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Abstract

Text corpora in non-English clinical contexts
are sparse, where synthetic data generation
with Large Language Models (LLMs) appears
as a promising strategy to overcome this data
gap. In order to test the quality of LLMs in
generating synthetic data, we applied them to
our novel German Medical Interview Ques-
tions Corpus (GerMedIQ), consisting of 4,524
unique question-response pairs in German. We
augmented our corpus by asking a cohort of
models to produce suitable responses to the
same questions. Structural and semantic evalu-
ations of the synthetic responses revealed that
while augmented responses may meet the gram-
matical requirements, most models were not
able to produce semantically comparable re-
sponses to humans. Also, an LLM-as-a-judge
experiment showcased that human responses
were consistently rated more appropriate than
synthetic ones. We find that data augmentation
with LLMs in non-English and clinical domain
contexts has to be performed carefully.

1 Introduction

Textual medical data is crucial for developing and
validating Natural Language Processing (NLP) ap-
plications within clinical contexts. While there are
large high-quality datasets available for the English
language (e.g., MIMIC by Johnson et al. (2016)),
accessible German clinical documentation typically
remains sparse (Hahn, 2024). This is often due to
stringent privacy constraints, restricted access to se-
cure environments, or a lack of accessible datasets
or corpora. While the creation of such shareable
datasets should be viewed as the optimal solu-
tion, it is time-, labour-, and resource-intensive (cf.
Meineke et al., 2023; Lohr et al., 2024). A quicker
and more lightweight alternative is data augmen-
tation using Large Language Models (LLMs) (cf.
Piedboeuf and Langlais, 2024). However, the fea-
sibility of using LLMs as robust data generation

engines in the clinical domain remains largely un-
derexplored, particularly regarding their capability
to reliably simulate realistic clinical interactions
between physicians and patients.

With this paper, we release the German Medical
Interview Questions Corpus (GerMedIQ), a dataset
consisting of 116 real-world questions from stan-
dardized German anamnesis questionnaires and 39
simulated responses, each by humans. Moreover,
we explore the suitability of small to medium-sized
LLMs in generating synthetic responses to those
questions, specifically focusing on their ability to
adopt the role of the patient. The central question
guiding our investigation is: Can LLMs effectively
serve as synthetic data generators in the context of
clinical anamnesis? Further, our experiments allow
us to assess the ability of LLMs to simulate patient
behaviour.

2 Related Work

The following section dives deeper into the exist-
ing literature on synthetic data generation in the
biomedical and clinical domain. Furthermore, an
overivew about existing medical interview datasets
will be given.

2.1 Synthetic Data Generation in the
Biomedical Domain

The generation of synthetic data has evolved over
the last years to overcome shortages of clinical data
due to privacy constraints. Common use cases are
to augment smaller datasets with synthetic data
points in order to increase their size or diversity, or
to become more independent of time-consuming
data collection processes. Usually, data augmenta-
tion workflows are built upon existing data, where
parts of datasets are paraphrased or back-translated
by a model (cf. Rentschler et al., 2022). Since the
advancement of LLMs in recent years, researchers
have been able to generate synthetic data com-



pletely independently from existing data sources,
and Piedboeuf and Langlais (2024) showed that
LLM-generated synthetic data tends to increase
model performance much better than traditional
approaches.

Typical reasons for the increasing interest in syn-
thetic data generation are cost efficiency, scalabil-
ity, control over the diversity and balance of data,
and reduced privacy concerns, especially in health-
care (Liu et al., 2024; Nadas et al., 2025). This
is underpinned by Hahn (2024), who states that
besides domain proxies (e.g., guidelines) and trans-
lated datasets (e.g, in non-English contexts MIMIC-
derived datasets), synthetic textual data are crucial
for NLP applications in the clinical domain. Ex-
amples of existing German synthetic text corpora
are JSYNCC (Lohr et al., 2018) and GRASCCo
(Modersohn et al., 2022).

