thetic data via distributional semantics. Specifi- 338

cally, we looked into the internal diversity of single 339

models and the closeness to human responses. 340

4.2.1 Methods 341

To analyze semantic similarity between responses, 342

we used the SentenceTransformers library with 343

the paraphrase-multilingual-MiniLM-L12-v2 344

model to compute sentence-level embeddings for 345

each response (cf. Reimers and Gurevych, 2020). 346

We computed two types of similarity: First, we 347

computed Intra-Model Similarity, i.e., pairwise co- 348

sine similarity among all responses from the same 349

source (i.e., model or humans) for a given question 350

4Note that we left out all responses containing the default
tag <EDIT-NO-RESPONSE>
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Model Parameter Size Architecture Domain
flan-t5-base (standard) 250 M Encoder-Decoder general
flan-t5-base (medical) 250 M Encoder-Decoder biomedical
biogpt 347 M Decoder-Only biomedical
BioGPT-MedText 347 M Decoder-Only biomedical
Llama-3.2-1B-Instruct 1 B Decoder-Only general
Bio-Medical-Llama-3-2-1B-CoT-012025 1 B Decoder-Only biomedical
Llama-3.2-3B-Instruct 3 B Decoder-Only general
Phi-4-mini-instruct 3.8 B Decoder-Only general
gemma-3-4b-it 4 B Decoder-Only general
bloom-6b4-clp-german 6 B Decoder-Only general
Qwen2.5-7B-Instruct 7 B Decoder-Only general
Qwen-UMLS-7B-Instruct 7 B Decoder-Only biomedical
Mistral-7B-Instruct-v0.1 7 B Decoder-Only general
BioMistral-7B 7 B Decoder-Only biomedical
Ministral-8B-Instruct-2410 8 B Decoder-Only general

Table 2: Overview of models used for synthetic data generation.