A known disadvantage of data synthesized by
LLMs is the fact that those models are reportedly
vulnerable to biases or hallucinations, potentially
leading to counterfactual, unrealistic, or semanti-
cally implausible synthetic corpora (Yu et al., 2023;
Liu et al., 2024; Hicks et al., 2024; Hahn, 2024,
Nadas et al., 2025).

Synthetic data generation has been applied suc-
cessfully in boosting LLMs’ performance on arith-
metics (Geva et al., 2020), information retrieval
(Xiong et al., 2024), or named entity recognition
(NER) (Lu et al., 2024). But also in the biomedical
domain, data augmentation improved the perfor-
mance of ICD-9 and ICD-10 code labeling (Sarkar
et al., 2024; Kumichev et al., 2024) or other clin-
ical NER tasks (Suvalov et al., 2025). Synthetic
radiology reports helped to classify misdiagnosed
fractures (Liu et al., 2025) and medical LLMs
trained on synthetic text only even outperformed
ones trained on real data (Peng et al., 2023).

2.2 Medical Conversational Datasets

Researchers have collected real and simulated med-
ical conversational datasets, mostly for training
conversational artificial intelligence (Al) systems.

The largest real-world conversational dataset
from the medical domain is MedDialog: Zeng
et al. (2020) compiled a Chinese corpus with 3.4M
doctor-patient interactions and an English corpus
with 260K such conversations, covering numerous
medical specialities. The researchers showed that
models trained on the MedDialog dataset produced
accurate medical conversations. Similar results are
reported by Pieri et al. (2024) on models that were

trained on BiMediX, their 1.3M corpus of English-
Arabic clinical conversations. Moreover, Xu et al.
(2022) collected the RelMedDial dataset consist-
ing of 24K utterances from Chinese telemedical
interviews in order to train or improve medical
dialogue systems. Saley et al. (2024) captured a
22K corpus of English doctor-patient dialogues for
medical history taking and the dataset may serve
task-oriented conversational Al systems. Another
non-English corpus with Spanish counseling ses-
sions included 800 medical questions and about
400 expert reflections (Gunal et al., 2025). Gratch
et al. (2014) collected the DAIC corpus with about
500 psychological English interviews for diagnosis
support. The only medical interview corpus that in-
cludes German that we are aware of is DiK, which
contains roughly 120 audio recordings with tran-
scriptions of doctor-patient interactions in German,
Portuguese, and Turkish as well as interpreted con-
versations. DiK was collected to study the multilin-
gual interpretation in the clinical context (Biihrig
and Meyer, 2009).

In order to boost the automatic summarization
abilities of LLLMs as well as clinical note genera-
tion, Ben Abacha et al. (2023) collected a 1.7K cor-
pus of simulated interactions between physicians
and patients. Fareez et al. (2022) crafted a mul-
timodal dataset consisting of 272 medical conver-
sations derived from simulated cases focusing on
respiratory diseases. Similarly, Papadopoulos Ko-
rfiatis et al. (2022) created a small, multimodal
corpus for primary care consultations. Sanni et al.
(2025) generated a dataset with medical and non-
medical conversations in different African accents
to enhance automatic speech recognition systems.

3 Dataset: The GerMedIQ Corpus

To the best of our knowledge, there is no available
German anamnesis question dataset for research.
Therefore, we present the German Medical Inter-
view Questions Corpus (GerMedIQ), consisting of
116 standardized anamnesis questions answered by
39 participants, resulting in 4,524 unique German
question-response pairs.

3.1 The Corpus Collection

The interview questions were extracted from a
mixture of standardized questionnaires and basic
anamnesis questions used at the University Hos-
pital REDACTED. We took questions from the
Barthel Index (Mahoney and Barthel, 1965), the



EORTC Quality of Life Questionnaire (Aaronson
et al., 1993), and the PainDETECT Questionnaire
(Freynhagen et al., 2006), which are actively used
in everyday clinical routine, especially with can-
cer patients. In addition, we compiled anamnesis
questions from clinical routine interviews covering
a wide variety of topics like basic body characteris-
tics (e.g., weight or height) or the medical history of
a patient. Some questions were slightly rephrased
for consistency reasons.

Table 1 shows the distribution of questions
across the full list of questionnaires. Due to pri-
vacy regulations, we were not able to collect re-
sponses from real patients and decided to focus
on a cohort of laypeople without previous formal
medical knowledge, and we have no information
about their medical history. A rationale behind
this decision is that no medical knowledge should
be required to answer anamnesis questionnaires
properly. In order to obtain realistic responses,
the participants were explicitly instructed to give
‘appropriate’, i.e., grammatically well-formed and
contextually reasonable responses to each question
without disclosing any personally identifiable in-
formation. Although no detailed patient profiles
were provided, participants were encouraged to an-
swer as plausibly as possible, drawing on their own
understanding or interpretation of hypothetical clin-
ical scenarios. The survey was conducted online
on the platform MyMedax' and took each partici-
pant roughly 40 minutes. Each participant received
monetary compensation to increase their level of
motivation.

Questionnaire | N
Baseline: Medical History 19
Baseline: Anamnesis Assessment 16
Baseline: Subjective History 16
EORTC QLQ 30 14
PainDetect Questionnaire 9
Barthel Index 8
Baseline: Patient Characteristics 7
Baseline: Patient Circumstances 7
Baseline: Immune System 6
Baseline: Senses 5
Baseline: Cardiovascular System 3
Baseline: Airways 2
Baseline: Existing Documents 2
Baseline: Teeth 1
Baseline: Upper Abdominal Organs 1
Total { 116

Table 1: Distribution of questions per questionnaire.

"https://mymedax.de

The corpus® contains three different question
types: 12 Wh-questions (WhQ), 59 polar ques-
tions (PQ) (or yes/no-questions), and 39 questions
that combine the two syntactic question types (CQ).
While PQ semantically denote a binary set of propo-
sitions (i.e., either confirming or rejecting the ques-
tion), WhQ are known to have significantly larger
response space (e.g, cf. Hamblin, 1958, 1973; Groe-
nendijk and Stokhof, 1984; Karttunen, 1977). As
CQ contain both question types, they are expected
to behave similarly to WhQ. Thus, we hypothesize
that WhQ and CQ evoke more diverse and longer
responses compared to binary PQ. Three sample
questions per question type, together with potential
responses, can be seen in (1) - (3).

(1) Waren Sie kurzatmig? (Have you experi-
enced shortness of breath?)

a. Ja(Yes)
b. Nein, es gab keine Probleme (No,
there were no problems)

2) Wie oft trinken Sie Alkohol pro Woche?
(How often do you consume alcohol per
week?)

a. Ich trinke zwei Bier (I drink two beers)
b. Ich trinke nicht (I don’t drink)

3) Uben Sie regelmiiBig einen bestimmten
Sport aus? Falls ja, bitte nennen Sie
die Sportart (Do you exercise a specific
sport regularly? If so, please specify which
sport.)

a. Ich gehe regelmiBig schwimmen (/ go
swimming regularly)

b. Ich spiele Tennis, dienstags im Verein
(I play tennis, every Tuesday with my
club)

3.2 Data Augmentation Process

We augmented the human-produced GerMedIQ
corpus with machine-generated, synthetic re-
sponses from 15 LLMs in order to assess their
quality without finetuning in a zero-shot approach.
We selected a vanilla and, if existing, a biomed-
ically fine-tuned variant of each LLM, ranging
over different architectures and sizes. As a use
case, we focused on small to medium-sized, open-
weight LLMs to guarantee broader accessibility.
Table 2 displays the key characteristics of the mod-

“We will release the corpus upon acceptance.
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els used.?

Each model was instructed to respond to the up-
coming standardized medical anamnesis question
as if it were a real patient being asked that ques-
tion. All models were exposed to the same prompt
written in German, and we collected five indepen-
dent responses from each model. The LLMs were
inferenced on a NVIDIA A40 48GB.

4 Evaluation of synthetic data points

While it is straightforward to generate synthetic
data points with LLMs, the evaluation of the data
has to be conducted carefully. To evaluate the qual-
ity of machine-generated responses, we conduct
three complementary studies—Ilinguistic-structural,
semantic, and subjective rating—and compare the
findings to those from human-generated responses.