to quantify internal variability. Second, we calcu-351

lated Inter-Model Similarity, where we used cosine352

similarity between response centroids, i.e., the av-353

erage response, to compare models with each other.354

In addition, we computed how distant individual355

model responses were to their own model centroids356

and to the respective human centroids.357

4.2.2 Results358

The average intra-model cosine similarity aggre-359

gated over all questions is 0.43±0.06 for hu-360

mans, 0.44±0.13 for the biomedical LLMs, and361

0.52±0.18 for the general LLMs.362

A two-way ANOVA (Girden, 1992) was con-363

ducted to examine the effects of domain and ques-364

tion type on intra-model diversity, operationalized365

as the pairwise cosine similarity between single366

responses. The analysis revealed significant main367

effects of domain (F(2, 13215) = 673.69, p < .001)368

and question type (F(2, 13215) = 12.17, p < .001),369

as well as a significant interaction effect between370

the two (F(4, 13215) = 40.43, p < .001)).371

A post-hoc Turkey HSD test (Tukey, 1949)372

showed that for CQ, general-domain LLMs were373

significantly less diverse than biomedical models374

(mean difference (md) = 0.084, 95 % CI = [0.076,375

0.092], p < .001) and humans (md = 0.128, p <376

.001). Biomedical models also produced more sim-377

ilar responses than humans, though with a smaller378

effect (md = 0.044, p = .029). For PQ, general379

LLMs again exhibited lower diversity than biomed-380

ical models (md = 0.091, p < .001) and humans381

(md = 0.088, p < .001). In contrast, no signifi-382

cant difference was found between humans and383

biomedical models (p = .77). For WhQ, general384

LLMs remained less variable than both biomedical385

models (md = 0.057, p < .001) and humans (md =386

0.032, p < .001). Interestingly, humans produced387

less diverse responses than biomedical models in 388

this condition (mean difference = 0.024, p = .0017). 389

The analysis of the inter-model similarity shows 390

that the average distance, i.e., the inversed co- 391

sine similarity of the synthetic responses by the 392

biomedical LLMs to the centroid human responses 393

is slightly higher (avg = 0.64±0.15) than the gener- 394

ations from the general models (avg = 0.60±0.15). 395

A two-way ANOVA showed significant effects of 396

the model’s domain (F(1,8694) = 134.63, p < .001), 397

the question type (F(2, 8694) = 6.50, p < 0.01), 398

and the interaction between both variables (F(2, 399

8694) = 3.63, p = .027) when predicting the dis- 400

tance to the human centroid. Post-hoc pairwise 401

Turkey-adjusted comparisons revealed that for all 402

question types, the biomedical centroid responses 403

are significantly less distant from the human cen- 404

troid, while for CQ (md = 0.055, p < .001) and PQ 405

(md = 0.037, p < .001), the effect is large. WhQ 406

reveal a similar trend but with a lower effect (md = 407

0.029, p = .004). 408

To account for similarity relations between 409

unique models, we selected for each LLM the 410

top ten percent of most similar counterparts 411

based on the centroid response similarity. The 412

responses of Phi-4-mini-instruct are most 413

similar to the centroid human responses (avg = 414

0.64, 95 % CI [0.61, 0.67]). The highest similarity 415

between any centroid responses can be found 416

between Ministral-8B-Instruct-2410 and 417

Qwen2.5-7B-Instruct (avg = 0.84, 95 % CI 418

[0.82, 0.86]), while the lowest top-similarity be- 419

tween two models is found with BioGPT-MedText 420

and Bio-Medical-Llama-3-2-1B-CoT-012025 421

(avg = 0.54, 95 % CI [0.51, 0.57]). 422

Figure 1 illustrates a similarity graph where 423

each node represents the centroid responses of 424
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a model. An edge is added between two nodes425