4.1 Structural Evaluation

As a first approximation to the differences between
human-produced and machine-generated responses
to anamnesis interview questions, we measured the
syntactic and grammatical properties of each type.

4.1.1 Methods

To evaluate the structural features of synthetic
and human responses, we first replaced those con-
sisting solely of model-internal tokens with the
placeholder <EDIT-NO-RESPONSE> before we used
spaCy (Honnibal et al., 2020) to tokenize the re-
sponses. Moreover, we computed traditional cor-
pus linguistic metrics, like response lengths, and
token n-grams.

4.1.2 Results

Aggregated over all questions, human responses
have an average length of 6.64 tokens (min = 1,
max = 60) or 34.61 characters (min = 1, max =
344). The longest responses received on average
CQ with a mean length of 7.34 tokens or 39.22
characters (min = 1tk/1chr, max = 60tk/344chr).
Human responses to WhQ (avg = 4.90tk/26.36c¢hr,
min = 1tk/1chr, max = 44tk/214chr) were in aver-
age shorter than those to PQ (avg = 6.83tk/34.73chr,
min = 1tk/1chr, max = 52tk/301chr). The most fre-
quent uni-, bi-, and trigrams in the human responses
are ich (‘I’), ich habe (‘I have’), and ja ich habe
(‘yes I have’).

The average synthetic responses are longer than
the human responses (avg = 27.18tk/148.51chr,

3Note that sources of each model can be found in Table 3
in the Appendix.

min = Itk/Ichr, max = 533tk/563chr). Re-
sponses by biomedical models are slightly shorter
(avg = 24.13tk/131.59chr, min = 1tk/1chr, max
= 64tk/270chr) compared to those generated
by general LLMs (avg = 29.21tk/159.79chr,
min = Itk/lchr, max = 533tk/563chr). The
model with the longest responses over all cat-
egories is Ministral-8B-Instruct-2410 (avg
= 36.43tk/204.31chr, min = 4tk/13chr, max =
103tk/371chr), but even BioGPT-MedText, the
model with the shortest responses over all ques-
tions, has on average longer responses than hu-
mans (avg = 7.80tk/37.46¢chr, min = 1tk/1chr, max
= 48tk/233chr). The most frequent n-grams within
the synthetic responses are identical to the human

n-grams.”.

4.1.3 Interim Discussion

The structural evaluation showed that LLMs tend
to produce more lengthy responses to anamne-
sis interview questions than humans, with general
LLMs being slightly longer than biomedical ones.
Interestingly, the shortest human responses were
found with WhQ, contradicting the initial hypothe-
sis based on the idea that WhQ would have longer
responses due to their increased semantic response
space. Despite differences in the response length,
the most frequent n-grams of the LLMs correspond
to the ones found in the human responses, suggest-
ing that LLMs correctly identified relevant key-
words for this task.

4.2 Semantic Evaluation

In the second step of our investigation, we focused
on the contextual relation between real and syn-
thetic data via distributional semantics. Specifi-
cally, we looked into the internal diversity of single
models and the closeness to human responses.

4.2.1 Methods

To analyze semantic similarity between responses,
we used the SentenceTransformers library with
the paraphrase-multilingual-MinilLM-L12-v2
model to compute sentence-level embeddings for
each response (cf. Reimers and Gurevych, 2020).
We computed two types of similarity: First, we
computed Intra-Model Similarity, i.e., pairwise co-
sine similarity among all responses from the same
source (i.e., model or humans) for a given question

*Note that we left out all responses containing the default
tag <EDIT-NO-RESPONSE>



Model Parameter Size Architecture Domain
flan-t5-base (standard) 250 M Encoder-Decoder general
flan-t5-base (medical) 250 M Encoder-Decoder biomedical
biogpt 347M Decoder-Only biomedical
BioGPT-MedText 347TM Decoder-Only biomedical
Llama-3.2-1B-Instruct 1B Decoder-Only general
Bio-Medical-Llama-3-2-1B-CoT-012025 1B Decoder-Only biomedical
Llama-3.2-3B-Instruct 3B Decoder-Only general
Phi-4-mini-instruct 3.8B Decoder-Only general
gemma-3-4b-it 4B Decoder-Only general
bloom-6b4-clp-german 6B Decoder-Only general
Qwen?2.5-7B-Instruct 7B Decoder-Only general
Qwen-UMLS-7B-Instruct 7B Decoder-Only biomedical
Mistral-7B-Instruct-v0.1 7B Decoder-Only general
BioMistral-7B 7B Decoder-Only biomedical
Ministral-8B-Instruct-2410 8B Decoder-Only general

Table 2: Overview of models used for synthetic data generation.

to quantify internal variability. Second, we calcu-
lated Inter-Model Similarity, where we used cosine
similarity between response centroids, i.e., the av-
erage response, to compare models with each other.
In addition, we computed how distant individual
model responses were to their own model centroids
and to the respective human centroids.

4.2.2 Results

The average intra-model cosine similarity aggre-
gated over all questions is 0.434+0.06 for hu-
mans, 0.4440.13 for the biomedical LLMs, and
0.5240.18 for the general LLMs.

A two-way ANOVA (Girden, 1992) was con-
ducted to examine the effects of domain and ques-
tion type on intra-model diversity, operationalized
as the pairwise cosine similarity between single
responses. The analysis revealed significant main
effects of domain (F(2, 13215) = 673.69, p < .001)
and question type (F(2, 13215) =12.17, p < .001),
as well as a significant interaction effect between
the two (F(4, 13215) =40.43, p < .001)).

A post-hoc Turkey HSD test (Tukey, 1949)
showed that for CQ, general-domain LLMs were
significantly less diverse than biomedical models
(mean difference (md) = 0.084, 95 % CI =[0.076,
0.092], p < .001) and humans (md = 0.128, p <
.001). Biomedical models also produced more sim-
ilar responses than humans, though with a smaller
effect (md = 0.044, p = .029). For PQ, general
LLMs again exhibited lower diversity than biomed-
ical models (md = 0.091, p < .001) and humans
(md = 0.088, p < .001). In contrast, no signifi-
cant difference was found between humans and
biomedical models (p = .77). For WhQ, general
LLMs remained less variable than both biomedical
models (md = 0.057, p <.001) and humans (md =
0.032, p <.001). Interestingly, humans produced

less diverse responses than biomedical models in
this condition (mean difference = 0.024, p =.0017).

The analysis of the inter-model similarity shows
that the average distance, i.e., the inversed co-
sine similarity of the synthetic responses by the
biomedical LLMs to the centroid human responses
is slightly higher (avg = 0.6440.15) than the gener-
ations from the general models (avg = 0.60+£0.15).
A two-way ANOVA showed significant effects of
the model’s domain (F(1,8694) = 134.63, p < .001),
the question type (F(2, 8694) = 6.50, p < 0.01),
and the interaction between both variables (F(2,
8694) = 3.63, p = .027) when predicting the dis-
tance to the human centroid. Post-hoc pairwise
Turkey-adjusted comparisons revealed that for all
question types, the biomedical centroid responses
are significantly less distant from the human cen-
troid, while for CQ (md = 0.055, p < .001) and PQ
(md = 0.037, p < .001), the effect is large. WhQ
reveal a similar trend but with a lower effect (md =
0.029, p =.004).

To account for similarity relations between
unique models, we selected for each LLM the
top ten percent of most similar counterparts
based on the centroid response similarity. The
responses of Phi-4-mini-instruct are most
similar to the centroid human responses (avg =
0.64, 95 % CI [0.61, 0.67]). The highest similarity
between any centroid responses can be found
between Ministral-8B-Instruct-2410 and
Qwen2.5-7B-Instruct (avg = 0.84, 95 % CI
[0.82, 0.86]), while the lowest top-similarity be-
tween two models is found with BioGPT-MedText
and Bio-Medical-Llama-3-2-1B-CoT-012025
(avg =0.54,95 % CI [0.51, 0.57]).