if one of them represents the most similar cen-426

troid response of the other node among the top427

ten percent. The models Phi-4-mini-instruct428

and Qwen2.5-7B-Instruct produced four times429

each the most similar centroid responses to other430

models, indicating a large overlap in the gener-431

ated responses. The figure shows two similarity-432

islands: Both flanT5 models seemed to produce433

very similar responses, regardless of the domain,434

and, the small-sized LLMs BioGPT-MedText and435

Llama-3.2-1B-Instruct produced a large over-436

lap, too.437

4.2.3 Interim Discussion438

The analysis of the responses showed that intra-439

model similarity is lowest for humans and highest440

for general LLMs, suggesting more diversity in the441

human responses. Further dividing the scores based442

on the question types shows that WhQ evoked the443

least diverse responses from humans. This is a444

counterintuitive finding if we ground our knowl-445

edge on the semantic structure of questions, where446

WhQ are known to denote a much larger set of447

possible responses than PQ. Crucially, this trend448

does not apply to the synthetic responses. Never-449

theless, the intra-model similarity of the synthetic450

responses largely corresponds to the diversity of451

human responses, which could be understood as a452

hint that models actually meet the requirements to453

generate diverse enough answers to standardized454

medical questions.455

The assessment of the inter-model similar-456

ity revealed clusters among the most similar457

responses of certain models. The encoder-458

decoder models, as well as the smaller models459

Llama-3.2-1B-Instruct and BioGPT-MedText,460

were found to be similarity islands, which are de-461

tached from the other models. The islands might be462

due to high redundancy in the generated responses.463

The most similar model to the human responses464

was Phi-4-mini-instruct, which also appeared465

to be most similar to the largest number of other466

models. Thus, Phi-4-mini-instruct might be467

seen as a very representative synthetic response468

generator.469

4.3 LLM-as-a-Judge470

The previous two evaluations focused on the com-471

parison of the structural and semantic properties of472

the human-produced and synthetic responses to the473

anamnesis questions. In order to assess whether the474

responses are actually meaningful or appropriate, 475

we conducted an LLM-as-a-judge experiment (cf. 476

Zheng et al., 2023). 477

4.3.1 Methods 478

We evaluated all responses with five pretrained 479

LLMs from the same pool of models as the 480

ones that generated the responses. In par- 481

ticular, we selected Qwen2.5-7B-Instruct, 482

Qwen-UMLS-7B-Instruct, 483

Bio-Medical-Llama-3-2-1B-CoT-012025, 484

Llama-3.2-3B-Instruct, and gemma-3-4b-it 485

as judges. Models were loaded via the vLLM 486

Python API (Kwon et al., 2023). For each model, 487

we retrieved its default SamplingParams and 488

constrained the response length to 70 tokens max. 489

To elicit appropriateness ratings, we designed 490

a system–user prompt template in English. The 491

system message instructed the model to rate each 492

response on a Likert scale from 1 (not appropriate) 493

to 5 (very appropriate), emphasizing naturalness, 494

coherence, and contextual fit, and to reply with 495

a single digit only. A comparison between that 496

template and an identical German prompt, a prompt 497

that asks the model to justify its response, and one 498

that required the model to produce three ratings for 499

each of the aforementioned rating criteria showed 500

no relevant differences in the judgements. 501

The prompts were dynamically generated for 502

each question-response pair. Non-numeric re- 503

sponses, or those that exceeded the borders 504

of the Likert scale, received the default tag 505

<EDIT-NO-JUDGEMENT>. 506

An evaluation of the inter-rater-agreement be- 507

tween our LLM-judges showed a very low Fleiss’ 508

κ of 0.08. Therefore, we excluded all neutral 509

scores from the dataset and removed the ratings 510

from the two least agreeing LLM-judges, i.e., both 511

Llama models. Furthermore, we dichotomized the 512

scores into inappropriate (1 & 2) and appropriate 513

responses (4 & 5). This trimmed, binary analysis 514

yielded a substantially higher Fleiss’ κ of 0.72, indi- 515

cating substantial agreement on definitive adequacy 516

judgments. 517

4.3.2 Results 518

The aggregated binary scores of the three LLM 519

judges showcase that human responses were con- 520

sistently rated higher, thus more appropriate, than 521

synthetic responses throughout all question types. 522

Figure 2 illustrates the proportion of high and low 523

ratings for human and synthetic data points grouped 524
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Figure 1: Network graph connecting the most similar centroid responses.

by the judgement models.525

We fitted a logistic regression model to investi-526

gate how the binary rating outcome is influenced527

by the fact that a model or a human produced528

the responses (human-ness), question type, and529

the LLM judge. Interaction effects between the530

human-ness and question type were included to531

assess whether the effect of human versus non-532

human responses varies by question type. The533

model showed excellent overall predictive discrim-534

ination (AUC = 0.98). All predictors were sta-535

tistically significant, reflecting the large sample536

size (~1.4M observations). The primary factor dis-537

tinguishing ratings was whether the response was538

generated by a human or a machine (Odds Ratio539

(OR) for synthetic responses = 4.5·−5, 95 % CI:540

[4.0 · 10−5, 5.0 · 10−5], p < .001). Non-human re-541

sponses thus had substantially lower odds of being542

rated positively compared to human responses. Sig-543

nificant interaction effects indicated that the mag-544

nitude of the human advantage varied by question545

type. For instance, compared to the reference cat-546

egory (CQ), PQ showed a moderated reduction of547

human advantage (interaction OR = 0.57, 95 % CI:548

[0.49, 0.66], p < .001), whereas WhQ increased549

the human advantage (interaction OR = 32.3, 95 %550

CI: [27.0, 38.6], p < .001). Additionally, judg-551

ment significantly influenced the rating outcomes,552

although with smaller effect sizes. For instance,553

responses judged by Qwen2.5-7B-Instruct had554

considerably lower odds of receiving positive rat- 555

ings compared to the baseline (OR = 0.13, 95 % CI: 556

[0.13, 0.14], p < .001), whereas Qwen-UMLS-7B- 557

Instruct had modestly lower odds (OR = 0.86, 558

95 % CI: [0.84, 0.88], p < .001). 559

4.3.3 Interim Discussion 560

The rating experiment revealed that the LLM 561

judges scored human-produced responses signif- 562

icantly higher than synthetic ones. WhQ even in- 563

crease the human advantage, possibly due to the 564

semantic nature of this question type, i.e., usually 565

they require knowledge about the space of possible 566

responses. This trend is not influenced by more 567

critical LLM judges. 568

5 General Discussion 569

The driving question behind the linguistic- 570

structural, semantic, and adequacy evaluation of the 571

GerMedIQ corpus and its augmented counterparts 572

was to identify whether small to medium-sized, 573

open-weight LLMs serve as reliable synthetic data 574

generators. Structurally, the chosen LLMs pro- 575

duced much longer responses than humans, and 576

general LLMs produced the longest responses. It 577

is difficult to account for whether longer or shorter 578

responses are better in this case; however, a rea- 579

son for the LLMs to produce longer responses may 580

be the general training strategy of those models: 581

LLMs are usually not designed to produce short 582
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Figure 2: Proportion of responses judged as either appropriate or not appropriate by the three LLM judges, grouped
by