Figure 1 illustrates a similarity graph where
each node represents the centroid responses of



a model. An edge is added between two nodes
if one of them represents the most similar cen-
troid response of the other node among the top
ten percent. The models Phi-4-mini-instruct
and Qwen2.5-7B-Instruct produced four times
each the most similar centroid responses to other
models, indicating a large overlap in the gener-
ated responses. The figure shows two similarity-
islands: Both flanT5 models seemed to produce
very similar responses, regardless of the domain,
and, the small-sized LLMs BioGPT-MedText and
Llama-3.2-1B-Instruct produced a large over-
lap, too.

4.2.3 Interim Discussion

The analysis of the responses showed that intra-
model similarity is lowest for humans and highest
for general LLMs, suggesting more diversity in the
human responses. Further dividing the scores based
on the question types shows that WhQ evoked the
least diverse responses from humans. This is a
counterintuitive finding if we ground our knowl-
edge on the semantic structure of questions, where
WhQ are known to denote a much larger set of
possible responses than PQ. Crucially, this trend
does not apply to the synthetic responses. Never-
theless, the intra-model similarity of the synthetic
responses largely corresponds to the diversity of
human responses, which could be understood as a
hint that models actually meet the requirements to
generate diverse enough answers to standardized
medical questions.

The assessment of the inter-model similar-
ity revealed clusters among the most similar
responses of certain models. The encoder-
decoder models, as well as the smaller models
Llama-3.2-1B-Instruct and BioGPT-MedText,
were found to be similarity islands, which are de-
tached from the other models. The islands might be
due to high redundancy in the generated responses.
The most similar model to the human responses
was Phi-4-mini-instruct, which also appeared
to be most similar to the largest number of other
models. Thus, Phi-4-mini-instruct might be
seen as a very representative synthetic response
generator.

4.3 LLM-as-a-Judge

The previous two evaluations focused on the com-
parison of the structural and semantic properties of
the human-produced and synthetic responses to the
anamnesis questions. In order to assess whether the

responses are actually meaningful or appropriate,
we conducted an LL.M-as-a-judge experiment (cf.
Zheng et al., 2023).

4.3.1 Methods

We evaluated all responses with five pretrained
LLMs from the same pool of models as the
ones that generated the responses. In par-
ticular, we selected Qwen2.5-7B-Instruct,
Qwen-UMLS-7B-Instruct,
Bio-Medical-Llama-3-2-1B-CoT-012025,
Llama-3.2-3B-Instruct, and gemma-3-4b-it
as judges. Models were loaded via the vLLM
Python API (Kwon et al., 2023). For each model,
we retrieved its default SamplingParams and
constrained the response length to 70 tokens max.

To elicit appropriateness ratings, we designed
a system—user prompt template in English. The
system message instructed the model to rate each
response on a Likert scale from 1 (not appropriate)
to 5 (very appropriate), emphasizing naturalness,
coherence, and contextual fit, and to reply with
a single digit only. A comparison between that
template and an identical German prompt, a prompt
that asks the model to justify its response, and one
that required the model to produce three ratings for
each of the aforementioned rating criteria showed
no relevant differences in the judgements.

The prompts were dynamically generated for
each question-response pair. Non-numeric re-
sponses, or those that exceeded the borders
of the Likert scale, received the default tag
<EDIT-NO-JUDGEMENT>.

An evaluation of the inter-rater-agreement be-
tween our LLM-judges showed a very low Fleiss’
x of 0.08. Therefore, we excluded all neutral
scores from the dataset and removed the ratings
from the two least agreeing LLM-judges, i.e., both
Llama models. Furthermore, we dichotomized the
scores into inappropriate (1 & 2) and appropriate
responses (4 & 5). This trimmed, binary analysis
yielded a substantially higher Fleiss’  of 0.72, indi-
cating substantial agreement on definitive adequacy
judgments.

4.3.2 Results

The aggregated binary scores of the three LLM
judges showcase that human responses were con-
sistently rated higher, thus more appropriate, than
synthetic responses throughout all question types.
Figure 2 illustrates the proportion of high and low
ratings for human and synthetic data points grouped
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Figure 1: Network graph connecting the most similar centroid responses.

by the judgement models.