and concise responses, but rather detailed and of-583

ten also step-by-step justifications (cf. Zhang et al.,584

2024). Albeit the response length, the models man-585

aged to produce almost identical n-grams as the586

humans, indicating the ability to meet the major587

structure of the task: Formulating a grammatically588

well-formed response. This minimum requirement589

seemed to have worked out quite well.590

From a distributional semantics point of view,591

the LLMs produced responses with a slightly lower592

diversity than human responses, although the gen-593

eral tendency is comparable to human performance.594

Looking at the top inter-model similarities revealed595

that especially smaller models produced highly sim-596

ilar responses, suggesting redundancies. On the597

other hand, Phi-4-mini-instruct could be iden-598

tified as a representative response generator: Its599

responses were the most similar to three other mod-600

els and the human responses. Overall, the semantic601

analysis showed that most LLMs generally man-602

aged to produce responses that are comparably di-603

verse and semantically related to human responses.604

The LLM-as-a-judge study clearly draws a dif-605

ferent picture. All judges agreed throughout the606

question types and model domains that humans al-607

ways gave more adequate responses. These ratings,608

although not grounded by human judgements, can609

be seen as a strong hint towards a quality gap. WhQ610

even increased that gap, indicating that LLMs strug-611

gle with the semantic requirements of that question612

type.613

Altogether, the experiments have shown that the614

usage of LLMs for data augmentation in the context615

of German clinical language has to be done with 616

care. A life-cycle for synthetic textual data or a 617

human-in-the-loop approach might be important 618

to consider before further processing the data (cf. 619

Long et al., 2024; Liu et al., 2024). 620

6 Conclusion 621

We release a novel simulated medical anamnesis 622

interview question dataset, unique in the German 623

clinical NLP environment. The dataset has the po- 624

tential to improve conversational AI in health care 625

and to give insights into the answering behaviour 626

of humans. 627

Moreover, we could show that small to medium- 628

sized LLMs should only be leveraged carefully as 629

synthetic data generators in narrow domains and 630

non-English contexts. While most LLMs managed 631

to meet the structure of human responses, some 632

models showed weak semantic similarity values 633

compared to the human data. The rating study 634

clearly rejected LLMs as adequate response aug- 635

mentation machines. 636

Future research should investigate further 637

whether LLMs behave similarly in other non- 638

English contexts, perhaps allowing a more diverse 639

set of LLMs, including larger models. In order to 640

ground the rating experiment, a comparable human 641

rating study appears to be a fruitful extension of 642

our research. 643
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Limitations644

Due to privacy constraints in healthcare, our Ger-645

MedIQ corpus consists of simulated responses only.646

Therefore, evaluations based on the collected re-647

sponses have to be made carefully and comparing648

them to real patients’ answers might increase their649

value further.650

Both our data augmentation approach and the651

LLM-as-a-judge study used small to medium-sized652

LLMs with a similar prompt for all models. Lever-653

aging larger LLMs and finding optimal prompts for654

individual models might lead to different results.655

Ethics Statement656

We do not see any significant ethical issues related657

to this work. All our experiments involving human658

participants were conducted voluntarily with fair659

compensation, and participants were informed on660

how the data would be used. All our experiments661

were conducted with open-source libraries, which662

received due citations. The experiment is in line663

with the ethical regulations of the REDACTED.664
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Appendix957

Table 3 lists all used LLMs with their correspond-958

ing research papers, if applicable. If no research959

paper has been released, the Huggingface URLs960

are given instead.

Model Source

flan-t5-base (standard) Chung et al. (2022)
flan-t5-base (medical) https://huggingfac

e.co/CLARA-MeD/fla
n-t5-base

biogpt Luo et al. (2022)
BioGPT-MedText https://huggingfac

e.co/AventIQ-AI/Bi
oGPT-MedText

Llama-3.2-1B-Instruct https://huggingfac
e.co/meta-llama/L
lama-3.2-1B

Bio-Medical-Llama-3-2-1B-CoT https://huggingfac
e.co/ContactDoctor
/Bio-Medical-Llama
-3-2-1B-CoT-012025

Llama-3.2-3B-Instruct https://huggingfac
e.co/meta-llama/L
lama-3.2-3B-Instr
uct

Phi-4-mini-instruct https://huggingfac
e.co/microsoft/Phi
-4-mini-instruct

gemma-3-4b-it https://huggingf
ace.co/google/gemm
a-3-4b-it

bloom-6b4-clp-german Ostendorff and Rehm
(2023)

Qwen2.5-7B-Instruct Yang et al. (2024);
Team (2024)

Qwen-UMLS-7B-Instruct https://huggingfac
e.co/prithivMLmods
/Qwen-UMLS-7B-Ins
truct

Mistral-7B-Instruct-v0.1 https://huggingfac
e.co/mistralai/Mis
tral-7B-Instruct-v
0.1

BioMistral-7B Labrak et al. (2024)
Ministral-8B-Instruct-2410 https://huggingfac

e.co/mistralai/Min
istral-8B-Instruc
t-2410

Table 3: LLMs and their corresponding sources.
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