We fitted a logistic regression model to investi-
gate how the binary rating outcome is influenced
by the fact that a model or a human produced
the responses (human-ness), question type, and
the LLM judge. Interaction effects between the
human-ness and question type were included to
assess whether the effect of human versus non-
human responses varies by question type. The
model showed excellent overall predictive discrim-
ination (AUC = 0.98). All predictors were sta-
tistically significant, reflecting the large sample
size (~1.4M observations). The primary factor dis-
tinguishing ratings was whether the response was
generated by a human or a machine (Odds Ratio
(OR) for synthetic responses = 4.5-7, 95 % CI:
[4.0-107°,5.0 - 107°], p < .001). Non-human re-
sponses thus had substantially lower odds of being
rated positively compared to human responses. Sig-
nificant interaction effects indicated that the mag-
nitude of the human advantage varied by question
type. For instance, compared to the reference cat-
egory (CQ), PQ showed a moderated reduction of
human advantage (interaction OR = 0.57, 95 % CI:
[0.49, 0.66], p < .001), whereas WhQ increased
the human advantage (interaction OR = 32.3, 95 %
CI: [27.0, 38.6], p < .001). Additionally, judg-
ment significantly influenced the rating outcomes,
although with smaller effect sizes. For instance,
responses judged by Qwen2.5-7B-Instruct had

considerably lower odds of receiving positive rat-
ings compared to the baseline (OR =0.13, 95 % CI:
[0.13, 0.14], p < .001), whereas Qwen-UMLS-7B-
Instruct had modestly lower odds (OR = 0.86,
95 % CI: [0.84, 0.88], p < .001).

4.3.3 Interim Discussion

The rating experiment revealed that the LLM
judges scored human-produced responses signif-
icantly higher than synthetic ones. WhQ even in-
crease the human advantage, possibly due to the
semantic nature of this question type, i.e., usually
they require knowledge about the space of possible
responses. This trend is not influenced by more
critical LLM judges.

5 General Discussion

The driving question behind the linguistic-
structural, semantic, and adequacy evaluation of the
GerMedIQ corpus and its augmented counterparts
was to identify whether small to medium-sized,
open-weight LLMs serve as reliable synthetic data
generators. Structurally, the chosen LLMs pro-
duced much longer responses than humans, and
general LLMs produced the longest responses. It
is difficult to account for whether longer or shorter
responses are better in this case; however, a rea-
son for the LLLMs to produce longer responses may
be the general training strategy of those models:
LLMs are usually not designed to produce short
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and concise responses, but rather detailed and of-
ten also step-by-step justifications (cf. Zhang et al.,
2024). Albeit the response length, the models man-
aged to produce almost identical n-grams as the
humans, indicating the ability to meet the major
structure of the task: Formulating a grammatically
well-formed response. This minimum requirement
seemed to have worked out quite well.

From a distributional semantics point of view,
the LLMs produced responses with a slightly lower
diversity than human responses, although the gen-
eral tendency is comparable to human performance.
Looking at the top inter-model similarities revealed
that especially smaller models produced highly sim-
ilar responses, suggesting redundancies. On the
other hand, Phi-4-mini-instruct could be iden-
tified as a representative response generator: Its
responses were the most similar to three other mod-
els and the human responses. Overall, the semantic
analysis showed that most LLMs generally man-
aged to produce responses that are comparably di-
verse and semantically related to human responses.

The LLM-as-a-judge study clearly draws a dif-
ferent picture. All judges agreed throughout the
question types and model domains that humans al-
ways gave more adequate responses. These ratings,
although not grounded by human judgements, can
be seen as a strong hint towards a quality gap. WhQ
even increased that gap, indicating that LLMs strug-
gle with the semantic requirements of that question
type.

Altogether, the experiments have shown that the
usage of LLMs for data augmentation in the context

of German clinical language has to be done with
care. A life-cycle for synthetic textual data or a
human-in-the-loop approach might be important
to consider before further processing the data (cf.
Long et al., 2024; Liu et al., 2024).

6 Conclusion

We release a novel simulated medical anamnesis
interview question dataset, unique in the German
clinical NLP environment. The dataset has the po-
tential to improve conversational Al in health care
and to give insights into the answering behaviour
of humans.

Moreover, we could show that small to medium-
sized LLMs should only be leveraged carefully as
synthetic data generators in narrow domains and
non-English contexts. While most LLMs managed
to meet the structure of human responses, some
models showed weak semantic similarity values
compared to the human data. The rating study
clearly rejected LLMs as adequate response aug-
mentation machines.

Future research should investigate further
whether LLMs behave similarly in other non-
English contexts, perhaps allowing a more diverse
set of LLMs, including larger models. In order to
ground the rating experiment, a comparable human
rating study appears to be a fruitful extension of
our research.



Limitations

Due to privacy constraints in healthcare, our Ger-
MedIQ corpus consists of simulated responses only.
Therefore, evaluations based on the collected re-
sponses have to be made carefully and comparing
them to real patients’ answers might increase their
value further.

Both our data augmentation approach and the
LLM-as-a-judge study used small to medium-sized
LLMs with a similar prompt for all models. Lever-
aging larger LLMs and finding optimal prompts for
individual models might lead to different results.

Ethics Statement

We do not see any significant ethical issues related
to this work. All our experiments involving human
participants were conducted voluntarily with fair
compensation, and participants were informed on
how the data would be used. All our experiments
were conducted with open-source libraries, which
received due citations. The experiment is in line
with the ethical regulations of the REDACTED.
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Appendix

Table 3 lists all used LLMs with their correspond-
ing research papers, if applicable. If no research
paper has been released, the Huggingface URLs

are given instead.

Model

Source

flan-t5-base (standard)
flan-t5-base (medical)

biogpt
BioGPT-MedText

Llama-3.2-1B-Instruct

Bio-Medical-Llama-3-2-1B-CoT

Llama-3.2-3B-Instruct

Phi-4-mini-instruct

gemma-3-4b-it

bloom-6b4-clp-german

Qwen2.5-7B-Instruct

Qwen-UMLS-7B-Instruct

Mistral-7B-Instruct-vO0.1

BioMistral-7B

Ministral-8B-Instruct-2410

Chung et al. (2022)
https://huggingfac
e.co/CLARA-MeD/fla
n-t5-base

Luo et al. (2022)
https://huggingfac
e.co/AventIQ-AI/Bi
OGPT-MedText
https://huggingfac
e.co/meta-1lama/L
lama-3.2-1B
https://huggingfac
e.co/ContactDoctor
/Bio-Medical-Llama
-3-2-1B-CoT-012025
https://huggingfac
e.co/meta-1llama/L
lama-3.2-3B-Instr
uct
https://huggingfac
e.co/microsoft/Phi
-4-mini-instruct
https://huggingf
ace.co/google/gemm
a-3-4b-it
Ostendorff and Rehm
(2023)

Yang et al. (2024);
Team (2024)
https://huggingfac
e.co/prithivMLmods
/Qwen-UMLS-7B-1Ins
truct
https://huggingfac
e.co/mistralai/Mis
tral-7B-Instruct-v
0.1
Labrak et al. (2024)
https://huggingfac
e.co/mistralai/Min
istral-8B-Instruc
t-2410

Table 3: LLMs and their corresponding sources.
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https://huggingface.co/CLARA-MeD/flan-t5-base
https://huggingface.co/CLARA-MeD/flan-t5-base
https://huggingface.co/CLARA-MeD/flan-t5-base
https://huggingface.co/AventIQ-AI/BioGPT-MedText
https://huggingface.co/AventIQ-AI/BioGPT-MedText
https://huggingface.co/AventIQ-AI/BioGPT-MedText
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-2-1B-CoT-012025
https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-2-1B-CoT-012025
https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-2-1B-CoT-012025
https://huggingface.co/ContactDoctor/Bio-Medical-Llama-3-2-1B-CoT-012025
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/microsoft/Phi-4-mini-instruct
https://huggingface.co/microsoft/Phi-4-mini-instruct
https://huggingface.co/microsoft/Phi-4-mini-instruct
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct
https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct
https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct
https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
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